1
|
Johann To Berens P, Peter J, Koechler S, Bruggeman M, Staerck S, Molinier J. The histone demethylase JMJ27 acts during the UV-induced modulation of H3K9me2 landscape and facilitates photodamage repair. NATURE PLANTS 2024:10.1038/s41477-024-01814-9. [PMID: 39367258 DOI: 10.1038/s41477-024-01814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Plants have evolved sophisticated DNA repair mechanisms to cope with the deleterious effects of ultraviolet (UV)-induced DNA damage. Indeed, DNA repair pathways cooperate with epigenetic-related processes to efficiently maintain genome integrity. However, it remains to be deciphered how photodamages are recognized within different chromatin landscapes, especially in compacted genomic regions such as constitutive heterochromatin. Here we combined cytogenetics and epigenomics to identify that UV-C irradiation induces modulation of the main epigenetic mark found in constitutive heterochromatin, H3K9me2. We demonstrated that the histone demethylase, Jumonji27 (JMJ27), contributes to the UV-induced reduction of H3K9me2 content at chromocentres. In addition, we identified that JMJ27 forms a complex with the photodamage recognition factor, DNA Damage Binding protein 2 (DDB2), and that the fine-tuning of H3K9me2 contents orchestrates DDB2 dynamics on chromatin in response to UV-C exposure. Hence, this study uncovers the unexpected existence of an interplay between photodamage repair and H3K9me2 homeostasis.
Collapse
Affiliation(s)
| | - Jackson Peter
- Institut de biologie moléculaire des plantes du CNRS, Strasbourg, France
| | - Sandrine Koechler
- Institut de biologie moléculaire des plantes du CNRS, Strasbourg, France
| | - Mathieu Bruggeman
- Institut de biologie moléculaire des plantes du CNRS, Strasbourg, France
| | - Sébastien Staerck
- Institut de biologie moléculaire des plantes du CNRS, Strasbourg, France
| | - Jean Molinier
- Institut de biologie moléculaire des plantes du CNRS, Strasbourg, France.
| |
Collapse
|
2
|
Li W, Jones K, Burke TJ, Hossain MA, Lariscy L. Epigenetic Regulation of Nucleotide Excision Repair. Front Cell Dev Biol 2022; 10:847051. [PMID: 35465333 PMCID: PMC9023881 DOI: 10.3389/fcell.2022.847051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022] Open
Abstract
Genomic DNA is constantly attacked by a plethora of DNA damaging agents both from endogenous and exogenous sources. Nucleotide excision repair (NER) is the most versatile repair pathway that recognizes and removes a wide range of bulky and/or helix-distorting DNA lesions. Even though the molecular mechanism of NER is well studied through in vitro system, the NER process inside the cell is more complicated because the genomic DNA in eukaryotes is tightly packaged into chromosomes and compacted into a nucleus. Epigenetic modifications regulate gene activity and expression without changing the DNA sequence. The dynamics of epigenetic regulation play a crucial role during the in vivo NER process. In this review, we summarize recent advances in our understanding of the epigenetic regulation of NER.
Collapse
|
3
|
Dreier MR, de la Serna IL. SWI/SNF Chromatin Remodeling Enzymes in Melanoma. EPIGENOMES 2022; 6:epigenomes6010010. [PMID: 35323214 PMCID: PMC8947417 DOI: 10.3390/epigenomes6010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive malignancy that arises from the transformation of melanocytes on the skin, mucosal membranes, and uvea of the eye. SWI/SNF chromatin remodeling enzymes are multi-subunit complexes that play important roles in the development of the melanocyte lineage and in the response to ultraviolet radiation, a key environmental risk factor for developing cutaneous melanoma. Exome sequencing has revealed frequent loss of function mutations in genes encoding SWI/SNF subunits in melanoma. However, some SWI/SNF subunits have also been demonstrated to have pro-tumorigenic roles in melanoma and to affect sensitivity to therapeutics. This review summarizes studies that have implicated SWI/SNF components in melanomagenesis and have evaluated how SWI/SNF subunits modulate the response to current therapeutics.
Collapse
|
4
|
Differential requirements for different subfamilies of the mammalian SWI/SNF chromatin remodeling enzymes in myoblast cell cycle progression and expression of the Pax7 regulator. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194801. [PMID: 35217218 PMCID: PMC8948540 DOI: 10.1016/j.bbagrm.2022.194801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
Abstract
The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) families of ATP-dependent chromatin remodeling enzymes are established co-regulators of gene expression. mSWI/SNF complexes can be assembled into three major subfamilies: BAF (BRG1 or BRM-Associated Factor), PBAF (Polybromo containing BAF), or ncBAF (non-canonical BAF) that are distinguished by the presence of mutually exclusive subunits. The mechanisms by which each subfamily contributes to the establishment or function of specific cell lineages are poorly understood. Here, we determined the contributions of the BAF, ncBAF, and PBAF complexes to myoblast proliferation via knock down (KD) of distinguishing subunits from each complex. KD of subunits unique to the BAF or the ncBAF complexes reduced myoblast proliferation rate, while KD of PBAF-specific subunits did not affect proliferation. RNA-seq from proliferating KD myoblasts targeting Baf250A (BAF complex), Brd9 (ncBAF complex), or Baf180 (PBAF complex) showed mis-regulation of a limited number of genes. KD of Baf250A specifically reduced the expression of Pax7, which is required for myoblast proliferation, concomitant with decreased binding of Baf250A to and impaired chromatin remodeling at the Pax7 gene promoter. Although Brd9 also bound to the Pax7 promoter, suggesting occupancy by the ncBAF complex, no changes were detected in Pax7 gene expression, Pax7 protein expression or chromatin remodeling at the Pax7 promoter upon Brd9 KD. The data indicate that the BAF subfamily of the mSWI/SNF enzymes is specifically required for myoblast proliferation via regulation of Pax7 expression.
Collapse
|
5
|
A protein with broad functions: damage-specific DNA-binding protein 2. Mol Biol Rep 2022; 49:12181-12192. [PMID: 36190612 PMCID: PMC9712371 DOI: 10.1007/s11033-022-07963-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/17/2022] [Indexed: 02/01/2023]
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was initially identified as a component of the damage-specific DNA-binding heterodimeric complex, which cooperates with other proteins to repair UV-induced DNA damage. DDB2 is involved in the occurrence and development of cancer by affecting nucleotide excision repair (NER), cell apoptosis, and premature senescence. DDB2 also affects the sensitivity of cancer cells to radiotherapy and chemotherapy. In addition, a recent study found that DDB2 is a pathogenic gene for hepatitis and encephalitis. In recent years, there have been few relevant literature reports on DDB2, so there is still room for further research about it. In this paper, the molecular mechanisms of different biological processes involving DDB2 are reviewed in detail to provide theoretical support for research on drugs that can target DDB2.
Collapse
|
6
|
Jian Y, Shim WB, Ma Z. Multiple functions of SWI/SNF chromatin remodeling complex in plant-pathogen interactions. STRESS BIOLOGY 2021; 1:18. [PMID: 37676626 PMCID: PMC10442046 DOI: 10.1007/s44154-021-00019-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 09/08/2023]
Abstract
The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events. Studies in animals, plants and fungi have uncovered sophisticated regulatory mechanisms of this complex that govern development and various stress responses. In this review, we summarize the composition of SWI/SNF complex in eukaryotes and discuss multiple functions of the SWI/SNF complex in regulating gene transcription, mRNA splicing, and DNA damage response. Our review further highlights the importance of SWI/SNF complex in regulating plant immunity responses and fungal pathogenesis. Finally, the potentials in exploiting chromatin remodeling for management of crop disease are presented.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Apelt K, Lans H, Schärer OD, Luijsterburg MS. Nucleotide excision repair leaves a mark on chromatin: DNA damage detection in nucleosomes. Cell Mol Life Sci 2021; 78:7925-7942. [PMID: 34731255 PMCID: PMC8629891 DOI: 10.1007/s00018-021-03984-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022]
Abstract
Global genome nucleotide excision repair (GG-NER) eliminates a broad spectrum of DNA lesions from genomic DNA. Genomic DNA is tightly wrapped around histones creating a barrier for DNA repair proteins to access DNA lesions buried in nucleosomal DNA. The DNA-damage sensors XPC and DDB2 recognize DNA lesions in nucleosomal DNA and initiate repair. The emerging view is that a tight interplay between XPC and DDB2 is regulated by post-translational modifications on the damage sensors themselves as well as on chromatin containing DNA lesions. The choreography between XPC and DDB2, their interconnection with post-translational modifications such as ubiquitylation, SUMOylation, methylation, poly(ADP-ribos)ylation, acetylation, and the functional links with chromatin remodelling activities regulate not only the initial recognition of DNA lesions in nucleosomes, but also the downstream recruitment and necessary displacement of GG-NER factors as repair progresses. In this review, we highlight how nucleotide excision repair leaves a mark on chromatin to enable DNA damage detection in nucleosomes.
Collapse
Affiliation(s)
- Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
8
|
Chakraborty U, Shen ZJ, Tyler J. Chaperoning histones at the DNA repair dance. DNA Repair (Amst) 2021; 108:103240. [PMID: 34687987 DOI: 10.1016/j.dnarep.2021.103240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/15/2022]
Abstract
Unlike all other biological molecules that are degraded and replaced if damaged, DNA must be repaired as chromosomes cannot be replaced. Indeed, DNA endures a wide variety of structural damage that need to be repaired accurately to maintain genomic stability and proper functioning of cells and to prevent mutation leading to disease. Given that the genome is packaged into chromatin within eukaryotic cells, it has become increasingly evident that the chromatin context of DNA both facilitates and regulates DNA repair processes. In this review, we discuss mechanisms involved in removal of histones (chromatin disassembly) from around DNA lesions, by histone chaperones and chromatin remodelers, that promotes accessibility of the DNA repair machinery. We also elaborate on how the deposition of core histones and specific histone variants onto DNA (chromatin assembly) during DNA repair promotes repair processes, the role of histone post translational modifications in these processes and how chromatin structure is reestablished after DNA repair is complete.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Zih-Jie Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jessica Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
9
|
Lee CA, Abd-Rabbo D, Reimand J. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes. Genome Biol 2021; 22:133. [PMID: 33941236 PMCID: PMC8091793 DOI: 10.1186/s13059-021-02318-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Cancer genomes are shaped by mutational processes with complex spatial variation at multiple scales. Entire classes of regulatory elements are affected by local variations in mutation frequency. However, the underlying mechanisms with functional and genetic determinants remain poorly understood. Results We characterise the mutational landscape of 1.3 million gene-regulatory and chromatin architectural elements in 2419 whole cancer genomes with transcriptional and pathway activity, functional conservation and recurrent driver events. We develop RM2, a statistical model that quantifies mutational enrichment or depletion in classes of genomic elements through genetic, trinucleotide and megabase-scale effects. We report a map of localised mutational processes affecting CTCF binding sites, transcription start sites (TSS) and tissue-specific open-chromatin regions. Increased mutation frequency in TSSs associates with mRNA abundance in most cancer types, while open-chromatin regions are generally enriched in mutations. We identify ~ 10,000 CTCF binding sites with core DNA motifs and constitutive binding in 66 cell types that represent focal points of mutagenesis. We detect site-specific mutational signature enrichments, such as SBS40 in open-chromatin regions in prostate cancer and SBS17b in CTCF binding sites in gastrointestinal cancers. Candidate drivers of localised mutagenesis are also apparent: BRAF mutations associate with mutational enrichments at CTCF binding sites in melanoma, and ARID1A mutations with TSS-specific mutagenesis in pancreatic cancer. Conclusions Our method and catalogue of localised mutational processes provide novel perspectives to cancer genome evolution, mutagenesis, DNA repair and driver gene discovery. The functional and genetic correlates of mutational processes suggest mechanistic hypotheses for future studies.
Collapse
Affiliation(s)
- Christian A Lee
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Diala Abd-Rabbo
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Mehrvarz Sarshekeh A, Alshenaifi J, Roszik J, Manyam GC, Advani SM, Katkhuda R, Verma A, Lam M, Willis J, Shen JP, Morris J, Davis JS, Loree JM, Lee HM, Ajani JA, Maru DM, Overman MJ, Kopetz S. ARID1A Mutation May Define an Immunologically Active Subgroup in Patients with Microsatellite Stable Colorectal Cancer. Clin Cancer Res 2021; 27:1663-1670. [PMID: 33414133 DOI: 10.1158/1078-0432.ccr-20-2404] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/08/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE AT-rich interactive domain 1A (ARID1A) is commonly mutated in colorectal cancer, frequently resulting in truncation and loss of protein expression. ARID1A recruits MSH2 for mismatch repair during DNA replication. ARID1A deficiency promotes hypermutability and immune activation in preclinical models, but its role in patients with colorectal cancer is being explored. EXPERIMENTAL DESIGN The DNA sequencing and gene expression profiling of patients with colorectal cancer were extracted from The Cancer Genome Atlas and MD Anderson Cancer Center databases, with validation utilizing external databases, and correlation between ARID1A and immunologic features. IHC for T-cell markers was performed on a separate cohort of patients. RESULTS Twenty-eight of 417 patients with microsatellite stable (MSS) colorectal cancer (6.7%) had ARID1A mutation. Among 58 genes most commonly mutated in colorectal cancer, ARID1A mutation had the highest increase with frameshift mutation rates in MSS cases (8-fold, P < 0.001). In MSS, ARID1A mutation was enriched in immune subtype (CMS1) and had a strong correlation with IFNγ expression (Δz score +1.91, P < 0.001). Compared with ARID1A wild-type, statistically significant higher expression for key checkpoint genes (e.g., PD-L1, CTLA4, and PDCD1) and gene sets (e.g., antigen presentation, cytotoxic T-cell function, and immune checkpoints) was observed in mutant cases. This was validated by unsupervised differential expression of genes related to immune response and further confirmed by higher infiltration of T cells in IHC of tumors with ARID1A mutation (P = 0.01). CONCLUSIONS The immunogenicity of ARID1A-mutant cases is likely due to an increased level of neoantigens resulting from increased tumor mutational burden and frameshift mutations. Tumors with ARID1A mutation may be more susceptible to immune therapy-based treatment strategies and should be recognized as a unique molecular subgroup in future immune therapy trials.
Collapse
Affiliation(s)
- Amir Mehrvarz Sarshekeh
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jumanah Alshenaifi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C Manyam
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Riham Katkhuda
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anuj Verma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Lam
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Willis
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Morris
- Department of Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer S Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan M Loree
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia
| | - Hey Min Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dipen M Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
11
|
Formation and Recognition of UV-Induced DNA Damage within Genome Complexity. Int J Mol Sci 2020; 21:ijms21186689. [PMID: 32932704 PMCID: PMC7555853 DOI: 10.3390/ijms21186689] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Ultraviolet (UV) light is a natural genotoxic agent leading to the formation of photolesions endangering the genomic integrity and thereby the survival of living organisms. To prevent the mutagenetic effect of UV, several specific DNA repair mechanisms are mobilized to accurately maintain genome integrity at photodamaged sites within the complexity of genome structures. However, a fundamental gap remains to be filled in the identification and characterization of factors at the nexus of UV-induced DNA damage, DNA repair, and epigenetics. This review brings together the impact of the epigenomic context on the susceptibility of genomic regions to form photodamage and focuses on the mechanisms of photolesions recognition through the different DNA repair pathways.
Collapse
|
12
|
Lee CA, Abd-rabbo D, Reimand J. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes.. [DOI: 10.1101/2020.07.29.226373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACTBackgroundCancer genomes are shaped by mutational processes with complex spatial variation at multiple scales. Entire classes of regulatory elements are affected by local variations in mutation frequency. However, the underlying mutational mechanisms with functional and genetic determinants remain poorly understood.ResultsWe characterised the mutational landscape of 1.3 million gene regulatory and chromatin architectural elements in 2,419 whole cancer genomes with transcriptional and pathway activity, functional conservation and recurrent driver events. We developed RM2, a statistical model that quantifies mutational enrichment or depletion in classes of genomic elements through genetic, trinucleotide and megabase-scale effects. We report a map of localised mutational processes affecting CTCF binding sites, transcription start sites (TSS) and tissue-specific open-chromatin regions. We show that increased mutational frequency in TSSs correlates with mRNA abundance in most cancer types, while open-chromatin regions are generally enriched in mutations. We identified ∼10,000 CTCF binding sites with core DNA motifs and constitutive binding in 66 cell types that represent focal points of local mutagenesis. We detected site-specific mutational signatures, such as SBS40 in open-chromatin regions in prostate cancer and SBS17b in CTCF binding sites in gastrointestinal cancers. We also proposed candidate drivers of localised mutagenesis: BRAF mutations associate with mutational enrichments at CTCF binding sites in melanoma, and ARID1A mutations with TSS-specific mutations in pancreatic cancer.ConclusionsOur method and catalogue of localised mutational processes provide novel perspectives to cancer genome evolution, mutagenesis, DNA repair and driver discovery. Functional and genetic correlates of localised mutagenesis provide mechanistic hypotheses for future studies.
Collapse
|
13
|
Regulation of the Mammalian SWI/SNF Family of Chromatin Remodeling Enzymes by Phosphorylation during Myogenesis. BIOLOGY 2020; 9:biology9070152. [PMID: 32635263 PMCID: PMC7407365 DOI: 10.3390/biology9070152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Myogenesis is the biological process by which skeletal muscle tissue forms. Regulation of myogenesis involves a variety of conventional, epigenetic, and epigenomic mechanisms that control chromatin remodeling, DNA methylation, histone modification, and activation of transcription factors. Chromatin remodeling enzymes utilize ATP hydrolysis to alter nucleosome structure and/or positioning. The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) family of chromatin remodeling enzymes is essential for myogenesis. Here we review diverse and novel mechanisms of regulation of mSWI/SNF enzymes by kinases and phosphatases. The integration of classic signaling pathways with chromatin remodeling enzyme function impacts myoblast viability and proliferation as well as differentiation. Regulated processes include the assembly of the mSWI/SNF enzyme complex, choice of subunits to be incorporated into the complex, and sub-nuclear localization of enzyme subunits. Together these processes influence the chromatin remodeling and gene expression events that control myoblast function and the induction of tissue-specific genes during differentiation.
Collapse
|
14
|
Karakaidos P, Karagiannis D, Rampias T. Resolving DNA Damage: Epigenetic Regulation of DNA Repair. Molecules 2020; 25:molecules25112496. [PMID: 32471288 PMCID: PMC7321228 DOI: 10.3390/molecules25112496] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic research has rapidly evolved into a dynamic field of genome biology. Chromatin regulation has been proved to be an essential aspect for all genomic processes, including DNA repair. Chromatin structure is modified by enzymes and factors that deposit, erase, and interact with epigenetic marks such as DNA and histone modifications, as well as by complexes that remodel nucleosomes. In this review we discuss recent advances on how the chromatin state is modulated during this multi-step process of damage recognition, signaling, and repair. Moreover, we examine how chromatin is regulated when different pathways of DNA repair are utilized. Furthermore, we review additional modes of regulation of DNA repair, such as through the role of global and localized chromatin states in maintaining expression of DNA repair genes, as well as through the activity of epigenetic enzymes on non-nucleosome substrates. Finally, we discuss current and future applications of the mechanistic interplays between chromatin regulation and DNA repair in the context cancer treatment.
Collapse
Affiliation(s)
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-659-7469
| |
Collapse
|
15
|
Gsell C, Richly H, Coin F, Naegeli H. A chromatin scaffold for DNA damage recognition: how histone methyltransferases prime nucleosomes for repair of ultraviolet light-induced lesions. Nucleic Acids Res 2020; 48:1652-1668. [PMID: 31930303 PMCID: PMC7038933 DOI: 10.1093/nar/gkz1229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The excision of mutagenic DNA adducts by the nucleotide excision repair (NER) pathway is essential for genome stability, which is key to avoiding genetic diseases, premature aging, cancer and neurologic disorders. Due to the need to process an extraordinarily high damage density embedded in the nucleosome landscape of chromatin, NER activity provides a unique functional caliper to understand how histone modifiers modulate DNA damage responses. At least three distinct lysine methyltransferases (KMTs) targeting histones have been shown to facilitate the detection of ultraviolet (UV) light-induced DNA lesions in the difficult to access DNA wrapped around histones in nucleosomes. By methylating core histones, these KMTs generate docking sites for DNA damage recognition factors before the chromatin structure is ultimately relaxed and the offending lesions are effectively excised. In view of their function in priming nucleosomes for DNA repair, mutations of genes coding for these KMTs are expected to cause the accumulation of DNA damage promoting cancer and other chronic diseases. Research on the question of how KMTs modulate DNA repair might pave the way to the development of pharmacologic agents for novel therapeutic strategies.
Collapse
Affiliation(s)
- Corina Gsell
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Holger Richly
- Boehringer Ingelheim Pharma, Department of Molecular Biology, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| | - Frédéric Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
16
|
Klinakis A, Karagiannis D, Rampias T. Targeting DNA repair in cancer: current state and novel approaches. Cell Mol Life Sci 2020; 77:677-703. [PMID: 31612241 PMCID: PMC11105035 DOI: 10.1007/s00018-019-03299-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
DNA damage response, DNA repair and genomic instability have been under study for their role in tumor initiation and progression for many years now. More recently, next-generation sequencing on cancer tissue from various patient cohorts have revealed mutations and epigenetic silencing of various genes encoding proteins with roles in these processes. These findings, together with the unequivocal role of DNA repair in therapeutic response, have fueled efforts toward the clinical exploitation of research findings. The successful example of PARP1/2 inhibitors has also supported these efforts and led to numerous preclinical and clinical trials with a large number of small molecules targeting various components involved in DNA repair singularly or in combination with other therapies. In this review, we focus on recent considerations related to DNA damage response and new DNA repair inhibition agents. We then discuss how immunotherapy can collaborate with these new drugs and how epigenetic drugs can rewire the activity of repair pathways and sensitize cancer cells to DNA repair inhibition therapies.
Collapse
Affiliation(s)
- Apostolos Klinakis
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
| |
Collapse
|
17
|
Pavey S, Pinder A, Fernando W, D'Arcy N, Matigian N, Skalamera D, Lê Cao KA, Loo-Oey D, Hill MM, Stark M, Kimlin M, Burgess A, Cloonan N, Sturm RA, Gabrielli B. Multiple interaction nodes define the postreplication repair response to UV-induced DNA damage that is defective in melanomas and correlated with UV signature mutation load. Mol Oncol 2019; 14:22-41. [PMID: 31733171 PMCID: PMC6944116 DOI: 10.1002/1878-0261.12601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 01/25/2023] Open
Abstract
Ultraviolet radiation‐induced DNA mutations are a primary environmental driver of melanoma. The reason for this very high level of unrepaired DNA lesions leading to these mutations is still poorly understood. The primary DNA repair mechanism for UV‐induced lesions, that is, the nucleotide excision repair pathway, appears intact in most melanomas. We have previously reported a postreplication repair mechanism that is commonly defective in melanoma cell lines. Here we have used a genome‐wide approach to identify the components of this postreplication repair mechanism. We have used differential transcript polysome loading to identify transcripts that are associated with UV response, and then functionally assessed these to identify novel components of this repair and cell cycle checkpoint network. We have identified multiple interaction nodes, including global genomic nucleotide excision repair and homologous recombination repair, and previously unexpected MASTL pathway, as components of the response. Finally, we have used bioinformatics to assess the contribution of dysregulated expression of these pathways to the UV signature mutation load of a large melanoma cohort. We show that dysregulation of the pathway, especially the DNA damage repair components, are significant contributors to UV mutation load, and that dysregulation of the MASTL pathway appears to be a significant contributor to high UV signature mutation load.
Collapse
Affiliation(s)
- Sandra Pavey
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Alex Pinder
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Winnie Fernando
- Mater Research, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas D'Arcy
- Mater Research, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas Matigian
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia.,QFAB Bioinformatics, The University of Queensland, Brisbane, QLD, Australia
| | - Dubravka Skalamera
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia.,Mater Research, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kim-Anh Lê Cao
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Dorothy Loo-Oey
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Michelle M Hill
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mitchell Stark
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Michael Kimlin
- University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | | | - Nicole Cloonan
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Richard A Sturm
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Brian Gabrielli
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia.,Mater Research, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
18
|
Gilson P, Drouot G, Witz A, Merlin JL, Becuwe P, Harlé A. Emerging Roles of DDB2 in Cancer. Int J Mol Sci 2019; 20:ijms20205168. [PMID: 31635251 PMCID: PMC6834144 DOI: 10.3390/ijms20205168] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023] Open
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was originally identified as a DNA damage recognition factor that facilitates global genomic nucleotide excision repair (GG-NER) in human cells. DDB2 also contributes to other essential biological processes such as chromatin remodeling, gene transcription, cell cycle regulation, and protein decay. Recently, the potential of DDB2 in the development and progression of various cancers has been described. DDB2 activity occurs at several stages of carcinogenesis including cancer cell proliferation, survival, epithelial to mesenchymal transition, migration and invasion, angiogenesis, and cancer stem cell formation. In this review, we focus on the current state of scientific knowledge regarding DDB2 biological effects in tumor development and the underlying molecular mechanisms. We also provide insights into the clinical consequences of DDB2 activity in cancers.
Collapse
Affiliation(s)
- Pauline Gilson
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Guillaume Drouot
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Andréa Witz
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Philippe Becuwe
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Alexandre Harlé
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| |
Collapse
|
19
|
Ribeiro-Silva C, Vermeulen W, Lans H. SWI/SNF: Complex complexes in genome stability and cancer. DNA Repair (Amst) 2019; 77:87-95. [PMID: 30897376 DOI: 10.1016/j.dnarep.2019.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/25/2023]
Abstract
SWI/SNF complexes are among the most studied ATP-dependent chromatin remodeling complexes, mostly due to their critical role in coordinating chromatin architecture and gene expression. Mutations in genes encoding SWI/SNF subunits are frequently observed in a large variety of human cancers, suggesting that one or more of the multiple SWI/SNF functions protect against tumorigenesis. Chromatin remodeling is an integral component of the DNA damage response (DDR), which safeguards against DNA damage-induced genome instability and tumorigenesis by removing DNA damage through interconnected DNA repair and signaling pathways. SWI/SNF has been implicated in facilitating repair of double-strand breaks, by non-homologous end-joining as well as homologous recombination, and repair of helix-distorting DNA damage by nucleotide excision repair. Here, we review current knowledge on SWI/SNF activity in the DDR and discuss the potential of exploiting DDR-related vulnerabilities due to SWI/SNF dysfunction for precision cancer therapy.
Collapse
Affiliation(s)
- Cristina Ribeiro-Silva
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Sugasawa K. Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. DNA Repair (Amst) 2019; 45:99-138. [DOI: 10.1016/bs.enz.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Ribeiro-Silva C, Aydin ÖZ, Mesquita-Ribeiro R, Slyskova J, Helfricht A, Marteijn JA, Hoeijmakers JHJ, Lans H, Vermeulen W. DNA damage sensitivity of SWI/SNF-deficient cells depends on TFIIH subunit p62/GTF2H1. Nat Commun 2018; 9:4067. [PMID: 30287812 PMCID: PMC6172278 DOI: 10.1038/s41467-018-06402-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
Mutations in SWI/SNF genes are amongst the most common across all human cancers, but efficient therapeutic approaches that exploit vulnerabilities caused by SWI/SNF mutations are currently lacking. Here, we show that the SWI/SNF ATPases BRM/SMARCA2 and BRG1/SMARCA4 promote the expression of p62/GTF2H1, a core subunit of the transcription factor IIH (TFIIH) complex. Inactivation of either ATPase subunit downregulates GTF2H1 and therefore compromises TFIIH stability and function in transcription and nucleotide excision repair (NER). We also demonstrate that cells with permanent BRM or BRG1 depletion have the ability to restore GTF2H1 expression. As a consequence, the sensitivity of SWI/SNF-deficient cells to DNA damage induced by UV irradiation and cisplatin treatment depends on GTF2H1 levels. Together, our results expose GTF2H1 as a potential novel predictive marker of platinum drug sensitivity in SWI/SNF-deficient cancer cells. SWI/SNF genes are commonly found to be mutated in different cancers. Here the authors report that the remodelers BRM and BRG1 are necessary for efficient nucleotide excision repair by promoting the expression of TFIIH subunit GTF2H1.
Collapse
Affiliation(s)
- Cristina Ribeiro-Silva
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Özge Z Aydin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Molecular Biology and Genetics Department, Koç University, Istanbul, 34450, Turkey
| | | | - Jana Slyskova
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Angela Helfricht
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Fu J, Huang D, Yuan F, Xie N, Li Q, Sun X, Zhou X, Li G, Tong T, Zhang Y. TRAF-interacting protein with forkhead-associated domain (TIFA) transduces DNA damage-induced activation of NF-κB. J Biol Chem 2018; 293:7268-7280. [PMID: 29581234 DOI: 10.1074/jbc.ra117.001684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/23/2018] [Indexed: 02/03/2023] Open
Abstract
DNA damage-induced NF-κB activation and the secretion of inflammatory cytokines play crucial roles in carcinogenesis and cellular senescence. However, the underlying mechanisms, especially the initial sensors and transducers connecting the nuclear DNA damage signal with cytoplasmic NF-κB activation remain incompletely understood. Here, we report that TRAF-interacting protein with forkhead-associated domain (TIFA), an established NF-κB activator in the cytosol, unexpectedly exhibited nuclear translocation and accumulation on damaged chromatin following genotoxic stress. Accordingly, we also found that DNA damage-induced transcriptional activation and the resulting secretion of classic NF-κB targets, including interleukin (IL)-6 and IL-8, was greatly enhanced in TIFA-overexpressing cells compared with control cells. Mechanistically, DNA damage-induced TIFA phosphorylation at threonine 9 (pThr-9), and this phosphorylation event, involving the pThr-binding forkhead-associated domain, was crucial for its enrichment on damaged chromatin and subsequent NF-κB activation. Moreover, in conjunction with its partner protein, the E3 ligase TNF receptor-associated factor 2 (TRAF2), TIFA relayed the DNA damage signals by stimulating ubiquitination of NF-κB essential modulator (NEMO), whose sumoylation, phosphorylation, and ubiquitination were critical for NF-κB's response to DNA damage. Consistently, TRAF2 knockdown suppressed TIFA overexpression-enhanced NEMO ubiquitination under genotoxic stress, and a unphosphorylatable Thr-9-mutated TIFA variant had only minor effects on NEMO poly-ubiquitination. Finally, in agreement with the model of DNA damage-associated secretory senescence barrier against carcinogenesis, ectopic TIFA expression limited proliferation of multiple myeloma cancer cells. In conclusion our results indicate that TIFA functions as a key transducer in DNA damage-induced NF-κB activation.
Collapse
Affiliation(s)
- Jingxuan Fu
- Peking University Research Center on Aging, Beijing 100191; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191
| | - Daoyuan Huang
- Peking University Research Center on Aging, Beijing 100191; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191
| | - Fuwen Yuan
- Peking University Research Center on Aging, Beijing 100191; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191
| | - Nan Xie
- Peking University Research Center on Aging, Beijing 100191; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, People's Republic of China
| | - Xinpei Sun
- Peking University Research Center on Aging, Beijing 100191; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191
| | - Xuehong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191
| | - Guodong Li
- Peking University Research Center on Aging, Beijing 100191; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191
| | - Tanjun Tong
- Peking University Research Center on Aging, Beijing 100191; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191.
| | - Yu Zhang
- Peking University Research Center on Aging, Beijing 100191; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191.
| |
Collapse
|
23
|
Zeller P, Gasser SM. The Importance of Satellite Sequence Repression for Genome Stability. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:15-24. [PMID: 29133300 DOI: 10.1101/sqb.2017.82.033662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Up to two-thirds of eukaryotic genomes consist of repetitive sequences, which include both transposable elements and tandemly arranged simple or satellite repeats. Whereas extensive progress has been made toward understanding the danger of and control over transposon expression, only recently has it been recognized that DNA damage can arise from satellite sequence transcription. Although the structural role of satellite repeats in kinetochore function and end protection has long been appreciated, it has now become clear that it is not only these functions that are compromised by elevated levels of transcription. RNA from simple repeat sequences can compromise replication fork stability and genome integrity, thus compromising germline viability. Here we summarize recent discoveries on how cells control the transcription of repeat sequence and the dangers that arise from their expression. We propose that the link between the DNA damage response and the transcriptional silencing machinery may help a cell or organism recognize foreign DNA insertions into an evolving genome.
Collapse
Affiliation(s)
- Peter Zeller
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
24
|
Rüthemann P, Balbo Pogliano C, Codilupi T, Garajovà Z, Naegeli H. Chromatin remodeler CHD1 promotes XPC-to-TFIIH handover of nucleosomal UV lesions in nucleotide excision repair. EMBO J 2017; 36:3372-3386. [PMID: 29018037 DOI: 10.15252/embj.201695742] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 08/10/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
Ultraviolet (UV) light induces mutagenic cyclobutane pyrimidine dimers (CPDs) in nucleosomal DNA that is tightly wrapped around histone octamers. How global-genome nucleotide excision repair (GG-NER) processes CPDs despite that this chromatin arrangement is poorly understood. An increased chromatin association of CHD1 (chromodomain helicase DNA-binding 1) upon UV irradiation indicated possible roles of this chromatin remodeler in the UV damage response. Immunoprecipitation of chromatin fragments revealed that CHD1 co-localizes in part with GG-NER factors. Chromatin fractionation showed that the UV-dependent recruitment of CHD1 occurs to UV lesions in histone-assembled nucleosomal DNA and that this CHD1 relocation requires the lesion sensor XPC (xeroderma pigmentosum group C). In situ immunofluorescence analyses further demonstrate that CHD1 facilitates substrate handover from XPC to the downstream TFIIH (transcription factor IIH). Consequently, CHD1 depletion slows down CPD excision and sensitizes cells to UV-induced cytotoxicity. The finding of a CHD1-driven lesion handover between sequentially acting GG-NER factors on nucleosomal histone octamers suggests that chromatin provides a recognition scaffold enabling the detection of a subset of CPDs.
Collapse
Affiliation(s)
- Peter Rüthemann
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Chiara Balbo Pogliano
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Tamara Codilupi
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Zuzana Garajovà
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| |
Collapse
|
25
|
Davidson J, Shen Z, Gong X, Pollack JR. SWI/SNF aberrations sensitize pancreatic cancer cells to DNA crosslinking agents. Oncotarget 2017. [PMID: 29515757 PMCID: PMC5839388 DOI: 10.18632/oncotarget.20033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
While gemcitabine has been the mainstay therapy for advanced pancreatic cancer, newer combination regimens (e.g. FOLFIRINOX) have extended patient survival, though carry greater toxicity. Biomarkers are needed to better stratify patients for appropriate therapy. Previously, we reported that one-third of pancreatic cancers harbor deletions or deleterious mutations in key subunits of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. The SWI/SNF complex mobilizes nucleosomes on DNA, and plays a key role in modulating DNA transcription and repair. Thus, we hypothesized that pancreatic cancers with SWI/SNF aberrations might exhibit compromised DNA repair, and show increased sensitivity to DNA damaging agents. Here, we studied human pancreatic cancer cell lines with deficient (or else exogenously reconstituted) SWI/SNF subunits, as well as normal pancreatic epithelial cells following SWI/SNF subunit knockdown. Cells were challenged with DNA damaging agents, including those used in current combination regimens, and then cell viability assayed. We found that pancreatic cells with SWI/SNF dysfunction showed markedly increased sensitivity to DNA damaging agents, and in particular DNA crosslinking agents (cisplatin and oxaliplatin). Assaying clearance of γH2AX confirmed that SWI/SNF dysfunction impaired DNA damage response/repair. Finally, by analyzing pancreatic cancer patient data from The Cancer Genome Atlas, we found that pancreatic cancers with SWI/SNF deficiency (subunit mutation and/or decreased expression) were associated with extended patient survival specifically when treated with platinum containing regimens. Thus, SWI/SNF dysfunction sensitizes pancreatic cancer cells to DNA crosslinking agents, and SWI/SNF mutation status may provide a useful biomarker to predict which patients are likely to benefit from platinum-containing chemotherapy regimens.
Collapse
Affiliation(s)
- Jean Davidson
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Current address: Department of Cardiovascular Research, Stanford University School of Medicine, Stanford, California, USA
| | - Zhewei Shen
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Xue Gong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Jonathan R Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
26
|
Verlingue L, Hollebecque A, Boige V, Ducreux M, Malka D, Ferté C. Matching genomic molecular aberrations with molecular targeted agents: Are biliary tract cancers an ideal playground? Eur J Cancer 2017. [DOI: 10.1016/j.ejca.2017.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Oba A, Shimada S, Akiyama Y, Nishikawaji T, Mogushi K, Ito H, Matsumura S, Aihara A, Mitsunori Y, Ban D, Ochiai T, Kudo A, Asahara H, Kaida A, Miura M, Tanabe M, Tanaka S. ARID2 modulates DNA damage response in human hepatocellular carcinoma cells. J Hepatol 2017; 66:942-951. [PMID: 28238438 DOI: 10.1016/j.jhep.2016.12.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND & AIMS Recent genomic studies have identified frequent mutations of AT-rich interactive domain 2 (ARID2) in hepatocellular carcinoma (HCC), but it is not still understood how ARID2 exhibits tumor suppressor activities. METHODS We established the ARID2 knockout human HCC cell lines by using CRISPR/Cas9 system, and investigated the gene expression profiles and biological functions. RESULTS Bioinformatic analysis indicated that UV-response genes were negatively regulated in the ARID2 knockout cells, and they were sensitized to UV irradiation. ARID2 depletion attenuated nucleotide excision repair (NER) of DNA damage sites introduced by exposure to UV as well as chemical compounds known as carcinogens for HCC, benzo[a]pyrene and FeCl3, since xeroderma pigmentosum complementation group G (XPG) could not accumulate without ARID2. By using large-scale public data sets, we validated that ARID2 knockout could lead to similar molecular changes between in vitro and in vivo settings. A higher number of somatic mutations in the ARID2-mutated subtypes than that in the ARID2 wild-type across various types of cancers including HCC was observed. CONCLUSIONS We provide evidence that ARID2 knockout could contribute to disruption of NER process through inhibiting the recruitment of XPG, resulting in susceptibility to carcinogens and potential hypermutation. These findings have implications for therapeutic targets in cancers harboring ARID2 mutations. LAY SUMMARY Recent genomic studies have identified frequent mutations of ARID2, a component of the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, in hepatocellular carcinoma, but it is not still understood how ARID2 exhibits tumor suppressor activities. In current study, we provided evidence that ARID2 knockout could contribute to disruption of DNA repair process, resulting in susceptibility to carcinogens and potential hypermutation. These findings have far-reaching implications for therapeutic targets in cancers harboring ARID2 mutations.
Collapse
Affiliation(s)
- Atsushi Oba
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan; Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taketo Nishikawaji
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaoru Mogushi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromitsu Ito
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Matsumura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arihiro Aihara
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Mitsunori
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Ochiai
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kaida
- Department of Oral Health Sciences, Graduate School of Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiko Miura
- Department of Oral Health Sciences, Graduate School of Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan; Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
28
|
Lim B, Mun J, Kim YS, Kim SY. Variability in Chromatin Architecture and Associated DNA Repair at Genomic Positions Containing Somatic Mutations. Cancer Res 2017; 77:2822-2833. [PMID: 28408367 DOI: 10.1158/0008-5472.can-16-3033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/20/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022]
Abstract
Dynamic chromatin structures result in differential chemical reactivity to mutational processes throughout the genome. To identify chromatin features responsible for mutagenesis, we compared chromatin architecture around single-nucleotide variants (SNV), insertion/deletions (indels), and their context-matched, nonmutated positions. We found epigenetic differences between genomic regions containing missense SNVs and those containing frameshift indels across multiple cancer types. Levels of active histone marks were higher around frameshift indels than around missense SNV, whereas repressive histone marks exhibited the reverse trend. Accumulation of repressive histone marks and nucleosomes distinguished mutated positions (both SNV and indels) from the context-matched, nonmutated positions, whereas active marks were associated with substitution- and cancer type-specific mutagenesis. We also explained mutagenesis based on genome maintenance mechanisms, including nucleotide excision repair (NER), mismatch repair (MMR), and DNA polymerase epsilon (POLE). Regional NER variation correlated strongly with chromatin features; NER machineries exhibited shifted or depleted binding around SNV, resulting in decreased NER at mutation positions, especially at sites of recurrent mutations. MMR-deficient tumors selectively acquired SNV in regions with high active histone marks, especially H3K36me3, whereas POLE-deficient tumors selectively acquired indels and SNV in regions with low active histone marks. These findings demonstrate the importance of fine-scaled chromatin structures and associated DNA repair mechanisms in mutagenesis. Cancer Res; 77(11); 2822-33. ©2017 AACR.
Collapse
Affiliation(s)
- Byungho Lim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jihyeob Mun
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Yong Sung Kim
- Department of Functional Genomics, University of Science and Technology, Daejeon, Korea.,Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea. .,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
29
|
Gong F, Chiu LY, Miller KM. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer. PLoS Genet 2016; 12:e1006272. [PMID: 27631103 PMCID: PMC5025232 DOI: 10.1371/journal.pgen.1006272] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.
Collapse
Affiliation(s)
- Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Li-Ya Chiu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kyle M. Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Han C, Srivastava AK, Cui T, Wang QE, Wani AA. Differential DNA lesion formation and repair in heterochromatin and euchromatin. Carcinogenesis 2015; 37:129-38. [PMID: 26717995 DOI: 10.1093/carcin/bgv247] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/13/2015] [Indexed: 11/15/2022] Open
Abstract
Discretely orchestrated chromatin condensation is important for chromosome protection from DNA damage. However, it is still unclear how different chromatin states affect the formation and repair of nucleotide excision repair (NER) substrates, e.g. ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPD) and the pyrimidine (6-4) pyrimidone photoproducts (6-4PP), as well as cisplatin-induced intrastrand crosslinks (Pt-GG). Here, by using immunofluorescence and chromatin immunoprecipitation assays, we have demonstrated that CPD, which cause minor distortion of DNA double helix, can be detected in both euchromatic and heterochromatic regions, while 6-4PP and Pt-GG, which cause major distortion of DNA helix, can exclusively be detected in euchromatin, indicating that the condensed chromatin environment specifically interferes with the formation of these DNA lesions. Mechanistic investigation revealed that the class III histone deacetylase SIRT1 is responsible for restricting the formation of 6-4PP and Pt-GG in cells, probably by facilitating the maintenance of highly condensed heterochromatin. In addition, we also showed that the repair of CPD in heterochromatin is slower than that in euchromatin, and DNA damage binding protein 2 (DDB2) can promote the removal of CPD from heterochromatic region. In summary, our data provide evidence for differential formation and repair of DNA lesions that are substrates of NER. Both the sensitivity of DNA to damage and the kinetics of repair can be affected by the underlying level of chromatin compaction.
Collapse
Affiliation(s)
| | - Amit Kumar Srivastava
- James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | | | - Qi-En Wang
- Department of Radiology and James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Altaf A Wani
- Department of Radiology and James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Bell EH, Chakraborty AR, Mo X, Liu Z, Shilo K, Kirste S, Stegmaier P, McNulty M, Karachaliou N, Rosell R, Bepler G, Carbone DP, Chakravarti A. SMARCA4/BRG1 Is a Novel Prognostic Biomarker Predictive of Cisplatin-Based Chemotherapy Outcomes in Resected Non-Small Cell Lung Cancer. Clin Cancer Res 2015; 22:2396-404. [PMID: 26671993 DOI: 10.1158/1078-0432.ccr-15-1468] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 12/06/2015] [Indexed: 01/18/2023]
Abstract
PURPOSE Identification of predictive biomarkers is critically needed to improve selection of patients who derive the most benefit from platinum-based chemotherapy. We hypothesized that decreased expression of SMARCA4/BRG1, a known regulator of transcription and DNA repair, is a novel predictive biomarker of increased sensitivity to adjuvant platinum-based therapies in non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN The prognostic value was tested using a gene-expression microarray from the Director's Challenge Lung Study (n = 440). The predictive significance of SMARCA4 was determined using a gene-expression microarray (n = 133) from control and treatment arms of the JBR.10 trial of adjuvant cisplatin/vinorelbine. Kaplan-Meier method and log-rank tests were used to estimate and test the differences of probabilities in overall survival (OS) and disease-specific survival (DSS) between expression groups and treatment arms. Multivariate Cox regression models were used while adjusting for other clinical covariates. RESULTS In the Director's Challenge Study, reduced expression of SMARCA4 was associated with poor OS compared with high and intermediate expression (P < 0.001 and P = 0.009, respectively). In multivariate analysis, compared with low, high SMARCA4 expression predicted a decrease in risk of death [HR, 0.6; 95% confidence interval (CI), 0.4-0.8; P = 0.002]. In the JBR.10 trial, improved 5-year DSS was noted only in patients with low SMARCA4 expression when treated with adjuvant cisplatin/vinorelbine [HR, 0.1; 95% CI, 0.0-0.5, P = 0.002 (low); HR, 1.0; 95% CI, 0.5-2.3, P = 0.92 (high)]. An interaction test was highly significant (P = 0.01). CONCLUSIONS Low expression of SMARCA4/BRG1 is significantly associated with worse prognosis; however, it is a novel significant predictive biomarker for increased sensitivity to platinum-based chemotherapy in NSCLC. Clin Cancer Res; 22(10); 2396-404. ©2015 AACR.
Collapse
Affiliation(s)
- Erica Hlavin Bell
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio.
| | - Arup R Chakraborty
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ziyan Liu
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Simon Kirste
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio. Department of Radiation Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - Petra Stegmaier
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio. Department of Radiation Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - Maureen McNulty
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Niki Karachaliou
- Translational Research Unit, Dr. Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Rafael Rosell
- Translational Research Unit, Dr. Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain. Catalan Institute of Oncology, Badalona, Barcelona, Spain
| | - Gerold Bepler
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - David P Carbone
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
32
|
Abstract
Base Excision Repair (BER) is a conserved, intracellular DNA repair system that recognizes and removes chemically modified bases to insure genomic integrity and prevent mutagenesis. Aberrant BER has been tightly linked with a broad spectrum of human pathologies, such as several types of cancer, neurological degeneration, developmental abnormalities, immune dysfunction and aging. In the cell, BER must recognize and remove DNA lesions from the tightly condensed, protein-coated chromatin. Because chromatin is necessarily refractory to DNA metabolic processes, like transcription and replication, the compaction of the genomic material is also inhibitory to the repair systems necessary for its upkeep. Multiple ATP-dependent chromatin remodelling (ACR) complexes play essential roles in modulating the protein-DNA interactions within chromatin, regulating transcription and promoting activities of some DNA repair systems, including double-strand break repair and nucleotide excision repair. However, it remains unclear how BER operates in the context of chromatin, and if the chromatin remodelling processes that govern transcription and replication also actively regulate the efficiency of BER. In this review we highlight the emerging role of ACR in regulation of BER.
Collapse
Affiliation(s)
- John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA.
| | - Wioletta Czaja
- Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| |
Collapse
|
33
|
Hamada N, Fujimichi Y. Role of carcinogenesis related mechanisms in cataractogenesis and its implications for ionizing radiation cataractogenesis. Cancer Lett 2015; 368:262-74. [DOI: 10.1016/j.canlet.2015.02.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
|
34
|
SWI/SNF complexes are required for full activation of the DNA-damage response. Oncotarget 2015; 6:732-45. [PMID: 25544751 PMCID: PMC4359251 DOI: 10.18632/oncotarget.2715] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/09/2014] [Indexed: 01/09/2023] Open
Abstract
SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited. To investigate the role of SWI/SNF complexes in the DNA-damage response (DDR), we used shRNAs to deplete BRG1 and BRM and then exposed these cells to a panel of 6 genotoxic agents. Compared to controls, the shRNA knockdown cells were hypersensitive to certain genotoxic agents that cause double-strand breaks (DSBs) associated with stalled/collapsed replication forks but not to ionizing radiation-induced DSBs that arise independently of DNA replication. These findings were supported by our analysis of DDR kinases, which demonstrated a more prominent role for SWI/SNF in the activation of the ATR-Chk1 pathway than the ATM-Chk2 pathway. Surprisingly, γH2AX induction was attenuated in shRNA knockdown cells exposed to a topoisomerase II inhibitor (etoposide) but not to other genotoxic agents including IR. However, this finding is compatible with recent studies linking SWI/SNF with TOP2A and TOP2BP1. Depletion of BRG1 and BRM did not result in genomic instability in a tumor-derived cell line but did result in nucleoplasmic bridges in normal human fibroblasts. Taken together, these results suggest that SWI/SNF tumor-suppressor activity involves a role in the DDR to attenuate replicative stress and genomic instability. These results may also help to inform the selection of chemotherapeutics for tumors deficient for SWI/SNF function.
Collapse
|
35
|
Abstract
DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance.
Collapse
Affiliation(s)
- Pingping Jia
- Elson S. Floyd College of Medicine, United States
| | - Chengtao Her
- School of Molecular Biosciences, Washington State University, United States
| | - Weihang Chai
- Elson S. Floyd College of Medicine, United States; School of Molecular Biosciences, Washington State University, United States.
| |
Collapse
|
36
|
Abstract
Eukaryotic genomes are packaged into chromatin, which is the physiological substrate for all DNA transactions, including DNA damage and repair. Chromatin organization imposes major constraints on DNA damage repair and thus undergoes critical rearrangements during the repair process. These rearrangements have been integrated into the "access-repair-restore" (ARR) model, which provides a molecular framework for chromatin dynamics in response to DNA damage. Here, we take a historical perspective on the elaboration of this model and describe the molecular players involved in damaged chromatin reorganization in human cells. In particular, we present our current knowledge of chromatin assembly coupled to DNA damage repair, focusing on the role of histone variants and their dedicated chaperones. Finally, we discuss the impact of chromatin rearrangements after DNA damage on chromatin function and epigenome maintenance.
Collapse
|
37
|
Mehrotra A, Mehta G, Aras S, Trivedi A, de la Serna IL. SWI/SNF chromatin remodeling enzymes in melanocyte differentiation and melanoma. Crit Rev Eukaryot Gene Expr 2015; 24:151-61. [PMID: 24940768 DOI: 10.1615/critreveukaryotgeneexpr.2014007882] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidermal melanocytes are pigment-producing cells derived from the neural crest that protects skin from the damaging effects of solar radiation. Malignant melanoma, a highly aggressive cancer, arises from melanocytes. SWI/SNF enzymes are multiprotein complexes that remodel chromatin structure and have extensive roles in cellular differentiation. Components of the complex have been found to be mutated or lost in several human cancers. This review focuses on studies that implicate SWI/SNF enzymes in melanocyte differentiation and in melanoma.
Collapse
Affiliation(s)
- A Mehrotra
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - G Mehta
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - S Aras
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - A Trivedi
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - I L de la Serna
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| |
Collapse
|
38
|
Shah P, He YY. Molecular regulation of UV-induced DNA repair. Photochem Photobiol 2015; 91:254-64. [PMID: 25534312 DOI: 10.1111/php.12406] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most prevalent cancer in the United States, as well as premature skin aging. In particular, UVB radiation causes formation of specific DNA damage photoproducts between pyrimidine bases. These DNA damage photoproducts are repaired by a process called nucleotide excision repair, also known as UV-induced DNA repair. When left unrepaired, UVB-induced DNA damage leads to accumulation of mutations, predisposing people to carcinogenesis as well as to premature aging. Genetic loss of nucleotide excision repair leads to severe disorders, namely, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS), which are associated with predisposition to skin carcinogenesis at a young age as well as developmental and neurological conditions. Regulation of nucleotide excision repair is an attractive avenue to preventing or reversing these detrimental consequences of impaired nucleotide excision repair. Here, we review recent studies on molecular mechanisms regulating nucleotide excision repair by extracellular cues and intracellular signaling pathways, with a special focus on the molecular regulation of individual repair factors.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | | |
Collapse
|
39
|
House NCM, Koch MR, Freudenreich CH. Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet 2014; 5:296. [PMID: 25250043 PMCID: PMC4155812 DOI: 10.3389/fgene.2014.00296] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 08/08/2014] [Indexed: 12/28/2022] Open
Abstract
DNA repair must take place in the context of chromatin, and chromatin modifications and DNA repair are intimately linked. The study of double-strand break repair has revealed numerous histone modifications that occur after induction of a DSB, and modification of the repair factors themselves can also occur. In some cases the function of the modification is at least partially understood, but in many cases it is not yet clear. Although DSB repair is a crucial activity for cell survival, DSBs account for only a small percentage of the DNA lesions that occur over the lifetime of a cell. Repair of single-strand gaps, nicks, stalled forks, alternative DNA structures, and base lesions must also occur in a chromatin context. There is increasing evidence that these repair pathways are also regulated by histone modifications and chromatin remodeling. In this review, we will summarize the current state of knowledge of chromatin modifications that occur during non-DSB repair, highlighting similarities and differences to DSB repair as well as remaining questions.
Collapse
Affiliation(s)
| | - Melissa R Koch
- Department of Biology, Tufts University Medford, MA, USA
| | - Catherine H Freudenreich
- Department of Biology, Tufts University Medford, MA, USA ; Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| |
Collapse
|
40
|
Zhang L, Nemzow L, Chen H, Hu JJ, Gong F. Whole genome expression profiling shows that BRG1 transcriptionally regulates UV inducible genes and other novel targets in human cells. PLoS One 2014; 9:e105764. [PMID: 25157878 PMCID: PMC4144907 DOI: 10.1371/journal.pone.0105764] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/19/2014] [Indexed: 12/16/2022] Open
Abstract
UV irradiation is known to cause cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6–4) pyrimidone photoproducts (6-4PPs), and plays a large role in the development of cancer. Tumor suppression, through DNA repair and proper cell cycle regulation, is an integral factor in maintaining healthy cells and preventing development of cancer. Transcriptional regulation of the genes involved in the various tumor suppression pathways is essential for them to be expressed when needed and to function properly. BRG1, an ATPase catalytic subunit of the SWI/SNF chromatin remodeling complex, has been identified as a tumor suppressor protein, as it has been shown to play a role in Nucleotide Excision Repair (NER) of CPDs, suppress apoptosis, and restore checkpoint deficiency, in response to UV exposure. Although BRG1 has been shown to regulate transcription of some genes that are instrumental in proper DNA damage repair and cell cycle maintenance in response to UV, its role in transcriptional regulation of the whole genome in response to UV has not yet been elucidated. With whole genome expression profiling in SW13 cells, we show that upon UV induction, BRG1 regulates transcriptional expression of many genes involved in cell stress response. Additionally, our results also highlight BRG1's general role as a master regulator of the genome, as it transcriptionally regulates approximately 4.8% of the human genome, including expression of genes involved in many pathways. RT-PCR and ChIP were used to validate our genome expression analysis. Importantly, our study identifies several novel transcriptional targets of BRG1, such as ATF3. Thus, BRG1 has a larger impact on human genome expression than previously thought, and our studies will provide inroads for future analysis of BRG1's role in gene regulation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Leah Nemzow
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Hua Chen
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jennifer J. Hu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Feng Gong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
41
|
Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 2014; 15:465-81. [PMID: 24954209 DOI: 10.1038/nrm3822] [Citation(s) in RCA: 788] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleotide excision repair (NER) eliminates various structurally unrelated DNA lesions by a multiwise 'cut and patch'-type reaction. The global genome NER (GG-NER) subpathway prevents mutagenesis by probing the genome for helix-distorting lesions, whereas transcription-coupled NER (TC-NER) removes transcription-blocking lesions to permit unperturbed gene expression, thereby preventing cell death. Consequently, defects in GG-NER result in cancer predisposition, whereas defects in TC-NER cause a variety of diseases ranging from ultraviolet radiation-sensitive syndrome to severe premature ageing conditions such as Cockayne syndrome. Recent studies have uncovered new aspects of DNA-damage detection by NER, how NER is regulated by extensive post-translational modifications, and the dynamic chromatin interactions that control its efficiency. Based on these findings, a mechanistic model is proposed that explains the complex genotype-phenotype correlations of transcription-coupled repair disorders.
Collapse
|
42
|
Aydin ÖZ, Marteijn JA, Ribeiro-Silva C, Rodríguez López A, Wijgers N, Smeenk G, van Attikum H, Poot RA, Vermeulen W, Lans H. Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription. Nucleic Acids Res 2014; 42:8473-85. [PMID: 24990377 PMCID: PMC4117783 DOI: 10.1093/nar/gku565] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of the CSB protein to lesion-stalled RNA polymerase II. Using live cell imaging, we identify a novel function for two distinct mammalian ISWI adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in resolving lesion-stalled transcription. Human ISWI isoform SMARCA5/SNF2H and its binding partners ACF1 and WSTF are rapidly recruited to UV-C induced DNA damage to specifically facilitate CSB binding and to promote transcription recovery. SMARCA5 targeting to UV-C damage depends on transcription and histone modifications and requires functional SWI2/SNF2-ATPase and SLIDE domains. After initial recruitment to UV damage, SMARCA5 re-localizes away from the center of DNA damage, requiring its HAND domain. Our studies support a model in which SMARCA5 targeting to DNA damage-stalled transcription sites is controlled by an ATP-hydrolysis-dependent scanning and proofreading mechanism, highlighting how SWI2/SNF2 chromatin remodelers identify and bind nucleosomes containing damaged DNA.
Collapse
Affiliation(s)
- Özge Z Aydin
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Jurgen A Marteijn
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Aida Rodríguez López
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Nils Wijgers
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Godelieve Smeenk
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Haico van Attikum
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Medical Genetics Cluster, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Wim Vermeulen
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Hannes Lans
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| |
Collapse
|
43
|
Polo SE. Reshaping chromatin after DNA damage: the choreography of histone proteins. J Mol Biol 2014; 427:626-36. [PMID: 24887097 PMCID: PMC5111727 DOI: 10.1016/j.jmb.2014.05.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 01/03/2023]
Abstract
DNA damage signaling and repair machineries operate in a nuclear environment where DNA is wrapped around histone proteins and packaged into chromatin. Understanding how chromatin structure is restored together with the DNA sequence during DNA damage repair has been a topic of intense research. Indeed, chromatin integrity is central to cell functions and identity. However, chromatin shows remarkable plasticity in response to DNA damage. This review presents our current knowledge of chromatin dynamics in the mammalian cell nucleus in response to DNA double strand breaks and UV lesions. I provide an overview of the key players involved in regulating histone dynamics in damaged chromatin regions, focusing on histone chaperones and their concerted action with histone modifiers, chromatin remodelers and repair factors. I also discuss how these dynamics contribute to reshaping chromatin and, by altering the chromatin landscape, may affect the maintenance of epigenetic information.
Collapse
Affiliation(s)
- Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Paris Diderot University, 75205 Paris Cedex 13, France.
| |
Collapse
|
44
|
Mandemaker IK, Vermeulen W, Marteijn JA. Gearing up chromatin: A role for chromatin remodeling during the transcriptional restart upon DNA damage. Nucleus 2014; 5:203-10. [PMID: 24809693 PMCID: PMC4133215 DOI: 10.4161/nucl.29085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During transcription, RNA polymerase may encounter DNA lesions, which causes stalling of transcription. To overcome the RNA polymerase blocking lesions, the transcribed strand is repaired by a dedicated repair mechanism, called transcription coupled nucleotide excision repair (TC-NER). After repair is completed, it is essential that transcription restarts. So far, the regulation and exact molecular mechanism of this transcriptional restart upon genotoxic damage has remained elusive. Recently, three different chromatin remodeling factors, HIRA, FACT, and Dot1L, were identified to stimulate transcription restart after DNA damage. These factors either incorporate new histones or establish specific chromatin marks that will gear up the chromatin to subsequently promote transcription recovery. This adds a new layer to the current model of chromatin remodeling necessary for repair and indicates that this specific form of transcription, i.e., the transcriptional restart upon DNA damage, needs specific chromatin remodeling events.
Collapse
Affiliation(s)
- Imke K Mandemaker
- Department of Genetics; Erasmus Medical Centre; Rotterdam, the Netherlands
| | - Wim Vermeulen
- Department of Genetics; Erasmus Medical Centre; Rotterdam, the Netherlands
| | - Jurgen A Marteijn
- Department of Genetics; Erasmus Medical Centre; Rotterdam, the Netherlands
| |
Collapse
|
45
|
Abstract
ARID1A has emerged as a tumor suppressor gene, which is mutated in a broad spectrum of cancers, especially in those arising from ectopic or eutopic endometrium. As a subunit of SWI/SNF chromatin remodeler, ARID1A facilitates target-specific binding of SWI/SNF complexes to chromatin, thereby altering the accessibility of chromatin to a variety of nuclear factors. In human cancer, ARID1A possesses not only features of a gatekeeper, regulating cell cycle progression, but also features of a caretaker, preventing genomic instability. An increasing body of evidence suggests crosstalk between ARID1A and PI3K/Akt pathways, and between ARID1A and p53. In this review, we discuss the spectrum of ARID1A alterations in cancers, tumor suppression mechanisms of ARID1A, oncogenic pathways cooperating with ARID1A, and clinical implications of ARID1A mutation.
Collapse
Affiliation(s)
- Ren-Chin Wu
- Department of Pathology and Pathobiology Graduate Program; Johns Hopkins University School of Medicine; Baltimore, MD USA; Department of Pathology; Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Taoyuan, Taiwan
| | - Tian-Li Wang
- Department of Pathology and Pathobiology Graduate Program; Johns Hopkins University School of Medicine; Baltimore, MD USA; Departments of Oncology and Gynecology and Obstetrics; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Ie-Ming Shih
- Department of Pathology and Pathobiology Graduate Program; Johns Hopkins University School of Medicine; Baltimore, MD USA; Departments of Oncology and Gynecology and Obstetrics; Johns Hopkins University School of Medicine; Baltimore, MD USA
| |
Collapse
|
46
|
Czaja W, Mao P, Smerdon MJ. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae. DNA Repair (Amst) 2014; 16:35-43. [PMID: 24674626 DOI: 10.1016/j.dnarep.2014.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
Abstract
The base excision repair (BER) pathway is a conserved DNA repair system required to maintain genomic integrity and prevent mutagenesis in all eukaryotic cells. Nevertheless, how BER operates in vivo (i.e. in the context of chromatin) is poorly understood. We have investigated the role of an essential ATP-dependent chromatin remodelling (ACR) complex RSC (Remodels the Structure of Chromatin) in BER of intact yeast cells. We show that depletion of STH1, the ATPase subunit of RSC, causes enhanced sensitivity to the DNA alkylating agent methyl methanesulfonate (MMS) and results in a substantial inhibition of BER, at the GAL1 locus and in the genome overall. Consistent with this observation, the DNA in chromatin is less accessible to micrococcal nuclease digestion in the absence of RSC. Quantitative PCR results indicate that repair deficiency in STH1 depleted cells is not due to changes in the expression of BER genes. Collectively, our data indicates the RSC complex promotes efficient BER in chromatin. These results provide, for the first time, a link between ATP-dependent chromatin remodelling and BER in living cells.
Collapse
Affiliation(s)
- Wioletta Czaja
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Peng Mao
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Michael J Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA.
| |
Collapse
|
47
|
Wong KM, Qiu X, Cheng D, Azad AK, Habbous S, Palepu P, Mirshams M, Patel D, Chen Z, Roberts H, Knox J, Marquez S, Wong R, Darling G, Waldron J, Goldstein D, Leighl N, Shepherd FA, Tsao M, Der S, Reisman D, Liu G. Two BRM promoter insertion polymorphisms increase the risk of early-stage upper aerodigestive tract cancers. Cancer Med 2014; 3:426-33. [PMID: 24519853 PMCID: PMC3987092 DOI: 10.1002/cam4.201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/04/2013] [Accepted: 12/26/2013] [Indexed: 12/23/2022] Open
Abstract
Brahma (BRM) has a key function in chromatin remodeling. Two germline BRM promoter insertion–deletion polymorphisms, BRM-741 and BRM-1321, have been previously associated with an increased risk of lung cancer in smokers and head and neck cancer. To further evaluate their role in cancer susceptibility particularly in early disease, we conducted a preplanned case–control study to investigate the association between the BRM promoter variants and stage I/II upper aerodigestive tract (UADT) cancers (i.e., lung, esophageal, head and neck), a group of early-stage malignancies in which molecular and genetic etiologic factors are poorly understood. The effects of various clinical factors on this association were also studied. We analyzed 562 cases of early-stage UADT cancers and 993 matched healthy controls. The double homozygous BRM promoter variants were associated with a significantly increased risk of early stage UADT cancers (adjusted odds ratio [aOR], 2.46; 95% confidence interval [CI], 1.7–3.8). This association was observed in lung (aOR, 2.61; 95% CI, 1.5–4.9) and head and neck (aOR, 2.75; 95% CI, 1.4–5.6) cancers, but not significantly in esophageal cancer (aOR, 1.66; 95% CI, 0.7–5.8). There was a nonsignificant trend for increased risk in the heterozygotes or single homozygotes. The relationship between the BRM polymorphisms and early-stage UADT cancers was independent of age, sex, smoking status, histology, and clinical stage. These findings suggest that the BRM promoter double insertion homozygotes may be associated with an increased risk of early-stage UADT cancers independent of smoking status and histology, which must be further validated in other populations.
Collapse
Affiliation(s)
- Kit Man Wong
- Department of Medical Oncology, Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kwon SJ, Park JH, Park EJ, Lee SA, Lee HS, Kang SW, Kwon J. ATM-mediated phosphorylation of the chromatin remodeling enzyme BRG1 modulates DNA double-strand break repair. Oncogene 2014; 34:303-13. [PMID: 24413084 DOI: 10.1038/onc.2013.556] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/25/2022]
Abstract
ATP-dependent chromatin remodeling complexes such as SWI/SNF (SWItch/Sucrose NonFermentable) have been implicated in DNA double-strand break (DSB) repair and damage responses. However, the regulatory mechanisms that control the function of chromatin remodelers in DNA damage response are largely unknown. Here, we show that ataxia telangiectasia mutated (ATM) mediates the phosphorylation of BRG1, the catalytic ATPase of the SWI/SNF complex that contributes to DSB repair by binding γ-H2AX-containing nucleosomes via interaction with acetylated histone H3 and stimulating γ-H2AX formation, at Ser-721 in response to DNA damage. ATM-mediated phosphorylation of BRG1 occurs rapidly and transiently after DNA damage. Phosphorylated BRG1 binds γ-H2AX-containing nucleosomes to form the repair foci. The Ser-721 phosphorylation of BRG1 is critical for binding γ-H2AX-containing nucleosomes and stimulating γ-H2AX formation and DSB repair. BRG1 binds to acetylated H3 peptides much better after phosphorylation at Ser-721 by DNA damage. However, the phosphorylation of Ser-721 does not significantly affect the ATPase and transcriptional activities of BRG1. These results, establishing BRG1 as a novel and functional ATM substrate, suggest that the ATM-mediated phosphorylation of BRG1 facilitates DSB repair by stimulating the association of this remodeler with γ-H2AX nucleosomes via enhancing the affinity to acetylated H3. Our work also suggests that the mechanism of BRG1 stimulation of DNA repair is independent of the remodeler's enzymatic or transcriptional activities.
Collapse
Affiliation(s)
- S-J Kwon
- Department of Life Science, College of Natural Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - J-H Park
- Department of Life Science, College of Natural Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - E-J Park
- Department of Life Science, College of Natural Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - S-A Lee
- Department of Life Science, College of Natural Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - H-S Lee
- Department of Life Science, College of Natural Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - S W Kang
- Department of Life Science, College of Natural Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - J Kwon
- Department of Life Science, College of Natural Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Lubin A, Zhang L, Chen H, White VM, Gong F. A human XPC protein interactome--a resource. Int J Mol Sci 2013; 15:141-58. [PMID: 24366067 PMCID: PMC3907802 DOI: 10.3390/ijms15010141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022] Open
Abstract
Global genome nucleotide excision repair (GG-NER) is responsible for identifying and removing bulky adducts from non-transcribed DNA that result from damaging agents such as UV radiation and cisplatin. Xeroderma pigmentosum complementation group C (XPC) is one of the essential damage recognition proteins of the GG-NER pathway and its dysfunction results in xeroderma pigmentosum (XP), a disorder involving photosensitivity and a predisposition to cancer. To better understand the identification of DNA damage by XPC in the context of chromatin and the role of XPC in the pathogenesis of XP, we characterized the interactome of XPC using a high throughput yeast two-hybrid screening. Our screening showed 49 novel interactors of XPC involved in DNA repair and replication, proteolysis and post-translational modifications, transcription regulation, signal transduction, and metabolism. Importantly, we validated the XPC-OTUD4 interaction by co-IP and provided evidence that OTUD4 knockdown in human cells indeed affects the levels of ubiquitinated XPC, supporting a hypothesis that the OTUD4 deubiquitinase is involved in XPC recycling by cleaving the ubiquitin moiety. This high-throughput characterization of the XPC interactome provides a resource for future exploration and suggests that XPC may have many uncharacterized cellular functions.
Collapse
Affiliation(s)
- Abigail Lubin
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Ling Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Hua Chen
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Victoria M. White
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Feng Gong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| |
Collapse
|
50
|
Zhao R, Han C, Eisenhauer E, Kroger J, Zhao W, Yu J, Selvendiran K, Liu X, Wani AA, Wang QE. DNA damage-binding complex recruits HDAC1 to repress Bcl-2 transcription in human ovarian cancer cells. Mol Cancer Res 2013; 12:370-80. [PMID: 24249678 DOI: 10.1158/1541-7786.mcr-13-0281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
UNLABELLED Elevated expression of the antiapoptotic factor Bcl-2 is believed to be one of the contributing factors to an increased relapse rate associated with multiple cisplatin-resistant cancers. DNA damage-binding protein complex subunit 2 (DDB2) has recently been revealed to play an important role in sensitizing human ovarian cancer cells to cisplatin-induced apoptosis through the downregulation of Bcl-2, but the underlying molecular mechanism remains poorly defined. Here, it is report that DDB2 functions as a transcriptional repressor for Bcl-2 in combination with DDB1. Quantitative ChIP and EMSA analysis revealed that DDB2 binds to a specific cis-acting element at the 5'-end of Bcl-2 P1 promoter. Overexpression of DDB2 resulted in marked losses of histone H3K9,14 acetylation along the Bcl-2 promoter and enhancer regions, concomitant with a local enrichment of HDAC1 to the Bcl-2 P1 core promoter in ovarian cancer cells. Coimmunoprecipitation and in vitro binding analyses identified a physical interaction between DDB1 and HDAC1, whereas downregulation of HDAC1 significantly enhanced Bcl-2 promoter activity. Finally, in comparison with wild-type DDB2, mutated DDB2, which is unable to repress Bcl-2 transcription, mediates a compromised apoptosis upon cisplatin treatment. Taken together, these data support a model wherein DDB1 and DDB2 cooperate to repress Bcl-2 transcription. DDB2 recognizes and binds to the Bcl-2 P1 promoter, and HDAC1 is recruited through the DDB1 subunit associated with DDB2 to deacetylate histone H3K9,14 across Bcl-2 regulatory regions, resulting in suppressed Bcl-2 transcription. IMPLICATIONS Increasing the expression of DDB complex may provide a molecular strategy for cancer therapy.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Radiology, The Ohio State University, Room 1014 BRT, 460 W. 12th Avenue, Columbus, OH 43210.
| | | | | | | | | | | | | | | | | | | |
Collapse
|