1
|
McGehee J, Stathopoulos A. Target gene responses differ when transcription factor levels are acutely decreased by nuclear export versus degradation. Development 2024; 151:dev202775. [PMID: 39397716 DOI: 10.1242/dev.202775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Defining the time of action for morphogens requires tools capable of temporally controlled perturbations. To study how the transcription factor Dorsal affects patterning of the Drosophila embryonic dorsal-ventral axis, we used two light-inducible tags that trigger either nuclear export or degradation of Dorsal under blue light. Nuclear export of Dorsal leads to loss of the high-threshold, ventrally expressed target gene snail (sna), while the low-threshold, laterally expressed target gene short-gastrulation (sog) is retained. In contrast, degradation of Dorsal results in retention of sna, loss of sog, and lower nuclear levels compared to when Dorsal is exported from the nucleus. To understand why nuclear export causes loss of sna but degradation does not, we investigated Dorsal kinetics using photobleaching and found that it rapidly re-enters the nucleus even under blue-light conditions favoring export. The associated kinetics of Dorsal being rapidly imported and exported continuously are likely responsible for loss of sna but, alternatively, can support sog. Collectively, our results indicate that this dynamic patterning process is influenced by both Dorsal concentration and nuclear retention.
Collapse
Affiliation(s)
- James McGehee
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
2
|
Kapinos LE, Kalita J, Kassianidou E, Rencurel C, Lim RYH. Mechanism of exportin retention in the cell nucleus. J Cell Biol 2024; 223:e202306094. [PMID: 38241019 PMCID: PMC10798875 DOI: 10.1083/jcb.202306094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Exportin receptors are concentrated in the nucleus to transport essential cargoes out of it. A mislocalization of exportins to the cytoplasm is linked to disease. Hence, it is important to understand how their containment within the nucleus is regulated. Here, we have studied the nuclear efflux of exportin2 (cellular apoptosis susceptibility protein or CAS) that delivers karyopherinα (Kapα or importinα), the cargo adaptor for karyopherinβ1 (Kapβ1 or importinβ1), to the cytoplasm in a Ran guanosine triphosphate (RanGTP)-mediated manner. We show that the N-terminus of CAS attenuates the interaction of RanGTPase activating protein 1 (RanGAP1) with RanGTP to slow GTP hydrolysis, which suppresses CAS nuclear exit at nuclear pore complexes (NPCs). Strikingly, a single phosphomimetic mutation (T18D) at the CAS N-terminus is sufficient to abolish its nuclear retention and coincides with metastatic cellular behavior. Furthermore, downregulating Kapβ1 disrupts CAS nuclear retention, which highlights the balance between their respective functions that is essential for maintaining the Kapα transport cycle. Therefore, NPCs play a functional role in selectively partitioning exportins in the cell nucleus.
Collapse
Affiliation(s)
- Larisa E. Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| | - Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| | - Elena Kassianidou
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| | - Roderick Y. H. Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel Switzerland, Basel, Switzerland
| |
Collapse
|
3
|
Jibiki K, Kodama TS, Yasuhara N. Importin alpha family NAAT/IBB domain: Functions of a pleiotropic long chameleon sequence. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:175-209. [PMID: 36858734 DOI: 10.1016/bs.apcsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nuclear transport is essential for eukaryotic cell survival and regulates the movement of functional molecules in and out of the nucleus via the nuclear pore. Transport is facilitated by protein-protein interactions between cargo and transport receptors, which contribute to the expression and regulation of downstream genetic information. This chapter focuses on the molecular basis of the multifunctional nature of the importin α family, the representative transport receptors that bring proteins into the nucleus. Importin α performs multiple functions during the nuclear transport cycle through interactions with multiple molecules by a single domain called the IBB domain. This domain is a long chameleon sequence, which can change its conformation and binding mode depending on the interaction partners. By considering the evolutionarily conserved biochemical/physicochemical propensities of the amino acids constituting the functional complex interfaces, together with their structural properties, the mechanisms of switching between multiple complexes formed via IBB and the regulation of downstream functions are examined in detail. The mechanism of regulation by IBB indicates that the time has come for a paradigm shift in the way we view the molecular mechanisms by which proteins regulate downstream functions through their interactions with other molecules.
Collapse
Affiliation(s)
- Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Takashi S Kodama
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Kalita J, Kapinos LE, Zheng T, Rencurel C, Zilman A, Lim RY. Karyopherin enrichment and compensation fortifies the nuclear pore complex against nucleocytoplasmic leakage. J Cell Biol 2022; 221:e202108107. [PMID: 35089308 PMCID: PMC8932525 DOI: 10.1083/jcb.202108107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear pore complexes (NPCs) discriminate nonspecific macromolecules from importin and exportin receptors, collectively termed "karyopherins" (Kaps), that mediate nucleocytoplasmic transport. This selective barrier function is attributed to the behavior of intrinsically disordered phenylalanine-glycine nucleoporins (FG Nups) that guard the NPC channel. However, NPCs in vivo are typically enriched with different Kaps, and how they impact the NPC barrier remains unknown. Here, we show that two major Kaps, importinβ1/karyopherinβ1 (Kapβ1) and exportin 1/chromosomal maintenance 1 (CRM1), are required to fortify NPC barrier function in vivo. Their enrichment at the NPC is sustained by promiscuous binding interactions with the FG Nups, which enable CRM1 to compensate for the loss of Kapβ1 as a means to maintain NPC barrier function. However, such a compensatory mechanism is constrained by the cellular abundances and different binding kinetics for each respective Kap, as evidenced for importin-5. Consequently, we find that NPC malfunction and nucleocytoplasmic leakage result from poor Kap enrichment.
Collapse
Affiliation(s)
- Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Larisa E. Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Tiantian Zheng
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Chantal Rencurel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Roderick Y.H. Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Storti B, Carlotti B, Chiellini G, Ruglioni M, Salvadori T, Scotto M, Elisei F, Diaspro A, Bianchini P, Bizzarri R. An Efficient Aequorea victoria Green Fluorescent Protein for Stimulated Emission Depletion Super-Resolution Microscopy. Int J Mol Sci 2022; 23:ijms23052482. [PMID: 35269626 PMCID: PMC8910729 DOI: 10.3390/ijms23052482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
In spite of their value as genetically encodable reporters for imaging in living systems, fluorescent proteins have been used sporadically for stimulated emission depletion (STED) super-resolution imaging, owing to their moderate photophysical resistance, which does not enable reaching resolutions as high as for synthetic dyes. By a rational approach combining steady-state and ultrafast spectroscopy with gated STED imaging in living and fixed cells, we here demonstrate that F99S/M153T/V163A GFP (c3GFP) represents an efficient genetic reporter for STED, on account of no excited state absorption at depletion wavelengths <600 nm and a long emission lifetime. This makes c3GFP a valuable alternative to more common, but less photostable, EGFP and YFP/Citrine mutants for STED imaging studies targeting the green-yellow region of the optical spectrum.
Collapse
Affiliation(s)
- Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy;
- Correspondence:
| | - Benedetta Carlotti
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (B.C.); (F.E.)
| | - Grazia Chiellini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy; (G.C.); (M.R.); (T.S.)
| | - Martina Ruglioni
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy; (G.C.); (M.R.); (T.S.)
| | - Tiziano Salvadori
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy; (G.C.); (M.R.); (T.S.)
| | - Marco Scotto
- Nanoscopy, CHT, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy; (M.S.); (A.D.); (P.B.)
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (B.C.); (F.E.)
| | - Alberto Diaspro
- Nanoscopy, CHT, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy; (M.S.); (A.D.); (P.B.)
- DIFILAB, Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Paolo Bianchini
- Nanoscopy, CHT, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy; (M.S.); (A.D.); (P.B.)
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy;
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy; (G.C.); (M.R.); (T.S.)
- Nanoscopy, CHT, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy; (M.S.); (A.D.); (P.B.)
| |
Collapse
|
6
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
7
|
The nuclear import of the transcription factor MyoD is reduced in mesenchymal stem cells grown in a 3D micro-engineered niche. Sci Rep 2021; 11:3021. [PMID: 33542304 PMCID: PMC7862644 DOI: 10.1038/s41598-021-81920-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
Smart biomaterials are increasingly being used to control stem cell fate in vitro by the recapitulation of the native niche microenvironment. By integrating experimental measurements with numerical models, we show that in mesenchymal stem cells grown inside a 3D synthetic niche both nuclear transport of a myogenic factor and the passive nuclear diffusion of a smaller inert protein are reduced. Our results also suggest that cell morphology modulates nuclear proteins import through a partition of the nuclear envelope surface, which is a thin but extremely permeable annular portion in cells cultured on 2D substrates. Therefore, our results support the hypothesis that in stem cell differentiation, the nuclear import of gene-regulating transcription factors is controlled by a strain-dependent nuclear envelope permeability, probably related to the reorganization of stretch-activated nuclear pore complexes.
Collapse
|
8
|
Lüdke D, Roth C, Kamrad SA, Messerschmidt J, Hartken D, Appel J, Hörnich BF, Yan Q, Kusch S, Klenke M, Gunkel A, Wirthmueller L, Wiermer M. Functional requirement of the Arabidopsis importin-α nuclear transport receptor family in autoimmunity mediated by the NLR protein SNC1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:994-1009. [PMID: 33210758 DOI: 10.1111/tpj.15082] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 05/28/2023]
Abstract
IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is one of nine importin-α isoforms in Arabidopsis that recruit nuclear localization signal-containing cargo proteins to the nuclear import machinery. IMP-α3/MOS6 is required genetically for full autoimmunity of the nucleotide-binding leucine-rich repeat immune receptor mutant snc1 (suppressor of npr1-1, constitutive 1) and MOS6 also contributes to basal disease resistance. Here, we investigated the contribution of the other importin-α genes to both types of immune responses, and we analyzed potential interactions of all importin-α isoforms with SNC1. By using reverse-genetic analyses in Arabidopsis and protein-protein interaction assays in Nicotiana benthamiana, we provide evidence that among the nine α-importins in Arabidopsis, IMP-α3/MOS6 is the main nuclear transport receptor of SNC1, and that IMP-α3/MOS6 is required selectively for autoimmunity of snc1 and basal resistance to mildly virulent Pseudomonas syringae in Arabidopsis.
Collapse
Affiliation(s)
- Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Charlotte Roth
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Sieglinde A Kamrad
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Jana Messerschmidt
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Denise Hartken
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Jonas Appel
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Bojan F Hörnich
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Qiqi Yan
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Stefan Kusch
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Melanie Klenke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Annette Gunkel
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Lennart Wirthmueller
- Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
- Molecular Biology of Plant-Microbe Interactions Research Group, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077, Goettingen, Germany
| |
Collapse
|
9
|
Differential Behaviours and Preferential Bindings of Influenza Nucleoproteins on Importins-α. Viruses 2020; 12:v12080834. [PMID: 32751671 PMCID: PMC7472415 DOI: 10.3390/v12080834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses are negative single-stranded RNA viruses with nuclear transcription and replication. They enter the nucleus by using the cellular importin-α/-β nuclear import machinery. Influenza nucleoproteins from influenza A, B, C and D viruses possess a nuclear localization signal (NLS) localized on an intrinsically disordered extremity (NPTAIL). In this paper, using size exclusion chromatography (SEC), SEC-multi-angle laser light scattering (SEC-MALLS) analysis, surface plasmon resonance (SPR) and fluorescence anisotropy, we provide the first comparative study designed to dissect the interaction between the four NPTAILs and four importins-α identified as partners. All interactions between NPTAILs and importins-α have high association and dissociation rates and present a distinct and specific behaviour. D/NPTAIL interacts strongly with all importins-α while B/NPTAIL shows weak affinity for importins-α. A/NPTAIL and C/NPTAIL present preferential importin-α partners. Mutations in B/NPTAIL and D/NPTAIL show a loss of importin-α binding, confirming key NLS residues. Taken together, our results provide essential highlights of this complex translocation mechanism.
Collapse
|
10
|
Mayol GF, Revuelta MV, Salusso A, Touz MC, Rópolo AS. Evidence of nuclear transport mechanisms in the protozoan parasite Giardia lamblia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118566. [PMID: 31672613 DOI: 10.1016/j.bbamcr.2019.118566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 11/28/2022]
Abstract
Nuclear-cytoplasmic trafficking of proteins is a highly regulated process that modulates multiple biological processes in eukaryotic cells. In Giardia lamblia, shuttling has been described from the cytoplasm to nuclei of proteins during the biological cell cycle of the parasite. This suggests that a mechanism of nucleocytoplasmic transport is present and functional in G. lamblia. By means of computational biology analyses, we found that there are only two genes for nuclear transport in this parasite, named Importin α and Importin β. When these transporters were overexpressed, both localized close to the nuclear envelope, and no change was observed in trophozoite growth rate. However, during the encystation process, both transporters induced an increase in the number of cysts produced. Importazole and Ivermectin, two known specific inhibitors of importins, separately influenced the encysting process by inducing an arrest in the trophozoite stage that prevents the production of cysts. This effect was more noticeable when Ivermectin, an anti-parasitic drug, was used. Finally, we tested whether the enzyme arginine deiminase, which shuttles from the cytoplasm to the nuclei during encystation, was influenced by these transporters. We found that treatment with each of the inhibitors abrogates arginine deiminase nuclear translocation and favors perinuclear localization. This suggests that Importin α and Importin β are key transporters during the encystation process and are involved, at least, in the transport of arginine deiminase into the nuclei. Considering the effect produced by Ivermectin during growth and encystation, we postulate that this drug could be used to treat giardiasis.
Collapse
Affiliation(s)
- Gonzalo Federico Mayol
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Victoria Revuelta
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Agostina Salusso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Carolina Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Silvana Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
11
|
Boeri L, Albani D, Raimondi MT, Jacchetti E. Mechanical regulation of nucleocytoplasmic translocation in mesenchymal stem cells: characterization and methods for investigation. Biophys Rev 2019; 11:817-831. [PMID: 31628607 PMCID: PMC6815268 DOI: 10.1007/s12551-019-00594-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have immune-modulatory and tissue-regenerative properties that make them a suitable and promising tool for cell-based therapy application. Since the bio-chemo-mechanical environment influences MSC fate and behavior, the understanding of the mechanosensors involved in the transduction of mechanical inputs into chemical signals could be pivotal. In this context, the nuclear pore complex is a molecular machinery that is believed to have a key role in force transmission and in nucleocytoplasmic shuttling regulation. To fully understand the nuclear pore complex role and the nucleocytoplasmic transport dynamics, recent advancements in fluorescence microscopy provided the possibility to study passive and facilitated nuclear transports also in mechanically stimulated cell culture conditions. Here, we review the current available methods for the investigation of nucleocytoplasmic shuttling, including photo-perturbation-based approaches, fluorescence correlation spectroscopy, and single-particle tracking techniques. For each method, we analyze the advantages, disadvantages, and technical limitations. Finally, we summarize the recent knowledge on mechanical regulation of nucleocytoplasmic translocation in MSC, the relevant progresses made so far, and the future perspectives in the field.
Collapse
Affiliation(s)
- Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20123, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20123, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20123, Milan, Italy.
| |
Collapse
|
12
|
Ferreira PA. The coming-of-age of nucleocytoplasmic transport in motor neuron disease and neurodegeneration. Cell Mol Life Sci 2019; 76:2247-2273. [PMID: 30742233 PMCID: PMC6531325 DOI: 10.1007/s00018-019-03029-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
The nuclear pore is the gatekeeper of nucleocytoplasmic transport and signaling through which a vast flux of information is continuously exchanged between the nuclear and cytoplasmic compartments to maintain cellular homeostasis. A unifying and organizing principle has recently emerged that cements the notion that several forms of amyotrophic lateral sclerosis (ALS), and growing number of other neurodegenerative diseases, co-opt the dysregulation of nucleocytoplasmic transport and that this impairment is a pathogenic driver of neurodegeneration. The understanding of shared pathomechanisms that underpin neurodegenerative diseases with impairments in nucleocytoplasmic transport and how these interface with current concepts of nucleocytoplasmic transport is bound to illuminate this fundamental biological process in a yet more physiological context. Here, I summarize unresolved questions and evidence and extend basic and critical concepts and challenges of nucleocytoplasmic transport and its role in the pathogenesis of neurodegenerative diseases, such as ALS. These principles will help to appreciate the roles of nucleocytoplasmic transport in the pathogenesis of ALS and other neurodegenerative diseases, and generate a framework for new ideas of the susceptibility of motoneurons, and possibly other neurons, to degeneration by dysregulation of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
13
|
Ziegler CS, Bouchab L, Tramier M, Durand D, Fieschi F, Dupré-Crochet S, Mérola F, Nüße O, Erard M. Quantitative live-cell imaging and 3D modeling reveal critical functional features in the cytosolic complex of phagocyte NADPH oxidase. J Biol Chem 2019; 294:3824-3836. [PMID: 30630949 DOI: 10.1074/jbc.ra118.006864] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/08/2019] [Indexed: 01/18/2023] Open
Abstract
Phagocyte NADPH oxidase produces superoxide anions, a precursor of reactive oxygen species (ROS) critical for host responses to microbial infections. However, uncontrolled ROS production contributes to inflammation, making NADPH oxidase a major drug target. It consists of two membranous (Nox2 and p22phox) and three cytosolic subunits (p40phox, p47phox, and p67phox) that undergo structural changes during enzyme activation. Unraveling the interactions between these subunits and the resulting conformation of the complex could shed light on NADPH oxidase regulation and help identify inhibition sites. However, the structures and the interactions of flexible proteins comprising several well-structured domains connected by intrinsically disordered protein segments are difficult to investigate by conventional techniques such as X-ray crystallography, NMR, or cryo-EM. Here, we developed an analytical strategy based on FRET-fluorescence lifetime imaging (FLIM) and fluorescence cross-correlation spectroscopy (FCCS) to structurally and quantitatively characterize NADPH oxidase in live cells. We characterized the inter- and intramolecular interactions of its cytosolic subunits by elucidating their conformation, stoichiometry, interacting fraction, and affinities in live cells. Our results revealed that the three subunits have a 1:1:1 stoichiometry and that nearly 100% of them are present in complexes in living cells. Furthermore, combining FRET data with small-angle X-ray scattering (SAXS) models and published crystal structures of isolated domains and subunits, we built a 3D model of the entire cytosolic complex. The model disclosed an elongated complex containing a flexible hinge separating two domains ideally positioned at one end of the complex and critical for oxidase activation and interactions with membrane components.
Collapse
Affiliation(s)
- Cornelia S Ziegler
- From the Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay France
| | - Leïla Bouchab
- From the Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay France
| | - Marc Tramier
- the Université Rennes, CNRS, Institut de Génétique et Développement de Rennes - UMR 6290, BIOSIT - UMS 3480, F-35000 Rennes, France
| | - Dominique Durand
- the Institute for Integrative Biology of the Cell, CEA, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France, and
| | - Franck Fieschi
- the Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Sophie Dupré-Crochet
- From the Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay France
| | - Fabienne Mérola
- From the Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay France
| | - Oliver Nüße
- From the Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay France,
| | - Marie Erard
- From the Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay France,
| |
Collapse
|
14
|
Mediated nuclear import and export of TAZ and the underlying molecular requirements. Nat Commun 2018; 9:4966. [PMID: 30470756 PMCID: PMC6251892 DOI: 10.1038/s41467-018-07450-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Nucleocytoplasmic distribution of Yap/TAZ is regulated by the Hippo pathway and the cytoskeleton. While interactions with cytosolic and nuclear “retention factors” (14–3–3 and TEAD) are known to control their localization, fundamental aspects of Yap/TAZ shuttling remain undefined. It is unclear if translocation occurs only by passive diffusion or via mediated transport, and neither the potential nuclear localization and efflux signals (NLS, NES) nor their putative regulation have been identified. Here we show that TAZ cycling is a mediated process and identify the underlying NLS and NES. The C-terminal NLS, representing a new class of import motifs, is necessary and sufficient for efficient nuclear uptake via a RAN-independent mechanism. RhoA activity directly stimulates this import. The NES lies within the TEAD-binding domain and can be masked by TEAD, thereby preventing efflux. Thus, we describe a RhoA-regulated NLS, a TEAD-regulated NES and propose an improved model of nucleocytoplasmic TAZ shuttling beyond "retention". The transcriptional co-factors Yap and TAZ are regulated by Hippo signalling and mechanical forces via their nucleocytoplasmic shuttling. Here the authors identify a RhoA-regulated C-terminal nuclear localization signal and a TEAD-regulated N-terminal nuclear export signal of TAZ in an epithelial cell line.
Collapse
|
15
|
Ferri G, Storti B, Bizzarri R. Nucleocytoplasmic transport in cells with progerin-induced defective nuclear lamina. Biophys Chem 2017; 229:77-83. [PMID: 28712764 DOI: 10.1016/j.bpc.2017.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022]
Abstract
Recent data indicate that nuclear lamina (NL) plays a relevant role in many fundamental cellular functions. The peculiar role of NL in cells is dramatically demonstrated by the Hutchinson-Gilford progeria syndrome (HGPS), an inherited laminopathy that causes premature, rapid aging shortly after birth. In HGPS, a mutant form of Lamin A (progeria) leads to a dysmorphic NL structure, but how this perturbation is transduced into cellular changes is still largely unknown. Owing to the close structural relationship between NL and the Nuclear Pore Complex (NPC), in this work we test whether HGPS affects passive and active nucleo-cytoplasmic shuttling of cargoes by means of an established model based of fluorescence recovery after photobleaching. Our findings clearly demonstrate that dysmorphic NL is decoupled from the dynamic characteristics of passive and active transport towards and from the nucleus, as well as from the binding affinity of transport protein mediators.
Collapse
Affiliation(s)
- Gianmarco Ferri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy; Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy.
| |
Collapse
|
16
|
Cardarelli F. Time-resolved biophysical approaches to nucleocytoplasmic transport. Comput Struct Biotechnol J 2017; 15:299-306. [PMID: 28435614 PMCID: PMC5388937 DOI: 10.1016/j.csbj.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/21/2017] [Accepted: 03/25/2017] [Indexed: 12/26/2022] Open
Abstract
Molecules are continuously shuttling across the nuclear envelope barrier that separates the nucleus from the cytoplasm. Instead of being just a barrier to diffusion, the nuclear envelope is rather a complex filter that provides eukaryotes with an elaborate spatiotemporal regulation of fundamental molecular processes, such as gene expression and protein translation. Given the highly dynamic nature of nucleocytoplasmic transport, during the past few decades large efforts were devoted to the development and application of time resolved, fluorescence-based, biophysical methods to capture the details of molecular motion across the nuclear envelope. These methods are here divided into three major classes, according to the differences in the way they report on the molecular process of nucleocytoplasmic transport. In detail, the first class encompasses those methods based on the perturbation of the fluorescence signal, also known as ensemble-averaging methods, which average the behavior of many molecules (across many pores). The second class comprises those methods based on the localization of single fluorescently-labelled molecules and tracking of their position in space and time, potentially across single pores. Finally, the third class encompasses methods based on the statistical analysis of spontaneous fluorescence fluctuations out of the equilibrium or stationary state of the system. In this case, the behavior of single molecules is probed in presence of many similarly-labelled molecules, without dwelling on any of them. Here these three classes, with their respective pros and cons as well as their main applications to nucleocytoplasmic shuttling will be briefly reviewed and discussed.
Collapse
|
17
|
Nuclear Import of Hepatitis B Virus Capsids and Genome. Viruses 2017; 9:v9010021. [PMID: 28117723 PMCID: PMC5294990 DOI: 10.3390/v9010021] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is an enveloped pararetrovirus with a DNA genome, which is found in an up to 36 nm-measuring capsid. Replication of the genome occurs via an RNA intermediate, which is synthesized in the nucleus. The virus must have thus ways of transporting its DNA genome into this compartment. This review summarizes the data on hepatitis B virus genome transport and correlates the finding to those from other viruses.
Collapse
|
18
|
Nucleus downscaling in mouse embryos is regulated by cooperative developmental and geometric programs. Sci Rep 2016; 6:28040. [PMID: 27320842 PMCID: PMC4913252 DOI: 10.1038/srep28040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/24/2016] [Indexed: 11/27/2022] Open
Abstract
Maintaining appropriate nucleus size is important for cell health, but the mechanisms by which this is achieved are poorly understood. Controlling nucleus size is a particular challenge in early development, where the nucleus must downscale in size with progressive reductive cell divisions. Here we use live and fixed imaging, micromanipulation approaches, and small molecule analyses during preimplantation mouse development to probe the mechanisms by which nucleus size is determined. We find a close correlation between cell and nuclear size at any given developmental stage, and show that experimental cytoplasmic reduction can alter nuclear size, together indicating that cell size helps dictate nuclear proportions. Additionally, however, by creating embryos with over-sized blastomeres we present evidence of a developmental program that drives nuclear downscaling independently of cell size. We show that this developmental program does not correspond with nuclear import rates, but provide evidence that PKC activity may contribute to this mechanism. We propose a model in which nuclear size regulation during early development is a multi-mode process wherein nucleus size is set by cytoplasmic factors, and fine-tuned on a cell-by-cell basis according to cell size.
Collapse
|
19
|
Fiume G, Di Rienzo C, Marchetti L, Pozzi D, Caracciolo G, Cardarelli F. Single-cell real-time imaging of transgene expression upon lipofection. Biochem Biophys Res Commun 2016; 474:8-14. [DOI: 10.1016/j.bbrc.2016.03.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
|
20
|
Blondot ML, Bruss V, Kann M. Intracellular transport and egress of hepatitis B virus. J Hepatol 2016; 64:S49-S59. [PMID: 27084037 DOI: 10.1016/j.jhep.2016.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/23/2022]
Abstract
Hepatitis B virus (HBV) replicates its genomic information in the nucleus via transcription and therefore has to deliver its partially double stranded DNA genome into the nucleus. Like other viruses with a nuclear replication phase, HBV genomes are transported inside the viral capsids first through the cytoplasm towards the nuclear envelope. Following the arrival at the nuclear pore, the capsids are transported through, using classical cellular nuclear import pathways. The arrest of nuclear import at the nucleoplasmic side of the nuclear pore is unique, however, and is where the capsids efficiently disassemble leading to genome release. In the latter phase of the infection, newly formed nucleocapsids in the cytosol have to move to budding sites at intracellular membranes carrying the three viral envelope proteins. Capsids containing single stranded nucleic acid are not enveloped, in contrast to empty and double stranded DNA containing capsids. A small linear domain in the large envelope protein and two areas on the capsid surface have been mapped, where point mutations strongly block nucleocapsid envelopment. It is possible that these domains are involved in the envelope--with capsid interactions driving the budding process. Like other enveloped viruses, HBV also uses the cellular endosomal sorting complexes required for transport (ESCRT) machinery for catalyzing budding through the membrane and away from the cytosol.
Collapse
Affiliation(s)
- Marie-Lise Blondot
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Volker Bruss
- Institute for Virology, Helmholtz Zentrum München, Technische Universität Muenchen, Neuherberg, Germany
| | - Michael Kann
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CHU de Bordeaux, Bordeaux, France.
| |
Collapse
|
21
|
Lucena R, Dephoure N, Gygi SP, Kellogg DR, Tallada VA, Daga RR, Jimenez J. Nucleocytoplasmic transport in the midzone membrane domain controls yeast mitotic spindle disassembly. ACTA ACUST UNITED AC 2015; 209:387-402. [PMID: 25963819 PMCID: PMC4427787 DOI: 10.1083/jcb.201412144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the membrane domain surrounding the mitotic spindle midzone promotes spindle midzone dissolution in fission yeast. During each cell cycle, the mitotic spindle is efficiently assembled to achieve chromosome segregation and then rapidly disassembled as cells enter cytokinesis. Although much has been learned about assembly, how spindles disassemble at the end of mitosis remains unclear. Here we demonstrate that nucleocytoplasmic transport at the membrane domain surrounding the mitotic spindle midzone, here named the midzone membrane domain (MMD), is essential for spindle disassembly in Schizosaccharomyces pombe cells. We show that, during anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the MMD allows this disassembly factor to localize at the spindle midzone, thereby promoting spindle midzone dissolution. Our findings illustrate how a separate membrane compartment supports spindle disassembly in the closed mitosis of fission yeast.
Collapse
Affiliation(s)
- Rafael Lucena
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Noah Dephoure
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Douglas R Kellogg
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Victor A Tallada
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| | - Juan Jimenez
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| |
Collapse
|
22
|
Wirthmueller L, Roth C, Fabro G, Caillaud MC, Rallapalli G, Asai S, Sklenar J, Jones AME, Wiermer M, Jones JDG, Banfield MJ. Probing formation of cargo/importin-α transport complexes in plant cells using a pathogen effector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:40-52. [PMID: 25284001 PMCID: PMC4350430 DOI: 10.1111/tpj.12691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 05/17/2023]
Abstract
Importin-αs are essential adapter proteins that recruit cytoplasmic proteins destined for active nuclear import to the nuclear transport machinery. Cargo proteins interact with the importin-α armadillo repeat domain via nuclear localization sequences (NLSs), short amino acids motifs enriched in Lys and Arg residues. Plant genomes typically encode several importin-α paralogs that can have both specific and partially redundant functions. Although some cargos are preferentially imported by a distinct importin-α it remains unknown how this specificity is generated and to what extent cargos compete for binding to nuclear transport receptors. Here we report that the effector protein HaRxL106 from the oomycete pathogen Hyaloperonospora arabidopsidis co-opts the host cell's nuclear import machinery. We use HaRxL106 as a probe to determine redundant and specific functions of importin-α paralogs from Arabidopsis thaliana. A crystal structure of the importin-α3/MOS6 armadillo repeat domain suggests that five of the six Arabidopsis importin-αs expressed in rosette leaves have an almost identical NLS-binding site. Comparison of the importin-α binding affinities of HaRxL106 and other cargos in vitro and in plant cells suggests that relatively small affinity differences in vitro affect the rate of transport complex formation in vivo. Our results suggest that cargo affinity for importin-α, sequence variation at the importin-α NLS-binding sites and tissue-specific expression levels of importin-αs determine formation of cargo/importin-α transport complexes in plant cells.
Collapse
Affiliation(s)
- Lennart Wirthmueller
- The Sainsbury LaboratoryNorwich Research Park, Norwich, NR4 7UH, UK
- Department of Biological Chemistry, John Innes CentreNorwich Research Park, Norwich, NR4 7UH, UK
| | - Charlotte Roth
- Department of Plant Cell Biology, Georg-August-UniversityJulia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Georgina Fabro
- The Sainsbury LaboratoryNorwich Research Park, Norwich, NR4 7UH, UK
| | | | | | - Shuta Asai
- The Sainsbury LaboratoryNorwich Research Park, Norwich, NR4 7UH, UK
| | - Jan Sklenar
- The Sainsbury LaboratoryNorwich Research Park, Norwich, NR4 7UH, UK
| | | | - Marcel Wiermer
- Department of Plant Cell Biology, Georg-August-UniversityJulia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | | | - Mark J Banfield
- Department of Biological Chemistry, John Innes CentreNorwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
23
|
Bianchini P, Cardarelli F, Luca MD, Diaspro A, Bizzarri R. Nanoscale protein diffusion by STED-based pair correlation analysis. PLoS One 2014; 9:e99619. [PMID: 24967681 PMCID: PMC4072630 DOI: 10.1371/journal.pone.0099619] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 05/17/2014] [Indexed: 11/18/2022] Open
Abstract
We describe for the first time the combination between cross-pair correlation function analysis (pair correlation analysis or pCF) and stimulated emission depletion (STED) to obtain diffusion maps at spatial resolution below the optical diffraction limit (super-resolution). Our approach was tested in systems characterized by high and low signal to noise ratio, i.e. Capsid Like Particles (CLPs) bearing several (>100) active fluorescent proteins and monomeric fluorescent proteins transiently expressed in living Chinese Hamster Ovary cells, respectively. The latter system represents the usual condition encountered in living cell studies on fluorescent protein chimeras. Spatial resolution of STED-pCF was found to be about 110 nm, with a more than twofold improvement over conventional confocal acquisition. We successfully applied our method to highlight how the proximity to nuclear envelope affects the mobility features of proteins actively imported into the nucleus in living cells. Remarkably, STED-pCF unveiled the existence of local barriers to diffusion as well as the presence of a slow component at distances up to 500-700 nm from either sides of nuclear envelope. The mobility of this component is similar to that previously described for transport complexes. Remarkably, all these features were invisible in conventional confocal mode.
Collapse
Affiliation(s)
- Paolo Bianchini
- Nanophysics, IIT—Italian Institute of Technology, Genoa, Italy
| | - Francesco Cardarelli
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | - Alberto Diaspro
- Nanophysics, IIT—Italian Institute of Technology, Genoa, Italy
| | - Ranieri Bizzarri
- Nanophysics, IIT—Italian Institute of Technology, Genoa, Italy
- NEST, Scuola Normale Superiore and Istituto Nanoscienze - CNR, Pisa, Italy
- Istituto di Biofisica – CNR, Pisa, Italy
| |
Collapse
|
24
|
Kim S, Elbaum M. A simple kinetic model with explicit predictions for nuclear transport. Biophys J 2014; 105:565-9. [PMID: 23931304 DOI: 10.1016/j.bpj.2013.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022] Open
Abstract
Molecular exchange between the cell nucleus and cytoplasm is one of the most fundamental features of eukaryotic cell biology. The nuclear pores act as a conduit of this transport, both for cargo that crosses the pore autonomously as well as that whose translocation requires an intermediary receptor. The major class of such receptors is regulated by the small GTPase Ran, via whose interaction the nucleo-cytoplasmic transport system functions as a selective molecular pump. We propose a simple analytical model for transport that includes both translocation and receptor binding kinetics. The model is suitable for steady-state kinetics such as fluorescence recovery after photobleaching. Time constants appear as a combination of parameters whose effects on measured kinetics are not separable. Competitive cargo binding to receptors and large cytoplasmic volume buffer the transport properties of any particular cargo. Specific limits to the solutions provide a qualitative insight and interpretation of nuclear transport in the cellular context. Most significantly, we find that under realistic conditions receptor binding, rather than permeability of the nuclear pores, may be rate-limiting for nucleo-cytoplasmic exchange.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
25
|
Mérola F, Fredj A, Betolngar DB, Ziegler C, Erard M, Pasquier H. Newly engineered cyan fluorescent proteins with enhanced performances for live cell FRET imaging. Biotechnol J 2013; 9:180-91. [DOI: 10.1002/biot.201300198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/17/2013] [Accepted: 10/31/2013] [Indexed: 11/06/2022]
|
26
|
Azimi M, Mofrad MRK. Higher nucleoporin-Importinβ affinity at the nuclear basket increases nucleocytoplasmic import. PLoS One 2013; 8:e81741. [PMID: 24282617 PMCID: PMC3840022 DOI: 10.1371/journal.pone.0081741] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/25/2013] [Indexed: 01/26/2023] Open
Abstract
Several in vitro studies have shown the presence of an affinity gradient in nuclear pore complex proteins for the import receptor Importinβ, at least partially contributing to nucleocytoplasmic transport, while others have historically argued against the presence of such a gradient. Nonetheless, the existence of an affinity gradient has remained an uncharacterized contributing factor. To shed light on the affinity gradient theory and better characterize how the existence of such an affinity gradient between the nuclear pore and the import receptor may influence the nucleocytoplasmic traffic, we have developed a general-purpose agent based modeling (ABM) framework that features a new method for relating rate constants to molecular binding and unbinding probabilities, and used our ABM approach to quantify the effects of a wide range of forward and reverse nucleoporin-Importinβ affinity gradients. Our results indicate that transport through the nuclear pore complex is maximized with an effective macroscopic affinity gradient of 2000 µM, 200 µM and 10 µM in the cytoplasmic, central channel and nuclear basket respectively. The transport rate at this gradient is approximately 10% higher than the transport rate for a comparable pore lacking any affinity gradient, which has a peak transport rate when all nucleoporins have an affinity of 200 µM for Importinβ. Furthermore, this optimal ratio of affinity gradients is representative of the ratio of affinities reported for the yeast nuclear pore complex – suggesting that the affinity gradient seen in vitro is highly optimized.
Collapse
Affiliation(s)
- Mohammad Azimi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, United States
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, United States
- * E-mail:
| |
Collapse
|
27
|
Erard M, Fredj A, Pasquier H, Beltolngar DB, Bousmah Y, Derrien V, Vincent P, Merola F. Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging. ACTA ACUST UNITED AC 2013. [DOI: 10.1039/c2mb25303h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Wirthmueller L, Roth C, Banfield MJ, Wiermer M. Hop-on hop-off: importin-α-guided tours to the nucleus in innate immune signaling. FRONTIERS IN PLANT SCIENCE 2013; 4:149. [PMID: 23734157 PMCID: PMC3659281 DOI: 10.3389/fpls.2013.00149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/02/2013] [Indexed: 05/19/2023]
Abstract
Nuclear translocation of immune regulatory proteins and signal transducers is an essential process in animal and plant defense signaling against pathogenic microbes. Import of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors termed importins, typically dimers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complex. Here, we review recent reports of importin-α cargo specificity and mutant phenotypes in plant- and animal-microbe interactions. Using homology modeling of the NLS-binding cleft of nine predicted Arabidopsis α-importins and analyses of their gene expression patterns, we discuss functional redundancy and specialization within this transport receptor family. In addition, we consider how pathogen effector proteins that promote infection by manipulating host cell nuclear processes might compete with endogenous cargo proteins for nuclear uptake.
Collapse
Affiliation(s)
- Lennart Wirthmueller
- Department of Biological Chemistry, John Innes Centre, Norwich Research ParkNorwich, UK
- *Correspondence: Lennart Wirthmueller, Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK. e-mail: ; Marcel Wiermer, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany. e-mail:
| | - Charlotte Roth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University GöttingenGöttingen, Germany
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research ParkNorwich, UK
| | - Marcel Wiermer
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University GöttingenGöttingen, Germany
- *Correspondence: Lennart Wirthmueller, Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK. e-mail: ; Marcel Wiermer, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany. e-mail:
| |
Collapse
|
29
|
Abstract
Nuclear pore complexes (NPCs) are gateways for nucleocytoplasmic exchange. Intrinsically disordered nucleoporins (Nups) form a selective filter inside the NPC, taking a central role in the vital nucleocytoplasmic transport mechanism. How such intricate meshwork relates to function and gives rise to a transport mechanism is still unclear. Here we set out to tackle this issue in intact cells by an established combination of fluorescence correlation spectroscopy and real-time tracking of the center of mass of single NPCs. We find the dynamics of nucleoporin Nup153 to be regulated so as to produce rapid, discrete exchange between two separate positions within the NPC. A similar behavior is also observed for both karyopherinβ1 transport-receptor and cargoes destined to nuclear import. Thus, we argue that directed Nup-mediated molecular motion may represent an intrinsic feature of the overall selective gating through intact NPCs.
Collapse
Affiliation(s)
- Francesco Cardarelli
- Center for Nanotechnology Innovation at National Enterprise for nanoScience and nanoTechnology, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | | | | |
Collapse
|
30
|
Capturing directed molecular motion in the nuclear pore complex of live cells. Proc Natl Acad Sci U S A 2012; 109:9863-8. [PMID: 22665783 DOI: 10.1073/pnas.1200486109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nuclear pore complexes (NPCs) are gateways for nucleocytoplasmic exchange. Intrinsically disordered nucleoporins (Nups) form a selective filter inside the NPC, taking a central role in the vital nucleocytoplasmic transport mechanism. How such intricate meshwork relates to function and gives rise to a transport mechanism is still unclear. Here we set out to tackle this issue in intact cells by an established combination of fluorescence correlation spectroscopy and real-time tracking of the center of mass of single NPCs. We find the dynamics of nucleoporin Nup153 to be regulated so as to produce rapid, discrete exchange between two separate positions within the NPC. A similar behavior is also observed for both karyopherinβ1 transport-receptor and cargoes destined to nuclear import. Thus, we argue that directed Nup-mediated molecular motion may represent an intrinsic feature of the overall selective gating through intact NPCs.
Collapse
|
31
|
Bizzarri R, Cardarelli F, Serresi M, Beltram F. Fluorescence recovery after photobleaching reveals the biochemistry of nucleocytoplasmic exchange. Anal Bioanal Chem 2012; 403:2339-51. [PMID: 22585053 DOI: 10.1007/s00216-012-6025-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/19/2012] [Accepted: 04/04/2012] [Indexed: 11/26/2022]
Abstract
Fluorescence recovery after photobleaching (FRAP) can help unveil subtle dynamical and biochemical properties of intracellular components. A peculiar aspect of this method is that it is based on the change of optical properties only, whereas dynamics and biochemistry of the molecules of interest are not perturbed. This makes FRAP particularly suitable for the study of protein translocation, e.g., between nucleus and cytoplasm. Here we present a comprehensive theoretical treatment of FRAP applied to protein nucleocytoplasmic translocation by passive diffusion and/or energy-driven processes across the nuclear envelope. Our mathematical model is validated by experimental FRAP studies with functionalized fluorescent protein chimeras. Using this approach we demonstrate that molecular crowding at the nuclear pore does not hamper passive diffusion and calculate the dimension of the nuclear pore size (5.33 nm). Additionally, our FRAP analysis reveals the biochemical parameters (maximum translocation rate and dissociation constant of the transport complex in cytoplasm) associated with the active import of a prototypical nuclear localization sequence (NLS of SV40) and related mutants. We demonstrate that transportin binding and active import into the nucleus are independent processes that can be separately modulated. The present results are discussed in light of their potential to help in engineering sequences for intracellular targeted delivery of sensors and/or therapeutic compounds. Finally, the limits of validity of our mathematical model are addressed.
Collapse
Affiliation(s)
- Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy.
| | | | | | | |
Collapse
|
32
|
Battisti A, Digman MA, Gratton E, Storti B, Beltram F, Bizzarri R. Intracellular pH measurements made simple by fluorescent protein probes and the phasor approach to fluorescence lifetime imaging. Chem Commun (Camb) 2012; 48:5127-9. [PMID: 22517076 DOI: 10.1039/c2cc30373f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A versatile pH-dependent fluorescent protein was applied to intracellular pH measurements by means of the phasor approach to fluorescence lifetime imaging. By this fit-less method we obtain intracellular pH maps under resting or altered physiological conditions by single-photon confocal or two-photon microscopy.
Collapse
Affiliation(s)
- Antonella Battisti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Cardarelli F, Tosti L, Serresi M, Beltram F, Bizzarri R. Fluorescent recovery after photobleaching (FRAP) analysis of nuclear export rates identifies intrinsic features of nucleocytoplasmic transport. J Biol Chem 2011; 287:5554-61. [PMID: 22190681 DOI: 10.1074/jbc.m111.304899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A quantitative description of carrier-mediated nuclear export in live cells is presented. To this end, we fused a prototypical leucine-rich nuclear export signal (NES) to GFP as a cargo model and expressed the fluorescent chimera in live CHO-K1 cells. By modeling FRAP data, we calculate the NES affinity for the export machinery and the maximum rate of nuclear export achievable at saturation of endogenous carriers. The measured active-export time through the Nuclear Pore Complex (NPC) is 18 ms, remarkably similar to the previously determined active-import rate. Also, our results reveal that active export/import and active export/passive diffusion fluxes are uncoupled, thus complementing previous reports on active import/passive diffusion uncoupling. These findings suggest differential gating at the NPC level.
Collapse
Affiliation(s)
- Francesco Cardarelli
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12-56127 Pisa, Italy
| | | | | | | | | |
Collapse
|
34
|
Hinde E, Cardarelli F. Measuring the flow of molecules in cells. Biophys Rev 2011; 3:119. [PMID: 28510061 DOI: 10.1007/s12551-011-0051-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/01/2011] [Indexed: 12/23/2022] Open
Abstract
No methods proposed thus far have the capability to measure molecular flow in live cells at the single molecule level. Here, we review the potentiality of a newly established method based on the spatial correlation of fluorescence fluctuations at a pair of points in the sample (pair correlation method). The pair correlation function (pCF) offers a unique tool to probe the directionality of intracellular traffic, by measuring the accessibility of the cellular landscape and its role in determining the diffusive routes adopted by molecules. The sensitivity of the pCF method toward detection of barriers means that different structural elements of the cell can be tested in terms of penetrability and mechanisms of regulation imparted on molecular flow. This has been recently demonstrated in a series of studies looking at molecular transport inside live cells. Here, we will review the theory behind detection of barriers to molecular flow, the rules to interpret pCF data, and relevant applications to intracellular transport.
Collapse
Affiliation(s)
- Elizabeth Hinde
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Francesco Cardarelli
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA, USA. .,Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy.
| |
Collapse
|
35
|
Cardarelli F, Serresi M, Albanese A, Bizzarri R, Beltram F. Quantitative analysis of Tat peptide binding to import carriers reveals unconventional nuclear transport properties. J Biol Chem 2011; 286:12292-9. [PMID: 21321119 DOI: 10.1074/jbc.m110.203083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A detailed study of nuclear import mediated by the HIV-1 Tat peptide (47YGRKKRRQRRR57, TatRRR) is reported. Fluorescence-based measurements, calibration of protein concentrations, and binding assays are exploited to address the physicochemical mechanisms of Tat peptide recognition by the classical importin α (Impα) and importin β (Impβ) receptors both in vitro and in intact cells. We show that TatRRR is an unconventional nuclear localization sequence that binds directly to both Impα and Impβ carriers in the absence of competitors (in vitro), whereas this property is silenced in the actual cellular environment. In the latter case, Impα/β-dependent nuclear import can be successfully restored by replacing the "RRR" stretch with "GGG". We apply a recently developed method to determine quantitatively TatGGG affinity for each receptor. Based on these results, we can rationalize previous controversial reports on the Tat peptide and provide coherent guidelines for the design of novel intracellular targeting sequences.
Collapse
Affiliation(s)
- Francesco Cardarelli
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di TecnologiaConsiglio Nazionale delle Ricerche, Scuola Normale Superiore, Pisa, Italy.
| | | | | | | | | |
Collapse
|
36
|
Albertazzi L, Storti B, Marchetti L, Beltram F. Delivery and subcellular targeting of dendrimer-based fluorescent pH sensors in living cells. J Am Chem Soc 2010; 132:18158-67. [PMID: 21141854 DOI: 10.1021/ja105689u] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Synthesis and targeted delivery of dendrimer-based fluorescent biosensors in living HeLa cells are reported. Following electroporation dendrimers are shown to display specific subcellular localization depending on their size and surface charge and this property is preserved when they are functionalized with sensing moieties. We analyze the case of double dendrimer conjugation with pH-sensitive and pH-insensitive molecules leading to the realization of ratiometric pH sensors that are calibrated in vitro and in living cells. By tuning the physicochemical properties of the dendrimer scaffold sensors can be targeted to specific cellular compartments allowing selective pH measurements in different organelles in living cells. In order to demonstrate the modularity of this approach we present three different pH sensors with tuned H(+) affinity by appropriately choosing the pH-sensitive dye. We argue that the present methodology represents a general approach toward the realization of targetable ratiometric sensors suitable to monitor biologically relevant ions or molecules in living cells.
Collapse
Affiliation(s)
- Lorenzo Albertazzi
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127 Pisa, Italy.
| | | | | | | |
Collapse
|
37
|
Falces J, Arregi I, Konarev PV, Urbaneja MA, Svergun DI, Taneva SG, Bañuelos S. Recognition of nucleoplasmin by its nuclear transport receptor importin α/β: insights into a complete import complex. Biochemistry 2010; 49:9756-69. [PMID: 20925424 DOI: 10.1021/bi101179g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nuclear import of the pentameric histone chaperone nucleoplasmin (NP) is mediated by importin α, which recognizes its nuclear localization sequence (NLS), and importin β, which interacts with α and is in charge of the translocation of the NP/α/β complex through the nuclear pore. Herein, we characterize the assembly of a functional transport complex formed by full-length NP with importin α/β. Isothermal titration calorimetry (ITC) was used to analyze the thermodynamics of the interactions of importin α with β, α with NP, and the α/β heterodimer with NP. Our data show that binding of both importin α and α/β to NP is governed by a favorable enthalpic contribution and that NP can accommodate up to five importin molecules per NP pentamer. Phosphomimicking mutations of NP, which render the protein active in histone chaperoning, do not modulate the interaction with importin. Using small-angle X-ray scattering, we model the α/β heterodimer, NP/α, and NP/α/β solution structures, which reveal a glimpse of a complete nuclear import complex with an oligomeric cargo protein. The set of alternative models, equally well fitting the scattering data, yields asymmetric elongated particles that might represent consecutive geometries the complex can adopt when stepping through the nuclear pore.
Collapse
Affiliation(s)
- Jorge Falces
- Unidad de Biofísica (CSIC/UPV-EHU), Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, POB 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Cardarelli F, Gratton E. In vivo imaging of single-molecule translocation through nuclear pore complexes by pair correlation functions. PLoS One 2010; 5:e10475. [PMID: 20454622 PMCID: PMC2862743 DOI: 10.1371/journal.pone.0010475] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/11/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Nuclear pore complexes (NPCs) mediate bidirectional transport of proteins, RNAs, and ribonucleoproteins across the double-membrane nuclear envelope. Although there are many studies that look at the traffic in the nucleus and through the nuclear envelope we propose a method to detect the nucleocytoplasmic transport kinetics in an unperturbed cell, with no requirement for specific labeling of isolated molecules and, most important, in the presence of the cell milieu. METHODOLOGY The pair correlation function method (pCF) measures the time a molecule takes to migrate from one location to another within the cell in the presence of many molecules of the same kind. The spatial and temporal correlation among two arbitrary points in the cell provides a local map of molecular transport, and also highlights the presence of barriers to diffusion with millisecond time resolution and spatial resolution limited by diffraction. We use the pair correlation method to monitor a model protein substrate undergoing transport through NPCs in living cells, a biological problem in which single particle tracking (SPT) has given results that cannot be confirmed by traditional single-point FCS measurements because of the lack of spatial resolution. CONCLUSIONS We show that obstacles to molecular flow can be detected and that the pCF algorithm can recognize the heterogeneity of protein intra-compartment diffusion as well as the presence of barriers to transport across NE.
Collapse
Affiliation(s)
- Francesco Cardarelli
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|