1
|
Meneghetti MCZ, Cavalheiro RP, Yates EA, Nader HB, Lima MA. Involvement of GTPases and vesicle adapter proteins in Heparan sulfate biosynthesis: role of Rab1A, Rab2A and GOLPH3. FEBS J 2025. [PMID: 39804811 DOI: 10.1111/febs.17398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Vesicle trafficking is pivotal in heparan sulfate (HS) biosynthesis, influencing its spatial and temporal regulation within distinct Golgi compartments. This regulation modulates the sulfation pattern of HS, which is crucial for governing various biological processes. Here, we investigate the effects of silencing Rab1A and Rab2A expression on the localisation of 3-O-sulfotransferase-5 (3OST5) within Golgi compartments and subsequent alterations in HS structure and levels. Interestingly, silencing Rab1A led to a shift in 3OST5 localization towards the trans-Golgi, resulting in increased HS levels within 24 and 48 h, while silencing Rab2A caused 3OST5 accumulation in the cis-Golgi, with a delayed rise in HS content observed after 48 h. Furthermore, a compensatory mechanism was evident in Rab2A-silenced cells, where increased Rab1A protein expression was detected. This suggests a dynamic interplay between Rab1A and Rab2A in maintaining the fine balance of vesicle trafficking processes involved in HS biosynthesis. Additionally, we demonstrate that the trafficking of 3OST5 in COPI vesicles is facilitated by GOLPH3 protein. These findings identify novel vesicular transport mechanisms regulating HS biosynthesis and reveal a compensatory relationship between Rab1A and Rab2A in maintaining baseline HS production.
Collapse
Affiliation(s)
- Maria C Z Meneghetti
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Renan P Cavalheiro
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Edwin A Yates
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Helena B Nader
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Marcelo A Lima
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
- Centre for Glycoscience, Keele University, UK
| |
Collapse
|
2
|
Bottero M, Pessina G, Bason C, Vigo T, Uccelli A, Ferrara G. Nerve-Glial antigen 2: unmasking the enigmatic cellular identity in the central nervous system. Front Immunol 2024; 15:1393842. [PMID: 39136008 PMCID: PMC11317297 DOI: 10.3389/fimmu.2024.1393842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are fundamental components of the extracellular matrix in the central nervous system (CNS). Among these, the Nerve-Glial antigen 2 (NG2) stands out as a transmembrane CSPG exclusively expressed in a different population of cells collectively termed NG2-expressing cells. These enigmatic cells, found throughout the developing and adult CNS, have been indicated with various names, including NG2 progenitor cells, polydendrocytes, synantocytes, NG2 cells, and NG2-Glia, but are more commonly referred to as oligodendrocyte progenitor cells. Characterized by high proliferation rates and unique morphology, NG2-expressing cells stand apart from neurons, astrocytes, and oligodendrocytes. Intriguingly, some NG2-expressing cells form functional glutamatergic synapses with neurons, challenging the long-held belief that only neurons possess the intricate machinery required for neurotransmission. In the CNS, the complexity surrounding NG2-expressing cells extends to their classification. Additionally, NG2 expression has been documented in pericytes and immune cells, suggesting a role in regulating brain innate immunity and neuro-immune crosstalk in homeostasis. Ongoing debates revolve around their heterogeneity, potential as progenitors for various cell types, responses to neuroinflammation, and the role of NG2. Therefore, this review aims to shed light on the enigma of NG2-expressing cells by delving into their structure, functions, and signaling pathways. We will critically evaluate the literature on NG2 expression across the CNS, and address the contentious issues surrounding their classification and roles in neuroinflammation and neurodegeneration. By unraveling the intricacies of NG2-expressing cells, we hope to pave the way for a more comprehensive understanding of their contributions to CNS health and during neurological disorders.
Collapse
Affiliation(s)
- Marta Bottero
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giada Pessina
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | |
Collapse
|
3
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
4
|
Koike T, Mikami T, Tamura JI, Kitagawa H. Altered sulfation status of FAM20C-dependent chondroitin sulfate is associated with osteosclerotic bone dysplasia. Nat Commun 2022; 13:7952. [PMID: 36572689 PMCID: PMC9792594 DOI: 10.1038/s41467-022-35687-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
Raine syndrome, a lethal osteosclerotic bone dysplasia in humans, is caused by loss-of-function mutations in FAM20C; however, Fam20c deficiency in mice does not recapitulate the human disorder, so the underlying pathoetiological mechanisms remain poorly understood. Here we show that FAM20C, in addition to the reported casein kinase activity, also fine-tunes the biosynthesis of chondroitin sulfate (CS) chains to impact bone homeostasis. Specifically, FAM20C with Raine-originated mutations loses the ability to interact with chondroitin 4-O-sulfotransferase-1, and is associated with reduced 4-sulfation/6-sulfation (4S/6S) ratio of CS chains and upregulated biomineralization in human osteosarcoma cells. By contrast, overexpressing chondroitin 6-O-sulfotransferase-1 reduces CS 4S/6S ratio, and induces osteoblast differentiation in vitro and higher bone mineral density in transgenic mice. Meanwhile, a potential xylose kinase activity of FAM20C does not impact CS 4S/6S ratio, and is not associated with Raine syndrome mutations. Our results thus implicate CS 4S/6S ratio imbalances caused by FAM20C mutations as a contributor of Raine syndrome etiology.
Collapse
Affiliation(s)
- Toshiyasu Koike
- grid.411100.50000 0004 0371 6549Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558 Japan
| | - Tadahisa Mikami
- grid.411100.50000 0004 0371 6549Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558 Japan
| | - Jun-Ichi Tamura
- grid.265107.70000 0001 0663 5064Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8551 Japan
| | - Hiroshi Kitagawa
- grid.411100.50000 0004 0371 6549Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558 Japan
| |
Collapse
|
5
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Ordiales H, Alcalde I, Vázquez F, Merayo-Lloves J, Quirós LM, Cueto CM. Cell Surface Glycosaminoglycans as Receptors for Adhesion of Candida spp. to Corneal Cells. Pol J Microbiol 2022; 71:55-62. [PMID: 35635172 PMCID: PMC9152916 DOI: 10.33073/pjm-2022-008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
The most common causal agents of fungal keratitis are yeasts of the Candida genus. Adhesion constitutes the first stage of pathogenesis. Previous studies have shown that glycosaminoglycans from the corneal cell surface play an essential role in bacterial keratitis, although little is known about their role in fungal infections. The objective of this work is to analyze the role that glycosaminoglycans (GAGs) play in the adhesion of fungi of the Candida genus to corneal epithelial cells. The participation of GAGs in the adhesion of fungi was studied through the specific inhibition of the synthesis of these molecules by enzymatic digestion using specific lyases and the silencing of various genes involved in heparan sulfate sulfation. The results seem to indicate that glycosaminoglycans act to some extent as receptors for this fungus, although there are differences between fungal species. Treatment with inhibitors partially reduced the adherence of fungal species. Digestion of cell surface heparan sulfate further reduced the adherence of Candida albicans and Candida glabrata compared to chondroitin sulfate, indicating that the binding is preferentially mediated by heparan sulfate. Degradation of both heparan sulfate and chondroitin sulfate produced similar effects on the adherence of Candida parapsilosis. However, adhesion of C. albicans hyphae is not dependent on GAGs, suggesting the expression of other adhesins and the recognition of other receptors present in corneal cells. Our results open the door to new strategies for stopping the adhesion of pathogenic fungi, and their subsequent invasion of the cornea; thus, reducing the probability of the keratitis development.
Collapse
Affiliation(s)
- Helena Ordiales
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
- Departamento de Biología functional, Universidad de Oviedo, Oviedo, Spain
- Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
- Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain
| | - Fernando Vázquez
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
- Departamento de Biología functional, Universidad de Oviedo, Oviedo, Spain
- Servicio de Microbiología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
- Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain
| | - Luis M. Quirós
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
- Departamento de Biología functional, Universidad de Oviedo, Oviedo, Spain
- Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain
| | - Carla Martín Cueto
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
- Fundación para la Investigación y la Innovación Biosanitaria de Asturias (FINBA), Oviedo, Spain
- Brill Pharma, Barcelona, Spain
| |
Collapse
|
7
|
Chua JS, Balagurunathan K, Saijoh Y. Manipulation of Glycosaminoglycans Using Synthetic Xylosides to Study Their Roles in Lung Branching Morphogenesis in Ex Vivo Lung Bud Culture System. Methods Mol Biol 2022; 2303:645-653. [PMID: 34626413 DOI: 10.1007/978-1-0716-1398-6_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The primary left and right bronchial buds grow and sprout secondary bronchi, which in turn develop tertiary bronchi, and so on. Branching continues for a total of 6-8 generations in the mouse and for about 23 generations in humans, forming the estimated 50 million branches of the human lung. Thus, patterns of branching are incalculably complex. However, these branches are rarely random, implying that they are under genetic control. Genomic information alone cannot specify the patterning information in terms of where the branching occurs and the direction it grows as well as their size and shape. There is a complex choreography among glycosaminoglycans and growth factors/morphogens that provide a highly complex instructive cues that control lung branching and development of the functional lung. Herein, we describe the use of xylosides in the manipulation of glycosaminoglycan (GAG) biosynthesis and study the effect of xyloside-primed GAGs in the regulation of lung branching events.
Collapse
Affiliation(s)
- Jie Shi Chua
- Departments of Biology, Bioengineering & Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Kuberan Balagurunathan
- Departments of Biology, Bioengineering & Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Yukio Saijoh
- Department of Neurobiology & Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Gao J, Huang X. Recent advances on glycosyltransferases involved in the biosynthesis of the proteoglycan linkage region. Adv Carbohydr Chem Biochem 2021; 80:95-119. [PMID: 34872657 DOI: 10.1016/bs.accb.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteoglycans (PGs) are an essential family of glycoproteins, which can play roles in many important biological events including cell proliferation, cancer development, and pathogen infections. Proteoglycans consist of a core protein with one or multiple glycosaminoglycan (GAG) chains, which are covalently attached to serine residues of serine-glycine dipeptide within the core protein through a common tetrasaccharide linkage. In the past three decades, four key glycosyl transferases involved in the biosynthesis of PG linkage have been discovered and investigated. This review aims to provide an overview on progress made on these four enzymes, with foci on enzyme expression/purification, substrate specificity, activity determination, product characterization, and structure-activity relationship analysis.
Collapse
Affiliation(s)
- Jia Gao
- Department of Chemistry, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
9
|
Roy A, Garg V, Mehta SK, Rossi A, Balagurunathan K. Methods for the Production of Recombinant Heparosan, a Critical Heparin Precursor, from Nonpathogenic E. coli Strains. Methods Mol Biol 2021; 2303:151-161. [PMID: 34626377 DOI: 10.1007/978-1-0716-1398-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Heparin is an essential anticoagulant drug discovered over a century ago. Heparin is the second most highly used natural drug and remains a mainstay of therapy with an expected global market share of more than $14 billion in the next 10 years. However, it is still naturally derived from unsustainable animal sources, such as bovine lungs and porcine intestines, as an unfractionated, heterogeneous complex mixture with unpredictable pharmacokinetic properties. Extensive research has been done in devising bioengineering and chemical approaches to produce structurally specific heparin and heparin-like polymers. Though several challenges remain, one of the main bottlenecks is the rapid, high-yield production of recombinant heparosan, a heparin precursor, which is originally isolated from a pathogenic E. coli K5 strain. Herein, we outline the methods for producing metabolically engineered size-specific heparosan, by transforming the essential heparosan biosynthetic genes into nonpathogenic E.coli strain BL21(DE3), in a highly controlled manner. The methods described herein are promising and can be easily scaled up for large-scale production of heparin-like structures.
Collapse
Affiliation(s)
- Anindita Roy
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Varun Garg
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Sai K Mehta
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Alessandro Rossi
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Kuberan Balagurunathan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA.
- Department of Biology, University of Utah, Salt Lake City, UT, USA.
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala, Sweden.
| |
Collapse
|
10
|
Preparation of Isotope-Enriched Heparan Sulfate Precursors for Structural Biology Studies. Methods Mol Biol 2021. [PMID: 34626392 DOI: 10.1007/978-1-0716-1398-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Heparan sulfate (HS) plays numerous important roles in biological systems through their interactions with a wide array of proteins. Structural biology studies of heparan sulfate are often challenging due to the heterogeneity and complexity of the HS molecules. Radioisotope metabolic labeling of HS in cellular systems has enabled the elucidation of HS structures as well as the interactions between HS and proteins. However, radiolabeled structures are not amenable for advanced structural glycobiology studies using sophisticated instruments such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The utilization of stable isotope-enriched HS precursors is an appealing approach to overcome these challenges. The application of stable isotope-enriched HS precursors has facilitated the HS structural analysis by NMR spectroscopy and mass spectrometry. Herein we describe two simple methods to prepare isotopically enriched HS precursors and HS.
Collapse
|
11
|
Wang ST, Neo BH, Betts RJ. Glycosaminoglycans: Sweet as Sugar Targets for Topical Skin Anti-Aging. Clin Cosmet Investig Dermatol 2021; 14:1227-1246. [PMID: 34548803 PMCID: PMC8449875 DOI: 10.2147/ccid.s328671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides comprised of repeating disaccharide units with pleiotropic biological functions, with the non-sulfated GAG hyaluronic acid (HA), and sulfated GAGs dermatan sulfate, chondroitin sulfate, heparan sulfate, keratan sulfate, and to a lesser extent heparin all being expressed in skin. Their ability to regulate keratinocyte proliferation and differentiation, inflammatory processes and extracellular matrix composition and quality demonstrates their critical role in regulating skin physiology. Similarly, the water-binding properties of GAGs and structural qualities, particularly for HA, are crucial for maintaining proper skin form and hydration. The biological importance of GAGs, as well as extensive evidence that their properties and functions are altered in both chronological and extrinsic skin aging, makes them highly promising targets to improve cosmetic skin quality. Within the present review, we examine the cutaneous biological activity of GAGs alongside the protein complexes they form called proteoglycans and summarize the age-related changes of these molecules in skin. We also examine current topical interventional approaches to modulate GAGs for improved skin quality such as direct exogenous administration of GAGs, with a particular interest in strategies targeted at potentiating GAG levels in skin through either attenuating GAG degradation or increasing GAG production.
Collapse
Affiliation(s)
- Siew Tein Wang
- L'Oréal Research & Innovation, L'Oréal Singapore, Singapore
| | - Boon Hoe Neo
- L'Oréal Research & Innovation, L'Oréal Singapore, Singapore
| | | |
Collapse
|
12
|
Meneghetti MCZ, Deboni P, Palomino CMV, Braga LP, Cavalheiro RP, Viana GM, Yates EA, Nader HB, Lima MA. ER-Golgi dynamics of HS-modifying enzymes via vesicular trafficking is a critical prerequisite for the delineation of HS biosynthesis. Carbohydr Polym 2021; 255:117477. [PMID: 33436240 DOI: 10.1016/j.carbpol.2020.117477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
The cell surface and extracellular matrix polysaccharide, heparan sulfate (HS) conveys chemical information to control crucial biological processes. HS chains are synthesized in a non-template driven process mainly in the Golgi apparatus, involving a large number of enzymes capable of subtly modifying its substitution pattern, hence, its interactions and biological effects. Changes in the localization of HS-modifying enzymes throughout the Golgi were found to correlate with changes in the structure of HS, rather than protein expression levels. Following BFA treatment, the HS-modifying enzymes localized preferentially in COPII vesicles and at the trans-Golgi. Shortly after heparin treatment, the HS-modifying enzyme moved from cis to trans-Golgi, which coincided with increased HS sulfation. Finally, it was shown that COPI subunits and Sec24 gene expression changed. Collectively, these findings demonstrate that knowledge of the ER-Golgi dynamics of HS-modifying enzymes via vesicular trafficking is a critical prerequisite for the complete delineation of HS biosynthesis.
Collapse
Affiliation(s)
- Maria C Z Meneghetti
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Paula Deboni
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Carlos M V Palomino
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Luiz P Braga
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Renan P Cavalheiro
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Gustavo M Viana
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Edwin A Yates
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP 04044-020, Brazil; Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Helena B Nader
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Marcelo A Lima
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP 04044-020, Brazil; Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
13
|
Mastio R, Willén D, Söderlund Z, Westergren-Thorsson G, Manner S, Tykesson E, Ellervik U. Fluorescently labeled xylosides offer insight into the biosynthetic pathways of glycosaminoglycans. RSC Adv 2021; 11:38283-38292. [PMID: 35498069 PMCID: PMC9044174 DOI: 10.1039/d1ra06320k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
Five novel xylosides tagged with the fluorescent probe Pacific Blue™ were synthesized and found to act as substrates for β4GalT7, a bottleneck enzyme in the biosynthetic pathways leading to glycosaminoglycans. By confocal microscopy of A549 cells, we showed that the xylosides were taken up by the cells, but did not enter the Golgi apparatus where most of the glycosaminoglycan biosynthesis occurs. Instead, after a possible double galactosylation by β4GalT7 and β3GalT6, the biosynthesis was terminated. We hypothesize this is due to the charge of the fluorescent probe, which is required for fluorescent ability and stability under physiological conditions. Fluorescently labeled xylosides are taken up by cells and initiate priming of labeled GAG chains of various length.![]()
Collapse
Affiliation(s)
- Roberto Mastio
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Daniel Willén
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Zackarias Söderlund
- Department of Experimental Medical Science, Lund University, P. O. Box 117, SE-221 00 Lund, Sweden
| | | | - Sophie Manner
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Emil Tykesson
- Department of Experimental Medical Science, Lund University, P. O. Box 117, SE-221 00 Lund, Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
- Department of Experimental Medical Science, Lund University, P. O. Box 117, SE-221 00 Lund, Sweden
| |
Collapse
|
14
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
15
|
Heparan Sulfate Proteoglycans Biosynthesis and Post Synthesis Mechanisms Combine Few Enzymes and Few Core Proteins to Generate Extensive Structural and Functional Diversity. Molecules 2020; 25:molecules25184215. [PMID: 32937952 PMCID: PMC7570499 DOI: 10.3390/molecules25184215] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are “gagosylated” and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.
Collapse
|
16
|
Yang J, Shen M, Wen H, Luo Y, Huang R, Rong L, Xie J. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. Carbohydr Polym 2019; 230:115650. [PMID: 31887904 DOI: 10.1016/j.carbpol.2019.115650] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Chondroitin sulfate (CS) is a naturally derived bioactive macromolecule and the major component of extracellular matrix (ECM), which widely distributed in various organisms and has attracted much attention due to their significant bioactivities. It is regarded as a favorable biomaterial that has been applied extensively in field of drug delivery and tissue engineering due to its property of non-poisonous, biodegradation, biocompatible and as a major component of ECM. The present article reviews the structure and bioactivities of CS, from the preparation to structure analysis, and emphatically focuses on the biomaterial exertion in delivery system and tissue engineering. At the same time, the present application status and prospect of CS are analyzed and the biomaterial exertion of CS in delivery system and various tissue engineering are also comparatively discussed in view of biomaterial development.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yu Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Rong Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
17
|
Wang SS, Gao X, Solar VD, Yu X, Antonopoulos A, Friedman AE, Matich EK, Atilla-Gokcumen GE, Nasirikenari M, Lau JT, Dell A, Haslam SM, Laine RA, Matta KL, Neelamegham S. Thioglycosides Are Efficient Metabolic Decoys of Glycosylation that Reduce Selectin Dependent Leukocyte Adhesion. Cell Chem Biol 2018; 25:1519-1532.e5. [PMID: 30344053 DOI: 10.1016/j.chembiol.2018.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/14/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022]
Abstract
Metabolic decoys are synthetic analogs of naturally occurring biosynthetic acceptors. These compounds divert cellular biosynthetic pathways by acting as artificial substrates that usurp the activity of natural enzymes. While O-linked glycosides are common, they are only partially effective even at millimolar concentrations. In contrast, we report that N-acetylglucosamine (GlcNAc) incorporated into various thioglycosides robustly truncate cell surface N- and O-linked glycan biosynthesis at 10-100 μM concentrations. The >10-fold greater inhibition is in part due to the resistance of thioglycosides to hydrolysis by intracellular hexosaminidases. The thioglycosides reduce β-galactose incorporation into lactosamine chains, cell surface sialyl Lewis-X expression, and leukocyte rolling on selectin substrates including inflamed endothelial cells under fluid shear. Treatment of granulocytes with thioglycosides prior to infusion into mouse inhibited neutrophil homing to sites of acute inflammation and bone marrow by ∼80%-90%. Overall, thioglycosides represent an easy to synthesize class of efficient metabolic inhibitors or decoys. They reduce N-/O-linked glycan biosynthesis and inflammatory leukocyte accumulation.
Collapse
Affiliation(s)
- Shuen-Shiuan Wang
- Department of Chemical and Biological Engineering, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA
| | - Xuefeng Gao
- TumorEnd LLC, Louisiana Emerging Technology Center, 340 East Parker Drive, Suite 246, Baton Rouge, LA 70803, USA
| | - Virginia Del Solar
- Department of Chemical and Biological Engineering, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA; Clinical & Translational Research Center and State University of New York, Buffalo, NY 14260, USA
| | - Xinheng Yu
- Department of Chemical and Biological Engineering, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA
| | | | - Alan E Friedman
- Department of Chemistry, State University of New York, Buffalo, NY 14260, USA
| | - Eryn K Matich
- Department of Chemistry, State University of New York, Buffalo, NY 14260, USA
| | | | - Mehrab Nasirikenari
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Joseph T Lau
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Roger A Laine
- TumorEnd LLC, Louisiana Emerging Technology Center, 340 East Parker Drive, Suite 246, Baton Rouge, LA 70803, USA
| | - Khushi L Matta
- Department of Chemical and Biological Engineering, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA; TumorEnd LLC, Louisiana Emerging Technology Center, 340 East Parker Drive, Suite 246, Baton Rouge, LA 70803, USA.
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA; Clinical & Translational Research Center and State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
18
|
Thieker DF, Xu Y, Chapla D, Nora C, Qiu H, Felix T, Wang L, Moremen KW, Liu J, Esko JD, Woods RJ. Downstream Products are Potent Inhibitors of the Heparan Sulfate 2-O-Sulfotransferase. Sci Rep 2018; 8:11832. [PMID: 30087361 PMCID: PMC6081452 DOI: 10.1038/s41598-018-29602-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022] Open
Abstract
Heparan Sulfate (HS) is a cell signaling molecule linked to pathological processes ranging from cancer to viral entry, yet fundamental aspects of its biosynthesis remain incompletely understood. Here, the binding preferences of the uronyl 2-O-sulfotransferase (HS2ST) are examined with variably-sulfated hexasaccharides. Surprisingly, heavily sulfated oligosaccharides formed by later-acting sulfotransferases bind more tightly to HS2ST than those corresponding to its natural substrate or product. Inhibition assays also indicate that the IC50 values correlate simply with degree of oligosaccharide sulfation. Structural analysis predicts a mode of inhibition in which 6-O-sulfate groups located on glucosamine residues present in highly-sulfated oligosaccharides occupy the canonical binding site of the nucleotide cofactor. The unexpected finding that oligosaccharides associated with later stages in HS biosynthesis inhibit HS2ST indicates that the enzyme must be separated temporally and/or spatially from downstream products during biosynthesis in vivo, and highlights a challenge for the enzymatic synthesis of lengthy HS chains in vitro.
Collapse
Affiliation(s)
- David F Thieker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Chelsea Nora
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Hong Qiu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Thomas Felix
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Lianchun Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert J Woods
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
19
|
Persson A, Ellervik U, Mani K. Fine-tuning the structure of glycosaminoglycans in living cells using xylosides. Glycobiology 2018; 28:499-511. [DOI: 10.1093/glycob/cwy049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Andrea Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ulf Ellervik
- Center for Analysis and Synthesis, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Otsuka Y, Sato T. Comparative Quantification Method for Glycosylated Products Elongated on β-Xylosides Using a Stable Isotope-Labeled Saccharide Primer. Anal Chem 2018. [PMID: 29533603 DOI: 10.1021/acs.analchem.7b05438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structures and amounts of glycosaminoglycan (GAG) produced by cells have attracted much interest because GAG biosynthesis activity can change in cellular processes such as disease and differentiation. β-Xylosides, also called saccharide primers, have been used as artificial acceptors not only to generate GAG oligosaccharides in cells and tissues but also to investigate their biosynthetic pathways. Various analytical methods have been applied to confirm the structure and amounts of GAG oligosaccharides elongated using saccharide primers, yet sample preparation processes such as solid-phase extraction in analysis can cause experimental error and disrupt accurate comparative quantification of glycosylated products. In this study, we developed a new quantification method using a deuterium-labeled saccharide primer. The "heavy" and "light" primers were chemically synthesized, and priming abilities were confirmed by liquid chromatography-tandem mass spectrometry. Relative peak areas of light/heavy products showed good linearity and were well correlated with the theoretical amounts of glycosylated products. Then, as a validation study, we carried out a biosynthesis inhibition assay using known GAG biosynthesis inhibitors. According to the relative quantification using saccharide primers, differences in the mode-of-action among the four GAG biosynthesis inhibitors were dependent on the GAG biosynthetic pathway. Our results indicate that the method will likely forge a new path for comparative glycosaminoglycomics using cultured cells and tissues.
Collapse
Affiliation(s)
- Yuya Otsuka
- Central Research Laboratories , Seikagaku Corporation , Higashiyamato , Tokyo 207-0021 , Japan.,Department of Biosciences and Informatics , Keio University , Hiyoshi, Yokohama , Kanagawa 223-8522 , Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics , Keio University , Hiyoshi, Yokohama , Kanagawa 223-8522 , Japan
| |
Collapse
|
21
|
Jao TM, Li YL, Lin SW, Tzeng ST, Yu IS, Yen SJ, Tsai MH, Yang YC. Alteration of colonic epithelial cell differentiation in mice deficient for glucosaminyl N-deacetylase/N-sulfotransferase 4. Oncotarget 2018; 7:84938-84950. [PMID: 27793051 PMCID: PMC5356710 DOI: 10.18632/oncotarget.12915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Glucosaminyl N-deacetylase/N-sulfotransferases (NDSTs) are the first enzymes that mediate the initiation of heparan sulfate sulfation. We previously identified NDST4 as a putative tumor suppressor in human colorectal cancer. In the study, we generated an Ndst4 knockout (Ndst4-/-) mouse strain and explored its phenotypic characteristics, particularly in the development of colonic epithelial homeostasis. The Ndst4-deficient mice were viable and fertile, and their life spans were similar to those of wild-type littermates. No gross behavioral or morphological differences were observed between the Ndst4-/- and wild-type mice, and no significant changes were determined in the hematological or serum biochemical parameters of the Ndst4-/- mice. Ndst4 RNA transcripts were expressed in the brain, lung, gastrointestinal tract, pancreas, and ovary. However, Ndst4-null mice exhibited no gross or histological abnormalities in the studied organs, except for the colon. Although no alterations were observed in the crypt length or number of proliferating cells, the Ndst4-/- mice exhibited an increased number of goblet cells and a decreased number of colonocytes in the proximal colon compared with the wild-type mice. Moreover, Ndst4 deficiency increased the basal level of apoptosis in the colonic epithelium. Taken together, we established, for the first time, an Ndst4-/- mouse strain and revealed the involvement of Ndst4 in the development and homeostasis of colonic epithelium. Accordingly, NDST4 in human colon might direct the biosynthesis of specific heparan sulfate proteoglycans that are essential for the maintenance of colonic epithelial homeostasis. Thus, the loss of its function may result in the tumorigenesis and progression of colorectal cancer.
Collapse
Affiliation(s)
- Tzu-Ming Jao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Lin Li
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Tai Tzeng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sou-Jhy Yen
- Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Ming-Hong Tsai
- Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
22
|
Chua JS, Kuberan B. Synthetic Xylosides: Probing the Glycosaminoglycan Biosynthetic Machinery for Biomedical Applications. Acc Chem Res 2017; 50:2693-2705. [PMID: 29058876 DOI: 10.1021/acs.accounts.7b00289] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosaminoglycans (GAGs) are polysaccharides ubiquitously found on cell surfaces and in the extracellular matrix (ECM). They regulate numerous cellular signaling events involved in many developmental and pathophysiological processes. GAGs are composed of complex sequences of repeating disaccharide units, each of which can carry many different modifications. The tremendous structural variations account for their ability to bind many proteins and thus, for their numerous functions. Although the sequence of GAG biosynthetic events and the enzymes involved mostly were deduced a decade ago, the emergence of tissue or cell specific GAGs from a nontemplate driven process remains an enigma. Current knowledge favors the hypothesis that macromolecular assemblies of GAG biosynthetic enzymes termed "GAGOSOMEs" coordinate polymerization and fine structural modifications in the Golgi apparatus. Distinct GAG structures arise from the differential channeling of substrates through the Golgi apparatus to various GAGOSOMEs. As GAGs perform multiple regulatory roles, it is of great interest to develop molecular strategies to selectively interfere with GAG biosynthesis for therapeutic applications. In this Account, we assess our present knowledge on GAG biosynthesis, the manipulation of GAG biosynthesis using synthetic xylosides, and the unrealized potential of these xylosides in various biomedical applications. Synthetic xylosides are small molecules consisting of a xylose attached to an aglycone group, and they compete with endogenous proteins for precursors and biosynthetic enzymes to assemble GAGs. This competition reduces endogenous proteoglycan-bound GAGs while increasing xyloside-bound free GAGs, mostly chondroitin sulfate (CS) and less heparan sulfate (HS), resulting in a variety of biological consequences. To date, hundreds of xylosides have been published and the importance of the aglycone group in determining the structure of the primed GAG chains is well established. However, the structure-activity relationship has long been cryptic. Nonetheless, xylosides have been designed to increase HS priming, modified to inhibit endogenous GAG production without priming, and engineered to be more biologically relevant. Synthetic xylosides hold great promise in many biomedical applications and as therapeutics. They are small, orally bioavailable, easily excreted, and utilize the host cell biosynthetic machinery to assemble GAGs that are likely nonimmunogenic. Various xylosides have been shown, in different biological systems, to have anticoagulant effects, selectively kill tumor cells, abrogate angiogenic and metastatic pathways, promote angiogenesis and neuronal growth, and affect embryonic development. However, most of these studies utilized the commercially available one or two β-D-xylosides and focused on the impact of endogenous proteoglycan-bound GAG inhibition on biological activity. Nevertheless, the manipulation of cell behavior as a result of stabilizing growth factor signaling with xyloside-primed GAGs is also reckonable but underexplored. Recent advances in the use of molecular modeling and docking simulations to understand the structure-activity relationships of xylosides have opened up the possibility of a more rational aglycone design to achieve a desirable biological outcome through selective priming and inhibitory activities. We envision these advances will encourage more researchers to explore these fascinating xylosides, harness the GAG biosynthetic machinery for a wider range of biomedical applications, and accelerate the successful transition of xyloside-based therapeutics from bench to bedside.
Collapse
Affiliation(s)
- Jie Shi Chua
- Department
of Bioengineering, ‡Department of Medicinal Chemistry, §Department of Biology, and ∥Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah 84112, United States
| | - Balagurunathan Kuberan
- Department
of Bioengineering, ‡Department of Medicinal Chemistry, §Department of Biology, and ∥Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
23
|
Ruthenium(II)- and copper(I)-catalyzed synthesis of click-xylosides and assessment of their glycosaminoglycan priming activity. Bioorg Med Chem Lett 2017; 27:5027-5030. [DOI: 10.1016/j.bmcl.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/30/2017] [Accepted: 10/01/2017] [Indexed: 11/20/2022]
|
24
|
Mencio CP, My Tran V, Quintero MV, Koketsu M, Goller F, Kuberan B. Regulation of glycosaminoglycan biogenesis is critical for sensitive-period-dependent vocal ontogeny. Dev Neurobiol 2017; 77:1401-1412. [PMID: 29055099 DOI: 10.1002/dneu.22547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/30/2017] [Accepted: 10/16/2017] [Indexed: 11/11/2022]
Abstract
In the brain, the extracellular matrix (ECM) plays a central role during neural development and thus modulates critical-period regulated behavioral ontogeny. The major components of the ECM are glycosaminoglycans (GAGs) including chondroitin sulfate (CS). However, the specific roles of GAGs in behavioral development are largely unknown. It has been shown that xylosides affect the biological functions of GAGs through modulating GAG biosynthesis. Particularly, xylosides affect GAG biosynthesis through priming of GAG chains (priming activity), competing with endogenous core proteins that carry GAG initiation sites (decoy activity), or both. Using birdsong as our model, we investigated, for the first time, how xyloside-mediated modulation of GAG biogenesis affects song development. Xylosides infused into motor cortex of juvenile birds alter song development by specifically affecting ontogeny of the stereotyped sequence rather than the acoustic structure of syllables. Further analyses reveal that observed changes can be attributed to the priming activity rather than the decoy activity of xylosides. Collectively, these results suggest that regulation of GAG biogenesis through chemical biology approaches may allow promising therapeutic interventions of critical-period-dependent central nervous system plasticity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1401-1412, 2017.
Collapse
Affiliation(s)
- Caitlin P Mencio
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112
| | - Vy My Tran
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112
| | - Maritza V Quintero
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, 501-1193, Japan
| | - Franz Goller
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112.,Department of Biology, University of Utah, Salt Lake City, Utah, 84112
| | - Balagurunathan Kuberan
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112.,Department of Biology, University of Utah, Salt Lake City, Utah, 84112
| |
Collapse
|
25
|
Chua JS, Tran VM, Kalita M, Quintero MV, Antelope O, Muruganandam G, Saijoh Y, Kuberan B. A glycan-based approach to therapeutic angiogenesis. PLoS One 2017; 12:e0182301. [PMID: 28763512 PMCID: PMC5538652 DOI: 10.1371/journal.pone.0182301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 07/11/2017] [Indexed: 01/23/2023] Open
Abstract
Angiogenesis, the sprouting of new blood vessels from existing vasculature, involves multiple complex biological processes, and it is an essential step for hemostasis, tissue healing and regeneration. Angiogenesis stimulants can ameliorate human disease conditions including limb ischemia, chronic wounds, heart disease, and stroke. The current strategies to improve the bioavailability of pro-angiogenic growth factors, including VEGF and FGF2, have remained largely unsuccessful. This study demonstrates that small molecules, termed click-xylosides, can promote angiogenesis in the in vitro matrigel tube formation assay and the ex ovo chick chorioallantoic membrane assay, depending on their aglycone moieties. Xyloside treatment enhances network connectivity and cell survivability, thereby, maintaining the network structures on matrigel culture for an extended period of time. These effects were achieved via the secreted xyloside-primed glycosaminoglycans (GAG) chains that in part, act through an ERK1/2 mediated signaling pathway. Through the remodeling of GAGs in the extracellular matrix of endothelial cells, the glycan approach, involving xylosides, offers great potential to effectively promote therapeutic angiogenesis.
Collapse
Affiliation(s)
- Jie Shi Chua
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Vy M. Tran
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Mausam Kalita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Maritza V. Quintero
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Orlando Antelope
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Geethu Muruganandam
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Balagurunathan Kuberan
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
26
|
Otsuka Y, Sato T. Saccharide Primers Comprising Xylosyl-Serine Primed Phosphorylated Oligosaccharides Act as Intermediates in Glycosaminoglycan Biosynthesis. ACS OMEGA 2017; 2:3110-3122. [PMID: 30023684 PMCID: PMC6044892 DOI: 10.1021/acsomega.7b00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/22/2017] [Indexed: 05/29/2023]
Abstract
β-Xylosides have been used as an artificial initiator of glycosaminoglycan (GAG) biosynthesis to investigate its mechanism and to obtain these oligosaccharides. In GAG biosynthesis, phosphorylation on the xylose residue is a crucial step. However, little attention has been paid to phosphorylated oligosaccharides obtained from β-xylosides. In a previous study, we demonstrated that a novel β-xyloside, N-lauryl-O-β-xyloyranosyl-serinamide (Xyl-Ser-C12), had excellent GAG-type oligosaccharide priming ability, whereas phosphorylated oligosaccharides were not found in the primed oligosaccharides. This study examines the potential of Xyl-Ser-C12 and three of its derivatives for use as a probe to investigate the GAG biosynthesis mechanism. Glycosylated products were obtained by incubation of the β-xylosides in normal human dermal fibroblast cells and compared by liquid chromatography-electrospray ionization-mass spectrometry. By the optimized method to detect phosphorylated products, Xyl-Ser-C12 was demonstrated to prime not only GAG-type oligosaccharides but also a variety of xylose-phosphorylated products. Among the synthesized β-xylosides, those consisting of xylosyl-serine primed large amounts of phosphorylated and GAG-type oligosaccharides, whereas the others primed sialyloligosaccharides mainly. The majority of the phosphorylated products were considered to be GAG intermediates, which are less observed in nature. To our best knowledge, this is the first report showing that the amino acid residues around the Xyl attachment position strongly affect the phosphorylation efficiency and GAG chain-priming ability of β-xylosides. This study leads to the possibility of the use of β-xyloside as a probe to observe the Xyl phosphorylation process during GAG biosynthesis and investigate comparative glycosaminoglycomics between different cells.
Collapse
Affiliation(s)
- Yuya Otsuka
- Central Research
Laboratories, Seikagaku Corporation, 1253, Tateno 3-chome, Higashiyamato-shi, Tokyo 207-0021, Japan
- Department
of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohokuku, Yokohama, Kanagawa 223-8522, Japan
| | - Toshinori Sato
- Department
of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohokuku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
27
|
Köwitsch A, Zhou G, Groth T. Medical application of glycosaminoglycans: a review. J Tissue Eng Regen Med 2017; 12:e23-e41. [DOI: 10.1002/term.2398] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/08/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Alexander Köwitsch
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| | - Guoying Zhou
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| |
Collapse
|
28
|
Chatron-Colliet A, Brusa C, Bertin-Jung I, Gulberti S, Ramalanjaona N, Fournel-Gigleux S, Brézillon S, Muzard M, Plantier-Royon R, Rémond C, Wegrowski Y. 'Click'-xylosides as initiators of the biosynthesis of glycosaminoglycans: Comparison of mono-xylosides with xylobiosides. Chem Biol Drug Des 2017; 89:319-326. [PMID: 27618481 DOI: 10.1111/cbdd.12865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/27/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022]
Abstract
Different mono-xylosides and their corresponding xylobiosides obtained by a chemo-enzymatic approach featuring various substituents attached to a triazole ring were probed as priming agents for glycosaminoglycan (GAG) biosynthesis in the xylosyltransferase-deficient pgsA-745 Chinese hamster ovary cell line. Xylosides containing a hydrophobic aglycone moiety were the most efficient priming agents. Mono-xylosides induced higher GAG biosynthesis in comparison with their corresponding xylobiosides. The influence of the degree of polymerization of the carbohydrate part on the priming activity was investigated through different experiments. We demonstrated that in case of mono-xylosides, the cellular uptake as well as the affinity and the catalytic efficiency of β-1,4-galactosyltransferase 7 were higher than for xylobiosides. Altogether, these results indicate that hydrophobicity of the aglycone and degree of polymerization of glycone moiety were critical factors for an optimal priming activity for GAG biosynthesis.
Collapse
Affiliation(s)
- Aurore Chatron-Colliet
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
| | - Charlotte Brusa
- Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims Cedex 2, France
- UMR614 Fractionnement des AgroRessources et Environnement, Université de Reims Champagne-Ardenne, Reims Cedex, France
- UMR614 Fractionnement des AgroRessources et Environnement, INRA, Reims Cedex, France
| | - Isabelle Bertin-Jung
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Sandrine Gulberti
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Nick Ramalanjaona
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Sylvie Fournel-Gigleux
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Stéphane Brézillon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
| | - Murielle Muzard
- Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims Cedex 2, France
| | - Richard Plantier-Royon
- Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims Cedex 2, France
| | - Caroline Rémond
- UMR614 Fractionnement des AgroRessources et Environnement, Université de Reims Champagne-Ardenne, Reims Cedex, France
- UMR614 Fractionnement des AgroRessources et Environnement, INRA, Reims Cedex, France
| | - Yanusz Wegrowski
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
| |
Collapse
|
29
|
Ghiselli G. Drug-Mediated Regulation of Glycosaminoglycan Biosynthesis. Med Res Rev 2016; 37:1051-1094. [DOI: 10.1002/med.21429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Giancarlo Ghiselli
- Glyconova Srl; Parco Scientifico Silvano Fumero; Via Ribes 5 Colleretto Giacosa, (TO) Italy
| |
Collapse
|
30
|
García B, Merayo-Lloves J, Rodríguez D, Alcalde I, García-Suárez O, Alfonso JF, Baamonde B, Fernández-Vega A, Vazquez F, Quirós LM. Different Use of Cell Surface Glycosaminoglycans As Adherence Receptors to Corneal Cells by Gram Positive and Gram Negative Pathogens. Front Cell Infect Microbiol 2016; 6:173. [PMID: 27965938 PMCID: PMC5127826 DOI: 10.3389/fcimb.2016.00173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022] Open
Abstract
The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive, and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies.
Collapse
Affiliation(s)
- Beatriz García
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de OviedoOviedo, Spain; Departmento de Biología Funcional, Universidad de OviedoOviedo, Spain
| | - Jesús Merayo-Lloves
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de Oviedo Oviedo, Spain
| | - David Rodríguez
- Departamento de Bioquímica y Biología Molecular, Universidad de OviedoOviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Universidad de OviedoOviedo, Spain
| | - Ignacio Alcalde
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de Oviedo Oviedo, Spain
| | - Olivia García-Suárez
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de OviedoOviedo, Spain; Departmento de Morfología y Biología Celular, Universidad de OviedoOviedo, Spain
| | - José F Alfonso
- Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega Oviedo, Spain
| | - Begoña Baamonde
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de Oviedo Oviedo, Spain
| | - Andrés Fernández-Vega
- Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega Oviedo, Spain
| | - Fernando Vazquez
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de OviedoOviedo, Spain; Departmento de Biología Funcional, Universidad de OviedoOviedo, Spain; Departmento de Microbiología, Hospital Universitario Central de AsturiasOviedo, Spain
| | - Luis M Quirós
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de OviedoOviedo, Spain; Departmento de Biología Funcional, Universidad de OviedoOviedo, Spain
| |
Collapse
|
31
|
Murphy K, Elias G, Steppan J, Boxley C, Balagurunathan K, Victor X, Meaders T, Muto M. Percutaneous Treatment of Herniated Lumbar Discs with Ozone: Investigation of the Mechanisms of Action. J Vasc Interv Radiol 2016; 27:1242-1250.e3. [PMID: 27363296 DOI: 10.1016/j.jvir.2016.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To elucidate the mechanism of action of intradiscal oxygen-ozone therapy for herniated intervertebral disc therapy. METHODS Ozone's mechanism of action was investigated using 3 approaches: mathematical models of intervertebral disc space to explore the relationship between disc pressure and volume; ozonolysis experiments using glycosaminoglycans (GAGs) from a Chinese hamster ovary cell line that were similar in composition to GAGs found in human nucleus pulposus; and experiments in which live Yucatan miniature pigs received various concentrations of percutaneous, image-guided intradiscal oxygen-ozone treatment and were examined (after sacrifice) with histology and semiquantitative analysis of disc cytokine concentrations. RESULTS Engineering calculations support observations that a small (6%) disc volume reduction can result in considerable (9.84%) intradiscal pressure reduction. Porcine disc histology and Chinese hamster ovary GAG ozonolysis results showed that administered ozone reacted with and fragmented disc proteoglycans, reducing disc volume through disc dehydration. Cytokine analysis of porcine discs found that each of 4 cytokines measured (interleukin [IL]-1β, IL-6, IL-8, and tumor necrosis factor α) increased in concentration after 2 wt% ozone treatment. CONCLUSIONS Oxygen-ozone therapy breaks down proteoglycan GAGs that maintain disc osmotic pressure, dehydrating the nucleus pulposus and reducing intervertebral disc volume. This is likely a primary mechanism by which ozone relieves nerve root compression and alleviates herniated disc-related pain. Additionally, 2 wt% ozone appears to interact with intradiscal cytokines, generating an antiinflammatory response that may contribute to symptom improvement.
Collapse
Affiliation(s)
| | - Gavin Elias
- University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | - Mario Muto
- Antonio Cardarelli Hospital, Naples, Italy
| |
Collapse
|
32
|
Persson A, Tykesson E, Westergren-Thorsson G, Malmström A, Ellervik U, Mani K. Xyloside-primed Chondroitin Sulfate/Dermatan Sulfate from Breast Carcinoma Cells with a Defined Disaccharide Composition Has Cytotoxic Effects in Vitro. J Biol Chem 2016; 291:14871-82. [PMID: 27226567 DOI: 10.1074/jbc.m116.716829] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 11/06/2022] Open
Abstract
We previously reported that the xyloside 2-(6-hydroxynaphthyl) β-d-xylopyranoside (XylNapOH), in contrast to 2-naphthyl β-d-xylopyranoside (XylNap), specifically reduces tumor growth both in vitro and in vivo Although there are indications that this could be mediated by the xyloside-primed glycosaminoglycans (GAGs) and that these differ in composition depending on xyloside and cell type, detailed knowledge regarding a structure-function relationship is lacking. In this study we isolated XylNapOH- and XylNap-primed GAGs from a breast carcinoma cell line, HCC70, and a breast fibroblast cell line, CCD-1095Sk, and demonstrated that both XylNapOH- and XylNap-primed chondroitin sulfate/dermatan sulfate GAGs derived from HCC70 cells had a cytotoxic effect on HCC70 cells and CCD-1095Sk cells. The cytotoxic effect appeared to be mediated by induction of apoptosis and was inhibited in a concentration-dependent manner by the XylNap-primed heparan sulfate GAGs. In contrast, neither the chondroitin sulfate/dermatan sulfate nor the heparan sulfate derived from CCD-1095Sk cells primed on XylNapOH or XylNap had any effect on the growth of HCC70 cells or CCD-105Sk cells. These observations were related to the disaccharide composition of the XylNapOH- and XylNap-primed GAGs, which differed between the two cell lines but was similar when the GAGs were derived from the same cell line. To our knowledge this is the first report on cytotoxic effects mediated by chondroitin sulfate/dermatan sulfate.
Collapse
Affiliation(s)
| | - Emil Tykesson
- From the Department of Experimental Medical Science and
| | | | | | - Ulf Ellervik
- the Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, SE-221 84 Lund, Sweden
| | - Katrin Mani
- From the Department of Experimental Medical Science and
| |
Collapse
|
33
|
In vitro and in vivo characterization of a reversible synthetic heparin analog. Thromb Res 2015; 138:121-129. [PMID: 26709038 DOI: 10.1016/j.thromres.2015.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/01/2015] [Accepted: 12/09/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND The global supply of unfractionated heparin (UFH) and all commercially available low molecular weight heparins (LMWH) remain dependent on animal sources, such as porcine intestine or bovine lung. Recent experience has shown that contamination of the supply chain (with over-sulfated chondroitin sulfates) can result in lethal toxicity. Fondaparinux is currently the only commercially available synthetic analog of heparin. We recently described a new class of chemoenzymatically synthesized heparin analogs. One of these compounds (S12-mer) is a dodecasaccharide consisting of an antithrombin-binding moiety with repeating units of IdoA2S-GlcNS6S and two 3-O-sulfate groups that confer the ability to bind protamine. OBJECTIVE/METHODS We sought to further characterize this new compound in vitro using biochemical and global coagulation assays and in vivo using thrombosis and hemostasis assays. RESULTS The anticoagulant activities of the Super 12-mer (S12-mer) and Enoxaparin in anti-factor Xa and plasma-based thrombin generation assays were roughly equivalent with a 50% reduction in peak thrombin generation occurring at approximately 325nM. When protamine was titrated against a fixed concentration of S12-mer in plasma or blood, the S12-mer displayed a significant restitution of thrombin generation and clot formation. In vivo, S12-mer inhibited venous thrombosis to a similar extent as Enoxaparin, with similar bleeding profiles. CONCLUSIONS These data show that the S12-mer has almost identical efficacy to Enoxaparin in terms of FXa inhibition, while displaying significant reversibility with protamine. Taken together with the ability to ensure purity and homogeneity from batch to batch, the S12-mer is a promising new synthetic heparin analog with a potentially enhanced safety profile.
Collapse
|
34
|
Thorsheim K, Siegbahn A, Johnsson RE, Stålbrand H, Manner S, Widmalm G, Ellervik U. Chemistry of xylopyranosides. Carbohydr Res 2015; 418:65-88. [PMID: 26580709 DOI: 10.1016/j.carres.2015.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/22/2022]
Abstract
Xylose is one of the few monosaccharidic building blocks that are used by mammalian cells. In comparison with other monosaccharides, xylose is rather unusual and, so far, only found in two different mammalian structures, i.e. in the Notch receptor and as the linker between protein and glycosaminoglycan (GAG) chains in proteoglycans. Interestingly, simple soluble xylopyranosides can not only initiate the biosynthesis of soluble GAG chains but also function as inhibitors of important enzymes in the biosynthesis of proteoglycans. Furthermore, xylose is a major constituent of hemicellulosic xylans and thus one of the most abundant carbohydrates on Earth. Altogether, this has spurred a strong interest in xylose chemistry. The scope of this review is to describe synthesis of xylopyranosyl donors, as well as protective group chemistry, modifications, and conformational analysis of xylose.
Collapse
Affiliation(s)
- Karin Thorsheim
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Anna Siegbahn
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Richard E Johnsson
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Henrik Stålbrand
- Centre for Molecular Protein Science, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sophie Manner
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
35
|
Siegbahn A, Thorsheim K, Ståhle J, Manner S, Hamark C, Persson A, Tykesson E, Mani K, Westergren-Thorsson G, Widmalm G, Ellervik U. Exploration of the active site of β4GalT7: modifications of the aglycon of aromatic xylosides. Org Biomol Chem 2015; 13:3351-62. [PMID: 25655827 DOI: 10.1039/c4ob02632b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteoglycans (PGs) are macromolecules that consist of long linear polysaccharides, glycosaminoglycan (GAG) chains, covalently attached to a core protein by the carbohydrate xylose. The biosynthesis of GAG chains is initiated by xylosylation of the core protein followed by galactosylation by the galactosyltransferase β4GalT7. Some β-d-xylosides, such as 2-naphthyl β-d-xylopyranoside, can induce GAG synthesis by serving as acceptor substrates for β4GalT7 and by that also compete with the GAG synthesis on core proteins. Here we present structure-activity relationships for β4GalT7 and xylosides with modifications of the aromatic aglycon, using enzymatic assays, cell studies, and molecular docking simulations. The results show that the aglycons reside on the outside of the active site of the enzyme and that quite bulky aglycons are accepted. By separating the aromatic aglycon from the xylose moiety by linkers, a trend towards increased galactosylation with increased linker length is observed. The galactosylation is influenced by the identity and position of substituents in the aromatic framework, and generally, only xylosides with β-glycosidic linkages function as good substrates for β4GalT7. We also show that the galactosylation ability of a xyloside is increased by replacing the anomeric oxygen with sulfur, but decreased by replacing it with carbon. Finally, we propose that reaction kinetics of galactosylation by β4GalT7 is dependent on subtle differences in orientation of the xylose moiety.
Collapse
Affiliation(s)
- Anna Siegbahn
- Center for Analysis and Synthesis, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mihov D, Spiess M. Glycosaminoglycans: Sorting determinants in intracellular protein traffic. Int J Biochem Cell Biol 2015; 68:87-91. [PMID: 26327396 DOI: 10.1016/j.biocel.2015.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/29/2015] [Accepted: 08/27/2015] [Indexed: 01/12/2023]
Abstract
Intracellular transport of proteins to their appropriate destinations is crucial for the maintenance of cellular integrity and function. Sorting information is contained either directly in the amino acid sequence or in a protein's post-translational modifications. Glycosaminoglycans (GAGs) are characteristic modifications of proteoglycans. GAGs are long unbranched polysaccharide chains with unique structural and functional properties also contributing to protein sorting in various ways. By deletion or insertion of GAG attachment sites it has been shown that GAGs affect polarized sorting in epithelial cells, targeting to and storage in secretory granules, and endocytosis. Most recently, the role of GAGs as signals for rapid trans-Golgi-to-cell surface transport, dominant over the cytosolic sorting motifs in the core protein, was demonstrated. Here, we provide an overview on existing data on the roles of GAGs on protein and proteoglycan trafficking.
Collapse
Affiliation(s)
- Deyan Mihov
- Biozentrum, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
37
|
Prydz K. Determinants of Glycosaminoglycan (GAG) Structure. Biomolecules 2015; 5:2003-22. [PMID: 26308067 PMCID: PMC4598785 DOI: 10.3390/biom5032003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/05/2023] Open
Abstract
Proteoglycans (PGs) are glycosylated proteins of biological importance at cell surfaces, in the extracellular matrix, and in the circulation. PGs are produced and modified by glycosaminoglycan (GAG) chains in the secretory pathway of animal cells. The most common GAG attachment site is a serine residue followed by a glycine (-ser-gly-), from which a linker tetrasaccharide extends and may continue as a heparan sulfate, a heparin, a chondroitin sulfate, or a dermatan sulfate GAG chain. Which type of GAG chain becomes attached to the linker tetrasaccharide is influenced by the structure of the protein core, modifications occurring to the linker tetrasaccharide itself, and the biochemical environment of the Golgi apparatus, where GAG polymerization and modification by sulfation and epimerization take place. The same cell type may produce different GAG chains that vary, depending on the extent of epimerization and sulfation. However, it is not known to what extent these differences are caused by compartmental segregation of protein cores en route through the secretory pathway or by differential recruitment of modifying enzymes during synthesis of different PGs. The topic of this review is how different aspects of protein structure, cellular biochemistry, and compartmentalization may influence GAG synthesis.
Collapse
Affiliation(s)
- Kristian Prydz
- Department of Biosciences, University of Oslo, Box 1066, Blindern OSLO 0316, Norway.
| |
Collapse
|
38
|
Abstract
Proteoglycans (PGs) regulate diverse functions in the central nervous system (CNS) by interacting with a number of growth factors, matrix proteins, and cell surface molecules. Heparan sulfate (HS) and chondroitin sulfate (CS) are two major glycosaminoglycans present in the PGs of the CNS. The functionality of these PGs is to a large extent dictated by the fine sulfation patterns present on their glycosaminoglycan (GAG) chains. In the past 15 years, there has been a significant expansion in our knowledge on the role of HS and CS chains in various neurological processes, such as neuronal growth, regeneration, plasticity, and pathfinding. However, defining the relation between distinct sulfation patterns of the GAGs and their functionality has thus far been difficult. With the emergence of novel tools for the synthesis of defined GAG structures, and techniques for their characterization, we are now in a better position to explore the structure-function relation of GAGs in the context of their sulfation patterns. In this review, we discuss the importance of GAGs on CNS development, injury, and disorders with an emphasis on their sulfation patterns. Finally, we outline several GAG-based therapeutic strategies to exploit GAG chains for ameliorating various CNS disorders.
Collapse
Affiliation(s)
- Vimal P Swarup
- Department of Bioengineering, University of Utah, Salt Lake City, 84112 UT , USA
| | | | | | | |
Collapse
|
39
|
Kalita M, Quintero MV, Raman K, Tran VM, Kuberan B. Synthesis and biomedical applications of xylosides. Methods Mol Biol 2015; 1229:517-28. [PMID: 25325977 DOI: 10.1007/978-1-4939-1714-3_40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Xylosides modulate the biosynthesis of sulfated glycosaminoglycans (GAGs) in various cell types. A new class of xylosides called "click-xylosides" has been synthesized for their biostability, ease of chemical synthesis, and tunable sulfated GAG biogenesis in vitro and in vivo. These click-xylosides have several therapeutic and biomedical applications in the regulation of angiogenesis, tumor inhibition, and regeneration. This protocol focuses on the synthesis of click-xylosides, their cellular priming activities, and biomedical applications.
Collapse
Affiliation(s)
- Mausam Kalita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | | | | |
Collapse
|
40
|
Mihov D, Raja E, Spiess M. Chondroitin Sulfate Accelerates Trans-Golgi-to-Surface Transport of Proteoglycan Amyloid Precursor Protein. Traffic 2015; 16:853-70. [PMID: 25951880 DOI: 10.1111/tra.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/28/2022]
Abstract
The amyloid precursor protein (APP) is a membrane protein implicated in the pathogenesis of Alzheimer's disease. APP is a part-time proteoglycan, as splice variants lacking exon 15 are modified by a chondroitin sulfate glycosaminoglycan (GAG) chain. Investigating the effect of the GAG chain on the trafficking of APP in non-polarized cells, we found it to increase the steady-state surface-to-intracellular distribution, to reduce the rate of endocytosis and to accelerate transport kinetics from the trans-Golgi network (TGN) to the plasma membrane. Deletion of the cytosolic domain resulted in delayed surface arrival of GAG-free APP, but did not affect the rapid export kinetics of the proteoglycan form. Protein-free GAG chains showed the same TGN-to-cell surface transport kinetics as proteoglycan APP. Endosome ablation experiments were performed to distinguish between indirect endosomal and direct pathways to the cell surface. Surprisingly, TGN-to-cell surface transport of both GAG-free and proteoglycan APP was found to be indirect via transferrin-positive endosomes. Our results show that GAGs act as alternative sorting determinants in cellular APP transport that are dominant over cytoplasmic signals and involve distinct sorting mechanisms.
Collapse
Affiliation(s)
- Deyan Mihov
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Eva Raja
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| |
Collapse
|
41
|
Capurro M, Shi W, Izumikawa T, Kitagawa H, Filmus J. Processing by convertases is required for glypican-3-induced inhibition of Hedgehog signaling. J Biol Chem 2015; 290:7576-85. [PMID: 25653284 DOI: 10.1074/jbc.m114.612705] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glypican-3 (GPC3) is one of the six members of the mammalian glypican family. We have previously reported that GPC3 inhibits Hedgehog (Hh) signaling by competing with Patched (Ptc) for Hh binding. We also showed that GPC3 binds with high affinity to Hh through its core protein, but that it does not interact with Ptc. Several members of the glypican family, including GPC3, are subjected to an endoproteolytic cleavage by the furin-like convertase family of endoproteases. Surprisingly, however, we have found that a mutant GPC3 that cannot be processed by convertases is as potent as wild-type GPC3 in stimulating Wnt activity in hepatocellular carcinoma cell lines and 293T cells and in promoting hepatocellular carcinoma growth. In this study, we show that processing by convertases is essential for GPC3-induced inhibition of Hh signaling. Moreover, we show that a convertase-resistant GPC3 stimulates Hh signaling by increasing the binding of this growth factor to Ptc. Consistent with this, we show that the convertase-resistant mutant binds to both Hh and Ptc through its heparan sulfate (HS) chains. Unexpectedly, we found that the mutant core protein does not bind to Hh. We also report that the convertase-resistant mutant GPC3 carries HS chains with a significantly higher degree of sulfation than those of wild-type GPC3. We propose that the structural changes generated by the lack of cleavage determine a change in the sulfation of the HS chains and that these hypersulfated chains mediate the interaction of the mutant GPC3 with Ptc.
Collapse
Affiliation(s)
- Mariana Capurro
- From the Biological Sciences, Sunnybrook Research Institute, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada and
| | - Wen Shi
- From the Biological Sciences, Sunnybrook Research Institute, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada and
| | - Tomomi Izumikawa
- From the Biological Sciences, Sunnybrook Research Institute, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada and
| | - Hiroshi Kitagawa
- the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Jorge Filmus
- From the Biological Sciences, Sunnybrook Research Institute, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada and
| |
Collapse
|
42
|
Brusa C, Muzard M, Rémond C, Plantier-Royon R. β-Xylopyranosides: synthesis and applications. RSC Adv 2015. [DOI: 10.1039/c5ra14023d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In recent years, β-xylopyranosides have attracted interest due to the development of biomass-derived molecules. This review focuses on general routes for the preparation of β-xylopyranosides by chemical and enzymatic pathways and their main uses.
Collapse
Affiliation(s)
- Charlotte Brusa
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims (ICMR)
- CNRS UMR 7312
- UFR Sciences Exactes et Naturelles
- F-51687 Reims Cedex 2
| | - Murielle Muzard
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims (ICMR)
- CNRS UMR 7312
- UFR Sciences Exactes et Naturelles
- F-51687 Reims Cedex 2
| | - Caroline Rémond
- Université de Reims Champagne-Ardenne
- UMR 614
- Fractionnement des AgroRessources et Environnement
- France
- INRA
| | - Richard Plantier-Royon
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims (ICMR)
- CNRS UMR 7312
- UFR Sciences Exactes et Naturelles
- F-51687 Reims Cedex 2
| |
Collapse
|
43
|
Preparation of isotope-enriched heparan sulfate precursors for structural biology studies. Methods Mol Biol 2014; 1229:43-8. [PMID: 25325943 DOI: 10.1007/978-1-4939-1714-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Heparan sulfate (HS) plays numerous important roles in biological systems through their interactions with a wide array of proteins. Structural biology studies of heparan sulfate are often challenging due to the heterogeneity and complexity of the HS molecules. Radioisotope metabolic labeling of HS in cellular systems has enabled the elucidation of HS structures as well as the interactions between HS and proteins. However, radiolabeled structures are not amenable for advanced structural glycobiology studies using sophisticated instruments such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The utilization of stable isotope-enriched HS precursors is an appealing approach to overcome these challenges. The application of stable isotope-enriched HS precursors has facilitated the HS structural analysis by NMR spectroscopy and mass spectrometry. Herein we describe a simple method to prepare isotopically enriched HS precursors.
Collapse
|
44
|
Foulcer SJ, Nelson CM, Quintero MV, Kuberan B, Larkin J, Dours-Zimmermann MT, Zimmermann DR, Apte SS. Determinants of versican-V1 proteoglycan processing by the metalloproteinase ADAMTS5. J Biol Chem 2014; 289:27859-73. [PMID: 25122765 DOI: 10.1074/jbc.m114.573287] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolysis of the Glu(441)-Ala(442) bond in the glycosaminoglycan (GAG) β domain of the versican-V1 variant by a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif (ADAMTS) proteases is required for proper embryo morphogenesis. However, the processing mechanism and the possibility of additional ADAMTS-cleaved processing sites are unknown. We demonstrate here that if Glu(441) is mutated, ADAMTS5 cleaves inefficiently at a proximate upstream site but normally does not cleave elsewhere within the GAGβ domain. Chondroitin sulfate (CS) modification of versican is a prerequisite for cleavage at the Glu(441)-Ala(442) site, as demonstrated by reduced processing of CS-deficient or chondroitinase ABC-treated versican-V1. Site-directed mutagenesis identified the N-terminal CS attachment sites Ser(507) and Ser(525) as essential for processing of the Glu(441)-Ala(442) bond by ADAMTS5. A construct including only these two GAG chains, but not downstream GAG attachment sites, was cleaved efficiently. Therefore, CS chain attachment to Ser(507) and Ser(525) is necessary and sufficient for versican proteolysis by ADAMTS5. Mutagenesis of Glu(441) and an antibody to a peptide spanning Thr(432)-Gly(445) (i.e. containing the scissile bond) reduced versican-V1 processing. ADAMTS5 lacking the C-terminal ancillary domain did not cleave versican, and an ADAMTS5 ancillary domain construct bound versican-V1 via the CS chains. We conclude that docking of ADAMTS5 with two N-terminal GAG chains of versican-V1 via its ancillary domain is required for versican processing at Glu(441)-Ala(442). V1 proteolysis by ADAMTS1 demonstrated a similar requirement for the N-terminal GAG chains and Glu(441). Therefore, versican cleavage can be inhibited substantially by mutation of Glu(441), Ser(507), and Ser(525) or by an antibody to the region of the scissile bond.
Collapse
Affiliation(s)
- Simon J Foulcer
- From the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Courtney M Nelson
- From the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Maritza V Quintero
- the Departments of Medicinal Chemistry and Bioengineering, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Balagurunathan Kuberan
- the Departments of Medicinal Chemistry and Bioengineering, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Jonathan Larkin
- the Experimental Medicine Unit, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, and
| | | | - Dieter R Zimmermann
- the Institute of Surgical Pathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Suneel S Apte
- From the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
45
|
Hsieh PH, Xu Y, Keire DA, Liu J. Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic acid-containing heparan sulfate hexasaccharides. Glycobiology 2014; 24:681-92. [PMID: 24770491 DOI: 10.1093/glycob/cwu032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate and heparin are highly sulfated polysaccharides that consist of a repeating disaccharide unit of glucosamine and glucuronic or iduronic acid. The 2-O-sulfated iduronic acid (IdoA2S) residue is commonly found in heparan sulfate and heparin; however, 2-O-sulfated glucuronic acid (GlcA2S) is a less abundant monosaccharide (∼<5% of total saccharides). Here, we report the synthesis of three GlcA2S-containing hexasaccharides using a chemoenzymatic approach. For comparison purposes, additional IdoA2S-containing hexasaccharides were synthesized. Nuclear magnetic resonance analyses were performed to obtain full chemical shift assignments for the GlcA2S- and IdoA2S-hexasaccharides. These data show that GlcA2S is a more structurally rigid saccharide residue than IdoA2S. The antithrombin (AT) binding affinities of a GlcA2S- and an IdoA2S-hexasaccharide were determined by affinity co-electrophoresis. In contrast to IdoA2S-hexasaccharides, the GlcA2S-hexasaccharide does not bind to AT, confirming that the presence of IdoA2S is critically important for the anticoagulant activity. The availability of pure synthetic GlcA2S-containing oligosaccharides will allow the investigation of the structure and activity relationships of individual sites in heparin or heparan sulfate.
Collapse
Affiliation(s)
- Po-Hung Hsieh
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 303, Beard Hall, Chapel Hill, NC 27599, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 303, Beard Hall, Chapel Hill, NC 27599, USA
| | - David A Keire
- Food & Drug Administration, CDER (Center for Drug Evaluation and Research), Division of Pharmaceutical Analysis, 645 S Newstead Avenue, St. Louis, MO 63110, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 303, Beard Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
46
|
Tran VM, Kuberan B. Synthesis of fluorophore-tagged xylosides that prime glycosaminoglycan chains. Bioconjug Chem 2014; 25:262-8. [PMID: 24499349 PMCID: PMC3983138 DOI: 10.1021/bc400396z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biosynthesis and functions of glycosaminoglycan (GAG) chains are complex and remain elusive. To better understand the factors that regulate the biosynthesis and functions, fluorophore-tagged xylosides carrying two different linkages between fluorophore and xylose residue were synthesized and evaluated for their ability to prime GAG chains such as heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS) in various cell lines. These in vitro studies resulted in the identification of fluorophore-tagged xylosides that prime high molecular weight GAG chains. Primed GAG chains carrying a fluorophore group has several advantages for studying the factors that regulate the biosynthesis, analyzing intact fine structures at low detection limits, and setting the stage for studying structure-function relations of GAG chains of cellular origin.
Collapse
Affiliation(s)
- Vy M Tran
- Departments of Medicinal Chemistry and †Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | | |
Collapse
|
47
|
Brusa C, Ochs M, Rémond C, Muzard M, Plantier-Royon R. Chemoenzymatic synthesis of “click” xylosides and xylobiosides from lignocellulosic biomass. RSC Adv 2014. [DOI: 10.1039/c3ra46173d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
48
|
Siegbahn A, Manner S, Persson A, Tykesson E, Holmqvist K, Ochocinska A, Rönnols J, Sundin A, Mani K, Westergren-Thorsson G, Widmalm G, Ellervik U. Rules for priming and inhibition of glycosaminoglycan biosynthesis; probing the β4GalT7 active site. Chem Sci 2014. [DOI: 10.1039/c4sc01244e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Xylose is the optimal substrate for β4GalT7, an essential enzyme in GAG biosynthesis, but analogs act as effective inhibitors.
Collapse
Affiliation(s)
- Anna Siegbahn
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
| | - Sophie Manner
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
| | - Andrea Persson
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
- Department of Experimental Medical Science
| | - Emil Tykesson
- Department of Experimental Medical Science
- Lund University
- SE-221 00 Lund, Sweden
| | - Karin Holmqvist
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
| | - Agata Ochocinska
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
| | - Jerk Rönnols
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm, Sweden
| | - Anders Sundin
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science
- Lund University
- SE-221 00 Lund, Sweden
| | | | - Göran Widmalm
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm, Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis
- Centre for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund, Sweden
| |
Collapse
|
49
|
Hsiao TW, Swarup VP, Kuberan B, Tresco PA, Hlady V. Astrocytes specifically remove surface-adsorbed fibrinogen and locally express chondroitin sulfate proteoglycans. Acta Biomater 2013; 9:7200-8. [PMID: 23499985 DOI: 10.1016/j.actbio.2013.02.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/28/2013] [Accepted: 02/28/2013] [Indexed: 02/03/2023]
Abstract
Surface-adsorbed fibrinogen (FBG) was recognized by adhering astrocytes, and was removed from the substrates in vitro by a two-phase removal process. The cells removed adsorbed FBG from binary proteins' surface patterns (FBG+laminin, or FBG+albumin) while leaving the other protein behind. Astrocytes preferentially expressed chondroitin sulfate proteoglycan (CSPG) at the loci of fibrinogen stimuli; however, no differences in overall CSPG production as a function of FBG surface coverage were identified. Removal of FBG by astrocytes was also found to be independent of transforming growth factor type β (TGF-β) receptor based signaling as cells maintained CSPG production in the presence of TGF-β receptor kinase inhibitor, SB 431542. The inhibitor decreased CSPG expression, but did not abolish it entirely. Because blood contact and subsequent FBG adsorption are unavoidable in neural implantations, the results indicate that implant-adsorbed FBG may contribute to reactive astrogliosis around the implant as astrocytes specifically recognize adsorbed FBG.
Collapse
|
50
|
Filipek-Górniok B, Holmborn K, Haitina T, Habicher J, Oliveira MB, Hellgren C, Eriksson I, Kjellén L, Kreuger J, Ledin J. Expression of chondroitin/dermatan sulfate glycosyltransferases during early zebrafish development. Dev Dyn 2013; 242:964-75. [PMID: 23703795 DOI: 10.1002/dvdy.23981] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 03/08/2013] [Accepted: 04/08/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chondroitin/dermatan sulfate (CS/DS) proteoglycans present in the extracellular matrix have important structural and regulatory functions. RESULTS Six human genes have previously been shown to catalyze CS/DS polymerization. Here we show that one of these genes, chpf, is represented by two copies in the zebrafish genome, chpfa and chpfb, while the other five human CS/DS glycosyltransferases csgalnact1, csgalnact2, chpf2, chsy1, and chsy3 all have single zebrafish orthologues. The putative zebrafish CS/DS glycosyltransferases are spatially and temporally expressed. Interestingly, overlapping expression of multiple glycosyltransferases coincides with high CS/DS deposition. Finally, whereas the relative levels of the related polysaccharide HS reach steady-state at around 2 days post fertilization, there is a continued relative increase of the CS amounts per larvae during the first 6 days of development, matching the increased cartilage formation. CONCLUSIONS There are 7 CS/DS glycosyltransferases in zebrafish, which, based on homology, can be divided into the CSGALNACT, CHSY, and CHPF families. The overlap between intense CS/DS production and the expression of multiple CS/DS glycosyltransferases suggests that efficient CS/DS biosynthesis requires a combination of several glycosyltransferases.
Collapse
Affiliation(s)
- Beata Filipek-Górniok
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|