1
|
Matthews DG, Khorani M, Bobe G, Caruso M, Magana AA, Gray NE, Quinn JF, Stevens JF, Maier CS, Soumyanath A. Centella asiatica improves cognitive function and alters the hippocampal metabolome of aged Tg2576 and wild-type mice. J Alzheimers Dis Rep 2024; 8:1611-1638. [PMID: 40034352 PMCID: PMC11863750 DOI: 10.1177/25424823241296740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 09/23/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a growing public health problem in the aging population, with limited treatment options. We previously reported that Centella asiatica herb water extract (CAW) attenuates cognitive decline in murine models of AD and aging. Objective To explore changes in the hippocampal metabolome associated with CAW's modulation of cognitive function and amyloid-β (Aβ) plaque load in aged Tg2576 and wild-type (WT) mice. Methods We compared cognitive function, hippocampal Aβ plaque burden, and hippocampal metabolite profile in 20-month-old Tg2576 female mice and their WT littermates following 3-5 weeks treatment with CAW (0, 200, or 1000 mg/kg/d p.o.). Cognitive testing included contextual fear response (CFR) and novel object recognition task (NORT). Aβ plaque burden was measured via immunohistochemistry. Metabolomic profiles of mouse hippocampi were obtained using liquid chromatography coupled with high resolution tandem mass spectrometry. Results CAW treatment resulted in dose-related improvements in CFR and NORT performance of Tg2576 and WT mice. However, while CFR correlated with neurosignaling and glycosylated ceramide levels, NORT performance correlated with lysophosphatidylcholines and oxidized metabolites, and Aβ accumulation was linked to elevated excitatory and suppressed inhibitory neurotransmission. Only a subset of the metabolite changes induced by CAW in Tg2576 mice represented a reversal of metabolite differences between Tg2576 and WT mice, suggesting the involvement of other pathways in CAW's cognitive effects. Conclusions Mechanisms underlying CAW's cognitive effects extend beyond reversing metabolic effects of Aβ accumulation. The data support the potential use of CAW to manage memory challenges in aged individuals with or without AD.
Collapse
Affiliation(s)
- Donald G Matthews
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Mona Khorani
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | | | - Nora E Gray
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, USA
- Parkinson's Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Wu J, Chen Y. Signal peptide stabilizes folding and inhibits misfolding of serum amyloid A. Protein Sci 2022; 31:e4485. [PMID: 36309973 PMCID: PMC9667897 DOI: 10.1002/pro.4485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Signal peptide (SP) plays an important role in membrane targeting for insertion of secretory and membrane proteins during translocation processes in prokaryotes and eukaryotes. Beside the targeting functions, SP has also been found to affect the stability and folding of several proteins. Serum amyloid A (SAA) proteins are apolipoproteins responding to acute-phase inflammation. The fibrillization of SAA results in a protein misfolding disease named amyloid A (AA) amyloidosis. The main disease-associated isoform of human SAA, SAA1.1, is expressed as a precursor protein with an N-terminal signal peptide composed of 18 residues. The cleavage of the SP generates mature SAA1.1. To investigate whether the SP affects properties of SAA1.1, we systematically examined the structure, protein stability, and fibrillization propensity of pre-SAA1.1, which possesses the SP, and Ser-SAA1.1 without the SP but containing with an additional N-terminal serine residue. We found that the presence of the SP did not significantly affect the predominant helical structure but changed the tertiary conformation as evidenced by intrinsic fluorescence and exposed hydrophobic surfaces. Pre-SAA1.1 and Ser-SAA1.1 formed distinct oligomeric assemblies in which pre-SAA1.1 populated as tetramer and octamer, whereas Ser-SAA1.1 existed as a predominant hexamer. Pre-SAA1.1 was found significantly more stable than Ser-SAA1.1 upon thermal and chemical unfolding. Ser-SAA1.1, but not pre-SAA1.1, is capable of forming amyloid fibrils in protein misfolding study, indicating a protective role of the SP. Altogether, our results demonstrated a novel role of the SP in SAA folding and misfolding and provided a novel direction for therapeutic development of AA amyloidosis.
Collapse
Affiliation(s)
- Jin‐Lin Wu
- Ph.D. Program for Cancer Biology and Drug DiscoveryChina Medical University and Academia SinicaTaichungTaiwan
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| | - Yun‐Ru Chen
- Ph.D. Program for Cancer Biology and Drug DiscoveryChina Medical University and Academia SinicaTaichungTaiwan
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| |
Collapse
|
3
|
Song C, Zhang T, Zhang Y. Conformational Essentials Responsible for Neurotoxicity of Aβ42 Aggregates Revealed by Antibodies against Oligomeric Aβ42. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196751. [PMID: 36235284 PMCID: PMC9570743 DOI: 10.3390/molecules27196751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Soluble aggregation of amyloid β-peptide 1-42 (Aβ42) and deposition of Aβ42 aggregates are the initial pathological hallmarks of Alzheimer's disease (AD). The bipolar nature of Aβ42 molecule results in its ability to assemble into distinct oligomers and higher aggregates, which may drive some of the phenotypic heterogeneity observed in AD. Agents targeting Aβ42 or its aggregates, such as anti-Aβ42 antibodies, can inhibit the aggregation of Aβ42 and toxicity of Aβ42 aggregates to neural cells to a certain extent. However, the epitope specificity of an antibody affects its binding affinity for different Aβ42 species. Different antibodies target different sites on Aβ42 and thus elicit different neuroprotective or cytoprotective effects. In the present review, we summarize significant information reflected by anti-Aβ42 antibodies in different immunotherapies and propose an overview of the structure (conformation)-toxicity relationship of Aβ42 aggregates. This review aimed to provide a reference for the directional design of antibodies against the most pathogenic conformation of Aβ42 aggregates.
Collapse
Affiliation(s)
- Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
- School of Life Science, Jilin University, Changchun 130012, China
- Correspondence:
| |
Collapse
|
4
|
Lee JH, Yin R, Ofek G, Pierce BG. Structural Features of Antibody-Peptide Recognition. Front Immunol 2022; 13:910367. [PMID: 35874680 PMCID: PMC9302003 DOI: 10.3389/fimmu.2022.910367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022] Open
Abstract
Antibody recognition of antigens is a critical element of adaptive immunity. One key class of antibody-antigen complexes is comprised of antibodies targeting linear epitopes of proteins, which in some cases are conserved elements of viruses and pathogens of relevance for vaccine design and immunotherapy. Here we report a detailed analysis of the structural and interface features of this class of complexes, based on a set of nearly 200 nonredundant high resolution antibody-peptide complex structures that were assembled from the Protein Data Bank. We found that antibody-bound peptides adopt a broad range of conformations, often displaying limited secondary structure, and that the same peptide sequence bound by different antibodies can in many cases exhibit varying conformations. Propensities of contacts with antibody loops and extent of antibody binding conformational changes were found to be broadly similar to those for antibodies in complex with larger protein antigens. However, antibody-peptide interfaces showed lower buried surface areas and fewer hydrogen bonds than antibody-protein antigen complexes, while calculated binding energy per buried interface area was found to be higher on average for antibody-peptide interfaces, likely due in part to a greater proportion of buried hydrophobic residues and higher shape complementarity. This dataset and these observations can be of use for future studies focused on this class of interactions, including predictive computational modeling efforts and the design of antibodies or epitope-based vaccine immunogens.
Collapse
Affiliation(s)
- Jessica H. Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Rui Yin
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
| | - Gilad Ofek
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
| | - Brian G. Pierce
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
5
|
Preparation and in vitro activity of single chain antibodies against Alzheimer's disease. Immunol Lett 2020; 227:1-7. [PMID: 32781005 DOI: 10.1016/j.imlet.2020.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 01/16/2023]
Abstract
Disease-modifying passive immunotherapies focused on reducing amyloid-beta (Aβ) deposition are a potential therapeutic strategy for Alzheimer's disease (AD). However, the results of Aβ passive immunotherapy clinical trials were unsatisfactory, largely due to the low efficacy of whole antibodies due to their relatively large molecular weight and low blood-brain barrier transmittance. Furthermore, the constant region fragments of whole antibodies can trigger inflammatory reactions, which raises safety concerns. Single chain fragment variables (scFvs), containing only the variable region of the heavy and light chains of antibodies, show great potential for the treatment of AD. With the aim of generating a safe and effective AD passive immunotherapy, we designed and successfully prepared scFvs targeting Aβ and investigated their activity in vitro. The results showed that both the 10D5-scFv and 12B4-scFv have high affinities for Aβ monomers, oligomers, and fibers. Moreover, scFvs could prevent the formation of Aβ oligomers and fibers, and block their cellular toxicity. In addition, 10D5-scFv and 12B4-scFv could bind to Aβ plaques on the sections of mice brains in the in vitro study, indicating potential for the treatment of AD.
Collapse
|
6
|
Alzheimer's Aβ
1‐40
peptide degradation by thermolysin: evidence of inhibition by a C‐terminal Aβ product. FEBS Lett 2018; 593:128-137. [DOI: 10.1002/1873-3468.13285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/18/2018] [Accepted: 10/30/2018] [Indexed: 01/23/2023]
|
7
|
Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci Rep 2018; 8:6412. [PMID: 29686315 PMCID: PMC5913127 DOI: 10.1038/s41598-018-24501-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Aducanumab, a human-derived antibody targeting amyloid-β (Aβ), is in Phase 3 clinical trials for the treatment of Alzheimer’s disease. Biochemical and structural analyses show that aducanumab binds a linear epitope formed by amino acids 3–7 of the Aβ peptide. Aducanumab discriminates between monomers and oligomeric or fibrillar aggregates based on weak monovalent affinity, fast binding kinetics and strong avidity for epitope-rich aggregates. Direct comparative studies with analogs of gantenerumab, bapineuzumab and solanezumab demonstrate clear differentiation in the binding properties of these antibodies. The crystal structure of the Fab fragment of aducanumab bound to its epitope peptide reveals that aducanumab binds to the N terminus of Aβ in an extended conformation, distinct from those seen in structures with other antibodies that target this immunodominant epitope. Aducanumab recognizes a compact epitope that sits in a shallow pocket on the antibody surface. In silico analyses suggest that aducanumab interacts weakly with the Aβ monomer and may accommodate a variety of peptide conformations, further supporting its selectivity for Aβ aggregates. Our studies provide a structural rationale for the low affinity of aducanumab for non-pathogenic monomers and its greater selectivity for aggregated forms than is seen for other Aβ-targeting antibodies.
Collapse
|
8
|
Dong J, Fujita R, Zako T, Ueda H. Construction of Quenchbodies to detect and image amyloid β oligomers. Anal Biochem 2018; 550:61-67. [PMID: 29678763 DOI: 10.1016/j.ab.2018.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/04/2023]
Abstract
A quenchbody (Q-body) is an antibody-based biosensor that employs fluorescence quenching of the dye(s) attached to the antibody fragment, which are de-quenched upon antigen binding. In this study, we aimed to develop Fab type Q-bodies (UQ-bodies) to aid the diagnosis of Alzheimer's disease (AD). Characteristic senile plaques in AD consist of amyloid-β peptide (Aβ) generated from the amyloid precursor protein. Aβ42, one of the major peptide forms, aggregates fast and manifests higher neurotoxicity. Recent studies showed that Aβ oligomers, such as Aβ-derived diffusible ligand (ADDL), are more toxic than fibrils. Thus, detection of Aβ and its oligomers in body fluid might help detect deterioration caused by the disease. To this end, the Fab fragment of the anti-Aβ antibody h12A11, which binds preferentially to ADDL, was expressed in Escherichia coli, and labeled with a fluorescent dye at the N terminus of either the heavy chain, or the heavy and light chains, via Cys-containing tag(s) to prepare UQ-bodies. As a result, the double-labeled UQ-bodies detected ADDL with higher sensitivity than that for the Aβ peptide. In addition, the UQ-body could be used to image aggregated Aβ with a low background, which suggested the potential of UQ-bodies as a fast bioimaging tool.
Collapse
Affiliation(s)
- Jinhua Dong
- Key Laboratory of Biological Medicine in Universities of Shandong Province, School of Bioscience and Technology, Weifang Medical University, 7166 Baotongxi, Weifang, Shandong 261053, PR China; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan
| | - Richi Fujita
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan
| | - Tamotsu Zako
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5, Bunkyo-cho, Matsuyama, Ehime 790-8577 Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan.
| |
Collapse
|
9
|
Lee MC, Yu WC, Shih YH, Chen CY, Guo ZH, Huang SJ, Chan JCC, Chen YR. Zinc ion rapidly induces toxic, off-pathway amyloid-β oligomers distinct from amyloid-β derived diffusible ligands in Alzheimer's disease. Sci Rep 2018; 8:4772. [PMID: 29555950 PMCID: PMC5859292 DOI: 10.1038/s41598-018-23122-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/06/2018] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease in the elderly. Zinc (Zn) ion interacts with the pathogenic hallmark, amyloid-β (Aβ), and is enriched in senile plaques in brain of AD patients. To understand Zn-chelated Aβ (ZnAβ) species, here we systematically characterized ZnAβ aggregates by incubating equimolar Aβ with Zn. We found ZnAβ40 and ZnAβ42 both form spherical oligomers with a diameter of ~12–14 nm composed of reduced β-sheet content. Oligomer assembly examined by analytical ultracentrifugation, hydrophobic exposure by BisANS spectra, and immunoreactivity of ZnAβ and Aβ derived diffusible ligands (ADDLs) are distinct. The site-specific 13C labeled solid-state NMR spectra showed that ZnAβ40 adopts β-sheet structure as in Aβ40 fibrils. Interestingly, removal of Zn by EDTA rapidly shifted the equilibrium back to fibrillization pathway with a faster kinetics. Moreover, ZnAβ oligomers have stronger toxicity than ADDLs by cell viability and cytotoxicity assays. The ex vivo study showed that ZnAβ oligomers potently inhibited hippocampal LTP in the wild-type C57BL/6JNarl mice. Finally, we demonstrated that ZnAβ oligomers stimulate hippocampal microglia activation in an acute Aβ-injected model. Overall, our study demonstrates that ZnAβ rapidly form toxic and distinct off-pathway oligomers. The finding provides a potential target for AD therapeutic development.
Collapse
Affiliation(s)
- Ming-Che Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Cheng Yu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | - Chun-Yu Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Zhong-Hong Guo
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Shing-Jong Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jerry C C Chan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yun-Ru Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.. .,Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
10
|
Zhao J, Nussinov R, Ma B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J Biol Chem 2017; 292:18325-18343. [PMID: 28924036 PMCID: PMC5672054 DOI: 10.1074/jbc.m117.801514] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/26/2017] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease is one of the most devastating neurodegenerative diseases without effective therapies. Immunotherapy is a promising approach, but amyloid antibody structural information is limited. Here we simulate the recognition of monomeric, oligomeric, and fibril amyloid-β (Aβ) by three homologous antibodies (solanezumab, crenezumab, and their chimera, CreneFab). Solanezumab only binds the monomer, whereas crenezumab and CreneFab can recognize different oligomerization states; however, the structural basis for this observation is not understood. We successfully identified stable complexes of crenezumab with Aβ pentamer (oligomer model) and 16-mer (fibril model). It is noteworthy that solanezumab targets Aβ residues 16-26 preferentially in the monomeric state; conversely, crenezumab consistently targets residues 13-16 in different oligomeric states. Unlike the buried monomeric peptide in solanezumab's complementarity-determining region, crenezumab binds the oligomer's lateral and edge residues. Surprisingly, crenezumab's complementarity-determining region loops can effectively bind the Aβ fibril lateral surface around the same 13-16 region. The constant domain influences antigen recognition through entropy redistribution. Different constant domain residues in solanezumab/crenezumab/chimera influence the binding of Aβ aggregates. Collectively, we provide molecular insight into the recognition mechanisms facilitating antibody design.
Collapse
MESH Headings
- Amyloid/antagonists & inhibitors
- Amyloid/chemistry
- Amyloid/metabolism
- Amyloid beta-Peptides/antagonists & inhibitors
- Amyloid beta-Peptides/chemistry
- Amyloid beta-Peptides/metabolism
- Animals
- Antibodies/chemistry
- Antibodies/genetics
- Antibodies/metabolism
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/metabolism
- Antibody Specificity
- Binding Sites, Antibody
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Drug Design
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Weight
- Nootropic Agents/chemistry
- Nootropic Agents/metabolism
- Protein Aggregates
- Protein Aggregation, Pathological/metabolism
- Protein Conformation
- Protein Engineering
- Protein Multimerization
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Structural Homology, Protein
Collapse
Affiliation(s)
- Jun Zhao
- From the Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland 21702
| | - Ruth Nussinov
- the Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland 21702, and
- the Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- the Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland 21702, and
| |
Collapse
|
11
|
Teplyakov A, Obmolova G, Gilliland GL. A coiled conformation of amyloid-β recognized by antibody C706. ALZHEIMERS RESEARCH & THERAPY 2017; 9:66. [PMID: 28830506 PMCID: PMC5568176 DOI: 10.1186/s13195-017-0296-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/03/2017] [Indexed: 01/23/2023]
Abstract
Background β-Amyloid (Aβ) peptide is believed to play a pivotal role in the development of Alzheimer’s disease. Passive immunization with anti-Aβ monoclonal antibodies may facilitate the clearance of Aβ in the brain and may thus prevent the downstream pathology. Antibodies targeting the immunodominant N-terminal epitope of Aβ and capable of binding both the plaques and soluble species have been most efficacious in animal models. Structural studies of such antibodies with bound Aβ peptides provided the basis for understanding the mechanisms of action and the differences in potency. To gain further insight into the structural determinants of antigen recognition and the preferential Aβ conformations, we determined the crystal structure of murine antibody C706 in complex with the N-terminal Aβ 1–16 peptide sequence. Methods The antigen-binding fragment of C706 was expressed in HEK293 cells and was crystallized in complex with the Aβ peptide. The X-ray structure was determined at 1.9-Å resolution. Results The binding epitope of C706 is centered on residues Arg5 and His6, which provide the majority of interactions. Unlike most antibodies, C706 recognizes a coiled rather than extended conformation of Aβ. Conclusions Comparison with other antibodies targeting the N-terminal section of Aβ suggests that the conformation of the bound peptide may be linked to the immunization protocol and may reflect the preference for the extended conformation in the context of a longer Aβ peptide as opposed to the coiled conformation in the isolated short peptide.
Collapse
Affiliation(s)
- Alexey Teplyakov
- Janssen Research and Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA.
| | - Galina Obmolova
- Janssen Research and Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Gary L Gilliland
- Janssen Research and Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| |
Collapse
|
12
|
Piechotta A, Parthier C, Kleinschmidt M, Gnoth K, Pillot T, Lues I, Demuth HU, Schilling S, Rahfeld JU, Stubbs MT. Structural and functional analyses of pyroglutamate-amyloid-β-specific antibodies as a basis for Alzheimer immunotherapy. J Biol Chem 2017; 292:12713-12724. [PMID: 28623233 PMCID: PMC5535044 DOI: 10.1074/jbc.m117.777839] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/07/2017] [Indexed: 12/22/2022] Open
Abstract
Alzheimer disease is associated with deposition of the amyloidogenic peptide Aβ in the brain. Passive immunization using Aβ-specific antibodies has been demonstrated to reduce amyloid deposition both in vitro and in vivo Because N-terminally truncated pyroglutamate (pE)-modified Aβ species (AβpE3) exhibit enhanced aggregation potential and propensity to form toxic oligomers, they represent particularly attractive targets for antibody therapy. Here we present three separate monoclonal antibodies that specifically recognize AβpE3 with affinities of 1-10 nm and inhibit AβpE3 fibril formation in vitro. In vivo application of one of these resulted in improved memory in AβpE3 oligomer-treated mice. Crystal structures of Fab-AβpE3 complexes revealed two distinct binding modes for the peptide. Juxtaposition of pyroglutamate pE3 and the F4 side chain (the "pEF head") confers a pronounced bulky hydrophobic nature to the AβpE3 N terminus that might explain the enhanced aggregation properties of the modified peptide. The deep burial of the pEF head by two of the antibodies explains their high target specificity and low cross-reactivity, making them promising candidates for the development of clinical antibodies.
Collapse
Affiliation(s)
- Anke Piechotta
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany; Institute of Biotechnology, Martin Luther University, 06108 Halle-Wittenberg, Germany; Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Christoph Parthier
- Institute of Biotechnology, Martin Luther University, 06108 Halle-Wittenberg, Germany
| | - Martin Kleinschmidt
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany; Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Kathrin Gnoth
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany; Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | | | - Inge Lues
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Hans-Ulrich Demuth
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany; Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Stephan Schilling
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany; Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Jens-Ulrich Rahfeld
- Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany; Department of Molecular Drug Biochemistry and Therapy, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany.
| | - Milton T Stubbs
- Institute of Biotechnology, Martin Luther University, 06108 Halle-Wittenberg, Germany.
| |
Collapse
|
13
|
Lin TW, Chang CF, Chang YJ, Liao YH, Yu HM, Chen YR. Alzheimer's amyloid-β A2T variant and its N-terminal peptides inhibit amyloid-β fibrillization and rescue the induced cytotoxicity. PLoS One 2017; 12:e0174561. [PMID: 28362827 PMCID: PMC5376091 DOI: 10.1371/journal.pone.0174561] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/11/2017] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common dementia affecting tens of million people worldwide. The primary neuropathological hallmark in AD is amyloid plaques composed of amyloid-β peptide (Aβ). Several familial mutations found in Aβ sequence result in early onset of AD. Previous studies showed that the mutations located at N-terminus of Aβ, such as the English (H6R) and Tottori (D7N) mutations, promote fibril formation and increase cytotoxicity. However, A2T mutant located at the very N-terminus of Aβ shows low-prevalence incidence of AD, whereas, another mutant A2V causes early onset of AD. To understand the molecular mechanism of the distinct effect and develop new potential therapeutic strategy, here, we examined the effect of full-length and N-terminal A2V/T variants to wild type (WT) Aβ40 by fibrillization assays and NMR studies. We found that full-length and N-terminal A2V accelerated WT fibrillization and induced large chemical shifts on the N-terminus of WT Aβ, whereas, full-length and N-terminal A2T retarded the fibrillization. We further examined the inhibition effect of various N-terminal fragments (NTFs) of A2T to WT Aβ. The A2T NTFs ranging from residue 1 to residue 7 to 10, but not 1 to 6 or shorter, are capable to retard WT Aβ fibrillization and rescue cytotoxicity. The results suggest that in the presence of full-length or specific N-terminal A2T can retard Aβ aggregation and the A2T NTFs can mitigate its toxicity. Our results provide a novel targeting site for future therapeutic development of AD.
Collapse
Affiliation(s)
- Tien-Wei Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Jen Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hung Liao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Ma B, Zhao J, Nussinov R. Conformational selection in amyloid-based immunotherapy: Survey of crystal structures of antibody-amyloid complexes. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:2672-81. [PMID: 27266343 PMCID: PMC5610039 DOI: 10.1016/j.bbagen.2016.05.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/05/2016] [Accepted: 05/31/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND The dominant feature in neurodegenerative diseases is protein aggregations that lead to neuronal loss. Immunotherapies using antibodies or antibody fragments to target the aggregations are a highly perused approach. The molecular mechanisms underlying the amyloid-based immunotherapy are complex. Deciphering the properties of amyloidogenic proteins responsible for these diseases is essential to obtain insights into antibody recognition of the amyloid antigens. SCOPE OF REVIEW We systematically explore all available crystal structures of antibody-amyloid complexes related to neurodegenerative diseases, including antibodies that recognize the Aβ peptide, tau protein, prion protein, alpha-synuclein, huntingtin protein (mHTT), and polyglutamine. MAJOR CONCLUSIONS We found that antibodies mostly use the conformational selection mechanism to recognize the highly flexible amyloid antigens. In particular, solanezumab bound to Aβ12-28 tripeptide motif conformation (F19F20A21), which is shared with the Aβ42 fibril. This motif, which is trapped by the antibody, may provide the missing link in amyloid formation. Water molecules often bridge between the antibody and amyloid, contributing to the recognition. GENERAL SIGNIFICANCE This paper provides the structural basis for antibody recognition of amyloidogenic proteins. The analysis and discussion of known structures are expected to help in the design and optimization of antibodies in neurodegenerative diseases. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States.
| | - Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Zhao J, Ma B, Nussinov R. Compilation and Analysis of Enzymes, Engineered Antibodies, and Nanoparticles Designed to Interfere with Amyloid-β Aggregation. Isr J Chem 2016. [DOI: 10.1002/ijch.201600093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
| | - Buyong Ma
- Basic Science Program; Leidos Biomedical Research, Inc.; Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
| | - Ruth Nussinov
- Basic Science Program; Leidos Biomedical Research, Inc.; Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
- Sackler Institute of Molecular Medicine; Department of Human Genetics and Molecular Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
16
|
Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice. Nat Commun 2016; 7:11761. [PMID: 27249364 PMCID: PMC4895343 DOI: 10.1038/ncomms11761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/27/2016] [Indexed: 01/12/2023] Open
Abstract
Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities. Identifying early signs of Alzheimer's disease is important when it comes to diagnosis and treatment. Here, the authors identify subtle memory retrieval deficits and associated brain glucose uptake impairments in very young mouse models of Alzheimer's, prior to plaque development.
Collapse
|
17
|
Synthesis, structure and properties of tris(1-ethyl-4-isopropyl-imidazolyl-κN)phosphine copper(II). Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Mably AJ, Liu W, Mc Donald JM, Dodart JC, Bard F, Lemere CA, O'Nuallain B, Walsh DM. Anti-Aβ antibodies incapable of reducing cerebral Aβ oligomers fail to attenuate spatial reference memory deficits in J20 mice. Neurobiol Dis 2015. [PMID: 26215784 DOI: 10.1016/j.nbd.2015.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD). A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble assemblies loosely referred to as "oligomers" and that these are primary mediators of synaptic dysfunction. As such, Aβ, and specifically Aβ oligomers, are targets for disease modifying therapies. Currently, the most advanced experimental treatment for AD relies on the use of anti-Aβ antibodies. In this study, we tested the ability of the monomer-preferring antibody, m266 and a novel aggregate-preferring antibody, 1C22, to attenuate spatial reference memory impairments in J20 mice. Chronic treatment with m266 resulted in a ~70-fold increase in Aβ detected in the bloodstream, and a ~50% increase in water-soluble brain Aβ--and in both cases Aβ was bound to m266. In contrast, 1C22 increased the levels of free Aβ in the bloodstream, and bound to amyloid deposits in J20 brain. However, neither 1C22 nor m266 attenuated the cognitive deficits evident in 12month old J20 mice. Moreover, both antibodies failed to alter the levels of soluble Aβ oligomers in J20 brain. These results suggest that Aβ oligomers may mediate the behavioral deficits seen in J20 mice and highlight the need for the development of aggregate-preferring antibodies that can reach the brain in sufficient levels to neutralize bioactive Aβ oligomers. Aside from the lack of positive effect of m266 and 1C22 on cognition, a substantial number of deaths occurred in m266- and 1C22-immunized J20 mice. These fatalities were specific to anti-Aβ antibodies and to the J20 mouse line since treatment of wild type or PDAPP mice with these antibodies did not cause any deaths. These and other recent results indicate that J20 mice are particularly susceptible to targeting of the APP/Aβ/tau axis. Notwithstanding the specificity of fatalities for J20 mice, it is worrying that the murine precursor (m266) of a lead experimental therapeutic, Solanezumab, did not engage with putatively pathogenic Aβ oligomers.
Collapse
Affiliation(s)
- Alexandra J Mably
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Jessica M Mc Donald
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Jean-Cosme Dodart
- NeuroBehaviour Laboratory Core, Harvard NeuroDiscovery Center, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Frédérique Bard
- Janssen Alzheimer Immunotherapy Research & Development 700 Gateway Boulevard, South San Francisco, CA 94080, United States
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Brian O'Nuallain
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| |
Collapse
|
19
|
Aβ selectively impairs mGluR7 modulation of NMDA signaling in basal forebrain cholinergic neurons: implication in Alzheimer's disease. J Neurosci 2015; 34:13614-28. [PMID: 25297090 DOI: 10.1523/jneurosci.1204-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Degeneration of basal forebrain (BF) cholinergic neurons is one of the early pathological events in Alzheimer's disease (AD) and is thought to be responsible for the cholinergic and cognitive deficits in AD. The functions of this group of neurons are highly influenced by glutamatergic inputs from neocortex. We found that activation of metabotropic glutamate receptor 7 (mGluR7) decreased NMDAR-mediated currents and NR1 surface expression in rodent BF neurons via a mechanism involving cofilin-regulated actin dynamics. In BF cholinergic neurons, β-amyloid (Aβ) selectively impaired mGluR7 regulation of NMDARs by increasing p21-activated kinase activity and decreasing cofilin-mediated actin depolymerization through a p75(NTR)-dependent mechanism. Cell viability assays showed that activation of mGluR7 protected BF neurons from NMDA-induced excitotoxicity, which was selectively impaired by Aβ in BF cholinergic neurons. It provides a potential basis for the Aβ-induced disruption of calcium homeostasis that might contribute to the selective degeneration of BF cholinergic neurons in the early stage of AD.
Collapse
|
20
|
Crespi GAN, Hermans SJ, Parker MW, Miles LA. Molecular basis for mid-region amyloid-β capture by leading Alzheimer's disease immunotherapies. Sci Rep 2015; 5:9649. [PMID: 25880481 PMCID: PMC4549621 DOI: 10.1038/srep09649] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/12/2015] [Indexed: 12/24/2022] Open
Abstract
Solanezumab (Eli Lilly) and crenezumab (Genentech) are the leading clinical antibodies targeting Amyloid-β (Aβ) to be tested in multiple Phase III clinical trials for the prevention of Alzheimer's disease in at-risk individuals. Aβ capture by these clinical antibodies is explained here with the first reported mid-region Aβ-anti-Aβ complex crystal structure. Solanezumab accommodates a large Aβ epitope (960 Å(2) buried interface over residues 16 to 26) that forms extensive contacts and hydrogen bonds to the antibody, largely via main-chain Aβ atoms and a deeply buried Phe19-Phe20 dipeptide core. The conformation of Aβ captured is an intermediate between observed sheet and helical forms with intramolecular hydrogen bonds stabilising residues 20-26 in a helical conformation. Remarkably, Aβ-binding residues are almost perfectly conserved in crenezumab. The structure explains the observed shared cross reactivity of solanezumab and crenezumab with proteins abundant in plasma that exhibit this Phe-Phe dipeptide.
Collapse
MESH Headings
- Alzheimer Disease/therapy
- Amyloid beta-Peptides/chemistry
- Amyloid beta-Peptides/immunology
- Amyloid beta-Peptides/metabolism
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Binding Sites
- Crystallography, X-Ray
- Dipeptides/blood
- Dipeptides/immunology
- Humans
- Hydrogen Bonding
- Immunotherapy
- Molecular Dynamics Simulation
- Protein Structure, Tertiary
Collapse
Affiliation(s)
- Gabriela A. N. Crespi
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Stefan J. Hermans
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Michael W. Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Luke A. Miles
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Haupt C, Fändrich M. Biotechnologically engineered protein binders for applications in amyloid diseases. Trends Biotechnol 2014; 32:513-20. [DOI: 10.1016/j.tibtech.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022]
|
22
|
Alzheimer's disease--a panorama glimpse. Int J Mol Sci 2014; 15:12631-50. [PMID: 25032844 PMCID: PMC4139864 DOI: 10.3390/ijms150712631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/26/2014] [Accepted: 07/10/2014] [Indexed: 01/05/2023] Open
Abstract
The single-mutation of genes associated with Alzheimer's disease (AD) increases the production of Aβ peptides. An elevated concentration of Aβ peptides is prone to aggregation into oligomers and further deposition as plaque. Aβ plaques and neurofibrillary tangles are two hallmarks of AD. In this review, we provide a broad overview of the diverses sources that could lead to AD, which include genetic origins, Aβ peptides and tau protein. We shall discuss on tau protein and tau accumulation, which result in neurofibrillary tangles. We detail the mechanisms of Aβ aggregation, fibril formation and its polymorphism. We then show the possible links between Aβ and tau pathology. Furthermore, we summarize the structural data of Aβ and its precursor protein obtained via Nuclear Magnetic Resonance (NMR) or X-ray crystallography. At the end, we go through the C-terminal and N-terminal truncated Aβ variants. We wish to draw reader's attention to two predominant and toxic Aβ species, namely Aβ4-42 and pyroglutamate amyloid-beta peptides, which have been neglected for more than a decade and may be crucial in Aβ pathogenesis due to their dominant presence in the AD brain.
Collapse
|
23
|
Mantile F, Trovato M, Santoni A, Barba P, Ottonello S, De Berardinis P, Prisco A. Alum and squalene-oil-in-water emulsion enhance the titer and avidity of anti-Aβ antibodies induced by multimeric protein antigen (1-11)E2, preserving the Igg1-skewed isotype distribution. PLoS One 2014; 9:e101474. [PMID: 24983378 PMCID: PMC4077797 DOI: 10.1371/journal.pone.0101474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 06/08/2014] [Indexed: 01/11/2023] Open
Abstract
The development of active immunotherapy for Alzheimer's disease (AD) requires the identification of immunogens that can ensure a high titer antibody response toward Aβ, while minimizing the risks of adverse reactions. Multimeric protein (1–11)E2 induces a robust and persistent antibody response to Aβ in mice, when formulated in Freund's adjuvant. The goal of this translational study was to evaluate the immunogenicity of (1–11)E2 formulated in alum (Alhydrogel 2%), or in a squalene oil-in-water emulsion (AddaVax), or without adjuvant. A IgG1-skewed isotype distribution was observed for the anti-Aβ antibodies generated in mice immunized with either the non-adjuvanted or the adjuvanted vaccine, indicating that (1–11)E2 induces a Th2-like response in all tested conditions. Both Alhydrogel 2% and AddaVax enhanced the titer and avidity of the anti-Aβ response elicited by (1–11)E2. We conclude that (1–11)E2 is a promising candidate for anti-Aβ immunization protocols that include alum or squalene-oil-in-water emulsion, or no adjuvant.
Collapse
Affiliation(s)
| | - Maria Trovato
- Institute of Protein Biochemistry, CNR, Napoli, Italy
| | - Andrea Santoni
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics, CNR, Napoli, Italy
| | | | | | - Antonella Prisco
- Institute of Genetics and Biophysics, CNR, Napoli, Italy
- * E-mail: (PDB); (AP)
| |
Collapse
|
24
|
Feinberg H, Saldanha JW, Diep L, Goel A, Widom A, Veldman GM, Weis WI, Schenk D, Basi GS. Crystal structure reveals conservation of amyloid-β conformation recognized by 3D6 following humanization to bapineuzumab. ALZHEIMERS RESEARCH & THERAPY 2014; 6:31. [PMID: 25024748 PMCID: PMC4095729 DOI: 10.1186/alzrt261] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/23/2014] [Indexed: 12/03/2022]
Abstract
Introduction Immunotherapy targeting amyloid-β peptide is under active clinical investigation for treatment of Alzheimer’s disease (AD). Among the hypotheses being investigated for impact on clinical outcome are the preferred epitope or conformation of amyloid-β to target for treatment, and the mechanism of action underlying immunotherapy. Bapineuzumab (humanized 3D6), a neo-epitope specific antibody recognizing amyloid-β1-5 with strong preference for an exposed Asp residue at the N-terminus of the peptide, has undergone advanced clinical testing for treatment of AD. Methods To gain further insight into the epitope conformation, we interrogated structural details of amino-terminal epitopes in amyloid-β using x-ray crystallography of 3D6Fab:amyloid-β complexes. Humanization of 3D6 was carried out using standard procedures integrating recombinant methods, sequence informatics, and homology modeling predictions to identify important mouse framework residues for retention in the finished humanized product. Results Here we report the crystal structure of a recombinant Fab fragment of 3D6 in complex with amyloid-β1-7 solved at 2.0 Å resolution. The N-terminus of amyloid-β is bound to 3D6 as a 310 helix. The amino-terminal Asp residue is buried deepest in the antibody binding pocket, with the Cβ atom of residue 6 visible at the entrance to the binding pocket near the surface of the antibody. We further evaluate homology model based predictions used to guide humanization of 3D6 to bapineuzumab, with actual structure of the Fab. The structure of the Fab:amyloid-β complex validates design of the humanized antibody, and confirms the amyloid-β epitope recognized by 3D6 as previously mapped by ELISA. Conclusions The conformation of amyloid-β antigen recognized by 3D6 is novel and distinct from other antibodies recognizing N-terminal epitopes. Our result provides the first report demonstrating structural conservation of antigen contact residues, and conformation of antigen recognized, between the parent murine antibody and its humanized version.
Collapse
Affiliation(s)
- Hadar Feinberg
- Departments of Structural Biology and of Molecular & Cellular Physiology, 299 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - José W Saldanha
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Linnea Diep
- Elan Pharmaceuticals, Inc. 300 Technology Sq., Cambridge, MA 02139, USA
| | - Amita Goel
- Elan Pharmaceuticals, Inc. 300 Technology Sq., Cambridge, MA 02139, USA
| | | | | | - William I Weis
- Departments of Structural Biology and of Molecular & Cellular Physiology, 299 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dale Schenk
- Prothena Biosciences, Inc., 650 Gateway Blvd., San Francisco, CA 94080, USA
| | - Guriqbal S Basi
- Elan Pharmaceuticals, Inc. 300 Technology Sq., Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Abstract
According to Thomas Kuhn, the success of 'normal science,' the science we all practice on a daily basis, depends on the adherence to, and practice of, a paradigm accepted by the scientific community. When great scientific upheavals occur, they involve the rejection of the current paradigm in favor of a new paradigm that better integrates the facts available and better predicts the behavior of a particular scientific system. In the field of Alzheimer's disease, a recent example of such a paradigm shift has been the apparent rejection of the 'amyloid cascade hypothesis,' promulgated by Hardy and Higgins in 1992 to explain the etiology of Alzheimer's disease, in favor of what has been referred to as the 'oligomer cascade hypothesis'. This paradigm shift has been breathtaking in its rapidity, its pervasiveness in the Alzheimer's disease field, and its adoption in an increasing number of other fields, including those of Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and the prionoses. However, these facts do not mean, a priori, that the experiments extant, and any re-interpretation of them, should be accepted by rote as support for the new paradigm. In the discussion that follows, I consider the foundational studies leading to the oligomer cascade hypothesis and evaluate the current state of the paradigm. I argue here that, more often than not, insufficient rigor has been applied in studies upon which this new paradigm has been based. Confusion, rather than clarity, has resulted. If the field is to make progress forward using as its paradigmatic basis amyloid β-protein oligomerization, then an epistemological re-evaluation of the amyloid β-protein oligomer system is required.
Collapse
Affiliation(s)
- David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E. Young Dr. South, Room 445, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Miles LA, Crespi GAN, Doughty L, Parker MW. Bapineuzumab captures the N-terminus of the Alzheimer's disease amyloid-beta peptide in a helical conformation. Sci Rep 2013; 3:1302. [PMID: 23416764 PMCID: PMC3575012 DOI: 10.1038/srep01302] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/04/2013] [Indexed: 11/09/2022] Open
Abstract
Bapineuzumab is a humanized antibody developed by Pfizer and Johnson & Johnson targeting the amyloid (Aβ) plaques that underlie Alzheimer's disease neuropathology. Here we report the crystal structure of a Fab-Aβ peptide complex that reveals Bapineuzumab surprisingly captures Aβ in a monomeric helical conformation at the N-terminus. Microscale thermophoresis suggests that the Fab binds soluble Aβ(1-40) with a K(D) of 89 (±9) nM. The structure explains the antibody's exquisite selectivity for particular Aβ species and why it cannot recognize N-terminally modified or truncated Aβ peptides.
Collapse
Affiliation(s)
- Luke A Miles
- ACRF Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3056, Australia
| | | | | | | |
Collapse
|
27
|
Neutralization of soluble, synaptotoxic amyloid β species by antibodies is epitope specific. J Neurosci 2012; 32:2696-702. [PMID: 22357853 DOI: 10.1523/jneurosci.1676-11.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several anti-amyloid β (Aβ) antibodies are under evaluation for the treatment of Alzheimer's disease (AD). Clinical studies using the N-terminal-directed anti-Aβ antibody bapineuzumab have demonstrated reduced brain PET-Pittsburg-B signals, suggesting the reduction of Aβ plaques, and reduced levels of total and phosphorylated tau protein in the CSF of treated AD patients. Preclinical studies using 3D6 (the murine form of bapineuzumab) have demonstrated resolution of Aβ plaque and vascular burdens, neuritic dystrophy, and preservation of synaptic density in the transgenic APP mouse models. In contrast, few studies have evaluated the direct interaction of this antibody with synaptotoxic soluble Aβ species. In the current report, we demonstrated that 3D6 binds to soluble, synaptotoxic assemblies of Aβ(1-42) and prevents multiple downstream functional consequences in rat hippocampal neurons including changes in glutamate AMPA receptor trafficking, AD-type tau phosphorylation, and loss of dendritic spines. In vivo, we further demonstrated that 3D6 prevents synaptic loss and acutely reverses the behavioral deficit in the contextual fear conditioning task in transgenic mouse models of AD, two endpoints thought to be linked to synaptotoxic soluble Aβ moieties. Importantly C-terminal anti-Aβ antibodies were ineffective on these endpoints. These results, taken with prior studies, suggest that N-terminal anti-Aβ antibodies effectively interact with both soluble and insoluble forms of Aβ and therefore appear particularly well suited for testing the Aβ hypothesis of AD.
Collapse
|
28
|
Roher AE, Maarouf CL, Daugs ID, Kokjohn TA, Hunter JM, Sabbagh MN, Beach TG. Neuropathology and amyloid-β spectrum in a bapineuzumab immunotherapy recipient. J Alzheimers Dis 2011; 24:315-25. [PMID: 21263194 DOI: 10.3233/jad-2011-101809] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The field of Alzheimer's disease (AD) research eagerly awaits the results of a large number of Phase III clinical trials that are underway to investigate the effectiveness of anti-amyloid-β (Aβ) immunotherapy for AD. In this case report, we review the pertinent clinical history, examine the neuropathology, and characterize the Aβ profile of an AD patient who received bapineuzumab immunotherapy. The patient received four bapineuzumab infusions over a 39 week period. During the course of this treatment, there was no remarkable change in cognitive impairment as determined by MMSE scores. Forty-eight days after the fourth bapineuzumab infusion was given, MRI revealed that the patient had developed lacunar infarcts and possible vasogenic edema, probably related to immunotherapy, but a subsequent MRI scan 38 days later demonstrated resolution of vasogenic edema. The patient expired due to acute congestive heart failure complicated by progressive AD and cerebrovascular accident 378 days after the first bapineuzumab infusion and 107 days after the end of therapy. Neuropathological and biochemical analysis did not produce evidence of lasting plaque regression or clearance of Aβ due to immunotherapy. The Aβ species profile of this case was compared with non-immunized AD cases and non-demented controls and found to be similar to non-immunized AD cases. SELDI-TOF mass spectrometric analysis revealed the presence of full-length Aβ₁₋₄₂ and truncated Aβ peptides demonstrating species with and without bapineuzumab specific epitopes. These results suggest that, in this particular case, bapineuzumab immunotherapy neither resulted in detectable clearance of amyloid plaques nor prevented further cognitive impairment.
Collapse
Affiliation(s)
- Alex E Roher
- Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Robert R, Lefranc MP, Ghochikyan A, Agadjanyan MG, Cribbs DH, Van Nostrand WE, Wark KL, Dolezal O. Restricted V gene usage and VH/VL pairing of mouse humoral response against the N-terminal immunodominant epitope of the amyloid β peptide. Mol Immunol 2011; 48:59-72. [PMID: 20970857 DOI: 10.1016/j.molimm.2010.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/10/2010] [Accepted: 09/17/2010] [Indexed: 02/08/2023]
Abstract
Over the last decade, the potential of antibodies as therapeutic strategies to treat Alzheimer's disease (AD) has been growing, based on successful experimental and clinical trials in transgenic mice. Despite, undesirable side effects in humans using an active immunization approach, immunotherapy still remains one of the most promising treatments for AD. In this study, we analyzed the V genes of twelve independently isolated monoclonal antibodies raised against the N-terminal immunodominant epitope of the amyloid β peptide (Aβ or A beta). Surprisingly, we found a high and unusual level of restriction in the VH/VL pairing of these antibodies. Moreover, these antibodies mostly differ in their heavy chain complementary determining region 3 (HCDR3) and the residues in the antibodies which contact Aβ are already present in the germline V-genes. Based on these observations and or co-crystal structures of antibodies with Aβ, the aim of the current study was to better understand the role of antibody V-domains, HCDR3 regions, key contact residue (H58) and germline encoded residues in Aβ recognition. For that purpose, we designed and produced a range of recombinant Fab constructs. All the Fabs were tested and compared by surface plasmon resonance on Aβ(1-16), Aβ(1-42) high molecular weight and Aβ(1-42) low molecular weight soluble oligomers. Although all the Fabs recognized the Aβ(1-16) peptide and the Aβ(1-42) high molecular weight soluble oligomers, they did not bind the Aβ(1-42) low molecular weight soluble oligomers. Furthermore, we demonstrated that: (1) an aromatic residue at position H58 in the antibody is essential in the recognition of Aβ and (2) Fabs based on germline V-genes bind to Aβ monomers with a low affinity. These findings may have important implications in designing more effective therapeutic antibodies against Aβ.
Collapse
Affiliation(s)
- Remy Robert
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Haupt C, Morgado I, Kumar ST, Parthier C, Bereza M, Hortschansky P, Stubbs MT, Horn U, Fändrich M. Amyloid Fibril Recognition with the Conformational B10 Antibody Fragment Depends on Electrostatic Interactions. J Mol Biol 2011; 405:341-8. [DOI: 10.1016/j.jmb.2010.10.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/29/2010] [Accepted: 10/31/2010] [Indexed: 11/16/2022]
|
31
|
Capon DJ, Kaneko N, Yoshimori T, Shimada T, Wurm FM, Hwang PK, Tong X, Adams SA, Simmons G, Sato TA, Tanaka K. Flexible antibodies with nonprotein hinges. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:603-616. [PMID: 22075761 PMCID: PMC3309923 DOI: 10.2183/pjab.87.603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/05/2011] [Indexed: 05/31/2023]
Abstract
There is a significant need for antibodies that can bind targets with greater affinity. Here we describe a novel strategy employing chemical semisynthesis to produce symmetroadhesins: antibody-like molecules having nonprotein hinge regions that are more flexible and extendible and are capable of two-handed binding. Native chemical ligation was carried out under mild, non-denaturing conditions to join a ligand binding domain (Aβ peptide) to an IgG1 Fc dimer via discrete oxyethylene oligomers of various lengths. Two-handed Aβ-Fc fusion proteins were obtained in quantitative yield and shown by surface plasmon resonance to bind an anti-Aβ antibody with a K(D) at least two orders of magnitude greater than the cognate Aβ peptide. MALDI-TOF MS analysis confirmed the protein/nonprotein/protein structure of the two-handed molecules, demonstrating its power to characterize complex protein-nonprotein hybrids by virtue of desorption/ionization mediated by peptide sequences contained therein. We anticipate many applications for symmetroadhesins that combine the target specificity of antibodies with the novel physical, chemical and biological properties of nonprotein hinges.
Collapse
Affiliation(s)
- Daniel J Capon
- Blood Systems Research Institute, San Francisco, CA 94118, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sehlin D, Hedlund M, Lord A, Englund H, Gellerfors P, Paulie S, Lannfelt L, Pettersson FE. Heavy-chain complementarity-determining regions determine conformation selectivity of anti-aβ antibodies. NEURODEGENER DIS 2010; 8:117-23. [PMID: 20714111 DOI: 10.1159/000316530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/03/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIMS Amyloid-β (Aβ) protofibrils are neurotoxic soluble intermediates in the Aβ aggregation process eventually forming senile plaques in Alzheimer's disease. This Aβ species is a potential biomarker for Alzheimer's disease and also a promising target for immunotherapy. In this study, we investigated the characteristics of conformation-dependent Aβ antibodies specific for Aβ protofibrils. METHODS Mice were immunized with Aβ protofibrils to generate hybridomas producing Aβ-specific monoclonal antibodies. Binding of antibodies to different Aβ conformations was investigated with inhibition ELISA. The antibodies' complementarity-determining region (CDR) sequences were determined and compared. RESULTS A majority of the antibodies were of the IgM class, all selectively binding to aggregated Aβ. Two IgG antibodies were generated: one with selective affinity for Aβ protofibrils and the other bound Aβ in all conformations. A high degree of similarity between the heavy-chain CDRs of the conformation-dependent antibodies was found, and all high-affinity Aβ antibodies displayed a high degree of sequence similarity in the light-chain CDRs. CONCLUSION Sequence similarity in the heavy-chain CDRs is associated with conformation selectivity of the antibodies, while sequence similarity in the light-chain CDRs correlates with the affinity for Aβ.
Collapse
Affiliation(s)
- Dag Sehlin
- Department of Public Health/Molecular Geriatrics, Rudbeck Laboratory Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|