1
|
Sexton CA, Penzinger R, Mortensen M, Bright DP, Smart TG. Structural determinants and regulation of spontaneous activity in GABA A receptors. Nat Commun 2021; 12:5457. [PMID: 34526505 PMCID: PMC8443696 DOI: 10.1038/s41467-021-25633-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
GABAA receptors are vital for controlling neuronal excitability and can display significant levels of constitutive activity that contributes to tonic inhibition. However, the mechanisms underlying spontaneity are poorly understood. Here we demonstrate a strict requirement for β3 subunit incorporation into receptors for spontaneous gating, facilitated by α4, α6 and δ subunits. The crucial molecular determinant involves four amino acids (GKER) in the β3 subunit's extracellular domain, which interacts with adjacent receptor subunits to promote transition to activated, open channel conformations. Spontaneous activity is further regulated by β3 subunit phosphorylation and by allosteric modulators including neurosteroids and benzodiazepines. Promoting spontaneous activity reduced neuronal excitability, indicating that spontaneous currents will alter neural network activity. This study demonstrates how regional diversity in GABAA receptor isoform, protein kinase activity, and neurosteroid levels, can impact on tonic inhibition through the modulation of spontaneous GABAA receptor gating.
Collapse
Affiliation(s)
- Craig A Sexton
- Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Reka Penzinger
- Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Martin Mortensen
- Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Damian P Bright
- Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK.
| |
Collapse
|
2
|
Terejko K, Kaczor PT, Michałowski MA, Dąbrowska A, Mozrzymas JW. The C loop at the orthosteric binding site is critically involved in GABA A receptor gating. Neuropharmacology 2019; 166:107903. [PMID: 31972511 DOI: 10.1016/j.neuropharm.2019.107903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 02/02/2023]
Abstract
GABAA receptors (GABAARs) play a crucial role in mammalian adult brain inhibition. The dysfunction of GABAergic drive is related to such disorders as epilepsy, schizophrenia, and depression. Substantial progress has recently been made in describing the static structure of GABAARs, but the molecular mechanisms that underlie the activation process remain elusive. The C loop of the GABAAR structure shows the largest movement upon ligand binding to the orthosteric binding site, a phenomenon that is referred to as "capping." The C loop is known to be involved in agonist binding, but its role in the gating of Cys-loop receptors is still debated. Herein, we investigated this issue by analyzing the impact of a β2F200 residue mutation of the C loop on gating properties of α1β2γ2 GABAARs. Extensive analyses and the modeling of current responses to saturating agonist application demonstrated that this mutation strongly affected preactivation, opening, closing and desensitization, i.e. all considered gating steps. Single-channel analysis revealed that the β2F200 mutation slowed all shut time components, and open times were shortened. Model fitting of these single-channel data further confirmed that the β2F200 mutation strongly affected all of the gating characteristics. We also found that this mutation altered receptor sensitivity to the benzodiazepine flurazepam, which was attributable to a change in preactivation kinetics. In silico analysis indicated that the β2F200 mutation resulted in distortion of the C loop structure, causing the movement of its tip from the binding site. Altogether, we provide the first evidence that C loop critically controls GABAAR gating.
Collapse
Affiliation(s)
- Katarzyna Terejko
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland.
| | - Przemysław T Kaczor
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland
| | - Michał A Michałowski
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland; Department of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Agnieszka Dąbrowska
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland; Department of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335, Wrocław, Poland.
| |
Collapse
|
3
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Kallay L, Keskin H, Ross A, Rupji M, Moody OA, Wang X, Li G, Ahmed T, Rashid F, Stephen MR, Cottrill KA, Nuckols TA, Xu M, Martinson DE, Tranghese F, Pei Y, Cook JM, Kowalski J, Taylor MD, Jenkins A, Pomeranz Krummel DA, Sengupta S. Modulating native GABA A receptors in medulloblastoma with positive allosteric benzodiazepine-derivatives induces cell death. J Neurooncol 2019; 142:411-422. [PMID: 30725256 PMCID: PMC6478651 DOI: 10.1007/s11060-019-03115-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Pediatric brain cancer medulloblastoma (MB) standard-of-care results in numerous comorbidities. MB is comprised of distinct molecular subgroups. Group 3 molecular subgroup patients have the highest relapse rates and after standard-of-care have a 20% survival. Group 3 tumors have high expression of GABRA5, which codes for the α5 subunit of the γ-aminobutyric acid type A receptor (GABAAR). We are advancing a therapeutic approach for group 3 based on GABAAR modulation using benzodiazepine-derivatives. METHODS We performed analysis of GABR and MYC expression in MB tumors and used molecular, cell biological, and whole-cell electrophysiology approaches to establish presence of a functional 'druggable' GABAAR in group 3 cells. RESULTS Analysis of expression of 763 MB tumors reveals that group 3 tumors share high subgroup-specific and correlative expression of GABR genes, which code for GABAAR subunits α5, β3 and γ2 and 3. There are ~ 1000 functional α5-GABAARs per group 3 patient-derived cell that mediate a basal chloride-anion efflux of 2 × 109 ions/s. Benzodiazepines, designed to prefer α5-GABAAR, impair group 3 cell viability by enhancing chloride-anion efflux with subtle changes in their structure having significant impact on potency. A potent, non-toxic benzodiazepine ('KRM-II-08') binds to the α5-GABAAR (0.8 µM EC50) enhancing a chloride-anion efflux that induces mitochondrial membrane depolarization and in response, TP53 upregulation and p53, constitutively phosphorylated at S392, cytoplasmic localization. This correlates with pro-apoptotic Bcl-2-associated death promoter protein localization. CONCLUSION GABRA5 expression can serve as a diagnostic biomarker for group 3 tumors, while α5-GABAAR is a therapeutic target for benzodiazepine binding, enhancing an ion imbalance that induces apoptosis.
Collapse
Affiliation(s)
- Laura Kallay
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Havva Keskin
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra Ross
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Olivia A Moody
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xin Wang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Taukir Ahmed
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Farjana Rashid
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Rajesh Stephen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kirsten A Cottrill
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - T Austin Nuckols
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Maxwell Xu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deborah E Martinson
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Frank Tranghese
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - Yanxin Pei
- Center for Cancer and Immunology Research, Brain Tumor Institute, Children's National Medical Center, Washington, DC, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeanne Kowalski
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Canada
| | - Andrew Jenkins
- Departments of Anesthesiology & Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel A Pomeranz Krummel
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University Hospital, 1365C Clifton Road, Suite C5086, Atlanta, GA, USA.
| | - Soma Sengupta
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University Hospital, 1365C Clifton Road, Suite C5086, Atlanta, GA, USA.
| |
Collapse
|
5
|
Moody OA, Jenkins A. The role of loops B and C in determining the potentiation of GABA A receptors by midazolam. Pharmacol Res Perspect 2018; 6:e00433. [PMID: 30459951 PMCID: PMC6234229 DOI: 10.1002/prp2.433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 12/31/2022] Open
Abstract
Many benzodiazepines are positive allosteric modulators (PAMs) of GABAA receptors that cause sedation, hypnosis, and anxiolysis. Benzodiazepines bind GABAA receptors at the extracellular interface of the α and γ subunits. Within the α subunit, the benzodiazepine binding site is defined by three highly conserved structural loops, loops A-C. Although previous mutagenesis studies have identified His102 in Loop A as important for benzodiazepine modulation of GABAA receptors, the functional roles of many of the other conserved residues in loops A-C remain incompletely understood. In this study, we made single mutations in loops A-C of the benzodiazepine binding-site across all six α subunits. We used whole-cell patch clamp recording to measure the functional effects of these mutations on midazolam potentiation. The results showed that mutating the threonine in loop B and serine in loop C (Thr163 and S206 in human α1) did not abolish the receptors' responsiveness to midazolam, as the α1(H102R) mutation did. The loop C mutations exhibited a novel array of α-isoform specific effects on midazolam potentiation. The α3(S230I) and α5(S209I) mutations had the largest effect on midazolam potentiation, increasing the efficacy of midazolam. Novel benzodiazepines targeting loop C may represent a future direction for designing new drugs that specifically alter the activity of α3- and α5-containing GABAA receptors.
Collapse
Affiliation(s)
- Olivia A. Moody
- Neuroscience ProgramGraduate Division of Biological and Biomedical SciencesLaney Graduate SchoolEmory UniversityAtlantaGeorgia
| | - Andrew Jenkins
- Departments of Anesthesiology & PharmacologyEmory UniversityAtlantaGeorgia
| |
Collapse
|
6
|
Butler KM, Moody OA, Schuler E, Coryell J, Alexander JJ, Jenkins A, Escayg A. De novo variants in GABRA2 and GABRA5 alter receptor function and contribute to early-onset epilepsy. Brain 2018; 141:2392-2405. [PMID: 29961870 PMCID: PMC6061692 DOI: 10.1093/brain/awy171] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/02/2018] [Accepted: 05/04/2018] [Indexed: 01/19/2023] Open
Abstract
GABAA receptors are ligand-gated anion channels that are important regulators of neuronal inhibition. Mutations in several genes encoding receptor subunits have been identified in patients with various types of epilepsy, ranging from mild febrile seizures to severe epileptic encephalopathy. Using whole-genome sequencing, we identified a novel de novo missense variant in GABRA5 (c.880G > C, p.V294L) in a patient with severe early-onset epilepsy and developmental delay. Targeted resequencing of 279 additional epilepsy patients identified 19 rare variants from nine GABAA receptor genes, including a novel de novo missense variant in GABRA2 (c.875C > A, p.T292K) and a recurrent missense variant in GABRB3 (c.902C > T, p.P301L). Patients with the GABRA2 and GABRB3 variants also presented with severe epilepsy and developmental delay. We evaluated the effects of the GABRA5, GABRA2 and GABRB3 missense variants on receptor function using whole-cell patch-clamp recordings from human embryonic kidney 293T cells expressing appropriate α, β and γ subunits. The GABRA5 p.V294L variant produced receptors that were 10-times more sensitive to GABA but had reduced maximal GABA-evoked current due to increased receptor desensitization. The GABRA2 p.T292K variant reduced channel expression and produced mutant channels that were tonically open, even in the absence of GABA. Receptors containing the GABRB3 p.P301L variant were less sensitive to GABA and produced less GABA-evoked current. These results provide the first functional evidence that de novo variants in the GABRA5 and GABRA2 genes contribute to early-onset epilepsy and developmental delay, and demonstrate that epilepsy can result from reduced neuronal inhibition via a wide range of alterations in GABAA receptor function.
Collapse
Affiliation(s)
- Kameryn M Butler
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, 30322, USA
| | - Olivia A Moody
- Departments of Anesthesiology and Pharmacology, Emory University, Atlanta, Georgia, 30322, USA
- Neuroscience Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, 30322, USA
| | - Elisabeth Schuler
- Department for Pediatric Metabolic Medicine and Neurology, University Children’s Hospital, Heidelberg, 69120, Germany
| | - Jason Coryell
- Departments of Pediatrics and Neurology, School of Medicine, Oregon Health & Sciences University, Portland, Oregon, 97239, USA
| | - John J Alexander
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
- EGL Genetics, Tucker, Georgia, 30084, USA
| | - Andrew Jenkins
- Departments of Anesthesiology and Pharmacology, Emory University, Atlanta, Georgia, 30322, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
7
|
Dauvilliers Y, Charnet P. Reply to "Rigor, reproducibility and in vitro CSF assays: The devil in the details". Ann Neurol 2017; 81:907-910. [PMID: 28439988 DOI: 10.1002/ana.24939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/11/2017] [Accepted: 04/15/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Yves Dauvilliers
- Department of Neurology, National Reference Network for Narcolepsy, Hôpital Gui-de-Chauliac, CHU Montpellier, Montpellier, France.,Inserm, U1061, Montpellier, France; Université Montpellier, Montpellier, France
| | | |
Collapse
|
8
|
Thiel U, Platt SJ, Wolf S, Hatt H, Gisselmann G. Identification of amino acids involved in histamine potentiation of GABA A receptors. Front Pharmacol 2015; 6:106. [PMID: 26074818 PMCID: PMC4443022 DOI: 10.3389/fphar.2015.00106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/01/2015] [Indexed: 12/13/2022] Open
Abstract
Histamine is a neurotransmitter involved in a number of physiological and neuronal functions. In mammals, such as humans, and rodents, the histaminergic neurons found in the tuberomamillary nucleus project widely throughout the central nervous system. Histamine acts as positive modulator of GABAA receptors (GABAARs) and, in high concentrations (10 mM), as negative modulator of the strychnine-sensitive glycine receptor. However, the exact molecular mechanisms by which histamine acts on GABAARs are unknown. In our study, we aimed to identify amino acids potentially involved in the modulatory effect of histamine on GABAARs. We expressed GABAARs with 12 different point mutations in Xenopus laevis oocytes and characterized the effect of histamine on GABA-induced currents using the two-electrode voltage clamp technique. Our data demonstrate that the amino acid residues β2(N265) and β2(M286), which are important for modulation by propofol, are not involved in the action of histamine. However, we found that histamine modulation is dependent on the amino acid residues α1(R120), β2(Y157), β2(D163), β3(V175), and β3(Q185). We showed that the amino acid residues β2(Y157) and β3(Q185) mediate the positive modulatory effect of histamine on GABA-induced currents, whereas α1(R120) and β2(D163) form a potential histamine interaction site in GABAARs.
Collapse
Affiliation(s)
- Ulrike Thiel
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Sarah J Platt
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Steffen Wolf
- Department of Biophysics, Ruhr University Bochum Bochum, Germany ; Department of Biophysics, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
9
|
Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 2013; 230:151-88. [PMID: 24071826 PMCID: PMC3832254 DOI: 10.1007/s00213-013-3276-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022]
Abstract
RATIONALE Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal γ-aminobutyric acid (GABA) type A (GABA(A)) receptors are one of the prime molecular targets of neurosteroids. OBJECTIVE This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABA(A) receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABA(A) receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABA(A) receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABA(A) receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. CONCLUSION The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABA(A) receptors provides many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Chase Matthew Carver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 2008 Medical Research and Education Building, 8447 State Highway 47, Bryan, TX, 77807-3260, USA
| | | |
Collapse
|
10
|
Carpenter TS, Lau EY, Lightstone FC. Identification of a possible secondary picrotoxin-binding site on the GABA(A) receptor. Chem Res Toxicol 2013; 26:1444-54. [PMID: 24028067 DOI: 10.1021/tx400167b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The type A GABA receptors (GABARs) are ligand-gated ion channels (LGICs) found in the brain and are the major inhibitory neurotransmitter receptors. Upon binding of an agonist, the GABAR opens and increases the intraneuronal concentration of chloride ions, thus hyperpolarizing the cell and inhibiting the transmission of the nerve action potential. GABARs also contain many other modulatory binding pockets that differ from the agonist-binding site. The composition of the GABAR subunits can alter the properties of these modulatory sites. Picrotoxin is a noncompetitive antagonist for LGICs, and by inhibiting GABAR, picrotoxin can cause overstimulation and induce convulsions. We use addition of picrotoxin to probe the characteristics and possible mechanism of an additional modulatory pocket located at the interface between the ligand-binding domain and the transmembrane domain of the GABAR. Picrotoxin is widely regarded as a pore-blocking agent that acts at the cytoplasmic end of the channel. However, there are also data to suggest that there may be an additional, secondary binding site for picrotoxin. Through homology modeling, molecular docking, and molecular dynamics simulations, we show that binding of picrotoxin to this interface pocket correlates with these data, and negative modulation occurs at the pocket via a kinking of the pore-lining helices into a more closed orientation.
Collapse
Affiliation(s)
- Timothy S Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States
| | | | | |
Collapse
|
11
|
Yip GMS, Chen ZW, Edge CJ, Smith EH, Dickinson R, Hohenester E, Townsend RR, Fuchs K, Sieghart W, Evers AS, Franks NP. A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat Chem Biol 2013; 9:715-20. [PMID: 24056400 PMCID: PMC3951778 DOI: 10.1038/nchembio.1340] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/08/2013] [Indexed: 11/09/2022]
Abstract
Propofol is the most important intravenous general anesthetic in current clinical use. It acts by potentiating GABAA (γ-aminobutyric acid type A) receptors, but where it binds to this receptor is not known and has been a matter of some debate. We synthesized a new propofol analog photolabeling reagent whose biological activity is very similar to that of propofol. We confirmed that this reagent labeled known propofol binding sites in human serum albumin that have been identified using X-ray crystallography. Using a combination of protiated and deuterated versions of the reagent to label mammalian receptors in intact membranes, we identified a new binding site for propofol in GABAA receptors consisting of both β3 homopentamers and α1β3 heteropentamers. The binding site is located within the β subunit at the interface between the transmembrane domains and the extracellular domain and lies close to known determinants of anesthetic sensitivity in the transmembrane segments TM1 and TM2.
Collapse
Affiliation(s)
- Grace M S Yip
- 1] Department of Life Sciences, Imperial College, London, UK. [2]
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rye DB, Bliwise DL, Parker K, Trotti LM, Saini P, Fairley J, Freeman A, Garcia PS, Owens MJ, Ritchie JC, Jenkins A. Modulation of vigilance in the primary hypersomnias by endogenous enhancement of GABAA receptors. Sci Transl Med 2013; 4:161ra151. [PMID: 23175709 DOI: 10.1126/scitranslmed.3004685] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biology underlying excessive daytime sleepiness (hypersomnolence) is incompletely understood. After excluding known causes of sleepiness in 32 hypersomnolent patients, we showed that, in the presence of 10 μM γ-aminobutyric acid (GABA), cerebrospinal fluid (CSF) from these subjects stimulated GABA(A) receptor function in vitro by 84.0 ± 40.7% (SD) relative to the 35.8 ± 7.5% (SD) stimulation obtained with CSF from control subjects (Student's t test, t = 6.47, P < 0.0001); CSF alone had no effect on GABA(A) signaling. The bioactive CSF component had a mass of 500 to 3000 daltons and was neutralized by trypsin. Enhancement was greater for α2 subunit- versus α1 subunit-containing GABA(A) receptors and negligible for α4 subunit-containing ones. CSF samples from hypersomnolent patients also modestly enhanced benzodiazepine (BZD)-insensitive GABA(A) receptors and did not competitively displace BZDs from human brain tissue. Flumazenil--a drug that is generally believed to antagonize the sedative-hypnotic actions of BZDs only at the classical BZD-binding domain in GABA(A) receptors and to lack intrinsic activity--nevertheless reversed enhancement of GABA(A) signaling by hypersomnolent CSF in vitro. Furthermore, flumazenil normalized vigilance in seven hypersomnolent patients. We conclude that a naturally occurring substance in CSF augments inhibitory GABA signaling, thus revealing a new pathophysiology associated with excessive daytime sleepiness.
Collapse
Affiliation(s)
- David B Rye
- Department of Neurology, Program in Sleep, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Eaton MM, Lim YB, Bracamontes J, Steinbach JH, Akk G. Agonist-specific conformational changes in the α1-γ2 subunit interface of the GABA A receptor. Mol Pharmacol 2012; 82:255-63. [PMID: 22572883 DOI: 10.1124/mol.112.077875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The GABA(A) receptor undergoes conformational changes upon the binding of agonist that lead to the opening of the channel gate and a flow of small anions across the cell membrane. Besides the transmitter GABA, allosteric ligands such as the general anesthetics pentobarbital and etomidate can activate the receptor. Here, we have investigated the agonist specificity of structural changes in the extracellular domain of the receptor. We used the substituted cysteine accessibility method and focused on the γ2(S195C) site (loop F). We show that modification of the site with (2-sulfonatoethyl)methanethiosulfonate (MTSES) results in an enhanced response to GABA, indicating accessibility of the resting receptor to the modifying agent. Coapplication of GABA or muscimol, but not of gabazine, with MTSES prevented the effect, suggesting that GABA and muscimol elicit a conformational change that reduces access to the γ2(S195C) site. Exposure of the receptors to MTSES in the presence of the allosteric activators pentobarbital and etomidate resulted in an enhanced current response indicating accessibility and labeling of the γ2(S195C) site. However, comparison of the rates of modification indicated that labeling in the presence of etomidate was significantly faster than that in the presence of pentobarbital or gabazine or in resting receptors. We infer from the data that the structure of the α1-γ2 subunit interface undergoes agonist-specific conformational changes.
Collapse
Affiliation(s)
- Megan M Eaton
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
14
|
Use of multicomponent reactions in developing small-molecule tools to study GABAA receptor mechanism and function. Future Med Chem 2011; 3:243-50. [PMID: 21428818 DOI: 10.4155/fmc.10.302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We discuss the potential use of multicomponent reactions in developing small-molecule probes of GABA(A) receptor function. Two examples that illustrate this approach are presented: the synthesis of a class of compounds that specifically modulate the function of GABA(A) receptors containing the δ-subunit, and also 'caged' GABA derivatives. A caged GABA is a photolabile precursor of GABA that releases GABA upon photolysis.
Collapse
|
15
|
Baur R, Lüscher BP, Richter L, Sigel E. A residue close to α1 loop F disrupts modulation of GABAA receptors by benzodiazepines while their binding is maintained. J Neurochem 2010; 115:1478-85. [DOI: 10.1111/j.1471-4159.2010.07052.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|