1
|
Reyaz E, Tandon R, Beg MA, Dey R, Puri N, Salotra P, Nakhasi HL, Selvapandiyan A. Proteome profile of Leishmania donovani Centrin1 -/- parasite-infected human macrophage cell line and its implications in determining possible mechanisms of protective immunity. Microbes Infect 2024; 26:105340. [PMID: 38663721 DOI: 10.1016/j.micinf.2024.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Our developed cell division-specific 'centrin' gene deleted Leishmania donovani (LdCen1-/-) the causative parasite of the fatal visceral-leishmaniasis (VL), exhibits a selective growth arrest at the intracellular stage and is anticipated as a live attenuated vaccine candidate against VL. LdCen1-/- immunization in animals has shown increased IFN-γ secreting CD4+ and CD8+ T cells along with protection conferred by a protective proinflammatory immune response. A label-free proteomics approach has been employed to understand the physiology of infection and predict disease interceptors during Leishmania-host interactions. Proteomic modulation after infection of human macrophage cell lines suggested elevated annexin A6, implying involvement in various biological processes such as membrane repair, transport, actin dynamics, cell proliferation, survival, differentiation, and inflammation, thereby potentiating its immunological protective capacity. Additionally, S100A8 and S100A9 proteins, known for maintaining homeostatic balance in regulating the inflammatory response, have been upregulated after infection. The inhibitory clade of serpins, known to inhibit cysteine proteases (CPs), was upregulated in host cells after 48 h of infection. This is reflected in the diminished expression of CPs in the parasites during infection. Such proteome analysis confirms LdCen1-/- efficacy as a vaccine candidate and predicts potential markers in future vaccine development strategies against infectious diseases.
Collapse
Affiliation(s)
- Enam Reyaz
- JH-Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Rati Tandon
- JH-Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Mirza Adil Beg
- JH-Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20993, USA
| | - A Selvapandiyan
- JH-Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
3
|
Zhao S, Jiang M, Qing H, Ni J. Cathepsins and SARS-CoV-2 infection: From pathogenic factors to potential therapeutic targets. Br J Pharmacol 2023; 180:2455-2481. [PMID: 37403614 DOI: 10.1111/bph.16187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/04/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. The COVID-19 pandemic began in March 2020 and has wrought havoc on health and economic systems worldwide. Efficacious treatment for COVID-19 is lacking: Only preventive measures as well as symptomatic and supportive care are available. Preclinical and clinical studies have indicated that lysosomal cathepsins might contribute to the pathogenesis and disease outcome of COVID-19. Here, we discuss cutting-edge evidence on the pathological roles of cathepsins in SARS-CoV-2 infection, host immune dysregulations, and the possible underlying mechanisms. Cathepsins are attractive drug targets because of their defined substrate-binding pockets, which can be exploited as binding sites for pharmaceutical enzyme inhibitors. Accordingly, the potential modulatory strategies of cathepsin activity are discussed. These insights could shed light on the development of cathepsin-based interventions for COVID-19.
Collapse
Affiliation(s)
- Shuxuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Muzhou Jiang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
4
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
5
|
Reactive Centre Loop Mutagenesis of SerpinB3 to Target TMPRSS2 and Furin: Inhibition of SARS-CoV-2 Cell Entry and Replication. Int J Mol Sci 2022; 23:ijms232012522. [PMID: 36293378 PMCID: PMC9604144 DOI: 10.3390/ijms232012522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 virus can utilize host cell proteases to facilitate cell entry, whereby the Spike (S) protein is cleaved at two specific sites to enable membrane fusion. Furin, transmembrane protease serine 2 (TMPRSS2), and cathepsin L (CatL) are the major proteases implicated, and are thus targets for anti-viral therapy. The human serpin (serine protease inhibitor) alpha-1 antitrypsin (A1AT) shows inhibitory activity for TMPRSS2, and has previously been found to suppress cell infection with SARS-CoV-2. Here, we have generated modified serpin inhibitors with increased specificity for these cellular proteases. Using SerpinB3 (SCCA-1), a cross-class inhibitor of CatL, as a scaffold, we have designed and produced reactive centre loop (RCL) variants to more specifically target both furin and TMPRSS2. Two further variants were generated by substituting the RCL P7–P1 with the spike protein S1/S2 cleavage site from either SARS-CoV-2 alpha or delta (P681R) sequences. Altered inhibitory specificity of purified recombinant proteins was verified in protease assays, with attenuated CatL inhibition and gain of furin or TMPRSS2 inhibition, as predicted, and modified serpins were shown to block S protein cleavage in vitro. Furthermore, the serpin variants were able to inhibit S-pseudoparticle entry into A549-ACE2-TMPRSS2 cells and suppress SARS-CoV-2 replication in Vero E6 cells expressing TMPRSS2. The construct designed to inhibit TMPRSS2 (B3-TMP) was most potent. It was more effective than A1AT for TMPRSS2 enzyme inhibition (with an eighteen-fold improvement in the second order inhibition rate constant) and for blocking SARS-CoV-2 viral replication. These findings advance the potential for serpin RCL mutagenesis to generate new inhibitors, and may lead to novel anti-viral biological molecules.
Collapse
|
6
|
Denamur S, Chazeirat T, Maszota-Zieleniak M, Vivès RR, Saidi A, Zhang F, Linhardt RJ, Labarthe F, Samsonov SA, Lalmanach G, Lecaille F. Binding of heparan sulfate to human cystatin C modulates inhibition of cathepsin L: Putative consequences in mucopolysaccharidosis. Carbohydr Polym 2022; 293:119734. [DOI: 10.1016/j.carbpol.2022.119734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 11/02/2022]
|
7
|
Rodríguez-Garzotto A, Iglesias-Docampo L, Díaz-García CV, Ruppen I, Ximénez-Embún P, Gómez C, Rodríguez-Peralto JL, de Frutos JO, Lopez-Martin JA, Grávalos C, Cortés-Funes H, Agulló-Ortuño MT. Topical heparin as an effective and safe treatment for patients with capecitabine-induced hand-foot syndrome: results of a phase IIA trial supported by proteomic profiling of skin biopsies. Ther Adv Med Oncol 2022; 14:17588359221086911. [PMID: 35356259 PMCID: PMC8958526 DOI: 10.1177/17588359221086911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Hand-foot syndrome (HFS) is a common adverse reaction associated with capecitabine chemotherapy that significantly affects the quality of life of patients. This study evaluates the safety and effectiveness of a topical heparin (TH) treatment on the clinical manifestations and anatomopathological alterations of capecitabine-induced HFS. In addition, we performed proteome profiling of skin biopsies obtained from patients with HFS at baseline and after heparin treatment. Methods: Patients with grade ⩽ 2 HFS associated with capecitabine were included in this study. The primary end point was the effectiveness of TH in reducing HFS of any grade. Clinical improvement was evaluated by clinicians, and an improvement was perceived by patients who performed a weekly visual analog scale questionnaire. Secondary end points included a comparative histological analysis and protein expression in skin biopsies at baseline and after 3 weeks of HT treatment. Proteomic profiling was carried out using quantitative isobaric labelling and subsequently validated by a T-array. Results: Twenty-one patients were included in the study. The median TH treatment time was 7.6 weeks (range = 3.6–41.6 weeks), and the median response time was 3.01 weeks (95% CI = 2.15–3.97). At the end of treatment, 19 of 21 patients (90.48%) responded to treatment with a decrease in one or more grades of HFS. None of the patients experienced adverse effects related to TH usage, nor did they suspend chemotherapy treatment. The main findings observed in skin biopsies after treatment were a decrease in hyperkeratosis and lymphocytic infiltrates. The proteomic analysis showed altered expression of 34 proteins that were mainly related to wound healing, cell growth, and the immune response. Conclusion: Based on our results, topical heparin is an effective and safe treatment for clinical manifestations of HFS, probably due to the restauration of skin homeostasis after heparin treatment, as supported by our proteomics-derived data. Trial registration: EudraCT 2009-018171-13
Collapse
Affiliation(s)
- Analia Rodríguez-Garzotto
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain
- Roche Farma España, Madrid, Spain
| | - Lara Iglesias-Docampo
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain
- Lung Cancer Group, Clinical Research Program, CNIO- H12O, Madrid, Spain
| | - C. Vanesa Díaz-García
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Isabel Ruppen
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carlos Gómez
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Jose A. Lopez-Martin
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Cristina Grávalos
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Hernán Cortés-Funes
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M. Teresa Agulló-Ortuño
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Avda de Córdoba, s/n, 28041 Madrid, Spain
- Lung Cancer Group, Clinical Research Program, CNIO- H12O, Madrid, Spain
- Biomedical Research Networking Centre: Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nursing, Physiotherapy and Occupational Therapy, Facultad de Fisioterapia y Enfermería, Universidad de Castilla-La Mancha (UCLM), Toledo, Spain
| |
Collapse
|
8
|
rDromaserpin: A Novel Anti-Hemostatic Serpin, from the Salivary Glands of the Hard Tick Hyalomma dromedarii. Toxins (Basel) 2021; 13:toxins13120913. [PMID: 34941750 PMCID: PMC8703697 DOI: 10.3390/toxins13120913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 01/17/2023] Open
Abstract
Hemostatic disorders are caused either by platelet-related dysfunctions, defective blood coagulation, or by a combination of both, leading to an increased susceptibility to cardiovascular diseases (CVD) and other related illnesses. The unique specificity of anticoagulants from hematophagous arthropods, such as ticks, suggests that tick saliva holds great promise for discovering new treatments for these life-threatening diseases. In this study, we combined in silico and in vitro analyses to characterize the first recombinant serpin, herein called Dromaserpin, from the sialotranscriptome of the Hyalomma dromedarii tick. Our in silico data described Dromaserpin as a secreted protein of ~43 kDa with high similarities to previously characterized inhibitory serpins. The recombinant protein (rDromaserpin) was obtained as a well-structured monomer, which was tested using global blood coagulation and platelet aggregation assays. With this approach, we confirmed rDromaserpin anticoagulant activity as it significantly delayed plasma clotting in activated partial thromboplastin time and thrombin time assays. The profiling of proteolytic activity shows its capacity to inhibit thrombin in the micromolar range (0.2 to 1 μM) and in the presence of heparin this inhibition was clearly increased. It was also able to inhibit Kallikrein, FXIa and slightly FXIIa, with no significant effect on other factors. In addition, the rDromaserpin inhibited thrombin-induced platelet aggregation. Taken together, our data suggest that rDromaserpin deserves to be further investigated as a potential candidate for developing therapeutic compounds targeting disorders related to blood clotting and/or platelet aggregation.
Collapse
|
9
|
Zhou YW, Xie Y, Tang LS, Pu D, Zhu YJ, Liu JY, Ma XL. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Signal Transduct Target Ther 2021; 6:317. [PMID: 34446699 PMCID: PMC8390046 DOI: 10.1038/s41392-021-00733-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Owing to the limitations of the present efforts on drug discovery against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lack of the understanding of the biological regulation mechanisms underlying COVID-19, alternative or novel therapeutic targets for COVID-19 treatment are still urgently required. SARS-CoV-2 infection and immunity dysfunction are the two main courses driving the pathogenesis of COVID-19. Both the virus and host factors are potential targets for antiviral therapy. Hence, in this study, the current therapeutic strategies of COVID-19 have been classified into "target virus" and "target host" categories. Repurposing drugs, emerging approaches, and promising potential targets are the implementations of the above two strategies. First, a comprehensive review of the highly acclaimed old drugs was performed according to evidence-based medicine to provide recommendations for clinicians. Additionally, their unavailability in the fight against COVID-19 was analyzed. Next, a profound analysis of the emerging approaches was conducted, particularly all licensed vaccines and monoclonal antibodies (mAbs) enrolled in clinical trials against primary SARS-CoV-2 and mutant strains. Furthermore, the pros and cons of the present licensed vaccines were compared from different perspectives. Finally, the most promising potential targets were reviewed, and the update of the progress of treatments has been summarized based on these reviews.
Collapse
Affiliation(s)
- Yu-Wen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yao Xie
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian-Sha Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Pu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya-Juan Zhu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Xue-Lei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
10
|
Spinetti G, Avolio E, Madeddu P. Treatment of COVID-19 by stage: any space left for mesenchymal stem cell therapy? Regen Med 2021; 16:477-494. [PMID: 33988482 PMCID: PMC8127835 DOI: 10.2217/rme-2020-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
In many countries, COVID-19 now accounts for more deaths per year than car accidents and even the deadliest wars. Combating the viral pandemics requires a coordinated effort to develop therapeutic protocols adaptable to the disease severity. In this review article, we summarize a graded approach aiming to shield cells from SARS-CoV-2 entry and infection, inhibit excess inflammation and evasion of the immune response, and ultimately prevent systemic organ failure. Moreover, we focus on mesenchymal stem cell therapy, which has shown safety and efficacy as a treatment of inflammatory and immune diseases. The cell therapy approach is now repurposed in patients with severe COVID-19. Numerous trials of mesenchymal stem cell therapy are ongoing, especially in China and the USA. Leader companies in cell therapy have also started controlled trials utilizing their quality assessed cell products. Results are too premature to reach definitive conclusions.
Collapse
Affiliation(s)
| | - Elisa Avolio
- Bristol Medical School, Translational Health Sciences,
University of Bristol, Bristol BS2 8HW, UK
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences,
University of Bristol, Bristol BS2 8HW, UK
| |
Collapse
|
11
|
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021; 221:107750. [PMID: 33275999 PMCID: PMC7854082 DOI: 10.1016/j.pharmthera.2020.107750] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a global pandemic has prompted scientists to address an urgent need for defining mechanisms of disease pathology and treatment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, employs angiotensin converting enzyme 2 (ACE2) as its primary target for cell surface attachment and likely entry into the host cell. Thus, understanding factors that may regulate the expression and function of ACE2 in the healthy and diseased body is critical for clinical intervention. Over 66% of all adults in the United States are currently using a prescription drug and while earlier findings have focused on possible upregulation of ACE2 expression through the use of renin angiotensin system (RAS) inhibitors, mounting evidence suggests that various other widely administered drugs used in the treatment of hypertension, heart failure, diabetes mellitus, hyperlipidemias, coagulation disorders, and pulmonary disease may also present a varied risk for COVID-19. Specifically, we summarize mechanisms on how heparin, statins, steroids and phytochemicals, besides their established therapeutic effects, may also interfere with SARS-CoV-2 viral entry into cells. We also describe evidence on the effect of several vitamins, phytochemicals, and naturally occurring compounds on ACE2 expression and activity in various tissues and disease models. This comprehensive review aims to provide a timely compendium on the potential impact of commonly prescribed drugs and pharmacologically active compounds on COVID-19 pathology and risk through regulation of ACE2 and RAS signaling.
Collapse
Key Words
- adam17, a disintegrin and metalloprotease 17
- ace, angiotensin i converting enzyme
- ace-inh., angiotensin i converting enzyme inhibitor
- ampk, amp-activated protein kinase
- ang-ii, angiotensin ii
- arb, angiotensin ii type 1-receptor blocker
- ards, acute respiratory distress syndrome
- at1-r, angiotensin ii type 1-receptor
- βarb, β-adrenergic receptor blockers
- bk, bradykinin
- ccb, calcium channel blockers
- ch25h, cholesterol-25-hydroxylase
- copd, chronic obstructive lung disease
- cox, cyclooxygenase
- covid-19, coronavirus disease-2019
- dabk, [des-arg9]-bradykinin
- erk, extracellular signal-regulated kinase
- 25hc, 25-hydroxycholesterol
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- ibd, inflammatory bowel disease
- map, mitogen-activated protein
- mers, middle east respiratory syndrome
- mrb, mineralocorticoid receptor blocker
- nos, nitric oxide synthase
- nsaid, non-steroid anti-inflammatory drug
- ras, renin-angiotensin system
- sars-cov, severe acute respiratory syndrome coronavirus
- sh, spontaneously hypertensive
- s protein, spike protein
- sirt1, sirtuin 1
- t2dm, type 2 diabetes mellitus
- tcm, traditional chinese medicine
- tmprss2, transmembrane protease, serine 2
- tnf, tumor necrosis factor
- ufh, unfractionated heparin
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
12
|
Godino C, Scotti A, Maugeri N, Mancini N, Fominskiy E, Margonato A, Landoni G. Antithrombotic therapy in patients with COVID-19? -Rationale and Evidence. Int J Cardiol 2021; 324:261-266. [PMID: 33002521 PMCID: PMC7521414 DOI: 10.1016/j.ijcard.2020.09.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022]
Abstract
In patients with severe or critical Coronavirus disease 2019 (COVID-19) manifestations, a thromboinflammatory syndrome, with diffuse microvascular thrombosis, is increasingly evident as the final step of pro-inflammatory cytokines storm. Actually, no proven effective therapies for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection exist. Preliminary observations on anticoagulant therapy appear to be associated with better outcomes in moderate and severe COVID-19 patients with signs of coagulopathy and in those requiring mechanical ventilation. The pathophysiology underlying the prothrombotic state elicited by SARS-CoV-2 outlines possible protective mechanisms of antithrombotic therapy (in primis anticoagulants) for this viral illness. The indications for antiplatelet/anticoagulant use (prevention, prophylaxis, therapy) are guided by the clinical context and the COVID-19 severity. We provide a practical approach on antithrombotic therapy management for COVID-19 patients from a multidisciplinary point of view.
Collapse
Affiliation(s)
- Cosmo Godino
- Clinical Cardiology Unit, Faculty of Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Andrea Scotti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Padua, Italy
| | - Norma Maugeri
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Faculty of Medicine, Vita Salute San Raffaele University, Milan, Italy
| | - Evgeny Fominskiy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Margonato
- Clinical Cardiology Unit, Faculty of Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy; Faculty of Medicine, Vita Salute San Raffaele University, Milan, Italy
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Faculty of Medicine, Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
13
|
Tušar L, Usenik A, Turk B, Turk D. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Int J Mol Sci 2021; 22:997. [PMID: 33498210 PMCID: PMC7863939 DOI: 10.3390/ijms22030997] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Protein inhibitors of proteases are an important tool of nature to regulate and control proteolysis in living organisms under physiological and pathological conditions. In this review, we analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing the inhibitory mechanism. The structural data make it clear that the "lock and key" mechanism is a historical concept with limited validity. However, the analysis suggests that the shape of the active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot be employed. It appears that all proteases, with the exception of papain-like proteases, belong to the first group of proteases. Finally, we show a number of examples and provide hints on how to engineer protein inhibitors.
Collapse
Affiliation(s)
- Livija Tušar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Faculty of Chemistry, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya Ulitsa, 19c1, 119146 Moscow, Russia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Gomes CP, Fernandes DE, Casimiro F, da Mata GF, Passos MT, Varela P, Mastroianni-Kirsztajn G, Pesquero JB. Cathepsin L in COVID-19: From Pharmacological Evidences to Genetics. Front Cell Infect Microbiol 2020; 10:589505. [PMID: 33364201 PMCID: PMC7753008 DOI: 10.3389/fcimb.2020.589505] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemics is a challenge without precedent for the modern science. Acute Respiratory Discomfort Syndrome (ARDS) is the most common immunopathological event in SARS-CoV-2, SARS-CoV, and MERS-CoV infections. Fast lung deterioration results of cytokine storm determined by a robust immunological response leading to ARDS and multiple organ failure. Here, we show cysteine protease Cathepsin L (CatL) involvement with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19 from different points of view. CatL is a lysosomal enzyme that participates in numerous physiological processes, including apoptosis, antigen processing, and extracellular matrix remodeling. CatL is implicated in pathological conditions like invasion and metastasis of tumors, inflammatory status, atherosclerosis, renal disease, diabetes, bone diseases, viral infection, and other diseases. CatL expression is up-regulated during chronic inflammation and is involved in degrading extracellular matrix, an important process for SARS-CoV-2 to enter host cells. In addition, CatL is probably involved in processing SARS-CoV-2 spike protein. As its inhibition is detrimental to SARS-CoV-2 infection and possibly exit from cells during late stages of infection, CatL could have been considered a valuable therapeutic target. Therefore, we describe here some drugs already in the market with potential CatL inhibiting capacity that could be used to treat COVID-19 patients. In addition, we discuss the possible role of host genetics in the etiology and spreading of the disease.
Collapse
Affiliation(s)
- Caio P. Gomes
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Danilo E. Fernandes
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Fernanda Casimiro
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Gustavo F. da Mata
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Michelle T. Passos
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Patricia Varela
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | - João Bosco Pesquero
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Bellis A, Mauro C, Barbato E, Trimarco B, Morisco C. The Rationale for Angiotensin Receptor Neprilysin Inhibitors in a Multi-Targeted Therapeutic Approach to COVID-19. Int J Mol Sci 2020; 21:ijms21228612. [PMID: 33203141 PMCID: PMC7696732 DOI: 10.3390/ijms21228612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) determines the angiotensin converting enzyme 2 (ACE2) down-regulation and related decrease in angiotensin II degradation. Both these events trigger “cytokine storm” leading to acute lung and cardiovascular injury. A selective therapy for COVID-19 has not yet been identified. Clinical trials with remdesivir gave discordant results. Thus, healthcare systems have focused on “multi-targeted” therapeutic strategies aiming at relieving systemic inflammation and thrombotic complications. No randomized clinical trial has demonstrated the efficacy of renin angiotensin system antagonists in reducing inflammation related to COVID-19. Dexamethasone and tocilizumab showed encouraging data, but their use needs to be further validated. The still-controversial efficacy of these treatments highlighted the importance of organ injury prevention in COVID-19. Neprilysin (NEP) might be an interesting target for this purpose. NEP expression is increased by cytokines on lung fibroblasts surface. NEP activity is elevated in acute respiratory distress syndrome and it is conceivable that it is also high in COVID-19. NEP is implicated in the degradation of natriuretic peptides, bradykinin, substance P, adrenomedullin, and apelin that account for prevention of organ injury. Thus, NEP/angiotensin receptor type 1 (AT1R) inhibitor sacubitril/valsartan (SAC/VAL) may increase levels of these molecules and block AT1Rs required for ACE2 endocytosis in SARS-CoV-2 infection. Moreover, SAC/VAL has a positive impact on acute heart failure that is very frequently observed in deceased COVID-19 patients. The current review aims to summarize actual therapeutic strategies for COVID-19 and to examine the data supporting the potential benefits of SAC/VAL in COVID-19 treatment.
Collapse
Affiliation(s)
- Alessandro Bellis
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica-Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy; (A.B.); (C.M.)
| | - Ciro Mauro
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica-Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy; (A.B.); (C.M.)
| | - Emanuele Barbato
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (E.B.); (B.T.)
| | - Bruno Trimarco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (E.B.); (B.T.)
| | - Carmine Morisco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (E.B.); (B.T.)
- Correspondence: ; Tel.: +39-081-746-2253; Fax: +39-081-746-2256
| |
Collapse
|
16
|
Liu T, Luo S, Libby P, Shi GP. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacol Ther 2020; 213:107587. [PMID: 32470470 PMCID: PMC7255230 DOI: 10.1016/j.pharmthera.2020.107587] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
The widespread coronavirus SARS-CoV-2 has already infected over 4 million people worldwide, with a death toll over 280,000. Current treatment of COVID-19 patients relies mainly on antiviral drugs lopinavir/ritonavir, arbidol, and remdesivir, the anti-malarial drugs hydroxychloroquine and chloroquine, and traditional Chinese medicine. There are over 2,118 on-going clinical trials underway, but to date none of these drugs have consistently proven effective. Cathepsin L (CatL) is an endosomal cysteine protease. It mediates the cleavage of the S1 subunit of the coronavirus surface spike glycoprotein. This cleavage is necessary for coronavirus entry into human host cells, virus and host cell endosome membrane fusion, and viral RNA release for next round of replication. Here we summarize data regarding seven CatL-selective inhibitors that block coronavirus entry into cultured host cells and provide a mechanism to block SARS-CoV-2 infection in humans. Given the rapid growth of the SARS-CoV-2-positive population worldwide, ready-to-use CatL inhibitors should be explored as a treatment option. We identify ten US FDA-approved drugs that have CatL inhibitory activity. We provide evidence that supports the combined use of serine protease and CatL inhibitors as a possibly safer and more effective therapy than other available therapeutics to block coronavirus host cell entry and intracellular replication, without compromising the immune system.
Collapse
Affiliation(s)
- Tianxiao Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Songyuan Luo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Belen-Apak FB, Sarialioglu F. The old but new: Can unfractioned heparin and low molecular weight heparins inhibit proteolytic activation and cellular internalization of SARS-CoV2 by inhibition of host cell proteases? Med Hypotheses 2020; 142:109743. [PMID: 32335456 PMCID: PMC7169882 DOI: 10.1016/j.mehy.2020.109743] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022]
Abstract
Currently, our world is facing the 2019 Novel Coronavirus (COVID-19) outbreak and tremendous efforts are made for developing drugs to treat and vaccines to prevent the disease. At present, there is no specific antiviral drug or vaccine for COVID-19. The pathogenic infectivity of the virus requires the S1 subunit of the spike (S) protein to bind the host cell receptor, angiontensin converting enzyme (ACE2). While the binding to host cell receptor is the first step of infection, the entrance of the virus into the cell needs the cleavage of S1–S2 subunits to expose S2 for fusion to cell membrane via host proteases including cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, trypsin and factor Xa. Previous in vitro studies have shown that factor Xa inhibition can decrease viral infectivity. We suppose that host cell proteases including furin (as expressed highly in lungs), factor Xa and cathepsin are possible targets to decrease viral burden, therefore unfractioned heparin and low molecular weight heparin-LMWH (specifically dalteparin and tinzaparin for their anti inflammatory action) can be potential inhibitors of multiple endoproteases involved in virus infectivity. Our hypothesis needs to be tested in in vitro and clinical studies, however as we are in an urgent situation as the burden of SARS-CoV2 is increasing all around the world, we recommend the usage of unfractioned heparin or LMWH in intensive care unit (ICU) and non-ICU hospitalized patients with the risk–benefit judgement of the clinician. Whether our hypothesis is clinically applicable and successful in decreasing viral infection will be evaluated for further studies.
Collapse
Affiliation(s)
- F B Belen-Apak
- Baskent University Medical Faculty, Department of Pediatric Hematology and Oncology, Ankara, Turkey.
| | - F Sarialioglu
- Baskent University Medical Faculty, Department of Pediatric Hematology and Oncology, Ankara, Turkey
| |
Collapse
|
18
|
Bao J, Pan G, Poncz M, Wei J, Ran M, Zhou Z. Serpin functions in host-pathogen interactions. PeerJ 2018; 6:e4557. [PMID: 29632742 PMCID: PMC5889911 DOI: 10.7717/peerj.4557] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/09/2018] [Indexed: 01/20/2023] Open
Abstract
Serpins are a broadly distributed superfamily of protease inhibitors that are present in all kingdoms of life. The acronym, serpin, is derived from their function as potent serine proteases inhibitors. Early studies of serpins focused on their functions in haemostasis since modulating serine proteases activities are essential for coagulation. Additional research has revealed that serpins function in infection and inflammation, by modulating serine and cysteine proteases activities. The aim of this review is to summarize the accumulating findings and current understanding of the functions of serpins in host-pathogen interactions, serving as host defense proteins as well as pathogenic factors. We also discuss the potential crosstalk between host and pathogen serpins. We anticipate that future research will elucidate the therapeutic value of this novel target.
Collapse
Affiliation(s)
- Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Mortimer Poncz
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.,Division of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Maoshuang Ran
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
19
|
MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer. Cell Death Dis 2018; 9:344. [PMID: 29497041 PMCID: PMC5832821 DOI: 10.1038/s41419-018-0364-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022]
Abstract
Cell-cell adhesions constitute the structural "glue" that retains cells together and contributes to tissue organisation and physiological function. The integrity of these structures is regulated by extracellular and intracellular signals and pathways that act on the functional units of cell adhesion such as the cell adhesion molecules/adhesion receptors, the extracellular matrix (ECM) proteins and the cytoplasmic plaque/peripheral membrane proteins. In advanced cancer, these regulatory pathways are dysregulated and lead to cell-cell adhesion disassembly, increased invasion and metastasis. The Metastasis suppressor protein 1 (MTSS1) plays a key role in the maintenance of cell-cell adhesions and its loss correlates with tumour progression in a variety of cancers. However, the mechanisms that regulate its function are not well-known. Using a system biology approach, we unravelled potential interacting partners of MTSS1. We found that the secretory carrier-associated membrane protein 1 (SCAMP1), a molecule involved in post-Golgi recycling pathways and in endosome cell membrane recycling, enhances Mtss1 anti-invasive function in HER2+/ER-/PR- breast cancer, by promoting its protein trafficking leading to elevated levels of RAC1-GTP and increased cell-cell adhesions. This was clinically tested in HER2 breast cancer tissue and shown that loss of MTSS1 and SCAMP1 correlates with reduced disease-specific survival. In summary, we provide evidence of the cooperative roles of MTSS1 and SCAMP1 in preventing HER2+/ER-/PR- breast cancer invasion and we show that the loss of Mtss1 and Scamp1 results in a more aggressive cancer cell phenotype.
Collapse
|
20
|
Higgins WJ, Grehan GT, Wynne KJ, Worrall DM. SerpinI2 (pancpin) is an inhibitory serpin targeting pancreatic elastase and chymotrypsin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:195-200. [DOI: 10.1016/j.bbapap.2016.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/11/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
|
21
|
Abstract
It has been previously shown that intestinal proteases translocate into the circulation during hemorrhagic shock and contribute to proteolysis in distal organs. However, consequences of this phenomenon have not previously been investigated using high-throughput approaches. Here, a shotgun label-free quantitative proteomic approach was utilized to compare the peptidome of plasma samples from healthy and hemorrhagic shock rats to verify the possible role of uncontrolled proteolytic activity in shock. Plasma was collected from rats after hemorrhagic shock (HS) consisting of 2-h hypovolemia followed by 2-h reperfusion, and from healthy control (CTRL) rats. A new two-step enrichment method was applied to selectively extract peptides and low molecular weight proteins from plasma, and directly analyze these samples by tandem mass spectrometry. One hundred twenty-six circulating peptides were identified in CTRL and 295 in HS animals. Ninety-six peptides were present in both conditions; of these, 57 increased and 30 decreased in shock. In total, 256 peptides were increased or present only in HS confirming a general increase in proteolytic activity in shock. Analysis of the proteases that potentially generated the identified peptides suggests that the larger relative contribution to the proteolytic activity in shock is due to chymotryptic-like proteases. These results provide quantitative confirmation that extensive, system-wide proteolysis is part of the complex pathologic phenomena occurring in hemorrhagic shock.
Collapse
|
22
|
Nakamura R, Tani A, Yoshie S, Ikeda M, Wada I, Hazama A, Nomoto Y, Tada Y, Nakamura T, Omori K. Heparin cross-linked collagen sponge scaffolds improve functional regeneration of rat tracheal epithelium. J Tissue Eng Regen Med 2017; 11:3027-3037. [PMID: 28101973 DOI: 10.1002/term.2204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/09/2016] [Accepted: 03/27/2016] [Indexed: 11/12/2022]
Abstract
Tracheal epithelial cells maintain airway homeostasis by mediating mucociliary clearance. Following tracheal reconstruction, timely epithelial regeneration is required to prevent respiratory compromise and infectious diseases. To achieve rapid tracheal epithelial regeneration, a heparin cross-linked collagen sponge containing fibroblast growth factor-2 (FGF-2) was prepared as a graft for tracheal reconstruction. The heparin cross-linked sponge exhibited a high FGF-2 retaining capacity, and tracheal epithelial and mesenchymal cells cultured in this sponge containing FGF-2 showed high proliferative capacities. Subsequently, heparin-free collagen sponge scaffolds (C/F scaffold) and collagen sponge scaffolds cross-linked with 10 μg/ml heparin retained FGF-2 (C/H10/F scaffold), and were transplanted into rats with tracheal defects. Invasion of both epithelial and non-epithelial cells was greater in rats treated with the C/H10/F scaffold at 1 week post-transplantation than in rats treated with the C/F scaffold. Moreover, at 2 weeks after transplantation, improved cilia formation was observed in the C/H10/F scaffold group, with higher motility and more potent posterior-anterior flow generation than in the C/F scaffold group. These results suggest that heparin improves functional regeneration of tracheal epithelium. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima, City, Japan
| | - Akiko Tani
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima, City, Japan
| | - Susumu Yoshie
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima, City, Japan
| | - Masakazu Ikeda
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima, City, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Japan
| | - Akihiro Hazama
- Department of Cellular and Integrative Physiology, School of Medicine, Fukushima Medical University, Japan
| | - Yukio Nomoto
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima, City, Japan
| | - Yasuhiro Tada
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima, City, Japan
| | - Tatsuo Nakamura
- Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, Japan
| | - Koichi Omori
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima, City, Japan
| |
Collapse
|
23
|
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Royal North Shore Hospital, The University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, The University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
24
|
Yadav VK, Mandal RS, Puniya BL, Kumar R, Dey S, Singh S, Yadav S. Structural and binding studies of SAP-1 protein with heparin. Chem Biol Drug Des 2015; 85:404-10. [PMID: 25147059 DOI: 10.1111/cbdd.12420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/08/2014] [Accepted: 08/13/2014] [Indexed: 02/05/2023]
Abstract
SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity.
Collapse
Affiliation(s)
- Vikash K Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Theocharis AD, Gialeli C, Bouris P, Giannopoulou E, Skandalis SS, Aletras AJ, Iozzo RV, Karamanos NK. Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer. FEBS J 2014; 281:5023-42. [PMID: 25333340 PMCID: PMC5036392 DOI: 10.1111/febs.12927] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 01/10/2023]
Abstract
Proteoglycans are major constituents of extracellular matrices, as well as cell surfaces and basement membranes. They play key roles in supporting the dynamic extracellular matrix by generating complex structural networks with other macromolecules and by regulating cellular phenotypes and signaling. It is becoming evident, however, that proteolytic enzymes are required partners for matrix remodeling and for modulating cell signaling via matrix constituents. Proteinases contribute to all stages of diseases, particularly cancer development and progression, and contextually participate in either the removal of damaged products or in the processing of matrix molecules and signaling receptors. The dynamic interplay between proteoglycans and proteolytic enzymes is a crucial biological step that contributes to the pathophysiology of cancer and inflammation. Moreover, proteoglycans are implicated in the expression and secretion of proteolytic enzymes and often modulate their activities. In this review, we describe the emerging biological roles of proteoglycans and proteinases, with a special emphasis on their complex interplay. We critically evaluate this important proteoglycan-proteinase interactome and discuss future challenges with respect to targeting this axis in the treatment of cancer.
Collapse
Affiliation(s)
- Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Chrisostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Panagiotis Bouris
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Efstathia Giannopoulou
- Clinical Oncology Laboratory, Division of Oncology, University Hospital of Patras, Patras Medical School, Patras 26110, Greece
| | - Spyros S. Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Alexios J. Aletras
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| |
Collapse
|
26
|
The promise of sulfated synthetic small molecules as modulators of glycosaminoglycan function. Future Med Chem 2014; 5:1363-6. [PMID: 23919545 DOI: 10.4155/fmc.13.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
27
|
Ibelli AMG, Hermance MM, Kim TK, Gonzalez CL, Mulenga A. Bioinformatics and expression analyses of the Ixodes scapularis tick cystatin family. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 60:41-53. [PMID: 23053911 PMCID: PMC4058331 DOI: 10.1007/s10493-012-9613-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
The cystatins are inhibitors of papain- and legumain-like cysteine proteinases, classified in MEROPS subfamilies I25A-I25C. This study shows that 84 % (42/50) of tick cystatins are putatively extracellular in subfamily I25B and the rest are putatively intracellular in subfamily I25A. On the neighbor joining phylogeny guide tree, subfamily I25A members cluster together, while subfamily I25B cystatins segregate among prostriata or metastriata ticks. Two Ixodes scapularis cystatins, AAY66864 and ISCW011771 that show 50-71 % amino acid identity to metastriata tick cystatins may be linked to pathways that are common to all ticks, while ISCW000447 100 % conserved in I. ricinus is important among prostriata ticks. Likewise metastriata tick cystatins, Dermacentor variabilis-ACF35512, Rhipicephalus microplus-ACX53850, A. americanum-AEO36092, R. sanguineus-ACX53922, D. variabilis-ACF35514, R. sanguineus-ACX54033 and A. maculatum-AEO35155 that show 73-86 % amino acid identity may be essential to metastriata tick physiology. RT-PCR expression analyses revealed that I. scapularis cystatins were constitutively expressed in the salivary glands, midguts and other tissues of unfed ticks and ticks that were fed for 24-120 h, except for ISCW017861 that are restricted to the 24 h feeding time point. On the basis of mRNA expression patterns, I. scapularis cystatins, ISCW017861, ISCW011771, ISCW002215 and ISCW0024528 that are highly expressed at 24 h are likely involved in regulating early stage tick feeding events such as tick attachment onto host skin and creation of the feeding lesion. Similarly, ISCW018602, ISCW018603 and ISCW000447 that show 2-3 fold transcript increase by 120 h of feeding are likely associated with blood meal up take, while those that maintain steady state expression levels (ISCW018600, ISCW018601 and ISCW018604) during feeding may not be associated with tick feeding regulation. We discuss our findings in the context of advancing our knowledge of tick molecular biology.
Collapse
Affiliation(s)
- Adriana Mércia Guaratini Ibelli
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA; Graduate Program in Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Meghan M. Hermance
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Tae Kwon Kim
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Cassandra Lee Gonzalez
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Albert Mulenga
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| |
Collapse
|
28
|
Tocchi A, Parks WC. Functional interactions between matrix metalloproteinases and glycosaminoglycans. FEBS J 2013; 280:2332-41. [PMID: 23421805 DOI: 10.1111/febs.12198] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/03/2013] [Accepted: 02/15/2013] [Indexed: 01/10/2023]
Abstract
Similar to most proteinases, matrix metalloproteinases (MMP) do not recognize a consensus cleavage site. Thus, it is not surprising that, in a defined in vitro reaction, most MMPs can act on a wide range of proteins, including many extracellular matrix proteins. However, the findings obtained from in vivo studies with genetic models have demonstrated that individual MMPs act on just a few extracellular protein substrates, typically not matrix proteins. The limited, precise functions of an MMP imply that mechanisms have evolved to control the specificity of proteinase:substrate interactions. We discuss the possibility that interactions with the glycosaminoglycan chains of proteoglycans may function as allosteric regulators or accessory factors directing MMP catalysis to specific substrates. We propose that understanding how the activity of specific MMPs is confined to discreet compartments and targeted to defined substrates via interactions with other macromolecules may provide a means of blocking potentially deleterious MMP-mediated processes at the same time as sparing any beneficial functions.
Collapse
Affiliation(s)
- Autumn Tocchi
- Department of Medicine (Pulmonary and Critical Care Medicine), Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
29
|
Hopfe M, Deenen R, Degrandi D, Köhrer K, Henrich B. Host cell responses to persistent mycoplasmas--different stages in infection of HeLa cells with Mycoplasma hominis. PLoS One 2013; 8:e54219. [PMID: 23326599 PMCID: PMC3543322 DOI: 10.1371/journal.pone.0054219] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 12/10/2012] [Indexed: 01/03/2023] Open
Abstract
Mycoplasma hominis is a facultative human pathogen primarily associated with bacterial vaginosis and pelvic inflammatory disease, but it is also able to spread to other sites, leading to arthritis or, in neonates, meningitis. With a minimal set of 537 annotated genes, M. hominis is the second smallest self-replicating mycoplasma and thus an ideal model organism for studying the effects of an infectious agent on its host more closely. M. hominis adherence, colonisation and invasion of HeLa cells were characterised in a time-course study using scanning electron microscopy, confocal microscopy and microarray-based analysis of the HeLa cell transcriptome. At 4 h post infection, cytoadherence of M. hominis to the HeLa cell surface was accompanied by differential regulation of 723 host genes (>2 fold change in expression). Genes associated with immune responses and signal transduction pathways were mainly affected and components involved in cell-cycle regulation, growth and death were highly upregulated. At 48 h post infection, when mycoplasma invasion started, 1588 host genes were differentially expressed and expression of genes for lysosome-specific proteins associated with bacterial lysis was detected. In a chronically infected HeLa cell line (2 weeks), the proportion of intracellular mycoplasmas reached a maximum of 10% and M. hominis-filled protrusions of the host cell membrane were seen by confocal microscopy, suggesting exocytotic dissemination. Of the 1972 regulated host genes, components of the ECM-receptor interaction pathway and phagosome-related integrins were markedly increased. The immune response was quite different to that at the beginning of infection, with a prominent induction of IL1B gene expression, affecting pathways of MAPK signalling, and genes connected with cytokine-cytokine interactions and apoptosis. These data show for the first time the complex, time-dependent reaction of the host directed at mycoplasmal clearance and the counter measures of this pestering pathogen.
Collapse
Affiliation(s)
- Miriam Hopfe
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
30
|
Baldzizhar R, Fedorchuk C, Jha M, Rathinam C, Henegariu O, Czyzyk J. Anti-serpin antibody-mediated regulation of proteases in autoimmune diabetes. J Biol Chem 2012. [PMID: 23195956 DOI: 10.1074/jbc.m112.409664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Secretion of anti-serpin B13 autoantibodies in young diabetes-prone nonobese diabetic mice is associated with reduced inflammation in pancreatic islets and a slower progression to autoimmune diabetes. Injection of these mice with a monoclonal antibody (mAb) against serpin B13 also leads to fewer inflammatory cells in the islets and more rapid recovery from recent-onset diabetes. The exact mechanism by which anti-serpin activity is protective remains unclear. We found that serpin B13 is expressed in the exocrine component of the mouse pancreas, including the ductal cells. We also found that anti-serpin B13 mAb blocked the inhibitory activity of serpin B13, thereby allowing partial preservation of the function of its target protease. Consistent with the hypothesis that anti-clade B serpin activity blocks the serpin from binding, exposure to exogenous anti-serpin B13 mAb or endogenous anti-serpin B13 autoantibodies resulted in cleavage of the surface molecules CD4 and CD19 in lymphocytes that accumulated in the pancreatic islets and pancreatic lymph nodes but not in the inguinal lymph nodes. This cleavage was inhibited by an E64 protease inhibitor. Consequently, T cells with the truncated form of CD4 secreted reduced levels of interferon-γ. We conclude that anti-serpin antibodies prevent serpin B13 from neutralizing proteases, thereby impairing leukocyte function and reducing the severity of autoimmune inflammation.
Collapse
Affiliation(s)
- Raman Baldzizhar
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
31
|
Vlodavsky I, Beckhove P, Lerner I, Pisano C, Meirovitz A, Ilan N, Elkin M. Significance of heparanase in cancer and inflammation. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2012; 5:115-32. [PMID: 21811836 PMCID: PMC3399068 DOI: 10.1007/s12307-011-0082-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/22/2011] [Indexed: 02/07/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are primary components at the interface between virtually every eukaryotic cell and its extracellular matrix. HSPGs not only provide a storage depot for heparin-binding molecules in the cell microenvironment, but also decisively regulate their accessibility, function and mode of action. As such, they are intimately involved in modulating cell invasion and signaling loops that are critical for tumor growth, inflammation and kidney function. In a series of studies performed since the cloning of the human heparanase gene, we and others have demonstrated that heparanase, the sole heparan sulfate degrading endoglycosidase, is causally involved in cancer progression, inflammation and diabetic nephropathy and hence is a valid target for drug development. Heparanase is causally involved in inflammation and accelerates colon tumorigenesis associated with inflammatory bowel disease. Notably, heparanase stimulates macrophage activation, while macrophages induce production and activation of latent heparanase contributed by the colon epithelium, together generating a vicious cycle that powers colitis and the associated tumorigenesis. Heparanase also plays a decisive role in the pathogenesis of diabetic nephropathy, degrading heparan sulfate in the glomerular basement membrane and ultimately leading to proteinuria and kidney dysfunction. Notably, clinically relevant doses of ionizing radiation (IR) upregulate heparanase expression and thereby augment the metastatic potential of pancreatic carcinoma. Thus, combining radiotherapy with heparanase inhibition is an effective strategy to prevent tumor resistance and dissemination in IR-treated pancreatic cancer patients. Also, accumulating evidence indicate that peptides derived from human heparanase elicit a potent anti-tumor immune response, suggesting that heparanase represents a promising target antigen for immunotherapeutic approaches against a broad variety of tumours. Oligosaccharide-based compounds that inhibit heparanase enzymatic activity were developed, aiming primarily at halting tumor growth, metastasis and angiogenesis. Some of these compounds are being evaluated in clinical trials, targeting both the tumor and tumor microenvironment.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine, Technion, P. O. Box 9649, Haifa, 31096, Israel,
| | | | | | | | | | | | | |
Collapse
|
32
|
Mika A, Reynolds SL, Mohlin FC, Willis C, Swe PM, Pickering DA, Halilovic V, Wijeyewickrema LC, Pike RN, Blom AM, Kemp DJ, Fischer K. Novel scabies mite serpins inhibit the three pathways of the human complement system. PLoS One 2012; 7:e40489. [PMID: 22792350 PMCID: PMC3394726 DOI: 10.1371/journal.pone.0040489] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/07/2012] [Indexed: 01/06/2023] Open
Abstract
Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage.
Collapse
Affiliation(s)
- Angela Mika
- Infectious Diseases Program, Biology Department, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Costa TF, Reis FCD, Lima APC. Substrate inhibition and allosteric regulation by heparan sulfate of Trypanosoma brucei cathepsin L. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:493-501. [DOI: 10.1016/j.bbapap.2011.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 12/13/2011] [Accepted: 12/23/2011] [Indexed: 11/27/2022]
|
34
|
Abstract
Proteoglycans (PGs), composed of a core protein and one or more covalently attached sulfated glycosaminoglycan (GAG) chains, interact with a wide range of bioactive molecules, such as growth factors and chemokines, to regulate cell behaviors in normal and pathological processes. Additionally, PGs, through their compositional diversity, play a broad variety of roles as modulators of proteinase activities. Interactions of proteinases with other molecules on the plasma membrane anchor and activate them at a specific location on the cell surface. These interactions with macromolecules other than their own protein substrates or inhibitors result in changes in their activity and/or may have important biological effects. Thus, GAG chains induce conformational changes upon their binding to peptides or proteins. This behavior may be related to the ability of GAGs to act as modulators for some proteins (1) by acting as crucial structural elements by the control of proteinase activities, (2) by increasing the protein stability, (3) by permitting some binding to occur, exposing binding regions on the target protein, or (4) by acting as coreceptors for some inhibitors, playing important roles for the acceleration of proteinase inhibition. Understanding the modulatory effects exerted by PGs on proteinase activities is expected to lead to new insights in the understanding of some molecular systems present in pathological states, providing new targets for drug therapy.
Collapse
|
35
|
Critical roles of amino acids Ser231, His107 and Asp156 of Staphylococcus sciuri exfoliative toxin C (ExhC) in the induction of skin exfoliations in neonate mice. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Li H, Li X, Lu Y, Wang X, Zheng SJ. Staphylococcus sciuriexfoliative toxin C is a dimer that modulates macrophage functions. Can J Microbiol 2011; 57:722-9. [PMID: 21854098 DOI: 10.1139/w11-066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Haihua Li
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Xiaying Li
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Ying Lu
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Xiaojia Wang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
| | - Shijun J. Zheng
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People’s Republic of China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, People’s Republic of China
| |
Collapse
|
37
|
Arvatz G, Shafat I, Levy-Adam F, Ilan N, Vlodavsky I. The heparanase system and tumor metastasis: is heparanase the seed and soil? Cancer Metastasis Rev 2011; 30:253-68. [PMID: 21308479 DOI: 10.1007/s10555-011-9288-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor metastasis, the leading cause of cancer patients' death, is still insufficiently understood. While concepts and mechanisms of tumor metastasis are evolving, it is widely accepted that cancer metastasis is accompanied by orchestrated proteolytic activity executed by array of proteases. While matrix metalloproteinases (MMPs) attracted much attention, other proteases constitute the tumor milieu, of which a large family consists of cysteine proteases named cathepsins. Like MMPs, some cathepsins are often upregulated in cancer and, once secreted or localized to the cell surface, can degrade components of the extracellular matrix. In addition, cathepsin L is held responsible for processing and activation of heparanase, an endo-β-glucuronidase capable of cleaving heparan sulfate side chains of heparan sulfate proteoglycans, activity that is strongly implicated in cell dissemination associated with tumor metastasis, angiogenesis, and inflammation. In this review, we discuss recent progress in heparanase research focusing on heparanase-related molecules namely, cathepsin L and heparanase 2 (Hpa2), a heparanase homolog.
Collapse
Affiliation(s)
- Gil Arvatz
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, P. O. Box 9649, Haifa, 31096, Israel
| | | | | | | | | |
Collapse
|
38
|
Qin Y, Shi GP. Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases. Pharmacol Ther 2011; 131:338-50. [PMID: 21605595 DOI: 10.1016/j.pharmthera.2011.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 01/10/2023]
Abstract
The initiation and progression of cardiovascular diseases involve extensive arterial wall matrix protein degradation. Proteases are essential to these pathological events. Recent discoveries suggest that proteases do more than catabolize matrix proteins. During the pathogenesis of atherosclerosis, abdominal aortic aneuryms, and associated complications, cysteinyl cathepsins and mast cell tryptases and chymases participate importantly in vascular cell apoptosis, foam cell formation, matrix protein gene expression, and pro-enzyme, latent cytokine, chemokine, and growth factor activation. Experimental animal disease models have been invaluable in examining each of these protease functions. Deficiency and pharmacological inhibition of cathepsins or mast cell proteases have allowed their in vivo evaluation in the setting of pathological conditions. Recent discoveries of highly selective and potent inhibitors of cathepsins, chymase, and tryptase, and their applications in vascular diseases in animal models and non-vascular diseases in human trials, have led to the hypothesis that selective inhibition of cathepsins, chymases, and tryptase will benefit patients suffering from cardiovascular diseases. This review highlights recent discoveries from in vitro cell-based studies to experimental animal cardiovascular disease models, from protease knockout mice to treatments with recently developed selective and potent protease inhibitors, and from patients with cathepsin-associated non-vascular diseases to those affected by cardiovascular complications.
Collapse
Affiliation(s)
- Yanwen Qin
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | | |
Collapse
|
39
|
Mason SD, Joyce JA. Proteolytic networks in cancer. Trends Cell Biol 2011; 21:228-37. [PMID: 21232958 DOI: 10.1016/j.tcb.2010.12.002] [Citation(s) in RCA: 379] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/17/2010] [Accepted: 12/02/2010] [Indexed: 12/11/2022]
Abstract
Proteases are important for multiple processes during malignant progression, including tumor angiogenesis, invasion and metastasis. Recent evidence reveals that tumor-promoting proteases function as part of an extensive multidirectional network of proteolytic interactions, in contrast to the unidirectional caspase cascade. These networks involve different constituents of the tumor microenvironment and key proteases, such as cathepsin B, urokinase-type plasminogen activator and several matrix metalloproteinases, occupy central nodes for amplifying proteolytic signals passing through the network. The proteolytic network interacts with other important signaling pathways in tumor biology, involving chemokines, cytokines, and kinases. Viewing these proteolytic interactions as a system of activating and inhibiting reactions provides insight into tumor biology and reveals relevant pharmaceutical targets. This review examines recent advances in understanding proteases in cancer and summarizes how the network of activity is co-opted to promote tumor progression.
Collapse
Affiliation(s)
- Steven D Mason
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
40
|
Abstract
Serpins (serine protease inhibitors) have traditionally been grouped together based on structural homology. They share common structural features of primary sequence, but not all serpins require binding to cofactors in order to achieve maximal protease inhibition. In order to obtain physiologically relevant rates of inhibition of target proteases, some serpins utilize the unbranched sulfated polysaccharide chains known as glycosaminoglycans (GAGs) to enhance inhibition. These GAG-binding serpins include antithrombin (AT), heparin cofactor II (HCII), and protein C inhibitor (PCI). The GAGs heparin and heparan sulfate have been shown to bind AT, HCII, and PCI, while HCII is also able to utilize dermatan sulfate as a cofactor. Other serpins such as PAI-1, kallistatin, and α(1)-antitrypsin also interact with GAGs with different endpoints, some accelerating protease inhibition while others inhibit it. There are many serpins that bind or carry ligands that are unrelated to GAGs, which are described elsewhere in this work. For most GAG-binding serpins, binding of the GAG occurs in a conserved region of the serpin near or involving helix D, with the exception of PCI, which utilizes helix H. The binding of GAG to serpin can lead to a conformational change within the serpin, which can lead to increased or tighter binding to the protease, and can accelerate the rates of inhibition up to 10,000-fold compared to the unbound native serpin. In this chapter, we will discuss three major GAG-binding serpins with known physiological roles in modulating coagulation: AT (SERPINC1), HCII (SERPIND1), and PCI (SERPINA5). We will review methodologies implemented to study the structure of these serpins and those used to study their interactions with GAG's. We discuss novel techniques to examine the serpin-GAG interaction and finally we review the biological roles of these serpins by describing the mouse models used to study them.
Collapse
Affiliation(s)
- Chantelle M Rein
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
41
|
Horvath AJ, Lu BGC, Pike RN, Bottomley SP. Methods to measure the kinetics of protease inhibition by serpins. Methods Enzymol 2011; 501:223-35. [PMID: 22078537 DOI: 10.1016/b978-0-12-385950-1.00011-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The serpin molecule has evolved an unusual mechanism of inhibition, involving an exposed reactive center loop (RCL) and conformational change to covalently trap a target protease. Successful inhibition of the protease is dependent on the rate of serpin-protease association and the efficiency with which the RCL inserts into β-sheet A, translocating the covalently bound protease and thereby completing the inhibition process. This chapter describes the kinetic methods used for determining the rate of protease inhibition (k(a)) and the stoichiometry of inhibition. These kinetic variables provide a means to examine different serpin-protease pairings, assess the effects of mutations within a serpin on protease inhibition, and determine the physiologically cognate protease of a serpin.
Collapse
Affiliation(s)
- Anita J Horvath
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
42
|
Fortenberry YM, Brandal S, Bialas RC, Church FC. Protein C inhibitor regulates both cathepsin L activity and cell-mediated tumor cell migration. Biochim Biophys Acta Gen Subj 2010; 1800:580-90. [PMID: 20230872 DOI: 10.1016/j.bbagen.2010.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 03/03/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Protein C inhibitor (PCI) is a plasma serine protease inhibitor (serpin) that regulates several serine proteases in coagulation including thrombin and activated protein C. However, the physiological role of PCI remains under investigation. The cysteine protease, cathepsin L, has a role in many physiological processes including cardiovascular diseases, blood vessel remodeling, and cancer. METHODS AND RESULTS We found that PCI inhibits cathepsin L with an inhibition rate (k(2)) of 3.0x10(5)M(-)(1)s(-)(1). Whereas, the PCI P1 mutant (R354A) inhibits cathepsin L at rates similar to wild-type PCI, mutating the P2 residue results in a slight decrease in the rate of inhibition. We then assessed the effect of PCI and cathepsin L on the migration of human breast cancer (MDA-MB-231) cells. Cathepsin L was expressed in both the cell lysates and conditioned media of MDA-MB-231 cells. Wound-induced and transwell migration of MDA-MB-231 cells was inhibited by exogenously administered wtPCI and PCI P1 but not PCI P14 mutant. In addition, migration of MDA-MB-231 cells expressing wtPCI was significantly decreased compared to non-expressing MDA-MB-231 cells or MDA-MB-231 cells expressing the PCI P14 mutant. Downregulation of cathepsin L by either a specific cathepsin L inhibitor or siRNA technology also resulted in a decrease in the migration of MDA-MB-231 cells. CONCLUSIONS Overall, our data show that PCI regulates tumor cell migration partly by inhibiting cathepsin L. GENERAL SIGNIFICANCE Consequently, inhibiting cathepsin L by serpins like PCI may be a new pathway of regulating hemostasis, cardiovascular and metastatic diseases.
Collapse
Affiliation(s)
- Yolanda M Fortenberry
- Department of Pediatric-Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|