1
|
Dodd RJ, Blundell CD, Sattelle BM, Enghild JJ, Milner CM, Day AJ. Chemical modification of hyaluronan oligosaccharides differentially modulates hyaluronan-hyaladherin interactions. J Biol Chem 2024; 300:107668. [PMID: 39128716 PMCID: PMC11460632 DOI: 10.1016/j.jbc.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
The glycosaminoglycan hyaluronan (HA) is a ubiquitous, nonsulfated polysaccharide with diverse biological roles mediated through its interactions with HA-binding proteins (HABPs). Most HABPs belong to the Link module superfamily, including the major HA receptor, CD44, and secreted protein TSG-6, which catalyzes the covalent transfer of heavy chains from inter-α-inhibitor onto HA. The structures of the HA-binding domains (HABDs) of CD44 (HABD_CD44) and TSG-6 (Link_TSG6) have been determined and their interactions with HA extensively characterized. The mechanisms of binding are different, with Link_TSG6 interacting with HA primarily via ionic and CH-π interactions, whereas HABD_CD44 binds solely via hydrogen bonds and van der Waals forces. Here, we exploit these differences to generate HA oligosaccharides, chemically modified at their reducing ends, that bind specifically and differentially to these target HABPs. Hexasaccharides (HA6AN) modified with 2- or 3-aminobenzoic acid (HA6-2AA, HA6-3AA) or 2-amino-4-methoxybenzoic acid (HA6-2A4MBA), had increased affinities for Link_TSG6 compared to unmodified HA6AN. These modifications did not increase the affinity for CD44_HABD. A model of HA6-2AA (derived from the solution dynamic 3D structure of HA4-2AA) was docked into the Link_TSG6 structure, providing evidence that the 2AA-carboxyl forms a salt bridge with Arginine-81. These modeling results informed a second series of chemical modifications for HA oligosaccharides, which again showed differential binding to the two proteins. Several modifications to HA4 and HA6 were found to convert the oligosaccharide into substrates for heavy chain transfer, whereas unmodified HA4 and HA6 are not. This study has generated valuable research tools to further understand HA biology.
Collapse
Affiliation(s)
- Rebecca J Dodd
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | | | | | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Caroline M Milner
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Anthony J Day
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
2
|
Zhang XF, Zhang XL, Guo L, Bai YP, Tian Y, Luo HY. The function of the inter-alpha-trypsin inhibitors in the development of disease. Front Med (Lausanne) 2024; 11:1432224. [PMID: 39149600 PMCID: PMC11325723 DOI: 10.3389/fmed.2024.1432224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Through the formation of covalent connections with hyaluronic acid (HA), the inter-α-trypsin inhibitor (IαI) family collaborates to preserve the stability of the extracellular matrix (ECM). The five distinct homologous heavy chains (ITIH) and one type of light chain make up the IαI family. ITIH alone or in combination with bikunin (BK) has been proven to have important impacts in a number of earlier investigations. This implies that BK and ITIH might be crucial to both physiological and pathological processes. The functions of BK and ITIH in various pathophysiological processes are discussed independently in this paper. In the meanwhile, this study offers suggestions for further research on the roles of BK and ITIH in the course of disease and summarizes the plausible mechanisms of the previous studies.
Collapse
Affiliation(s)
- Xin-Feng Zhang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Li Zhang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Guo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun-Ping Bai
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Tian
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua-You Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Sin YJA, MacLeod R, Tanguay AP, Wang A, Braender-Carr O, Vitelli TM, Jay GD, Schmidt TA, Cowman MK. Noncovalent hyaluronan crosslinking by TSG-6: Modulation by heparin, heparan sulfate, and PRG4. Front Mol Biosci 2022; 9:990861. [PMID: 36275631 PMCID: PMC9579337 DOI: 10.3389/fmolb.2022.990861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The size, conformation, and organization of the glycosaminoglycan hyaluronan (HA) affect its interactions with soluble and cell surface-bound proteins. HA that is induced to form stable networks has unique biological properties relative to unmodified soluble HA. AlphaLISA assay technology offers a facile and general experimental approach to assay protein-mediated networking of HA in solution. Connections formed between two end-biotinylated 50 kDa HA (bHA) chains can be detected by signal arising from streptavidin-coated donor and acceptor beads being brought into close proximity when the bHA chains are bridged by proteins. We observed that incubation of bHA with the protein TSG-6 (tumor necrosis factor alpha stimulated gene/protein 6, TNFAIP/TSG-6) leads to dimerization or higher order multimerization of HA chains in solution. We compared two different heparin (HP) samples and two heparan sulfate (HS) samples for the ability to disrupt HA crosslinking by TSG-6. Both HP samples had approximately three sulfates per disaccharide, and both were effective in inhibiting HA crosslinking by TSG-6. HS with a relatively high degree of sulfation (1.75 per disaccharide) also inhibited TSG-6 mediated HA networking, while HS with a lower degree of sulfation (0.75 per disaccharide) was less effective. We further identified Proteoglycan 4 (PRG4, lubricin) as a TSG-6 ligand, and found it to inhibit TSG-6-mediated HA crosslinking. The effects of HP, HS, and PRG4 on HA crosslinking by TSG-6 were shown to be due to HP/HS/PRG4 inhibition of HA binding to the Link domain of TSG-6. Using the AlphaLISA platform, we also tested other HA-binding proteins for ability to create HA networks. The G1 domain of versican (VG1) effectively networked bHA in solution but required a higher concentration than TSG-6. Cartilage link protein (HAPLN1) and the HA binding protein segment of aggrecan (HABP, G1-IGD-G2) showed only low and variable magnitude HA networking effects. This study unambiguously demonstrates HA crosslinking in solution by TSG-6 and VG1 proteins, and establishes PRG4, HP and highly sulfated HS as modulators of TSG-6 mediated HA crosslinking.
Collapse
Affiliation(s)
- Yun Jin Ashley Sin
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Rebecca MacLeod
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Adam P. Tanguay
- Department of Biomedical Engineering, School of Dental Medicine, UConn Health, Farmington, CT, United States
| | - Andrew Wang
- New York Medical College, Valhalla, NY, United States
| | - Olivia Braender-Carr
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Teraesa M. Vitelli
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Gregory D. Jay
- Department of Emergency Medicine, Warren Alpert Medical School and School of Engineering, Brown University, Providence, RI, United States
| | - Tannin A. Schmidt
- Department of Biomedical Engineering, School of Dental Medicine, UConn Health, Farmington, CT, United States
- *Correspondence: Mary K. Cowman, ; Tannin A. Schmidt,
| | - Mary K. Cowman
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
- Department of Orthopedic Surgery, Grossman School of Medicine, New York University, New York, NY, United States
- *Correspondence: Mary K. Cowman, ; Tannin A. Schmidt,
| |
Collapse
|
4
|
Usunier B, Brossard C, L’Homme B, Linard C, Benderitter M, Milliat F, Chapel A. HGF and TSG-6 Released by Mesenchymal Stem Cells Attenuate Colon Radiation-Induced Fibrosis. Int J Mol Sci 2021; 22:ijms22041790. [PMID: 33670243 PMCID: PMC7916908 DOI: 10.3390/ijms22041790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a leading cause of death in occidental states. The increasing number of patients with fibrosis requires innovative approaches. Despite the proven beneficial effects of mesenchymal stem cell (MSC) therapy on fibrosis, there is little evidence of their anti-fibrotic effects in colorectal fibrosis. The ability of MSCs to reduce radiation-induced colorectal fibrosis has been studied in vivo in Sprague–Dawley rats. After local radiation exposure, rats were injected with MSCs before an initiation of fibrosis. MSCs mediated a downregulation of fibrogenesis by a control of extra cellular matrix (ECM) turnover. For a better understanding of the mechanisms, we used an in vitro model of irradiated cocultured colorectal fibrosis in the presence of human MSCs. Pro-fibrotic cells in the colon are mainly intestinal fibroblasts and smooth muscle cells. Intestinal fibroblasts and smooth muscle cells were irradiated and cocultured in the presence of unirradiated MSCs. MSCs mediated a decrease in profibrotic gene expression and proteins secretion. Silencing hepatocyte growth factor (HGF) and tumor necrosis factor-stimulated gene 6 (TSG-6) in MSCs confirmed the complementary effects of these two genes. HGF and TSG-6 limited the progression of fibrosis by reducing activation of the smooth muscle cells and myofibroblast. To settle in vivo the contribution of HGF and TSG-6 in MSC-antifibrotic effects, rats were treated with MSCs silenced for HGF or TSG-6. HGF and TSG-6 silencing in transplanted MSCs resulted in a significant increase in ECM deposition in colon. These results emphasize the potential of MSCs to influence the pathophysiology of fibrosis-related diseases, which represent a challenging area for innovative treatments.
Collapse
|
5
|
Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int J Mol Sci 2020; 21:ijms21175988. [PMID: 32825309 PMCID: PMC7504301 DOI: 10.3390/ijms21175988] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) plays a vital role in the extracellular matrix of neural tissues. Originally thought to hydrate tissues and provide mechanical support, it is now clear that HA is also a complex signaling molecule that can regulate cell processes in the developing and adult nervous systems. Signaling properties are determined by molecular weight, bound proteins, and signal transduction through specific receptors. HA signaling regulates processes such as proliferation, differentiation, migration, and process extension in a variety of cell types including neural stem cells, neurons, astrocytes, microglia, and oligodendrocyte progenitors. The synthesis and catabolism of HA and the expression of HA receptors are altered in disease and influence neuroinflammation and disease pathogenesis. This review discusses the roles of HA, its synthesis and breakdown, as well as receptor expression in neurodevelopment, nervous system function and disease.
Collapse
|
6
|
Lord MS, Melrose J, Day AJ, Whitelock JM. The Inter-α-Trypsin Inhibitor Family: Versatile Molecules in Biology and Pathology. J Histochem Cytochem 2020; 68:907-927. [PMID: 32639183 DOI: 10.1369/0022155420940067] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Stem Cell Extracellular Matrix & Glycobiology, Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Faculty of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Johnson CG, Stober VP, Cyphert-Daly JM, Trempus CS, Flake GP, Cali V, Ahmad I, Midura RJ, Aronica MA, Matalon S, Garantziotis S. High molecular weight hyaluronan ameliorates allergic inflammation and airway hyperresponsiveness in the mouse. Am J Physiol Lung Cell Mol Physiol 2018; 315:L787-L798. [PMID: 30188746 PMCID: PMC6425518 DOI: 10.1152/ajplung.00009.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
Allergic asthma is a major cause of morbidity in both pediatric and adult patients. Recent research has highlighted the role of hyaluronan (HA), an extracellular matrix glycosaminoglycan, in asthma pathogenesis. Experimental allergic airway inflammation and clinical asthma are associated with an increase of shorter fragments of HA (sHA), which complex with inter-α-inhibitor heavy chains (HCs) and induce inflammation and airway hyperresponsiveness (AHR). Importantly, the effects of sHA can be antagonized by the physiological counterpart high molecular weight HA (HMWHA). We used a mouse model of house dust mite-induced allergic airway inflammation and demonstrated that instilled HMWHA ameliorated allergic airway inflammation and AHR, even when given after the establishment of allergic sensitization and after challenge exposures. Furthermore, instilled HMWHA reduced the development of HA-HC complexes and the activation of Rho-associated, coiled-coil containing protein kinase 2. We conclude that airway application of HMWHA is a potential treatment for allergic airway inflammation.
Collapse
Affiliation(s)
- Collin G Johnson
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Vandy P Stober
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Jaime M Cyphert-Daly
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Carol S Trempus
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Gordon P Flake
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Valbona Cali
- Department of Pathobiology, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Israr Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, and Pulmonary Injury and Repair Center, School of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Ronald J Midura
- Department of Pathobiology, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Mark A Aronica
- Department of Pathobiology, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, and Pulmonary Injury and Repair Center, School of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| |
Collapse
|
8
|
Day AJ, Milner CM. TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol 2018; 78-79:60-83. [PMID: 29362135 DOI: 10.1016/j.matbio.2018.01.011] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
Tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) is an inflammation-associated secreted protein that has been implicated as having important and diverse tissue protective and anti-inflammatory properties, e.g. mediating many of the immunomodulatory and beneficial activities of mesenchymal stem/stromal cells. TSG-6 is constitutively expressed in some tissues, which are either highly metabolically active or subject to challenges from the environment, perhaps providing protection in these contexts. The diversity of its functions are dependent on the binding of TSG-6 to numerous ligands, including matrix molecules such as glycosaminoglycans, as well as immune regulators and growth factors that themselves interact with these linear polysaccharides. It is becoming apparent that TSG-6 can directly affect matrix structure and modulate the way extracellular signalling molecules interact with matrix. In this review, we focus mainly on the literature for TSG-6 over the last 10 years, summarizing its expression, structure, ligand-binding properties, biological functions and highlighting TSG-6's potential as a therapeutic for a broad range of disease indications.
Collapse
Affiliation(s)
- Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | - Caroline M Milner
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
9
|
Bertling F, Bendix I, Drommelschmidt K, Wisniewski HG, Felderhoff-Mueser U, Keller M, Prager S. Tumor necrosis factor-inducible gene 6 protein: A novel neuroprotective factor against inflammation-induced developmental brain injury. Exp Neurol 2016; 279:283-289. [PMID: 26953231 DOI: 10.1016/j.expneurol.2016.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/20/2016] [Accepted: 03/02/2016] [Indexed: 11/18/2022]
Abstract
Inflammation is an important factor contributing to developmental brain injury in preterm infants. Although tumor necrosis factor-inducible gene 6 protein (TSG-6) has immunomodulatory effects in several inflammatory conditions of adult animals, nothing is currently known about the role of TSG-6 in the developing brain, its impact on perinatal inflammation and its therapeutic potential. The aim of the current work was 1) to characterize the developmental expression of TSG-6 in the newborn rat brain, 2) to evaluate the impact of LPS exposure on TSG-6 expression and 3) to assess the therapeutic potential of exogenous TSG-6 administration. Brain hemispheres of healthy Wistar rats (postnatal day 1-postnatal day 15 (P1-P15)) were evaluated with regard to the physiological expression of TSG-6. LPS-treated rats (0.25mg/kg LPS i.p. on P3) were analyzed for inflammation-induced changes in TSG-6 and cytokine expression. To evaluate whether exogenous recombinant human (rh)TSG-6 affects inflammation-induced brain injury, newborn Wistar rats, exposed to LPS on P3, were treated with rhTSG-6 i.p. (four repetitive doses of 2.25mg/kg every 12h, first dose 3h before LPS injection). PCR, Western blotting and multiplex ELISA were performed according to standard protocols. TSG-6 is physiologically expressed in the developing brain with a linear increase in expression from P1 to P15 at the mRNA level. At P6, regional differences in TSG-6 expression in the cortex, thalamus and striatum were detected at mRNA and protein level. Furthermore, TSG-6 gene expression was significantly increased by inflammation (induced by LPS treatment). Combined treatment with LPS and TSG-6 vs. LPS exposure alone, resulted in significant down-regulation of cleaved caspase-3, a marker of apoptosis and neuronal plasticity. In addition, several inflammatory serum markers were decreased after TSG-6 treatment. Finally, TSG-6 is physiologically expressed in the developing brain. Changes of TSG-6 expression associated with inflammation suggest a role of TSG-6 in neuroinflammation. Reduction of cleaved caspase-3 by TSG-6 treatment demonstrates the putative neuroprotective potential of exogenous TSG-6 administration in inflammation-induced developmental brain injury.
Collapse
Affiliation(s)
- F Bertling
- Dept. of Pediatrics I-Neonatology, University Hospital Essen, University Duisburg-Essen, Germany
| | - I Bendix
- Dept. of Pediatrics I-Neonatology, University Hospital Essen, University Duisburg-Essen, Germany
| | - K Drommelschmidt
- Dept. of Pediatrics I-Neonatology, University Hospital Essen, University Duisburg-Essen, Germany
| | - H G Wisniewski
- Dept. of Microbiology, New York University School of Medicine, New York, USA
| | - U Felderhoff-Mueser
- Dept. of Pediatrics I-Neonatology, University Hospital Essen, University Duisburg-Essen, Germany
| | - M Keller
- Dept. of Pediatrics I-Neonatology, University Hospital Essen, University Duisburg-Essen, Germany; Technical University Munich, Germany; Children's Hospital Passau, Germany
| | - S Prager
- Dept. of Pediatrics I-Neonatology, University Hospital Essen, University Duisburg-Essen, Germany
| |
Collapse
|
10
|
Scavenius C, Nikolajsen CL, Stenvang M, Thøgersen IB, Wyrożemski Ł, Wisniewski HG, Otzen DE, Sanggaard KW, Enghild JJ. The Compact and Biologically Relevant Structure of Inter-α-inhibitor Is Maintained by the Chondroitin Sulfate Chain and Divalent Cations. J Biol Chem 2016; 291:4658-70. [PMID: 26728454 DOI: 10.1074/jbc.m115.678748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 11/06/2022] Open
Abstract
Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg(2+) or Mn(2+), but not Ca(2+), induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg(2+) found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor.
Collapse
Affiliation(s)
- Carsten Scavenius
- From the Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Camilla Lund Nikolajsen
- From the Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark, the Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark, and
| | - Marcel Stenvang
- From the Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark, the Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark, and
| | - Ida B Thøgersen
- From the Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Łukasz Wyrożemski
- From the Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Hans-Georg Wisniewski
- the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Daniel E Otzen
- From the Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark, the Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark, and
| | - Kristian W Sanggaard
- From the Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Jan J Enghild
- From the Department of Molecular Biology and Genetics, Science Park, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark, the Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark, and
| |
Collapse
|
11
|
Abbadi A, Lauer M, Swaidani S, Wang A, Hascall V. Hyaluronan Rafts on Airway Epithelial Cells. J Biol Chem 2015; 291:1448-55. [PMID: 26601955 DOI: 10.1074/jbc.m115.704288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 11/06/2022] Open
Abstract
Many cells, including murine airway epithelial cells, respond to a variety of inflammatory stimuli by synthesizing leukocyte-adhesive hyaluronan (HA) cables that remain attached to their cell surfaces. This study shows that air-liquid interface cultures of murine airway epithelial cells (AECs) also actively synthesize and release a majority of their HA onto their ciliated apical surfaces to form a heavy chain hyaluronan (HC-HA) matrix in the absence of inflammatory stimuli. These matrices do not resemble the rope-like HA cables but occur in distinct sheets or rafts that can capture and embed leukocytes from cell suspensions. The HC-HA modification involves the transfer of heavy chains from the inter-α-inhibitor (IαI) proteoglycan, which has two heavy chains (HC1 and HC2) on its chondroitin sulfate chain. The transesterification transfer of HCs from chondroitin sulfate to HA is mediated by tumor necrosis factor-induced gene 6 (TSG-6), which is up-regulated in inflammatory reactions. Because the AEC cultures do not have TSG-6 nor serum, the source of IαI, assays for HCs and TSG-6 were done. The results show that AECs synthesize TSG-6 and their own heavy chain donor (pre-IαI) with a single heavy chain 3 (HC3), which are also constitutively expressed by human renal proximal tubular epithelial cells. These leukocyte adhesive HC3-HA structures were also found in the bronchoalveolar lavage of naïve mice and were observed on their apical ciliated surfaces. Thus, these leukocyte-adhesive HA rafts are now identified as HC3-HA complexes that could be part of a host defense mechanism filling some important gaps in our current understanding of murine airway epithelial biology and secretions.
Collapse
Affiliation(s)
- Amina Abbadi
- From the Department of Biomedical Engineering and Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Mark Lauer
- From the Department of Biomedical Engineering and
| | - Shadi Swaidani
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Aimin Wang
- From the Department of Biomedical Engineering and
| | | |
Collapse
|
12
|
Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury. Blood 2015; 125:2286-96. [PMID: 25631771 DOI: 10.1182/blood-2014-06-582759] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 01/20/2015] [Indexed: 11/20/2022] Open
Abstract
Extracellular histones are mediators of tissue injury and organ dysfunction; therefore they constitute potential therapeutic targets in sepsis, inflammation, and thrombosis. Histone cytotoxicity in vitro decreases in the presence of plasma. Here, we demonstrate that plasma inter-α inhibitor protein (IAIP) neutralizes the cytotoxic effects of histones and decreases histone-induced platelet aggregation. These effects are mediated through the negatively charged glycosaminoglycans (GAGs) chondroitin sulfate and high-molecular-weight hyaluronan (HMW-HA) associated with IAIP. Cell surface anionic glycosaminoglycans heparan sulfate and HA protect the cells against histone-mediated damage in vitro. Surface plasmon resonance showed that both IAIP and HMW-HA directly bind to recombinant histone H4. In vivo neutralization of histones with IAIP and HMW-HA prevented histone-induced thrombocytopenia, bleeding, and lung microvascular thrombosis, decreased neutrophil activation, and averted histone-induced production of inflammatory cytokines and chemokines. IAIP and HMW-HA colocalized with histones in necrotic tissues and areas that displayed neutrophil extracellular traps. Increasing amounts of IAIP-histone complexes detected in the plasma of septic baboons correlated with increase in histones and/or nucleosomes and consumption of plasma IAIP. Our data suggest that IAIP, chondroitin sulfate, and HMW-HA are potential therapeutic agents to protect against histone-induced cytotoxicity, coagulopathy, systemic inflammation, and organ damage during inflammatory conditions such as sepsis and trauma.
Collapse
|
13
|
Baranova NS, Inforzato A, Briggs DC, Tilakaratna V, Enghild JJ, Thakar D, Milner CM, Day AJ, Richter RP. Incorporation of pentraxin 3 into hyaluronan matrices is tightly regulated and promotes matrix cross-linking. J Biol Chem 2014; 289:30481-30498. [PMID: 25190808 PMCID: PMC4215230 DOI: 10.1074/jbc.m114.568154] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mammalian oocytes are surrounded by a highly hydrated hyaluronan (HA)-rich extracellular matrix with embedded cumulus cells, forming the cumulus cell·oocyte complex (COC) matrix. The correct assembly, stability, and mechanical properties of this matrix, which are crucial for successful ovulation, transport of the COC to the oviduct, and its fertilization, depend on the interaction between HA and specific HA-organizing proteins. Although the proteins inter-α-inhibitor (IαI), pentraxin 3 (PTX3), and TNF-stimulated gene-6 (TSG-6) have been identified as being critical for COC matrix formation, its supramolecular organization and the molecular mechanism of COC matrix stabilization remain unknown. Here we used films of end-grafted HA as a model system to investigate the molecular interactions involved in the formation and stabilization of HA matrices containing TSG-6, IαI, and PTX3. We found that PTX3 binds neither to HA alone nor to HA films containing TSG-6. This long pentraxin also failed to bind to products of the interaction between IαI, TSG-6, and HA, among which are the covalent heavy chain (HC)·HA and HC·TSG-6 complexes, despite the fact that both IαI and TSG-6 are ligands of PTX3. Interestingly, prior encounter with IαI was required for effective incorporation of PTX3 into TSG-6-loaded HA films. Moreover, we demonstrated that this ternary protein mixture made of IαI, PTX3, and TSG-6 is sufficient to promote formation of a stable (i.e. cross-linked) yet highly hydrated HA matrix. We propose that this mechanism is essential for correct assembly of the COC matrix and may also have general implications in other inflammatory processes that are associated with HA cross-linking.
Collapse
Affiliation(s)
| | | | - David C Briggs
- Wellcome Trust Centre for Cell Matrix Research and University of Manchester, Manchester M13 9PT, United Kingdom
| | - Viranga Tilakaratna
- Wellcome Trust Centre for Cell Matrix Research and University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus C, Denmark
| | - Dhruv Thakar
- Department of Molecular Chemistry, University Grenoble Alpes and CNRS, 38000 Grenoble, France, and
| | - Caroline M Milner
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Anthony J Day
- Wellcome Trust Centre for Cell Matrix Research and University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Ralf P Richter
- CIC biomaGUNE, 20009 Donostia-San Sebastian, Spain,; Department of Molecular Chemistry, University Grenoble Alpes and CNRS, 38000 Grenoble, France, and; Max-Planck-Institute for Intelligent Systems, 70569 Stuttgart, Germany.
| |
Collapse
|
14
|
Lauer ME, Hascall VC, Green DE, DeAngelis PL, Calabro A. Irreversible heavy chain transfer to chondroitin. J Biol Chem 2014; 289:29171-9. [PMID: 25135638 DOI: 10.1074/jbc.m114.600809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently demonstrated that the transfer of heavy chains (HCs) from inter-α-inhibitor, via the enzyme TSG-6 (tumor necrosis factor-stimulated gene 6), to hyaluronan (HA) oligosaccharides is an irreversible event in which subsequent swapping of HCs between HA molecules does not occur. We now describe our results of HC transfer experiments to chondroitin sulfate A, chemically desulfated chondroitin, chemoenzymatically synthesized chondroitin, unsulfated heparosan, heparan sulfate, and alginate. Of these potential HC acceptors, only chemically desulfated chondroitin and chemoenzymatically synthesized chondroitin were HC acceptors. The kinetics of HC transfer to chondroitin was similar to HA. At earlier time points, HCs were more widely distributed among the different sizes of chondroitin chains. As time progressed, the HCs migrated to lower molecular weight chains of chondroitin. Our interpretation is that TSG-6 swaps the HCs from the larger, reversible sites on chondroitin chains, which function as HC acceptors, onto smaller chondroitin chains, which function as irreversible HC acceptors. HCs transferred to smaller chondroitin chains were unable to be swapped off the smaller chondroitin chains and transferred to HA. HCs transferred to high molecular weight HA were unable to be swapped onto chondroitin. We also present data that although chondroitin was a HC acceptor, HA was the preferred acceptor when chondroitin and HA were in the same reaction mixture.
Collapse
Affiliation(s)
- Mark E Lauer
- From the Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Vincent C Hascall
- From the Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Dixy E Green
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126
| | - Paul L DeAngelis
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126
| | - Anthony Calabro
- From the Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195 and
| |
Collapse
|
15
|
Prockop DJ. Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells 2014; 31:2042-6. [PMID: 23681848 DOI: 10.1002/stem.1400] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/29/2012] [Indexed: 12/29/2022]
Abstract
Recent data demonstrated that MSCs can be activated by proinflammatory signals to introduce two negative feedback loops into the generic pathway of inflammation. In one loop, the activated MSCs secrete PGE2 that drives resident macrophages with an M1 proinflammatory phenotype toward an M2 anti-inflammatory phenotype. In the second loop, the activated MSCs secrete TSG-6 that interacts with CD44 on resident macrophages to decrease TLR2/NFκ-B signaling and thereby decrease the secretion of proinflammatory mediators of inflammation. The PGE2 and TSG-6 negative feedback loops allow MSCs to serve as regulators of the very early phases of inflammation. These and many related observations suggest that the MSC-like cells found in most tissues may be part of the pantheon of cells that protect us from foreign invaders, tissue injury, and aging.
Collapse
Affiliation(s)
- Darwin J Prockop
- Texas A&M Health Science Center College of Medicine Institute for Regenerative Medicine, Scott & White, Temple, Texas, USA
| |
Collapse
|
16
|
Lord MS, Day AJ, Youssef P, Zhuo L, Watanabe H, Caterson B, Whitelock JM. Sulfation of the bikunin chondroitin sulfate chain determines heavy chain·hyaluronan complex formation. J Biol Chem 2013; 288:22930-41. [PMID: 23801333 PMCID: PMC3743471 DOI: 10.1074/jbc.m112.404186] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Indexed: 11/06/2022] Open
Abstract
Inter-α-trypsin inhibitor (IαI) is a complex comprising two heavy chains (HCs) that are covalently bound by an ester bond to chondroitin sulfate (CS), which itself is attached to Ser-10 of bikunin. IαI is essential for the trans-esterification of HCs onto hyaluronan (HA). This process is important for the stabilization of HA-rich matrices during ovulation and some inflammatory processes. Bikunin has been isolated previously by anion exchange chromatography with a salt gradient up to 0.5 M NaCl and found to contain unsulfated and 4-sulfated CS disaccharides. In this study, bikunin-containing fractions in plasma and urine were separated by anion exchange chromatography with a salt gradient of 0.1-1.0 M NaCl, and fractions were analyzed for their reactivity with the 4-sulfated CS linkage region antibody (2B6). The fractions that reacted with the 2B6 antibody (0.5-0.8 M NaCl) were found to predominantly contain sulfated CS disaccharides, including disulfated disaccharides, whereas the fractions that did not react with this antibody (0.1-0.5 M NaCl) contained unsulfated and 4-sulfated CS disaccharides. IαI in the 0.5-0.8 M NaCl plasma fraction was able to promote the trans-esterification of HCs to HA in the presence of TSG-6, whereas the 0.1-0.5 M NaCl fraction had a much reduced ability to transfer HC proteins to HA, suggesting that the CS containing 4-sulfated linkage region structures and disulfated disaccharides are involved in the HC transfer. Furthermore, these data highlight that the structure of the CS attached to bikunin is important for the transfer of HC onto HA and emphasize a specific role of CS chain sulfation.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Lauer ME, Glant TT, Mikecz K, DeAngelis PL, Haller FM, Husni ME, Hascall VC, Calabro A. Irreversible heavy chain transfer to hyaluronan oligosaccharides by tumor necrosis factor-stimulated gene-6. J Biol Chem 2012; 288:205-14. [PMID: 23166324 DOI: 10.1074/jbc.m112.403998] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The covalent transfer of heavy chains (HCs) from inter-α-inhibitor (IαI) to hyaluronan (HA) via the protein product of tumor necrosis factor-stimulated gene-6 (TSG-6) forms the HC-HA complex, a pathological form of HA that promotes the adhesion of leukocytes to HA matrices. The transfer of HCs to high molecular weight (HMW) HA is a reversible event whereby TSG-6 can shuffle HCs from one HA molecule to another. Therefore, HMW HA can serve as both an HC acceptor and an HC donor. In the present study, we show that transfer of HCs to low molecular weight HA oligosaccharides is an irreversible event where subsequent shuffling does not occur, i.e. HA oligosaccharides from 8 to 21 monosaccharide units in length can serve as HC acceptors, but are unable to function as HC donors. We show that the HC-HA complex is present in the synovial fluid of mice subjected to systemic and monoarticular mouse models of rheumatoid arthritis. Furthermore, we demonstrate that HA oligosaccharides can be used, with TSG-6, to irreversibly shuffle HCs from pathological, HMW HC-HA to HA oligosaccharides, thereby restoring HC-HA matrices from the inflamed joint to their normal state, unmodified with HCs. This process was also effective for HC-HA in the synovial fluid of human rheumatoid arthritis patients (in vitro).
Collapse
Affiliation(s)
- Mark E Lauer
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Okroj M, Holmquist E, Sjölander J, Corrales L, Saxne T, Wisniewski HG, Blom AM. Heavy chains of inter alpha inhibitor (IαI) inhibit the human complement system at early stages of the cascade. J Biol Chem 2012; 287:20100-10. [PMID: 22528482 DOI: 10.1074/jbc.m111.324913] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inter alpha inhibitor (IαI) is an abundant serum protein consisting of three polypeptides: two heavy chains (HC1 and HC2) and bikunin, a broad-specificity Kunitz-type proteinase inhibitor. The complex is covalently held together by chondroitin sulfate but during inflammation IαI may interact with TNF-stimulated gene 6 protein (TSG-6), which supports transesterification of heavy chains to hyaluronan. Recently, IαI was shown to inhibit mouse complement in vivo and to protect from complement-mediated lung injury but the mechanism of such activity was not elucidated. Using human serum depleted from IαI, we found that IαI is not an essential human complement inhibitor as was reported for mice and that such serum has unaltered hemolytic activity. However, purified human IαI inhibited classical, lectin and alternative complement pathways in vitro when added in excess to human serum. The inhibitory activity was dependent on heavy chains but not bikunin and detected at the level of initiating molecules (MBL, properdin) in the lectin/alternative pathways or C4b in the classical pathway. Furthermore, IαI affected formation and assembly of the C1 complex and prevented assembly of the classical pathway C3-convertase. Presence and putative interactions with TSG-6 did not affect the ability of IαI to inhibit complement thus implicating IαI as a potentially important complement inhibitor once enriched onto hyaluronan moieties in the course of local inflammatory processes. In support of this, we found a correlation between IαI/HC-containing proteins and hemolytic activity of synovial fluid from patients suffering from rheumatoid arthritis.
Collapse
Affiliation(s)
- Marcin Okroj
- Department of Laboratory Medicine, Lund University, 20502 Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|