1
|
Rigkou A, Magyar A, Speer JM, Roussa E. TGF-β2 Regulates Transcription of the K +/Cl - Cotransporter 2 (KCC2) in Immature Neurons and Its Phosphorylation at T1007 in Differentiated Neurons. Cells 2022; 11:cells11233861. [PMID: 36497119 PMCID: PMC9739967 DOI: 10.3390/cells11233861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
KCC2 mediates extrusion of K+ and Cl- and assuresthe developmental "switch" in GABA function during neuronal maturation. However, the molecular mechanisms underlying KCC2 regulation are not fully elucidated. We investigated the impact of transforming growth factor beta 2 (TGF-β2) on KCC2 during neuronal maturation using quantitative RT-PCR, immunoblotting, immunofluorescence and chromatin immunoprecipitation in primary mouse hippocampal neurons and brain tissue from Tgf-β2-deficient mice. Inhibition of TGF-β/activin signaling downregulates Kcc2 transcript in immature neurons. In the forebrain of Tgf-β2-/- mice, expression of Kcc2, transcription factor Ap2β and KCC2 protein is downregulated. AP2β binds to Kcc2 promoter, a binding absent in Tgf-β2-/-. In hindbrain/brainstem tissue of Tgf-β2-/- mice, KCC2 phosphorylation at T1007 is increased and approximately half of pre-Bötzinger-complex neurons lack membrane KCC2 phenotypes rescued through exogenous TGF-β2. These results demonstrate that TGF-β2 regulates KCC2 transcription in immature neurons, possibly acting upstream of AP2β, and contributes to the developmental dephosphorylation of KCC2 at T1007. The present work suggests multiple and divergent roles for TGF-β2 on KCC2 during neuronal maturation and provides novel mechanistic insights for TGF-β2-mediated regulation of KCC2 gene expression, posttranslational modification and surface expression. We propose TGF-β2 as a major regulator of KCC2 with putative implications for pathophysiological conditions.
Collapse
|
2
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
3
|
Ji M, Duan X, Han X, Sun J, Zhang D. Exogenous transforming growth factor-β1 prevents the inflow of fluoride to ameleoblasts through regulation of voltage-gated chloride channels 5 and 7. Exp Ther Med 2021; 21:615. [PMID: 33936272 PMCID: PMC8082615 DOI: 10.3892/etm.2021.10047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Dental fluorosis is a global issue. Although there are multiple causes of dental fluorosis, the precise mechanism remains controversial. Previous studies have demonstrated that extracellular fluoride may promote an accumulation of fluoride ions in ameloblasts, which may induce oxidative and endoplasmic reticulum stresses, leading to dental fluorosis. However, the exact process by which fluoride ions enter cells has not been determined. In the present study, intracellular fluoride concentration was determined using a newly developed specific fluorescent probe called probe 1. Under high extracellular fluoride concentrations, the fluorescence intensity of the ameloblasts increased, however, exogenous transforming growth factor-β1 (TGF-β1) was able to inhibit the increase. Furthermore, changes in the expression of the voltage-gated chloride channels 5 and 7 (ClC5 and ClC-7), which are responsible for the transport of fluoride were investigated. The results indicated that fluoride reduced the expression of endogenous TGF-β1 and increased the expression of ClC-5 and ClC-7. Additionally, exogenous TGF-β1 reduced the expression of ClC-5 and ClC-7. The results of the present study indicate that exogenous TGF-β1 may prevent accumulation of fluoride in ameloblasts through the regulation of ClC-5 and ClC-7 under high extracellular fluoride concentrations.
Collapse
Affiliation(s)
- Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xuejing Duan
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiaohui Han
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jing Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
4
|
Zhang Y, Dai Y, Raman A, Daniel E, Metcalf J, Reif G, Pierucci-Alves F, Wallace DP. Overexpression of TGF-β1 induces renal fibrosis and accelerates the decline in kidney function in polycystic kidney disease. Am J Physiol Renal Physiol 2020; 319:F1135-F1148. [PMID: 33166182 DOI: 10.1152/ajprenal.00366.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the presence of numerous fluid-filled cysts, extensive fibrosis, and the progressive decline in kidney function. Transforming growth factor-β1 (TGF-β1), an important mediator for renal fibrosis and chronic kidney disease, is overexpressed by cystic cells compared with normal kidney cells; however, its role in PKD pathogenesis remains undefined. To investigate the effect of TGF-β1 on cyst growth, fibrosis, and disease progression, we overexpressed active TGF-β1 specifically in collecting ducts (CDs) of phenotypic normal (Pkd1RC/+) and Pkd1RC/RC mice. In normal mice, CD-specific TGF-β1 overexpression caused tubule dilations by 5 wk of age that were accompanied by increased levels of phosphorylated SMAD3, α-smooth muscle actin, vimentin, and periostin; however, it did not induce overt cyst formation by 20 wk. In Pkd1RC/RC mice, CD overexpression of TGF-β1 increased cyst epithelial cell proliferation. However, extensive fibrosis limited cyst enlargement and caused contraction of the kidneys, leading to a loss of renal function and a shortened lifespan of the mice. These data demonstrate that TGF-β1-induced fibrosis constrains cyst growth and kidney enlargement and accelerates the decline of renal function, supporting the hypothesis that a combined therapy that inhibits renal cyst growth and fibrosis will be required to effectively treat ADPKD.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Yuqiao Dai
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Archana Raman
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Emily Daniel
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - July Metcalf
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Gail Reif
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Darren P Wallace
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
5
|
The Role of MicroRNA in the Airway Surface Liquid Homeostasis. Int J Mol Sci 2020; 21:ijms21113848. [PMID: 32481719 PMCID: PMC7312818 DOI: 10.3390/ijms21113848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mucociliary clearance, mediated by a coordinated function of cilia bathing in the airway surface liquid (ASL) on the surface of airway epithelium, protects the host from inhaled pathogens and is an essential component of the innate immunity. ASL is composed of the superficial mucus layer and the deeper periciliary liquid. Ion channels, transporters, and pumps coordinate the transcellular and paracellular movement of ions and water to maintain the ASL volume and mucus hydration. microRNA (miRNA) is a class of non-coding, short single-stranded RNA regulating gene expression by post-transcriptional mechanisms. miRNAs have been increasingly recognized as essential regulators of ion channels and transporters responsible for ASL homeostasis. miRNAs also influence the airway host defense. We summarize the most up-to-date information on the role of miRNAs in ASL homeostasis and host-pathogen interactions in the airway and discuss concepts for miRNA-directed therapy.
Collapse
|
6
|
TGF-β Signaling Regulates SLC8A3 Expression and Prevents Oxidative Stress in Developing Midbrain Dopaminergic and Dorsal Raphe Serotonergic Neurons. Int J Mol Sci 2020; 21:ijms21082735. [PMID: 32326436 PMCID: PMC7216069 DOI: 10.3390/ijms21082735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 01/15/2023] Open
Abstract
Calcium homeostasis is a cellular process required for proper cell function and survival, maintained by the coordinated action of several transporters, among them members of the Na+/Ca2+-exchanger family, such as SLC8A3. Transforming growth factor beta (TGF-β) signaling defines neuronal development and survival and may regulate the expression of channels and transporters. We investigated the regulation of SLC8A3 by TGF-β in a conditional knockout mouse with deletion of TGF-β signaling from Engrailed 1-expressing cells, i.e., in cells from the midbrain and rhombomere 1, and elucidated the underlying molecular mechanisms. The results show that SLC8A3 is significantly downregulated in developing dopaminergic and dorsal raphe serotonergic neurons in mutants and that low SLC8A3 abundance prevents the expression of the anti-apoptotic protein Bcl-xL. TGF-β signaling affects SLC8A3 via the canonical and p38 signaling pathway and may increase the binding of Smad4 to the Slc8a3 promoter. Expression of the lipid peroxidation marker malondialdehyde (MDA) was increased following knockdown of Slc8a3 expression in vitro. In neurons lacking TGF-β signaling, the number of MDA- and 4-hydroxynonenal (4-HNE)-positive cells was significantly increased, accompanied with increased cellular 4-HNE abundance. These results suggest that TGF-β contributes to the regulation of SLC8A3 expression in developing dopaminergic and dorsal raphe serotonergic neurons, thereby preventing oxidative stress.
Collapse
|
7
|
Cruz DF, Mitash N, Farinha CM, Swiatecka-Urban A. TGF-β1 Augments the Apical Membrane Abundance of Lemur Tyrosine Kinase 2 to Inhibit CFTR-Mediated Chloride Transport in Human Bronchial Epithelia. Front Cell Dev Biol 2020; 8:58. [PMID: 32117984 PMCID: PMC7018669 DOI: 10.3389/fcell.2020.00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
The most common disease-causing mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, F508del, leads to cystic fibrosis (CF), by arresting CFTR processing and trafficking to the plasma membrane. The FDA-approved modulators partially restore CFTR function and slow down the progression of CF lung disease by increasing processing and delivery to the plasma membrane and improving activity of F508del-CFTR Cl– channels. However, the modulators do not correct compromised membrane stability of rescued F508del-CFTR. Transforming growth factor (TGF)-β1 is a well-established gene modifier of CF associated with worse lung disease in F508del-homozygous patients, by inhibiting CFTR biogenesis and blocking the functional rescue of F508del-CFTR. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein localized at the apical and basolateral membrane domain of human bronchial epithelial cells. Phosphorylation of the apical membrane CFTR by LMTK2 triggers its endocytosis and reduces the abundance of membrane-associated CFTR, impairing the CFTR-mediated Cl– transport. We have previously shown that LMTK2 knockdown improves the pharmacologically rescued F508del-CFTR abundance and function. Thus, reducing the LMTK2 recruitment to the plasma membrane may provide a useful strategy to potentiate the pharmacological rescue of F508del-CFTR. Here, we elucidate the mechanism of LMTK2 recruitment to the apical plasma membrane in polarized CFBE41o- cells. TGF-β1 increased LMTK2 abundance selectively at the apical membrane by accelerating its recycling in Rab11-positive vesicles without affecting LMTK2 mRNA levels, protein biosynthesis, or endocytosis. Our data suggest that controlling TGF-β1 signaling may attenuate recruitment of LMTK2 to the apical membrane thereby improving stability of pharmacologically rescued F508del-CFTR.
Collapse
Affiliation(s)
- Daniel F Cruz
- BioSystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nilay Mitash
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Carlos M Farinha
- BioSystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Transforming Growth Factor-β1 Selectively Recruits microRNAs to the RNA-Induced Silencing Complex and Degrades CFTR mRNA under Permissive Conditions in Human Bronchial Epithelial Cells. Int J Mol Sci 2019; 20:ijms20194933. [PMID: 31590401 PMCID: PMC6801718 DOI: 10.3390/ijms20194933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/27/2019] [Accepted: 10/05/2019] [Indexed: 12/23/2022] Open
Abstract
Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene lead to cystic fibrosis (CF). The most common mutation F508del inhibits folding and processing of CFTR protein. FDA-approved correctors rescue the biosynthetic processing of F508del-CFTR protein, while potentiators improve the rescued CFTR channel function. Transforming growth factor (TGF-β1), overexpressed in many CF patients, blocks corrector/potentiator rescue by inhibiting CFTR mRNA in vitro. Increased TGF-β1 signaling and acquired CFTR dysfunction are present in other lung diseases. To study the mechanism of TGF-β1 repression of CFTR, we used molecular, biochemical, and functional approaches in primary human bronchial epithelial cells from over 50 donors. TGF-β1 destabilized CFTR mRNA in cells from lungs with chronic disease, including CF, and impaired F508del-CFTR rescue by new-generation correctors. TGF-β1 increased the active pool of selected micro(mi)RNAs validated as CFTR inhibitors, recruiting them to the RNA-induced silencing complex (RISC). Expression of F508del-CFTR globally modulated TGF-β1-induced changes in the miRNA landscape, creating a permissive environment required for degradation of F508del-CFTR mRNA. In conclusion, TGF-β1 may impede the full benefit of corrector/potentiator therapy in CF patients. Studying miRNA recruitment to RISC under disease-specific conditions may help to better characterize the miRNAs utilized by TGF-β1 to destabilize CFTR mRNA.
Collapse
|
9
|
Kluge M, Namkoong E, Khakipoor S, Park K, Roussa E. Differential regulation of vacuolar H + -ATPase subunits by transforming growth factor-β1 in salivary ducts. J Cell Physiol 2019; 234:15061-15079. [PMID: 30648263 DOI: 10.1002/jcp.28147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/20/2018] [Indexed: 01/24/2023]
Abstract
Bicarbonate concentration in saliva is controlled by the action of acid-base transporters in salivary duct cells. We show for the first time expression of ATP6V1B1 in submandibular gland and introduce transforming growth factor-beta (TGF-β) as a novel regulator of V-ATPase subunits. Using QRT-PCR, immunoblotting, biotinylation of surface proteins, immunofluorescence, chromatin immunoprecipitation, and intracellular H(+ ) recording with H(+ )-sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein we show that in the human submandibular gland (HSG) cell line, activation of TGF-β signaling upregulates ATP6V1E1 and ATP6V1B2, downregulates ATP6V1B1, and has no effect on ATP6V1A. TGF-β1 effects on ATP6V1B1 are mediated through the canonical, the soluble adenylate cyclase, and ERK signaling. A CREB binding sequence was identified in the ATP6V1B1 promoter and CREB binding decreased after TGF-β1 treatment. Following acidosis, a bafilomycin-sensitive and Na+ -independent cell pH recovery was observed in HSG cells, an effect that was not influenced after disruption of acidic lysosomes. Moreover, neutralization of TGF-βs, inhibition of TGF-β receptor, or inhibition of the canonical pathway decreased membrane expression of ATP6V1A and prevented the acidosis-induced increased V-ATPase activity. The results suggest multiple modes of action of TGF-β1 on V-ATPase subunits in HSG cells: TGF-β1 may regulate transcription or protein synthesis of certain subunits and trafficking of other subunits in a context-dependent manner. Moreover, surface V-ATPase is active in salivary duct cells and involved in intracellular pH regulation following acidosis.
Collapse
Affiliation(s)
- Milena Kluge
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Eun Namkoong
- Department of Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Shokoufeh Khakipoor
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Khakipoor S, Ophoven C, Schrödl‐Häußel M, Feuerstein M, Heimrich B, Deitmer JW, Roussa E. TGF-β signaling directly regulates transcription and functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), via Smad4 in mouse astrocytes. Glia 2017; 65:1361-1375. [PMID: 28568893 PMCID: PMC5518200 DOI: 10.1002/glia.23168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
The electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4) expressed in astrocytes regulates intracellular and extracellular pH. Here, we introduce transforming growth factor beta (TGF-β) as a novel regulator of NBCe1 transcription and functional expression. Using hippocampal slices and primary hippocampal and cortical astrocyte cultures, we investigated regulation of NBCe1 and elucidated the underlying signaling pathways by RT-PCR, immunoblotting, immunofluorescence, intracellular H(+ ) recording using the H(+ ) -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, mink lung epithelial cell (MLEC) assay, and chromatin immunoprecipitation. Activation of TGF-β signaling significantly upregulated transcript, protein, and surface expression of NBCe1. These effects were TGF-β receptor-mediated and suppressed following inhibition of JNK and Smad signaling. Moreover, 4-aminopyridine (4AP)-dependent NBCe1 regulation requires TGF-β. TGF-β increased the rate and amplitude of intracellular H+ changes upon challenging NBCe1 in wild-type astrocytes but not in cortical astrocytes from Slc4a4-deficient mice. A Smad4 binding sequence was identified in the NBCe1 promoter and Smad4 binding increased after activation of TGF-β signaling. The data show for the first time that NBCe1 is a direct target of TGF-β/Smad4 signaling. Through activation of the canonical pathway TGF-β acts directly on NBCe1 by binding of Smad4 to the NBCe1 promoter and regulating its transcription, followed by increased protein expression and transport activity.
Collapse
Affiliation(s)
- Shokoufeh Khakipoor
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Christian Ophoven
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Magdalena Schrödl‐Häußel
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Melanie Feuerstein
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Bernd Heimrich
- Department of NeuroanatomyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Joachim W. Deitmer
- Department of General ZoologyFB Biology, University of KaiserslauternP.B. 3049D‐67653KaiserslauternGermany
| | - Eleni Roussa
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
- Department of NeuroanatomyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| |
Collapse
|
11
|
Laube M, Amann E, Uhlig U, Yang Y, Fuchs HW, Zemlin M, Mercier JC, Maier RF, Hummler HD, Uhlig S, Thome UH. Inflammatory Mediators in Tracheal Aspirates of Preterm Infants Participating in a Randomized Trial of Inhaled Nitric Oxide. PLoS One 2017; 12:e0169352. [PMID: 28046032 PMCID: PMC5207654 DOI: 10.1371/journal.pone.0169352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ventilated preterm infants frequently develop bronchopulmonary dysplasia (BPD) which is associated with elevated inflammatory mediators in their tracheal aspirates (TA). In animal models of BPD, inhaled nitric oxide (iNO) has been shown to reduce lung inflammation, but data for human preterm infants is missing. METHODS Within a European multicenter trial of NO inhalation for preterm infants to prevent BPD (EUNO), TA was collected to determine the effects of iNO on pulmonary inflammation. TA was collected from 43 premature infants randomly assigned to receive either iNO or placebo gas (birth weight 530-1230 g, median 800 g, gestational age 24 to 28 2/7 weeks, median 26 weeks). Interleukin (IL)-1β, IL-6, IL-8, transforming growth factor (TGF)-β1, interferon γ-induced protein 10 (IP-10), macrophage inflammatory protein (MIP)-1α, acid sphingomyelinase (ASM), neuropeptide Y and leukotriene B4 were measured in serial TA samples from postnatal day 2 to 14. Furthermore, TA levels of nitrotyrosine and nitrite were determined under iNO therapy. RESULTS The TA levels of IP-10, IL-6, IL-8, MIP-1α, IL-1β, ASM and albumin increased with advancing postnatal age in critically ill preterm infants, whereas nitrotyrosine TA levels declined in both, iNO-treated and placebo-treated infants. The iNO treatment generally increased nitrite TA levels, whereas nitrotyrosine TA levels were not affected by iNO treatment. Furthermore, iNO treatment transiently reduced early inflammatory and fibrotic markers associated with BPD development including TGF-β1, IP-10 and IL-8, but induced a delayed increase of ASM TA levels. CONCLUSION Treatment with iNO may have played a role in reducing several inflammatory and fibrotic mediators in TA of preterm infants compared to placebo-treated infants. However, survival without BPD was not affected in the main EUNO trial. TRIAL REGISTRATION NCT00551642.
Collapse
Affiliation(s)
- Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Elena Amann
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics, University of Ulm, Ulm, Germany
| | - Ulrike Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Yang Yang
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Hans W. Fuchs
- Department of Pediatrics, University Medical Center Freiburg, Freiburg, Germany
| | - Michael Zemlin
- Department of Pediatrics, University of Marburg, Marburg, Germany
- Department of Pediatrics, University of Saarland, Homburg, Germany
| | | | - Rolf F. Maier
- Department of Pediatrics, University of Marburg, Marburg, Germany
| | - Helmut D. Hummler
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics, University of Ulm, Ulm, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Ulrich H. Thome
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Wagener BM, Hu M, Zheng A, Zhao X, Che P, Brandon A, Anjum N, Snapper S, Creighton J, Guan JL, Han Q, Cai GQ, Han X, Pittet JF, Ding Q. Neuronal Wiskott-Aldrich syndrome protein regulates TGF-β1-mediated lung vascular permeability. FASEB J 2016; 30:2557-69. [PMID: 27025963 DOI: 10.1096/fj.201600102r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
TGF-β1 induces an increase in paracellular permeability and actin stress fiber formation in lung microvascular endothelial and alveolar epithelial cells via small Rho GTPase. The molecular mechanism involved is not fully understood. Neuronal Wiskott-Aldrich syndrome protein (N-WASP) has an essential role in actin structure dynamics. We hypothesized that N-WASP plays a critical role in these TGF-β1-induced responses. In these cell monolayers, we demonstrated that N-WASP down-regulation by short hairpin RNA prevented TGF-β1-mediated disruption of the cortical actin structure, actin stress filament formation, and increased permeability. Furthermore, N-WASP down-regulation blocked TGF-β1 activation mediated by IL-1β in alveolar epithelial cells, which requires actin stress fiber formation. Control short hairpin RNA had no effect on these TGF-β1-induced responses. TGF-β1-induced phosphorylation of Y256 of N-WASP via activation of small Rho GTPase and focal adhesion kinase mediates TGF-β1-induced paracellular permeability and actin cytoskeleton dynamics. In vivo, compared with controls, N-WASP down-regulation increases survival and prevents lung edema in mice induced by bleomycin exposure-a lung injury model in which TGF-β1 plays a critical role. Our data indicate that N-WASP plays a crucial role in the development of TGF-β1-mediated acute lung injury by promoting pulmonary edema via regulation of actin cytoskeleton dynamics.-Wagener, B. M., Hu, M., Zheng, A., Zhao, X., Che, P., Brandon, A., Anjum, N., Snapper, S., Creighton, J., Guan, J.-L., Han, Q., Cai, G.-Q., Han, X., Pittet, J.-F., Ding, Q. Neuronal Wiskott-Aldrich syndrome protein regulates TGF-β1-mediated lung vascular permeability.
Collapse
Affiliation(s)
- Brant M Wagener
- Division of Critical Care, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meng Hu
- Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anni Zheng
- Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xueke Zhao
- Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Pulin Che
- Division of Neurology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Angela Brandon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Naseem Anjum
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Scott Snapper
- Department of Pathology, Harvard University, Boston, Massachusetts, USA
| | - Judy Creighton
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Qimei Han
- Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guo-Qiang Cai
- Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiaosi Han
- Division of Neurology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jean-Francois Pittet
- Division of Critical Care, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qiang Ding
- Division of Pulmonary, Allergy, and Critical Care Medicine Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Synergistic Inhibition of β2-adrenergic Receptor-mediated Alveolar Epithelial Fluid Transport by Interleukin-8 and Transforming Growth Factor-β. Anesthesiology 2015; 122:1084-92. [PMID: 25591042 DOI: 10.1097/aln.0000000000000595] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Patients with acute respiratory distress syndrome who retain maximal alveolar fluid clearance (AFC) have better clinical outcomes. The release of endogenous catecholamines associated with shock or the administration of β2-adrenergic receptor (β2AR) agonists enhances AFC via a 3'-5'-cyclic adenosine monophosphate-dependent mechanism. The authors have previously reported that transforming growth factor-β1 (TGF-β1) and interleukin-8 (IL-8), two major mediators of alveolar inflammation associated with the early phase of acute respiratory distress syndrome, inhibit AFC upregulation by β2AR agonists via a phosphoinositol-3-kinase (PI3K)-dependent mechanism. However, whether TGF-β1 and IL-8 cause an additive or synergistic inhibition of AFC is unclear. Thus, the central hypothesis of the study was to determine whether they synergistically inhibit the β2AR-stimulated AFC by activating two different isoforms of PI3K. METHODS The effects of TGF-β1 or IL-8 on β2AR agonist-stimulated net alveolar fluid transport were studied using short-circuit current studies. Molecular pathways of inhibition were confirmed by pharmacologic inhibitors and Western blotting of p-Akt, G-protein-coupled receptor kinase 2, protein kinase C-ζ, and phospho-β2AR. Finally, our observations were confirmed by an in vivo model of AFC. RESULTS Combined exposure to TGF-β1 and IL-8/cytokine-induced neutrophil chemoattractant-1 caused synergistic inhibition of β2AR agonist-stimulated vectorial Cl across alveolar epithelial type II cells (n = 12 in each group). This effect was explained by activation of different isoforms of PI3K by TGF-β1 and IL-8/cytokine-induced neutrophil chemoattractant-1 (n = 12 in each group). Furthermore, the inhibitory effect of TGF-β1 on 3'-5'-cyclic adenosine monophosphate-stimulated alveolar epithelial fluid transport required the presence of IL-8/cytokine-induced neutrophil chemoattractant-1 (n = 12 in each group). Inhibition of cytokine-induced neutrophil chemoattractant-1 prevented TGF-β1-mediated heterologous β2AR downregulation and restored physiologic β2AR agonist-stimulated AFC in rats (n = 6 in each group). CONCLUSIONS TGF-β1 and IL-8 have a synergistic inhibitory effect on β2AR-mediated stimulation of pulmonary edema removal by the alveolar epithelium. This result may, in part, explain why a large proportion of the patients with acute respiratory distress syndrome have impaired AFC.
Collapse
|
14
|
Woods PS, Tazi MF, Chesarino NM, Amer AO, Davis IC. TGF-β-induced IL-6 prevents development of acute lung injury in influenza A virus-infected F508del CFTR-heterozygous mice. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1136-44. [PMID: 25840995 PMCID: PMC4451396 DOI: 10.1152/ajplung.00078.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/02/2015] [Indexed: 01/08/2023] Open
Abstract
As the eighth leading cause of annual mortality in the USA, influenza A viruses are a major public health concern. In 20% of patients, severe influenza progresses to acute lung injury (ALI). However, pathophysiological mechanisms underlying ALI development are poorly defined. We reported that, unlike wild-type (WT) C57BL/6 controls, influenza A virus-infected mice that are heterozygous for the F508del mutation in the cystic fibrosis transmembrane conductance regulator (HETs) did not develop ALI. This effect was associated with higher IL-6 and alveolar macrophages (AMs) at 6 days postinfection (d.p.i.) in HET bronchoalveolar lavage fluid (BALF). In the present study, we found that HET AMs were an important source of IL-6 at 6 d.p.i. Infection also induced TGF-β production by HET but not WT mice at 2 d.p.i. TGF-β neutralization at 2 d.p.i. (TGF-N) significantly reduced BALF IL-6 in HETs at 6 d.p.i. Neither TGF-N nor IL-6 neutralization at 4 d.p.i. (IL-6-N) altered postinfection weight loss or viral replication in either mouse strain. However, both treatments increased influenza A virus-induced hypoxemia, pulmonary edema, and lung dysfunction in HETs to WT levels at 6 d.p.i. TGF-N and IL-6-N did not affect BALF AM and neutrophil numbers but attenuated the CXCL-1/keratinocyte chemokine response in both strains and reduced IFN-γ production in WT mice. Finally, bone marrow transfer experiments showed that HET stromal and myeloid cells are both required for protection from ALI in HETs. These findings indicate that TGF-β-dependent production of IL-6 by AMs later in infection prevents ALI development in influenza A virus-infected HET mice.
Collapse
Affiliation(s)
- Parker S Woods
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Mia F Tazi
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
| | - Nicholas M Chesarino
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
| | - Ian C Davis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
15
|
Unwalla HJ, Ivonnet P, Dennis JS, Conner GE, Salathe M. Transforming growth factor-β1 and cigarette smoke inhibit the ability of β2-agonists to enhance epithelial permeability. Am J Respir Cell Mol Biol 2015; 52:65-74. [PMID: 24978189 DOI: 10.1165/rcmb.2013-0538oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic bronchitis, caused by cigarette smoke exposure, is characterized by mucus hypersecretion and reduced mucociliary clearance (MCC). Effective MCC depends, in part, on adequate airway surface liquid. Cystic fibrosis transmembrane conductance regulator (CFTR) provides the necessary osmotic gradient for serosal to mucosal fluid transport through its ability to both secrete Cl(-) and regulate paracellular permeability, but CFTR activity is attenuated in chronic bronchitis and in smokers. β2-adrenergic receptor (β2-AR) agonists are widely used for managing chronic obstructive pulmonary disease, and can activate CFTR, stimulate ciliary beat frequency, and increase epithelial permeability, thereby stimulating MCC. Patients with chronic airway diseases and cigarette smokers demonstrate increased transforming growth factor (TGF)-β1 signaling, which suppresses β2-agonist-mediated CFTR activation and epithelial permeability increases. Restoring CFTR function in these diseases can restore the ability of β2-agonists to enhance epithelial permeability. Human bronchial epithelial cells, fully redifferentiated at the air-liquid interface, were used for (14)C mannitol flux measurements, Ussing chamber experiments, and quantitative RT-PCR. β2-agonists enhance epithelial permeability by activating CFTR via the β2-AR/adenylyl cyclase/cAMP/protein kinase A pathway. TGF-β1 inhibits β2-agonist-mediated CFTR activation and epithelial permeability enhancement. Although TGF-β1 down-regulates both β2-AR and CFTR mRNA, functionally it only decreases CFTR activity. Cigarette smoke exposure inhibits β2-agonist-mediated epithelial permeability increases, an effect reversed by blocking TGF-β signaling. β2-agonists enhance epithelial permeability via CFTR activation. TGF-β1 signaling inhibits β2-agonist-mediated CFTR activation and subsequent increased epithelial permeability, potentially limiting the ability of β2-agonists to facilitate paracellular transport in disease states unless TGF-β1 signaling is inhibited.
Collapse
Affiliation(s)
- Hoshang J Unwalla
- 1 Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, and
| | | | | | | | | |
Collapse
|
16
|
TGF-β directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc Natl Acad Sci U S A 2013; 111:E374-83. [PMID: 24324142 DOI: 10.1073/pnas.1306798111] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
TGF-β is a pathogenic factor in patients with acute respiratory distress syndrome (ARDS), a condition characterized by alveolar edema. A unique TGF-β pathway is described, which rapidly promoted internalization of the αβγ epithelial sodium channel (ENaC) complex from the alveolar epithelial cell surface, leading to persistence of pulmonary edema. TGF-β applied to the alveolar airspaces of live rabbits or isolated rabbit lungs blocked sodium transport and caused fluid retention, which--together with patch-clamp and flow cytometry studies--identified ENaC as the target of TGF-β. TGF-β rapidly and sequentially activated phospholipase D1, phosphatidylinositol-4-phosphate 5-kinase 1α, and NADPH oxidase 4 (NOX4) to produce reactive oxygen species, driving internalization of βENaC, the subunit responsible for cell-surface stability of the αβγENaC complex. ENaC internalization was dependent on oxidation of βENaC Cys(43). Treatment of alveolar epithelial cells with bronchoalveolar lavage fluids from ARDS patients drove βENaC internalization, which was inhibited by a TGF-β neutralizing antibody and a Tgfbr1 inhibitor. Pharmacological inhibition of TGF-β signaling in vivo in mice, and genetic ablation of the nox4 gene in mice, protected against perturbed lung fluid balance in a bleomycin model of lung injury, highlighting a role for both proximal and distal components of this unique ENaC regulatory pathway in lung fluid balance. These data describe a unique TGF-β-dependent mechanism that regulates ion and fluid transport in the lung, which is not only relevant to the pathological mechanisms of ARDS, but might also represent a physiological means of acutely regulating ENaC activity in the lung and other organs.
Collapse
|
17
|
Yi S, Pierucci-Alves F, Schultz BD. Transforming growth factor-β1 impairs CFTR-mediated anion secretion across cultured porcine vas deferens epithelial monolayer via the p38 MAPK pathway. Am J Physiol Cell Physiol 2013; 305:C867-76. [PMID: 23903699 DOI: 10.1152/ajpcell.00121.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to determine whether transforming growth factor-β1 (TGF-β1) affects epithelial cells lining the vas deferens, an organ that is universally affected in cystic fibrosis male patients. In PVD9902 cells, which are derived from porcine vas deferens epithelium, TGF-β1 exposure significantly reduced short-circuit current (Isc) stimulated by forskolin or a cell membrane-permeant cAMP analog, 8-pCPT-cAMP, suggesting that TGF-β1 affects targets of the cAMP signaling pathway. Electrophysiological results indicated that TGF-β1 reduces the magnitude of current inhibited by cystic fibrosis transmembrane conductance regulator (CFTR) channel blockers. Real-time RT-PCR revealed that TGF-β1 downregulates the abundance of mRNA coding for CFTR, while biotinylation and Western blot showed that TGF-β1 reduces both total CFTR and apical cell surface CFTR abundance. These results suggest that TGF-β1 causes a reduction in CFTR expression, which limits CFTR-mediated anion secretion. TGF-β1-associated attenuation of anion secretion was abrogated by SB431542, a TGF-β1 receptor I inhibitor. Signaling pathway studies showed that the effect of TGF-β1 on Isc was reduced by SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK). TGF-β1 exposure also increased the amount of phospho-p38 MAPK substantially. In addition, anisomycin, a p38 MAPK activator, mimicked the effect of TGF-β1, which further suggests that TGF-β1 affects PVD9902 cells through a p38 MAPK pathway. These observations suggest that TGF-β1, via TGF-β1 receptor I and p38 MAPK signaling, reduces CFTR expression to impair CFTR-mediated anion secretion, which would likely compound the effects associated with mild CFTR mutations and ultimately would compromise male fertility.
Collapse
Affiliation(s)
- Sheng Yi
- Departments of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | | | |
Collapse
|
18
|
Activation of the heat shock response attenuates the interleukin 1β-mediated inhibition of the amiloride-sensitive alveolar epithelial ion transport. Shock 2013; 39:189-96. [PMID: 23324889 DOI: 10.1097/shk.0b013e31827e8ea3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acute lung injury (ALI) is a clinical syndrome characterized by hypoxia, which is caused by the breakdown of the alveolar capillary barrier. Interleukin 1β (IL-1β), a cytokine released within the airspace in ALI, downregulates the α subunit of the epithelial sodium channel (αENaC) transcription and protein expression via p38 MAP kinase-dependent signaling. Although induction of the heat shock response can restore alveolar fluid clearance compromised by IL-1β following the onset of severe hemorrhagic shock in rats, the mechanisms are not fully understood. In this study, we report that the induction of the heat shock response prevents IL-1β-dependent inhibition of αENaC mRNA expression and subsequent channel function. Heat shock results in IRAK1 detergent insolubility and a disruption of Hsp90 binding to IRAK1. Likewise, TAK1, another client protein of Hsp90 and signaling component of the IL-1β pathway, is also detergent insoluble after heat shock. Twenty-four hours after heat shock, both IRAK1 and TAK1 are again detergent soluble, which correlates with the IL-1β-dependent p38 activation. Remarkably, IL-1β-dependent p38 activation 24 h after heat shock did not result in an inhibition of αENaC mRNA expression and channel function. Further analysis demonstrates prolonged preservation of αENaC expression by the activation of the heat shock response that involves inducible Hsp70. Inhibition of Hsp70 at 24 h after heat shock results in p38-dependent IL-1β inhibition of αENaC mRNA expression, whereas overexpression of Hsp70 attenuates the p38-dependent IL-1β inhibition of αENaC mRNA expression. These studies demonstrate new mechanisms by which the induction of the heat shock response protects the barrier function of the alveolar epithelium in ALI.
Collapse
|
19
|
Contribution of CFTR to alveolar fluid clearance by lipoxin A4 via PI3K/Akt pathway in LPS-induced acute lung injury. Mediators Inflamm 2013; 2013:862628. [PMID: 23766562 PMCID: PMC3671557 DOI: 10.1155/2013/862628] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/07/2013] [Accepted: 04/18/2013] [Indexed: 01/11/2023] Open
Abstract
The lipoxins are the first proresolution mediators to be recognized and described as the endogenous “braking signals” for inflammation. We evaluated the anti-inflammatory and proresolution bioactions of lipoxin A4 in our lipopolysaccharide (LPS-)induced lung injury model. We demonstrated that lipoxin A4 significantly improved histology of rat lungs and inhibited IL-6 and TNF-α in LPS-induced lung injury. In addition, lipoxin A4 increased alveolar fluid clearance (AFC) and the effect of lipoxin A4 on AFC was abolished by CFTRinh-172 (a specific inhibitor of CFTR). Moreover, lipoxin A4 could increase cystic fibrosis transmembrane conductance regulator (CFTR) protein expression in vitro and in vivo. In rat primary alveolar type II (ATII) cells, LPS decreased CFTR protein expression via activation of PI3K/Akt, and lipoxin A4 suppressed LPS-stimulated phosphorylation of Akt. These results showed that lipoxin A4 enhanced CFTR protein expression and increased AFC via PI3K/Akt pathway. Thus, lipoxin A4 may provide a potential therapeutic approach for acute lung injury.
Collapse
|
20
|
Tgf-β1 inhibits Cftr biogenesis and prevents functional rescue of ΔF508-Cftr in primary differentiated human bronchial epithelial cells. PLoS One 2013; 8:e63167. [PMID: 23671668 PMCID: PMC3650079 DOI: 10.1371/journal.pone.0063167] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
Abstract
CFTR is an integral transmembrane glycoprotein and a cAMP-activated Cl(-) channel. Mutations in the CFTR gene lead to Cystic Fibrosis (CF)-an autosomal recessive disease with majority of the morbidity and mortality resulting from airway infection, inflammation, and fibrosis. The most common disease-associated mutation in the CFTR gene-deletion of Phe508 (ΔF508) leads to a biosynthetic processing defect of CFTR. Correction of the defect and delivery of ΔF508-CFTR to the cell surface has been highly anticipated as a disease modifying therapy. Compared to promising results in cultured cell this approach was much less effective in CF patients in an early clinical trial. Although the cause of failure to rescue ΔF508-CFTR in the clinical trial has not been determined, presence of factor(s) that interfere with the rescue in vivo could be considered. The cytokine TGF-β1 is frequently elevated in CF patients. TGF-β1 has pleiotropic effects in different disease models and genetic backgrounds and little is known about TGF-β1 effects on CFTR in human airway epithelial cells. Moreover, there are no published studies examining TGF-β1 effects on the functional rescue of ΔF508-CFTR. Here we found that TGF-β1 inhibits CFTR biogenesis by reducing mRNA levels and protein abundance in primary differentiated human bronchial epithelial (HBE) cells from non-CF individuals. TGF-β1 inhibits CFTR biogenesis without compromising the epithelial phenotype or integrity of HBE cells. TGF-β1 also inhibits biogenesis and impairs the functional rescue of ΔF508-CFTR in HBE cells from patients homozygous for the ΔF508 mutation. Our data indicate that activation of TGF-β1 signaling may inhibit CFTR function in non-CF individuals and may interfere with therapies directed at correcting the processing defect of ΔF508-CFTR in CF patients.
Collapse
|
21
|
Roux J, McNicholas CM, Carles M, Goolaerts A, Houseman BT, Dickinson DA, Iles KE, Ware LB, Matthay MA, Pittet JF. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism. FASEB J 2013; 27:1095-106. [PMID: 23221335 PMCID: PMC3574281 DOI: 10.1096/fj.12-219295] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/13/2012] [Indexed: 12/27/2022]
Abstract
Patients with acute lung injury (ALI) who retain maximal alveolar fluid clearance (AFC) have better clinical outcomes. Experimental and small clinical studies have shown that β2-adrenergic receptor (β2AR) agonists enhance AFC via a cAMP-dependent mechanism. However, two multicenter phase 3 clinical trials failed to show that β2AR agonists provide a survival advantage in patients with ALI. We hypothesized that IL-8, an important mediator of ALI, directly antagonizes the alveolar epithelial response to β2AR agonists. Short-circuit current and whole-cell patch-clamping experiments revealed that IL-8 or its rat analog CINC-1 decreases by 50% β2AR agonist-stimulated vectorial Cl(-) and net fluid transport across rat and human alveolar epithelial type II cells via a reduction in the cystic fibrosis transmembrane conductance regulator activity and biosynthesis. This reduction was mediated by heterologous β2AR desensitization and down-regulation (50%) via the G-protein-coupled receptor kinase 2 (GRK2)/PI3K signaling pathway. Inhibition of CINC-1 restored β2AR agonist-stimulated AFC in an experimental model of ALI in rats. Finally, consistent with the experimental results, high pulmonary edema fluid levels of IL-8 (>4000 pg/ml) were associated with impaired AFC in patients with ALI. These results demonstrate a novel role for IL-8 in inhibiting β2AR agonist-stimulated alveolar epithelial fluid transport via GRK2/PI3K-dependent mechanisms.-Roux, J., McNicholas, C. M., Carles, M., Goolaerts, A., Houseman, B. T., Dickinson, D. A., Iles, K. E., Ware, L. B., Matthay, M. A., Pittet, J.-F. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Benjamin T. Houseman
- Department of Anesthesia and Perioperative Care
- Department of Cellular Pharmacology, and
| | - Dale A. Dickinson
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA; and
| | | | - Lorraine B. Ware
- Department of Medicine, and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Michael A. Matthay
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Jean-François Pittet
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
22
|
Langeron O, Jaber S, Benhamou D, Plaud B. [Sfar research awards 2012]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2012; 31:671-672. [PMID: 22902609 DOI: 10.1016/j.annfar.2012.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
23
|
Vaporidi K, Vergadi E, Kaniaris E, Hatziapostolou M, Lagoudaki E, Georgopoulos D, Zapol WM, Bloch KD, Iliopoulos D. Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 303:L199-207. [PMID: 22659882 DOI: 10.1152/ajplung.00370.2011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the changes induced by high tidal volume ventilation (HVTV) in pulmonary expression of micro-RNAs (miRNAs) and identify potential target genes and corresponding miRNA-gene networks. Using a real-time RT-PCR-based array in RNA samples from lungs of mice subjected to HVTV for 1 or 4 h and control mice, we identified 65 miRNAs whose expression changed more than twofold upon HVTV. An inflammatory and a TGF-β-signaling miRNA-gene network were identified by in silico pathway analysis being at highest statistical significance (P = 10(-43) and P = 10(-28), respectively). In the inflammatory network, IL-6 and SOCS-1, regulated by miRNAs let-7 and miR-155, respectively, appeared as central nodes. In TGF-β-signaling network, SMAD-4, regulated by miR-146, appeared as a central node. The contribution of miRNAs to the development of lung injury was evaluated in mice subjected to HVTV treated with a precursor or antagonist of miR-21, a miRNA highly upregulated by HVTV. Lung compliance was preserved only in mice treated with anti-miR-21 but not in mice treated with pre-miR-21 or negative-control miRNA. Both alveolar-arterial oxygen difference and protein levels in bronchoalveolar lavage were lower in mice treated with anti-miR-21 than in mice treated with pre-miR-21 or negative-control miRNA (D(A-a): 66 ± 27 vs. 131 ± 22, 144 ± 10 mmHg, respectively, P < 0.001; protein concentration: 1.1 ± 0.2 vs. 2.3 ± 1, 2.1 ± 0.4 mg/ml, respectively, P < 0.01). Our results show that HVTV induces changes in miRNA expression in mouse lungs. Modulation of miRNA expression can affect the development of HVTV-induced lung injury.
Collapse
Affiliation(s)
- Katerina Vaporidi
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lafargue M, Xu L, Carlès M, Serve E, Anjum N, Iles KE, Xiong X, Giffard R, Pittet JF. Stroke-induced activation of the α7 nicotinic receptor increases Pseudomonas aeruginosa lung injury. FASEB J 2012; 26:2919-29. [PMID: 22490926 DOI: 10.1096/fj.11-197384] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infectious complications, predominantly pneumonia, are the most common cause of death in the postacute phase of stroke, although the mechanisms underlying the corresponding immunosuppression are not fully understood. We tested the hypothesis that activation of the α7 nicotinic acetylcholine receptor (α7nAChR) pathway is important in the stroke-induced increase in lung injury caused by Pseudomonas aeruginosa pneumonia in mice. Prior stroke increased lung vascular permeability caused by P. aeruginosa pneumonia and was associated with decreased lung neutrophil recruitment and bacterial clearance in mice. Pharmacologic inhibition (methyllycaconitine IC(50): 0.2-0.6 nM) or genetic deletion of the α7nAChR significantly (P<0.05) attenuates the effect of prior stroke on lung injury and mortality caused by P. aeruginosa pneumonia in mice. Finally, pretreatment with PNU-282987, a pharmacologic activator of the α7nAChR (EC(50): 0.2 μM), significantly (P<0.05) increased lung injury caused by P. aeruginosa pneumonia, significantly (P<0.05) decreased the release of KC, a major neutrophil chemokine, and significantly (P<0.05) decreased intracellular bacterial killing by a mouse alveolar macrophage cell line and primary mouse neutrophils. In summary, the α7 nicotinic cholinergic pathway plays an important role in mediating the systemic immunosuppression observed after stroke and directly contributes to more severe lung damage induced by P. aeruginosa.
Collapse
Affiliation(s)
- Mathieu Lafargue
- Department of Anesthesia, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Goolaerts A, Lafargue M, Song Y, Miyazawa B, Arjomandi M, Carlès M, Roux J, Howard M, Parks DA, Iles KE, Pittet JF. PAI-1 is an essential component of the pulmonary host response during Pseudomonas aeruginosa pneumonia in mice. Thorax 2011; 66:788-96. [PMID: 21768189 PMCID: PMC3282176 DOI: 10.1136/thx.2010.155788] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
RATIONALE Elevated plasma and bronchoalveolar lavage fluid plasminogen activator inhibitor 1 (PAI-1) levels are associated with adverse clinical outcome in patients with pneumonia caused by Pseudomonas aeruginosa. However, whether PAI-1 plays a pathogenic role in the breakdown of the alveolar-capillary barrier caused by P aeruginosa is unknown. OBJECTIVES The role of PAI-1 in pulmonary host defence and survival during P aeruginosa pneumonia in mice was tested. The in vitro mechanisms by which P aeruginosa causes PAI-1 gene and protein expression in lung endothelial and epithelial cells were also examined. METHODS AND RESULTS PAI-1 null and wild-type mice that were pretreated with the PAI-1 inhibitor Tiplaxtinin had a significantly lower increase in lung vascular permeability than wild-type littermates after the airspace instillation of 1×10(7) colony-forming units (CFU) of P aeruginosa bacteria. Furthermore, P aeruginosa in vitro induced the expression of the PAI-1 gene and protein in a TLR4/p38/RhoA/NF-κB (Toll-like receptor 4/p38/RhoA/nuclear factor-κB) manner in lung endothelial and alveolar epithelial cells. However, in vivo disruption of PAI-1 signalling was associated with higher mortality at 24 h (p<0.03) and higher bacterial burden in the lungs secondary to decreased neutrophil migration into the distal airspace in response to P aeruginosa. CONCLUSIONS The results indicate that PAI-1 is a critical mediator that controls the development of the early lung inflammation that is required for the activation of the later innate immune response necessary for the eradication of P aeruginosa from the distal airspaces of the lung.
Collapse
Affiliation(s)
- Arnaud Goolaerts
- Department of Anesthesiology, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Leikauf GD, Concel VJ, Liu P, Bein K, Berndt A, Ganguly K, Jang AS, Brant KA, Dietsch M, Pope-Varsalona H, Dopico RA, Di YPP, Li Q, Vuga LJ, Medvedovic M, Kaminski N, You M, Prows DR. Haplotype association mapping of acute lung injury in mice implicates activin a receptor, type 1. Am J Respir Crit Care Med 2011; 183:1499-509. [PMID: 21297076 PMCID: PMC3137140 DOI: 10.1164/rccm.201006-0912oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 02/04/2011] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Because acute lung injury is a sporadic disease produced by heterogeneous precipitating factors, previous genetic analyses are mainly limited to candidate gene case-control studies. OBJECTIVES To develop a genome-wide strategy in which single nucleotide polymorphism associations are assessed for functional consequences to survival during acute lung injury in mice. METHODS To identify genes associated with acute lung injury, 40 inbred strains were exposed to acrolein and haplotype association mapping, microarray, and DNA-protein binding were assessed. MEASUREMENTS AND MAIN RESULTS The mean survival time varied among mouse strains with polar strains differing approximately 2.5-fold. Associations were identified on chromosomes 1, 2, 4, 11, and 12. Seven genes (Acvr1, Cacnb4, Ccdc148, Galnt13, Rfwd2, Rpap2, and Tgfbr3) had single nucleotide polymorphism (SNP) associations within the gene. Because SNP associations may encompass "blocks" of associated variants, functional assessment was performed in 91 genes within ± 1 Mbp of each SNP association. Using 10% or greater allelic frequency and 10% or greater phenotype explained as threshold criteria, 16 genes were assessed by microarray and reverse real-time polymerase chain reaction. Microarray revealed several enriched pathways including transforming growth factor-β signaling. Transcripts for Acvr1, Arhgap15, Cacybp, Rfwd2, and Tgfbr3 differed between the strains with exposure and contained SNPs that could eliminate putative transcriptional factor recognition sites. Ccdc148, Fancl, and Tnn had sequence differences that could produce an amino acid substitution. Mycn and Mgat4a had a promoter SNP or 3'untranslated region SNPs, respectively. Several genes were related and encoded receptors (ACVR1, TGFBR3), transcription factors (MYCN, possibly CCDC148), and ubiquitin-proteasome (RFWD2, FANCL, CACYBP) proteins that can modulate cell signaling. An Acvr1 SNP eliminated a putative ELK1 binding site and diminished DNA-protein binding. CONCLUSIONS Assessment of genetic associations can be strengthened using a genetic/genomic approach. This approach identified several candidate genes, including Acvr1, associated with increased susceptibility to acute lung injury in mice.
Collapse
Affiliation(s)
- George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bazett M, Paun A, Haston CK. MicroRNA profiling of cystic fibrosis intestinal disease in mice. Mol Genet Metab 2011; 103:38-43. [PMID: 21333573 DOI: 10.1016/j.ymgme.2011.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 12/19/2022]
Abstract
Cystic fibrosis (CF) intestinal disease is characterized by alterations in processes such as proliferation and apoptosis which are known to be regulated in part by microRNAs. Herein, we completed microRNA expression profiling of the intestinal tissue from the cystic fibrosis mouse model of cystic fibrosis transmembrane conductance regulator (Cftr) deficient mice (BALBc/J Cftr(tm1UNC)), relative to that of wildtype littermates, to determine whether changes in microRNA expression level are part of this phenotype. We identified 24 microRNAs to be significantly differentially expressed in tissue from CF mice compared to wildtype, with the higher expression in tissue from CF mice. These data were confirmed with real time PCR measurements. A comparison of the list of genes previously reported to have decreased expression in the BALB×C57BL/6J F2 CF intestine to that of genes putatively targeted by the 24 microRNAs, determined from target prediction software, revealed 155 of the 759 genes of the expression profile (20.4%) to overlap with predicted targets, which is significantly more than the 100 genes expected by chance (p=1×10(-8)). Pathway analysis identified these common genes to function in phosphatase and tensin homolog-, protein kinase A-, phosphoinositide-3 kinase/Akt- and peroxisome proliferator-activated receptor alpha/retinoid X receptor alpha signaling pathways, among others, and through real time PCR experiments genes of these pathways were demonstrated to have lower expression in the BALB CF intestine. We conclude that altered microRNA expression is a feature which putatively influences both metabolic abnormalities and the altered tissue homeostasis component of CF intestinal disease.
Collapse
Affiliation(s)
- Mark Bazett
- Meakins-Christie Laboratories and the Department of Human Genetics, McGill University, Montreal, PQ, Canada
| | | | | |
Collapse
|
28
|
Bir N, Lafargue M, Howard M, Goolaerts A, Roux J, Carles M, Cohen MJ, Iles KE, Fernández JA, Griffin JH, Pittet JF. Cytoprotective-selective activated protein C attenuates Pseudomonas aeruginosa-induced lung injury in mice. Am J Respir Cell Mol Biol 2011; 45:632-41. [PMID: 21257925 DOI: 10.1165/rcmb.2010-0397oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inhibition of the small GTPase RhoA attenuates the development of pulmonary edema and restores positive alveolar fluid clearance in a murine model of Pseudomonas aeruginosa pneumonia. Activated protein C (aPC) blocks the development of an unfavorably low ratio of small GTPase Rac1/RhoA activity in lung endothelium through endothelial protein C receptor (EPCR)/protease-activated receptor-1 (PAR-1)-dependent signaling mechanisms that include transactivating the sphingosine-1-phosphate (S1P) pathway. However, whether aPC's cytoprotective effects can attenuate the development of pulmonary edema and death associated with P. aeruginosa pneumonia in mice remains unknown. Thus, we determined whether the normalization of a depressed ratio of activated Rac1/RhoA by aPC would attenuate the P. aeruginosa-mediated increase in protein permeability across lung endothelial and alveolar epithelial barriers. Pretreatment with aPC significantly reduced P. aeruginosa-induced increases in paracellular permeability across pulmonary endothelial cell and alveolar epithelial monolayers via an inhibition of RhoA activation and a promotion of Rac1 activation that required the EPCR-PAR-1 and S1P pathways. Furthermore, pretreatment with aPC attenuated the development of pulmonary edema in a murine model of P. aeruginosa pneumonia. Finally, a cytoprotective-selective aPC mutant, aPC-5A, which lacks most of aPC's anticoagulant activity, reproduced the protective effect of wild-type aPC by attenuating the development of pulmonary edema and decreasing mortality in a murine model of P. aeruginosa pneumonia. Taken together, these results demonstrate a critical role for the cytoprotective activities of aPC in attenuating P. aeruginosa-induced lung vascular permeability and mortality, suggesting that cytoprotective-selective aPC-5A with diminished bleeding risks could attenuate the lung damage caused by P. aeruginosa in critically ill patients.
Collapse
Affiliation(s)
- Nastasha Bir
- Cardiovascular Research Institute and Institute of Molecular Medicine, Department of Anesthesia, University of California at San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mac Sweeney R, Fischer H, McAuley DF. Nasal potential difference to detect Na+ channel dysfunction in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 300:L305-18. [PMID: 21112943 DOI: 10.1152/ajplung.00223.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pulmonary fluid clearance is regulated by the active transport of Na(+) and Cl(-) through respiratory epithelial ion channels. Ion channel dysfunction contributes to the pathogenesis of various pulmonary fluid disorders including high-altitude pulmonary edema (HAPE) and neonatal respiratory distress syndrome (RDS). Nasal potential difference (NPD) measurement allows an in vivo investigation of the functionality of these channels. This technique has been used for the diagnosis of cystic fibrosis, the archetypal respiratory ion channel disorder, for over a quarter of a century. NPD measurements in HAPE and RDS suggest constitutive and acquired dysfunction of respiratory epithelial Na(+) channels. Acute lung injury (ALI) is characterized by pulmonary edema due to alveolar epithelial-interstitial-endothelial injury. NPD measurement may enable identification of critically ill ALI patients with a susceptible phenotype of dysfunctional respiratory Na(+) channels and allow targeted therapy toward Na(+) channel function.
Collapse
Affiliation(s)
- R Mac Sweeney
- Respiratory Medicine Research Programme, Centre for Infection and Immunity, Queen’s University, Belfast, Northern Ireland
| | | | | |
Collapse
|
30
|
Bove PF, Grubb BR, Okada SF, Ribeiro CMP, Rogers TD, Randell SH, O'Neal WK, Boucher RC. Human alveolar type II cells secrete and absorb liquid in response to local nucleotide signaling. J Biol Chem 2010; 285:34939-49. [PMID: 20801871 PMCID: PMC2966108 DOI: 10.1074/jbc.m110.162933] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/23/2010] [Indexed: 12/21/2022] Open
Abstract
A balance sheet describing the integrated homeostasis of secretion, absorption, and surface movement of liquids on pulmonary surfaces has remained elusive. It remains unclear whether the alveolus exhibits an intra-alveolar ion/liquid transport physiology or whether it secretes ions/liquid that may communicate with airway surfaces. Studies employing isolated human alveolar type II (AT2) cells were utilized to investigate this question. Human AT2 cells exhibited both epithelial Na(+) channel-mediated Na(+) absorption and cystic fibrosis transmembrane conductance regulator-mediated Cl(-) secretion, both significantly regulated by extracellular nucleotides. In addition, we observed in normal AT2 cells an absence of cystic fibrosis transmembrane conductance regulator regulation of epithelial Na(+) channel activity and an absence of expression/activity of reported calcium-activated chloride channels (TMEM16A, Bestrophin-1, ClC2, and SLC26A9), both features strikingly different from normal airway epithelial cells. Measurements of alveolar surface liquid volume revealed that normal AT2 cells: 1) achieved an extracellular nucleotide concentration-dependent steady state alveolar surface liquid height of ∼4 μm in vitro; 2) absorbed liquid when the lumen was flooded; and 3) secreted liquid when treated with UTP or forskolin or subjected to cyclic compressive stresses mimicking tidal breathing. Collectively, our studies suggest that human AT2 cells in vitro have the capacity to absorb or secrete liquid in response to local alveolar conditions.
Collapse
Affiliation(s)
- Peter F. Bove
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Barbara R. Grubb
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Seiko F. Okada
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Carla M. P. Ribeiro
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Troy D. Rogers
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Scott H. Randell
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Wanda K. O'Neal
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Richard C. Boucher
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
31
|
Abstract
Chlorine is considered a chemical threat agent to which humans may be exposed as a result of accidental or intentional release. Chlorine is highly reactive, and inhalation of the gas causes cellular damage to the respiratory tract, inflammation, pulmonary edema, and airway hyperreactivity. Drugs that increase intracellular levels of the signaling molecule cyclic AMP (cAMP) may be useful for treatment of acute lung injury through effects on alveolar fluid clearance, inflammation, and airway reactivity. This article describes mechanisms by which cAMP regulates cellular processes affecting lung injury and discusses the basis for investigating drugs that increase cAMP levels as potential treatments for chlorine-induced lung injury. The effects of beta(2)-adrenergic agonists, which stimulate cAMP synthesis, and phosphodiesterase inhibitors, which inhibit cAMP degradation, on acute lung injury are reviewed, and the relative advantages of these approaches are compared.
Collapse
|