1
|
Kinectin1 depletion promotes EGFR degradation via the ubiquitin-proteosome system in cutaneous squamous cell carcinoma. Cell Death Dis 2021; 12:995. [PMID: 34689164 PMCID: PMC8542041 DOI: 10.1038/s41419-021-04276-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022]
Abstract
Depletion of kinectin1 (KTN1) provides a potential strategy for inhibiting tumorigenesis of cutaneous squamous cell carcinoma (cSCC) via reduction of epidermal growth factor receptor (EGFR) protein levels. Yet, the underlying mechanisms of KTN1 remain obscure. In this study, we demonstrate that KTN1 knockdown induces EGFR degradation in cSCC cells by promoting the ubiquitin-proteasome system, and that this effect is tumor cell-specific. KTN1 knockdown increases the expression of CCDC40, PSMA1, and ADRM1 to mediate tumor suppressor functions in vivo and in vitro. Mechanistically, c-Myc directly binds to the promoter region of CCDC40 to trigger the CCDC40-ADRM1-UCH37 axis and promote EGFR deubiquitination. Furthermore, KTN1 depletion accelerates EGFR degradation by strengthening the competitive interaction between PSMA1 and ADRM1 to inhibit KTN1/ADRM1 interaction at residues Met1-Ala252. These results are supported by studies in mouse xenografts and human patient samples. Collectively, our findings provide novel mechanistic insight into KTN1 regulation of EGFR degradation in cSCC.
Collapse
|
2
|
Zhang L, Sun W, Ren W, Zhang J, Xu G. Predicting Panel of Metabolism and Immune-Related Genes for the Prognosis of Human Ovarian Cancer. Front Cell Dev Biol 2021; 9:690542. [PMID: 34322485 PMCID: PMC8312230 DOI: 10.3389/fcell.2021.690542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023] Open
Abstract
Objective Ovarian cancer (OC) is a high deadly gynecologic cancer with a poor prognosis. The identification of genomic aberrations could predict the clinical prognosis of OC patients and may eventually develop new therapeutic strategies in the future. The purpose of this study is to create comprehensive co-expressed gene networks correlated with metabolism and the immune process of OC. Methods The transcriptome profiles of TCGA OC datasets and GSE26193 datasets were analyzed. The mRNA expression level, hub genomic alteration, patient’s survival status, and tumor cell immune microenvironment of metabolism-related genes were analyzed from TCGA, GTEX, Oncomine, Kaplan-Meier Plotter, cBioPortal, TIMER, ESTIMATE, and CIBERSORT databases. We further validated the mRNA and protein expression levels of these hub genes in OC cell lines and tissues using qRT-PCR and immunohistochemistry. Results The LASSO-Cox regression analyses unveiled seven differently expressed metabolism-related genes, including GFPT2, DGKD, ACACB, ACSM3, IDO1, TPMT, and PGP. The Cox regression risk model could be served as an independent marker to predict the overall clinical survival of OC patients. The expression of GFPT2, DGKD, ACACB, and ACSM3 were downregulated in OC tissues, while IDO1, TPMT, and PGP were upregulated in OC tissues than in control. Moreover, DGKD and IDO1 were significantly associated with the human immune system. Conclusion The differently expressed metabolism-related genes were identified to be a risk model in the prediction of the prognosis of OC. The identified hub genes related to OC prognosis may play important roles in influencing both human metabolism and the immune system.
Collapse
Affiliation(s)
- Lingyun Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenwen Sun
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Weimin Ren
- Department of Pathology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Black AR, Black JD. The complexities of PKCα signaling in cancer. Adv Biol Regul 2021; 80:100769. [PMID: 33307285 PMCID: PMC8141086 DOI: 10.1016/j.jbior.2020.100769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 01/06/2023]
Abstract
Protein kinase C α (PKCα) is a ubiquitously expressed member of the PKC family of serine/threonine kinases with diverse functions in normal and neoplastic cells. Early studies identified anti-proliferative and differentiation-inducing functions for PKCα in some normal tissues (e.g., regenerating epithelia) and pro-proliferative effects in others (e.g., cells of the hematopoietic system, smooth muscle cells). Additional well documented roles of PKCα signaling in normal cells include regulation of the cytoskeleton, cell adhesion, and cell migration, and PKCα can function as a survival factor in many contexts. While a majority of tumors lose expression of PKCα, others display aberrant overexpression of the enzyme. Cancer-related mutations in PKCα are uncommon, but rare examples of driver mutations have been detected in certain cancer types (e. g., choroid gliomas). Here we review the role of PKCα in various cancers, describe mechanisms by which PKCα affects cancer-related cell functions, and discuss how the diverse functions of PKCα contribute to tumor suppressive and tumor promoting activities of the enzyme. We end the discussion by addressing mutations and expression of PKCα in tumors and the clinical relevance of these findings.
Collapse
Affiliation(s)
- Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
4
|
Sano M, Asano T, Kaneko MK, Kato Y. Epitope mapping of an anti-diacylglycerol kinase delta monoclonal antibody DdMab-1. Biochem Biophys Rep 2020; 24:100808. [PMID: 32944659 PMCID: PMC7481522 DOI: 10.1016/j.bbrep.2020.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/22/2020] [Indexed: 11/03/2022] Open
Abstract
Diacylglycerol kinase δ (DGKδ) is a type II DGK, which catalyzes diacylglycerol phosphorylation to produce phosphatidic acid. DGKδ is expressed in several types of tissues and organs including the stomach, testis, bone marrow, and lymph node. Here, we established an anti-human DGKδ (hDGKδ) mAb, DdMab-1 (mouse IgG2a, kappa), which is useful for Western blot analysis. We also introduced deletion or point mutations to hDGKδ, and performed western blotting to determine the binding epitope of DdMab-1. DdMab-1 reacted with the dN670 mutant, but not with the dN680 mutant, indicating that the N-terminus of the DdMab-1 epitope is mainly located between amino acids 670 and 680 of the protein. Further analysis using point mutants demonstrated that R675A, R678A, K679A, and K682A mutants were not detected, and V680A was only weakly detected by DdMab-1, indicating that Arg675, Arg678, Lys679, Val680 and Lys682 are important for binding of DdMab-1 to hDGKδ. DGKδ catalyzes diacylglycerol phosphorylation to produce phosphatidic acid. We established a novel anti-hDGKδ mAb, DdMab-1. DdMab-1 is useful for Western blot analysis. R675, R678, K679, V680, and K682 are important for binding of DdMab-1 to hDGKδ.
Collapse
|
5
|
Beyond Lipid Signaling: Pleiotropic Effects of Diacylglycerol Kinases in Cellular Signaling. Int J Mol Sci 2020; 21:ijms21186861. [PMID: 32962151 PMCID: PMC7554708 DOI: 10.3390/ijms21186861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The diacylglycerol kinase family, which can attenuate diacylglycerol signaling and activate phosphatidic acid signaling, regulates various signaling transductions in the mammalian cells. Studies on the regulation of diacylglycerol and phosphatidic acid levels by various enzymes, the identification and characterization of various diacylglycerol and phosphatidic acid-regulated proteins, and the overlap of different diacylglycerol and phosphatidic acid metabolic and signaling processes have revealed the complex and non-redundant roles of diacylglycerol kinases in regulating multiple biochemical and biological networks. In this review article, we summarized recent progress in the complex and non-redundant roles of diacylglycerol kinases, which is expected to aid in restoring dysregulated biochemical and biological networks in various pathological conditions at the bed side.
Collapse
|
6
|
Regulation of Deubiquitinating Enzymes by Post-Translational Modifications. Int J Mol Sci 2020; 21:ijms21114028. [PMID: 32512887 PMCID: PMC7312083 DOI: 10.3390/ijms21114028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023] Open
Abstract
Ubiquitination and deubiquitination play a critical role in all aspects of cellular processes, and the enzymes involved are tightly regulated by multiple factors including posttranslational modifications like most other proteins. Dysfunction or misregulation of these enzymes could have dramatic physiological consequences, sometimes leading to diseases. Therefore, it is important to have a clear understanding of these regulatory processes. Here, we have reviewed the posttranslational modifications of deubiquitinating enzymes and their consequences on the catalytic activity, stability, abundance, localization, and interaction with the partner proteins.
Collapse
|
7
|
Purow B. Molecular Pathways: Targeting Diacylglycerol Kinase Alpha in Cancer. Clin Cancer Res 2015; 21:5008-12. [PMID: 26420856 DOI: 10.1158/1078-0432.ccr-15-0413] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/10/2015] [Indexed: 02/02/2023]
Abstract
Lipid kinases have largely been neglected as targets in cancer, and an increasing number of reports suggest diacylglycerol kinase alpha (DGKα) may be one with promising therapeutic potential. DGKα is one of 10 DGK family members that convert diacylglycerol (DAG) to phosphatidic acid (PA), and both DAG and PA are critical lipid second messengers in the plasma membrane. A host of important oncogenic proteins and pathways affect cancer cells in part through DGKα, including the c-Met and VEGF receptors. Others partially mediate the effects of DGKα inhibition in cancer, such as mTOR and HIF-1α. DGKα inhibition can directly impair cancer cell viability, inhibits angiogenesis, and notably may also boost T-cell activation and enhance cancer immunotherapies. Although two structurally similar inhibitors of DGKα were established decades ago, they have seen minimal in vivo usage, and it is unlikely that either of these older DGKα inhibitors will have utility for cancer. An abandoned compound that also inhibits serotonin receptors may have more translational potential as a DGKα inhibitor, but more potent and specific DGKα inhibitors are sorely needed. Other DGK family members may also provide therapeutic targets in cancer, but require further investigation.
Collapse
Affiliation(s)
- Benjamin Purow
- Department of Neurology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
8
|
Xie S, Naslavsky N, Caplan S. Diacylglycerol kinases in membrane trafficking. CELLULAR LOGISTICS 2015; 5:e1078431. [PMID: 27057419 DOI: 10.1080/21592799.2015.1078431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Diacylglycerol kinases (DGKs) belong to a family of cytosolic kinases that regulate the phosphorylation of diacylglycerol (DAG), converting it into phosphatidic acid (PA). There are 10 known mammalian DGK isoforms, each with a different tissue distribution and substrate specificity. These differences allow regulation of cellular responses by fine-tuning the delicate balance of cellular DAG and PA. DGK isoforms are best characterized as mediators of signal transduction and immune function. However, since recent studies reveal that DAG and PA are also involved in the regulation of endocytic trafficking, it is therefore anticipated that DGKs also plays an important role in membrane trafficking. In this review, we summarize the literature discussing the role of DGK isoforms at different stages of endocytic trafficking, including endocytosis, exocytosis, endocytic recycling, and transport from/to the Golgi apparatus. Overall, these studies contribute to our understanding of the involvement of PA and DAG in endocytic trafficking, an area of research that is drawing increasing attention in recent years.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center; University of Nebraska Medical Center ; Omaha, NE USA
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center; University of Nebraska Medical Center ; Omaha, NE USA
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center; University of Nebraska Medical Center ; Omaha, NE USA
| |
Collapse
|
9
|
Bailey TA, Luan H, Tom E, Bielecki TA, Mohapatra B, Ahmad G, George M, Kelly DL, Natarajan A, Raja SM, Band V, Band H. A kinase inhibitor screen reveals protein kinase C-dependent endocytic recycling of ErbB2 in breast cancer cells. J Biol Chem 2014; 289:30443-30458. [PMID: 25225290 DOI: 10.1074/jbc.m114.608992] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ErbB2 overexpression drives oncogenesis in 20-30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca(2+)-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling.
Collapse
Affiliation(s)
- Tameka A Bailey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Eric Tom
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Timothy Alan Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Gulzar Ahmad
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Manju George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - David L Kelly
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Srikumar M Raja
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Genetics, Cell Biology, and Anatomy, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Departments of Biochemistry & Molecular Biology, College of Medicine, and University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950.
| |
Collapse
|
10
|
Rittiner JE, Brings VE, Zylka MJ. Overexpression of diacylglycerol kinase η enhances Gαq-coupled G protein-coupled receptor signaling. Mol Pharmacol 2014; 85:800-10. [PMID: 24608858 DOI: 10.1124/mol.113.091280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multiple genome-wide association studies have linked diacylglycerol kinase η (DGKη) to bipolar disorder (BPD). Moreover, DGKη expression is increased in tissue from patients with BPD. How increased levels of this lipid kinase might affect cellular functions is currently unclear. Here, we overexpressed mouse DGKη in human embryonic kidney 293 cells to examine substrate specificity and signaling downstream of endogenous G protein-coupled receptors (GPCRs). We found that DGKη can phosphorylate diacylglycerol (DAG) with different acyl side chains (8:0, 12:0, 18:1). In addition, overexpression of DGKη enhanced calcium mobilization after stimulating muscarinic receptors with carbachol and after stimulating purinergic receptors with ATP. This effect required DGKη catalytic activity, as assessed using a kinase-dead (G389D) mutant and multiple truncation constructs. DGKη was localized throughout the cytosol and did not translocate to the plasma membrane after stimulation with carbachol. Since protein kinase C (PKC) can be activated by DAG and promotes receptor desensitization, we also examined functional interactions between PKC and DGKη. We found that acute activation of PKC with phorbol 12-myristate 13-acetate shortened carbachol-evoked calcium responses and occluded the effect of overexpressed DGKη. Moreover, inhibition of PKC activity with bisindolylmaleimide I (BIM I) produced the same enhancing effect on carbachol-evoked calcium mobilization as overexpressed DGKη, and overexpression of DGKη produced no additional effect on calcium mobilization in the presence of BIM I. Taken together, our data suggest that DGKη enhances GPCR signaling by reducing PKC activation.
Collapse
Affiliation(s)
- Joseph E Rittiner
- Department of Cell Biology and Physiology, University of North Carolina Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| | | | | |
Collapse
|
11
|
Liu M, Idkowiak-Baldys J, Roddy PL, Baldys A, Raymond J, Clarke CJ, Hannun YA. Sustained activation of protein kinase C induces delayed phosphorylation and regulates the fate of epidermal growth factor receptor. PLoS One 2013; 8:e80721. [PMID: 24244711 PMCID: PMC3823608 DOI: 10.1371/journal.pone.0080721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/04/2013] [Indexed: 01/11/2023] Open
Abstract
It is well established that acute activation of members of the protein kinase C (PKC) family induced by activation of cellular receptors can transduce extracellular stimuli to intracellular signaling. However, the functions of sustained activation of PKC are not well studied. We have previously shown that sustained activation of classical PKC isoforms over 15-60 min induced the formation of the pericentrion, a subset of recycling endosomes that are sequestered perinuclearly in a PKC- and phospholipase D (PLD)-dependent manner. In this study, we investigated the role of this process in the phosphorylation of EGFR on threonine 654 (Thr-654) and in the regulation of intracellular trafficking and fate of epidermal growth factor receptor (EGFR). Sustained stimulation of the angiotensin II receptor induced translocation of the EGFR to the pericentrion, which in turn prevents full access of EGF to the EGFR. These effects required PKC and PLD activities, and direct stimulation of PKC with phorbol esters was sufficient to reproduce these effects. Furthermore, activation of PKC induced delayed phosphorylation of EGFR on Thr-654 that coincided with the formation of the pericentrion and which was dependent on PLD and endocytosis of EGFR. Thus, Thr-654 phosphorylation required the formation of the pericentrion. On the other hand, using a T654A mutant of EGFR, we find that the phosphorylation on Thr-654 was not required for translocation of EGFR to the pericentrion but was required for protection of EGFR from degradation in response to EGF. Taken together, these results demonstrate a novel role for the pericentrion in the regulation of EGFR phosphorylation, which in turn is important for the fates of EGFR.
Collapse
Affiliation(s)
- Mengling Liu
- Department of Medicine and The Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jolanta Idkowiak-Baldys
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Patrick L. Roddy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Aleksander Baldys
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - John Raymond
- Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Christopher J. Clarke
- Department of Medicine and The Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yusuf A. Hannun
- Department of Medicine and The Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
12
|
Nakano T, Iravani A, Kim M, Hozumi Y, Lohse M, Reichert E, Crotty TM, Stafforini DM, Topham MK. Diacylglycerol kinase η modulates oncogenic properties of lung cancer cells. Clin Transl Oncol 2013; 16:29-35. [PMID: 23572183 DOI: 10.1007/s12094-013-1036-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 03/26/2013] [Indexed: 12/11/2022]
Abstract
PURPOSE Lung cancer is a leading cause of cancer deaths and efforts are underway to identify novel therapies to treat these tumors. Diacylglycerol kinase η (DGKη), an enzyme that phosphorylates diacylglycerol to form phosphatidic acid, has been shown to modulate MAPK signaling downstream of EGFR, which is an oncogenic driver in some lung cancers. Since mutations in EGFR and K-Ras are common in lung cancer, we hypothesized that limiting the function of DGKη would attenuate oncogenic properties of lung cancer cells. METHODS We determined the expression levels of DGKη in a mouse models of mutant EGFR and K-Ras lung cancer and in human lung cancer cell lines with activating mutations in either EGFR or K-Ras. We also tested the effects of shRNA-mediated depletion of DGKη in lung cancer cells and tested if DGKη depletion augmented the effects of afatinib, a new generation EGFR inhibitor. RESULTS DGKη was expressed in malignant epithelium from mice with mutant EGFR or K-Ras lung cancer. It was also expressed in human lung cancer cell lines with EGFR or K-Ras mutations. Depleting DGKη in lung cancer cell lines, harboring mutant EGFR, reduced their growth on plastic and in soft agar and also augmented the effects of afatinib, an EGFR inhibitor. DGKη depletion also reduced growth of one of two lung cancer cell lines that harbored mutant K-Ras. CONCLUSIONS Our data indicate that DGKη is a potential therapeutic target in lung cancers, especially those harboring EGFR mutations. Our findings warrant further studies to examine the effects of limiting its function in vivo.
Collapse
Affiliation(s)
- T Nakano
- Huntsman Cancer Institute, University of Utah, 2000 East Circle of Hope, Salt Lake City, UT, 84112-5550, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mukai A, Yamamoto-Hino M, Komada M, Okano H, Goto S. Balanced ubiquitination determines cellular responsiveness to extracellular stimuli. Cell Mol Life Sci 2012; 69:4007-16. [PMID: 22825661 PMCID: PMC11115028 DOI: 10.1007/s00018-012-1084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 01/22/2023]
Abstract
Signal strength evoked by ligand stimulation is crucial for cellular responses such as fate decision, cell survival/death, secretion, and migration. For example, morphogens are secreted signaling molecules that form concentration gradients within tissues and induce distinct cell fates in a signal strength-dependent manner. In addition to extracellular ligand abundance, the sensitivity of signal-receiving cells to ligands also influences signal strength. Cell sensitivity to ligands is controlled at various levels: receptor presentation at the cell surface, positive/negative regulation of signal transduction, and target gene activation/repression. While the regulation of signal transduction and gene transcription is well studied, receptor presentation is still not fully understood. Recently, it was reported that cellular sensitivity to the Wingless (Wg)/Wnt morphogen is regulated by balanced ubiquitination and deubiquitination of its receptor Frizzled (Fz). In this review, we review how ubiquitination regulates receptor presentation at the cell surface for the detection of extracellular signal strength.
Collapse
Affiliation(s)
- Akiko Mukai
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-Kagaku Institute of Life Sciences, Minamiooya, Machida, Tokyo 194-8511 Japan
| | - Miki Yamamoto-Hino
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501 Japan
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-Kagaku Institute of Life Sciences, Minamiooya, Machida, Tokyo 194-8511 Japan
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masayuki Komada
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Satoshi Goto
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501 Japan
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-Kagaku Institute of Life Sciences, Minamiooya, Machida, Tokyo 194-8511 Japan
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
14
|
Crotty TM, Nakano T, Stafforini DM, Topham MK. Diacylglycerol kinase δ modulates Akt phosphorylation through pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2). J Biol Chem 2012. [PMID: 23184957 DOI: 10.1074/jbc.m112.407379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Discovering proteins that modulate Akt signaling has become a critical task, given the oncogenic role of Akt in a wide variety of cancers. We have discovered a novel diacylglycerol signaling pathway that promotes dephosphorylation of Akt. This pathway is regulated by diacylglycerol kinase δ (DGKδ). In DGKδ-deficient cells, we found reduced Akt phosphorylation downstream of three receptor tyrosine kinases. Phosphorylation upstream of Akt was not affected. Our data indicate that PKCα, which is excessively active in DGKδ-deficient cells, promotes dephosphorylation of Akt through pleckstrin homology domain leucine-rich repeats protein phosphatase (PHLPP) 2. Depletion of either PKCα or PHLPP2 rescued Akt phosphorylation in DGKδ-deficient cells. In contrast, depletion of PHLPP1, another Akt phosphatase, failed to rescue Akt phosphorylation. Other PHLPP substrates were not affected by DGKδ deficiency, suggesting mechanisms allowing specific modulation of Akt dephosphorylation. We found that β-arrestin 1 acted as a scaffold for PHLPP2 and Akt1, providing a mechanism for specificity. Because of its ability to reduce Akt phosphorylation, we tested whether depletion of DGKδ could attenuate tumorigenic properties of cultured cells and found that DGKδ deficiency reduced cell proliferation and migration and enhanced apoptosis. We have, thus, discovered a novel pathway in which diacylglycerol signaling negatively regulates Akt activity. Our collective data indicate that DGKδ is a pertinent cancer target, and our studies could lay the groundwork for development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Tracy M Crotty
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
15
|
Sakai H, Sakane F. Recent progress on type II diacylglycerol kinases: the physiological functions of diacylglycerol kinase , and and their involvement in disease. J Biochem 2012; 152:397-406. [DOI: 10.1093/jb/mvs104] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Diacylglycerol kinase δ1 transiently translocates to the plasma membrane in response to high glucose. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2210-6. [PMID: 22974639 DOI: 10.1016/j.bbamcr.2012.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 01/21/2023]
Abstract
The type II diacylglycerol kinases (DGKs) contain several functional domains such as a pleckstrin homology (PH) domain, two C1 domains and a sterile α-motif (SAM) domain. It was previously revealed that DGKδ contributes to hyperglycemia-induced peripheral insulin resistance and thereby exacerbate the severity of type 2 diabetes. Moreover, a high extracellular concentration of glucose activated DGKδ in skeletal muscle cells, which was followed by a reduction in the intracellular diacylglycerol levels and the inactivation of protein kinase Cα, the enzyme that phosphorylates and inactivates the insulin receptor. However, the intracellular behavior of DGKδ upon high glucose stimulation remains unclear. In this study, we found that DGKδ1, but not a splice variant DGKδ2 or the other type II DGKη1/2, translocated from the cytoplasm to the plasma membrane in human embryonic kidney HEK293 and mouse myoblast C2C12 cells within 5 min in response to high glucose levels. The translocation was inhibited by phosphatidylinositol 3-kinase inhibitors, LY294002 and GDC-0941, suggesting that the event is regulated via the phosphatidylinositol 3-kinase pathway. Moreover, we revealed that the PH and C1 domains are responsible for the plasma membrane translocation and that the SAM domain negatively regulates the translocation. These results indicate that DGKδ1 is the sole type II DGK isoform that responds rapidly and dynamically to high glucose levels.
Collapse
|
17
|
Identification of kinases regulating prostate cancer cell growth using an RNAi phenotypic screen. PLoS One 2012; 7:e38950. [PMID: 22761715 PMCID: PMC3384611 DOI: 10.1371/journal.pone.0038950] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/15/2012] [Indexed: 01/10/2023] Open
Abstract
As prostate cancer progresses to castration-resistant disease, there is an increase in signal transduction activity. Most castration-resistant prostate tumors continue to express the androgen receptor (AR) as well as androgen-responsive genes, despite the near absence of circulating androgen in these patients. The AR is regulated not only by its cognate steroid hormone, but also by interactions with a constellation of co-regulatory and signaling molecules. Thus, the elevated signaling activity that occurs during progression to castration resistance can affect prostate cancer cell growth either through the AR or independent of the AR. In order to identify signaling pathways that regulate prostate cancer cell growth, we screened a panel of shRNAs targeting 673 human kinases against LNCaP prostate cancer cells grown in the presence and absence of hormone. The screen identified multiple shRNA clones against known and novel gene targets that regulate prostate cancer cell growth. Based on the magnitude of effect on growth, we selected six kinases for further study: MAP3K11, DGKD, ICK, CIT, GALK2, and PSKH1. Knockdown of these kinases decreased cell growth in both androgen-dependent and castration-resistant prostate cancer cells. However, these kinases had different effects on basal or androgen-induced transcriptional activity of AR target genes. MAP3K11 knockdown most consistently altered transcription of AR target genes, suggesting that MAP3K11 affected its growth inhibitory effect by modulating the AR transcriptional program. Consistent with MAP3K11 acting on the AR, knockdown of MAP3K11 inhibited AR Ser 650 phosphorylation, further supporting stress kinase regulation of AR phosphorylation. This study demonstrates the applicability of lentiviral-based shRNA for conducting phenotypic screens and identifies MAP3K11, DGKD, ICK, CIT, GALK2, and PSKH1 as regulators of prostate cancer cell growth. The thorough evaluation of these kinase targets will pave the way for developing more effective treatments for castration-resistant prostate cancer.
Collapse
|
18
|
Kessler BM, Edelmann MJ. PTMs in conversation: activity and function of deubiquitinating enzymes regulated via post-translational modifications. Cell Biochem Biophys 2011; 60:21-38. [PMID: 21480003 PMCID: PMC3094536 DOI: 10.1007/s12013-011-9176-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Deubiquitinating enzymes (DUBs) constitute a diverse protein family and their impact on numerous biological and pathological processes has now been widely appreciated. Many DUB functions have to be tightly controlled within the cell, and this can be achieved in several ways, such as substrate-induced conformational changes, binding to adaptor proteins, proteolytic cleavage, and post-translational modifications (PTMs). This review is focused on the role of PTMs including monoubiquitination, sumoylation, acetylation, and phosphorylation as characterized and putative regulative factors of DUB function. Although this aspect of DUB functionality has not been yet thoroughly studied, PTMs represent a versatile and reversible method of controlling the role of DUBs in biological processes. In several cases PTMs might constitute a feedback mechanism insuring proper functioning of the ubiquitin proteasome system and other DUB-related pathways.
Collapse
Affiliation(s)
- Benedikt M Kessler
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | |
Collapse
|
19
|
Shulga YV, Topham MK, Epand RM. Regulation and functions of diacylglycerol kinases. Chem Rev 2011; 111:6186-208. [PMID: 21800853 DOI: 10.1021/cr1004106] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yulia V Shulga
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | | |
Collapse
|