1
|
Liu Y, Yu Z, Zhu L, Ma S, Luo Y, Liang H, Liu Q, Chen J, Guli S, Chen X. Orchestration of MUC2 - The key regulatory target of gut barrier and homeostasis: A review. Int J Biol Macromol 2023; 236:123862. [PMID: 36870625 DOI: 10.1016/j.ijbiomac.2023.123862] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The gut mucosa of human is covered by mucus, functioning as a crucial defense line for the intestine against external stimuli and pathogens. Mucin2 (MUC2) is a subtype of secretory mucins generated by goblet cells and is the major macromolecular component of mucus. Currently, there is an increasing interest on the investigations of MUC2, noting that its function is far beyond a maintainer of the mucus barrier. Moreover, numerous gut diseases are associated with dysregulated MUC2 production. Appropriate production level of MUC2 and mucus contributes to gut barrier function and homeostasis. The production of MUC2 is regulated by a series of physiological processes, which are orchestrated by various bioactive molecules, signaling pathways and gut microbiota, etc., forming a complex regulatory network. Incorporating the latest findings, this review provided a comprehensive summary of MUC2, including its structure, significance and secretory process. Furthermore, we also summarized the molecular mechanisms of the regulation of MUC2 production aiming to provide developmental directions for future researches on MUC2, which can act as a potential prognostic indicator and targeted therapeutic manipulation for diseases. Collectively, we elucidated the micro-level mechanisms underlying MUC2-related phenotypes, hoping to offer some constructive guidance for intestinal and overall health of mankind.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lanping Zhu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Shuang Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yang Luo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Huixi Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Qinlingfei Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Sitan Guli
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| |
Collapse
|
2
|
Suzuki T, Aoki K, Shimokobe K, Omiya S, Funayama C, Takahashi T, Kato M. Age-related morphological and functional changes in the small intestine of senescence-accelerated mouse. Exp Gerontol 2022; 163:111795. [DOI: 10.1016/j.exger.2022.111795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
|
3
|
Panea C, Zhang R, VanValkenburgh J, Ni M, Adler C, Wei Y, Ochoa F, Schmahl J, Tang Y, Siao CJ, Poueymirou W, Espert J, Lim WK, Atwal GS, Murphy AJ, Sleeman MA, Hovhannisyan Z, Haxhinasto S. Butyrophilin-like 2 regulates site-specific adaptations of intestinal γδ intraepithelial lymphocytes. Commun Biol 2021; 4:913. [PMID: 34312491 PMCID: PMC8313535 DOI: 10.1038/s42003-021-02438-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Tissue-resident γδ intraepithelial lymphocytes (IELs) orchestrate innate and adaptive immune responses to maintain intestinal epithelial barrier integrity. Epithelia-specific butyrophilin-like (Btnl) molecules induce perinatal development of distinct Vγ TCR+ IELs, however, the mechanisms that control γδ IEL maintenance within discrete intestinal segments are unclear. Here, we show that Btnl2 suppressed homeostatic proliferation of γδ IELs preferentially in the ileum. High throughput transcriptomic characterization of site-specific Btnl2-KO γδ IELs reveals that Btnl2 regulated the antimicrobial response module of ileal γδ IELs. Btnl2 deficiency shapes the TCR specificities and TCRγ/δ repertoire diversity of ileal γδ IELs. During DSS-induced colitis, Btnl2-KO mice exhibit increased inflammation and delayed mucosal repair in the colon. Collectively, these data suggest that Btnl2 fine-tunes γδ IEL frequencies and TCR specificities in response to site-specific homeostatic and inflammatory cues. Hence, Btnl-mediated targeting of γδ IEL development and maintenance may help dissect their immunological functions in intestinal diseases with segment-specific manifestations. Panea et al showed that epithelia-specific butyrophilinlike 2 (Btnl2) suppressed homeostatic proliferation of γδ intraepithelial lymphocytes (IELs) preferentially in the ileum and used high throughput transcriptomic characterization of Btnl2-deficient γδ IELs to demonstrate that Btnl2 impacts γδ TCR specificities and repertoire diversity of ileal γδ IELs. In addition, they showed that Btnl2-deficient mice exhibited increased inflammation and delayed mucosal repair in the colon, suggesting that it plays a key immunological function in intestinal diseases.
Collapse
Affiliation(s)
| | - Ruoyu Zhang
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | - Min Ni
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | - Yi Wei
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | | | - Yajun Tang
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | | | | | - Wei Keat Lim
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | | | | | | | | |
Collapse
|
4
|
Devall MA, Casey G. Controlling for cellular heterogeneity using single-cell deconvolution of gene expression reveals novel markers of colorectal tumors exhibiting microsatellite instability. Oncotarget 2021; 12:767-782. [PMID: 33889300 PMCID: PMC8057268 DOI: 10.18632/oncotarget.27935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Approximately 15% of colorectal cancer (CRC) cases present with high levels of microsatellite instability (MSI-H). Bulk RNA-sequencing approaches have been employed to elucidate transcriptional differences between MSI-H and microsatellite stable (MSS) CRC tumors. These approaches are frequently confounded by the complex cellular heterogeneity of tumors. We performed single-cell deconvolution of bulk RNA-sequencing on The Cancer Genome Atlas colon adenocarcinoma (TCGA-COAD) dataset. Cell composition within each dataset was estimated using CIBERSORTx. Cell composition differences were analyzed using linear regression. Significant differences in abundance were observed for 13 of 19 cell types between MSI-H and MSS/MSI-L tumors in TCGA-COAD. This included a novel finding of increased enteroendocrine (q = 3.71E-06) and reduced colonocyte populations (q = 2.21E-03) in MSI-H versus MSS/MSI-L tumors. We were able to validate some of these differences in an independent biopsy dataset. By incorporating cell composition into our regression model, we identified 3,193 differentially expressed genes (q = 0.05), of which 556 were deemed novel. We subsequently validated many of these genes in an independent dataset of colon cancer cell lines. In summary, we show that some of the challenges associated with cellular heterogeneity can be overcome using single-cell deconvolution, and through our analysis we highlight several novel gene targets for further investigation.
Collapse
Affiliation(s)
- Matthew A.M. Devall
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Santagata S. Genes with evidence of positive selection as potentially related to coloniality and the evolution of morphological features among the lophophorates and entoprocts. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:267-280. [PMID: 32638536 DOI: 10.1002/jez.b.22975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Evolutionary mechanisms that underlie the origins of coloniality among organisms are diverse. Some animal colonies may be comprised strictly of clonal individuals formed from asexual budding or comprised of a chimera of clonal and sexually produced individuals that fuse secondarily. This investigation focuses on select members of the lophophorates and entoprocts whose evolutionary relationships remain enigmatic even in the age of genomics. Using transcriptomic data sets, two coloniality-based hypotheses are tested in a phylogenetic context to find candidate genes showing evidence of positive selection and potentially convergent molecular signatures among solitary species and taxa-forming colonies from aggregate groups or clonal budding. Approximately 22% of the 387 orthogroups tested showed evidence of positive selection in at least one of the three branch-site tests (CODEML, BUSTED, and aBSREL). Only 12 genes could be reliably associated with a developmental function related to traits linked with coloniality, neuroanatomy, or ciliary fields. Genes testing for both positive selection and convergent molecular characters include orthologues of Radial spoke head, Elongation translation initiation factors, SEC13, and Immediate early response gene5. Maximum likelihood analyses included here resulted in tree topologies typical of other phylogenetic investigations based on wider genomic information. Further genomic and experimental evidence will be needed to resolve whether a solitary ancestor with multiciliated cells that formed aggregate groups gave rise to colonial forms in bryozoans (and perhaps the entoprocts) or that the morphological differences exhibited by phoronids and brachiopods represent trait modifications from a colonial ancestor.
Collapse
Affiliation(s)
- Scott Santagata
- Department of Biological and Environmental Sciences, Long Island University, Greenvale, New York
| |
Collapse
|
6
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
7
|
McGaugh SE, Passow CN, Jaggard JB, Stahl BA, Keene AC. Unique transcriptional signatures of sleep loss across independently evolved cavefish populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:497-510. [PMID: 32351033 DOI: 10.1002/jez.b.22949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/28/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Animals respond to sleep loss with compensatory rebound sleep, and this is thought to be critical for the maintenance of physiological homeostasis. Sleep duration varies dramatically across animal species, but it is not known whether evolutionary differences in sleep duration are associated with differences in sleep homeostasis. The Mexican cavefish, Astyanax mexicanus, has emerged as a powerful model for studying the evolution of sleep. While eyed surface populations of A. mexicanus sleep approximately 8 hr each day, multiple blind cavefish populations have converged on sleep patterns that total as little as 2 hr each day, providing the opportunity to examine whether the evolution of sleep loss is accompanied by changes in sleep homeostasis. Here, we examine the behavioral and molecular response to sleep deprivation across four independent populations of A. mexicanus. Our behavioral analysis indicates that surface fish and all three cavefish populations display robust recovery sleep during the day following nighttime sleep deprivation, suggesting sleep homeostasis remains intact in cavefish. We profiled transcriptome-wide changes associated with sleep deprivation in surface fish and cavefish. While the total number of differentially expressed genes was not greater for the surface population, the surface population exhibited the highest number of uniquely differentially expressed genes than any other population. Strikingly, a majority of the differentially expressed genes are unique to individual cave populations, suggesting unique expression responses are exhibited across independently evolved cavefish populations. Together, these findings suggest sleep homeostasis is intact in cavefish despite a dramatic reduction in overall sleep duration.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - Courtney N Passow
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - James Brian Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Bethany A Stahl
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
8
|
Chen L, Ran Q, Xiang Y, Xiang L, Chen L, Li F, Wu J, Wu C, Li Z. Co-Activation of PKC-δ by CRIF1 Modulates Oxidative Stress in Bone Marrow Multipotent Mesenchymal Stromal Cells after Irradiation by Phosphorylating NRF2 Ser40. Theranostics 2017; 7:2634-2648. [PMID: 28819452 PMCID: PMC5558558 DOI: 10.7150/thno.17853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
The high mortality associated with pancytopenia and multi-organ failure resulting from hematopoietic disorders of acute radiation syndrome (h-ARS) creates an urgent need for developing more effective treatment strategies. Here, we showed that bone marrow multipotent mesenchymal stromal cells (BMMSCs) effectively regulate oxidative stress following radiative injury, which might be on account of irradiation-induced elevation of protein levels of CR6-interacting factor 1(CRIF1) and nuclear factor E2-related factor 2(NRF2). Crif1-knockdown BMMSCs presented increased oxidative stress and apoptosis after irradiation, which were partially due to a suppressed antioxidant response mediated by decreased NRF2 nuclear translocation. Co-immunoprecipitation (Co-IP) experiments indicated that CRIF1 interacted with protein kinase C-δ (PKC-δ). NRF2 Ser40 phosphorylation was inhibited in Crif1-deficient BMMSCs even in the presence of three kinds of PKC agonists, suggesting that CRIF1 might co-activate PKC-δ to phosphorylate NRF2 Ser40. After radiative injury, the supporting effect of BMMSCs for the colony forming ability of HSCs in vitro was reduced, and the deficiency of CRIF1 aggravated such damage. Thus, CRIF1 plays an essential role in PKC-δ/NRF2 pathway modulation to alleviate oxidative stress in BMMSCs after irradiative injury, and at some level it may maintain the HSCs-supporting effect of BMMSCs after radiative injuries.
Collapse
|
9
|
Yan HX, Zhang YJ, Zhang Y, Ren X, Shen YF, Cheng MB, Zhang Y. CRIF1 enhances p53 activity via the chromatin remodeler SNF5 in the HCT116 colon cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:516-522. [DOI: 10.1016/j.bbagrm.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 12/28/2022]
|
10
|
Kang SG, Yi HS, Choi MJ, Ryu MJ, Jung S, Chung HK, Chang JY, Kim YK, Lee SE, Kim HW, Choi H, Kim DS, Lee JH, Kim KS, Kim HJ, Lee CH, Oike Y, Shong M. ANGPTL6 expression is coupled with mitochondrial OXPHOS function to regulate adipose FGF21. J Endocrinol 2017; 233:105-118. [PMID: 28184000 DOI: 10.1530/joe-16-0549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
Recent studies revealed that the inhibition of mitochondrial oxidative phosphorylation (OXPHOS) is coupled with the mitochondrial unfolded protein response, thereby stimulating the secretion of non-cell autonomous factors, which may control systemic energy metabolism and longevity. However, the nature and roles of non-cell autonomous factors induced in adipose tissue in response to reduced OXPHOS function remain to be clarified in mammals. CR6-interacting factor 1 (CRIF1) is an essential mitoribosomal protein for the intramitochondrial production of mtDNA-encoded OXPHOS subunits. Deficiency of CRIF1 impairs the proper formation of the OXPHOS complex, resulting in reduced function. To determine which secretory factors are induced in response to reduced mitochondrial OXPHOS function, we analyzed gene expression datasets in Crif1-depleted mouse embryonic fibroblasts. Crif1 deficiency preferentially increased the expression of angiopoietin-like 6 (Angptl6) and did not affect other members of the ANGPTL family. Moreover, treatment with mitochondrial OXPHOS inhibitors increased the expression of Angptl6 in cultured adipocytes. To confirm Angptl6 induction in vivo, we generated a murine model of reduced mitochondrial OXPHOS function using adipose tissue-specific Crif1-deficient mice and verified the upregulation of Angptl6 and fibroblast growth factor 21 (Fgf21) in white adipose tissue. Treatment with recombinant ANGPTL6 protein increased oxygen consumption and Pparα expression through the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in cultured adipocytes. Furthermore, the ANGPTL6-mediated increase in Pparα expression resulted in increased FGF21 expression, thereby promoting β-oxidation. In conclusion, mitochondrial OXPHOS function governs the expression of ANGPTL6, which is an essential factor for FGF21 production in adipose tissue and cultured adipocytes.
Collapse
Affiliation(s)
- Seul Gi Kang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | | | - Saetbyel Jung
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Hyeon-Woo Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Hoil Choi
- Department of BiochemistryChungnam National University School of Medicine, Daejeon, Korea
| | - Dong Seok Kim
- Department of BiochemistryChungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Chul-Ho Lee
- Animal Model CenterKorea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yuichi Oike
- Department of Molecular GeneticsGraduate School of Medical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Minho Shong
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
11
|
Targeted deletion of Crif1 in mouse epidermis impairs skin homeostasis and hair morphogenesis. Sci Rep 2017; 7:44828. [PMID: 28317864 PMCID: PMC5357846 DOI: 10.1038/srep44828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/14/2017] [Indexed: 12/27/2022] Open
Abstract
The epidermis, which consists mainly of keratinocytes, acts as a physical barrier to infections by regulating keratinocyte proliferation and differentiation. Hair follicles undergo continuous cycling to produce new one. Therefore, optimum supply of energy from the mitochondria is essential for maintaining skin homeostasis and hair growth. CRIF1 is a mitochondrial protein that regulates mitoribosome-mediated synthesis and insertion of mitochondrial oxidative phosphorylation polypeptides into the mitochondrial membrane in mammals. Recent studies reveal that conditional knockout (cKO) of Crif1 in specific tissues of mice induced mitochondrial dysfunction. To determine whether the mitochondrial function of keratinocytes affects skin homeostasis and hair morphogenesis, we generated epidermis-specific Crif1 cKO mice. Deletion of Crif1 in epidermis resulted in impaired mitochondrial function and Crif1 cKO mice died within a week. Keratinocyte proliferation and differentiation were markedly inhibited in Crif1 cKO mice. Furthermore, hair follicle morphogenesis of Crif1 cKO mice was disrupted by down-regulation of Wnt/β-catenin signaling. These results demonstrate that mitochondrial function in keratinocytes is essential for maintaining epidermal homeostasis and hair follicle morphogenesis.
Collapse
|
12
|
Zhang X, Xiang L, Ran Q, Liu Y, Xiang Y, Xiao Y, Chen L, Li F, Zhong JF, Li Z. Crif1 Promotes Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells After Irradiation by Modulating the PKA/CREB Signaling Pathway. Stem Cells 2016; 33:1915-26. [PMID: 25847389 DOI: 10.1002/stem.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/12/2015] [Accepted: 02/28/2015] [Indexed: 12/22/2022]
Abstract
Dysfunction of the hematopoietic microenvironment is the main obstacle encountered during hematopoiesis reconstruction in patients with acute hematopoietic radiation syndrome. Bone marrow mesenchymal stem cells (BM-MSCs) play a crucial supporting role in hematopoiesis by maintaining the balance between adipogenic and osteogenic differentiation. In this study, we found that irradiation decreased the colony-forming efficiency of BM-MSCs and impaired the balance between adipogenic and osteogenic differentiation. Following irradiation, BM-MCSs became strongly predisposed to adipogenesis, as evidenced by increased oil red O staining and elevated mRNA and protein levels of the adipogenic markers and transcription factors PPARγ and AP2. Overexpression of the essential adipogenesis regulator Crif1 in BM-MSCs promoted adipogenesis after irradiation exposure by upregulating adipogenesis-related genes, including C/EBPβ, PPARγ, and AP2. We found that Crif1 promoted the phosphorylation of cAMP response element binding protein (CREB) through direct interaction with protein kinase A (PKA)-α. Phosphorylation of CREB was inhibited in Crif1-knockdown BM-MSCs even in the presence of a PKA agonist (db-cAMP) and could be suppressed in Crif1-overexpressing BM-MSCs by a PKAα inhibitor (H-89). These results suggest that Crif1 is an indispensable regulator of PKAα cat that modulates the PKA/CREB signaling pathway to promote adipogenic differentiation of BM-MSCs after irradiation.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Hematology and, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Lixin Xiang
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Ran
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yao Liu
- Department of Hematology and, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yang Xiang
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yanni Xiao
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Li Chen
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Fengjie Li
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jiang F Zhong
- Department of Pathology, University of Southern California, Keck School of Medicine, California, USA
| | - Zhongjun Li
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
13
|
Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V. Structure of the large ribosomal subunit from human mitochondria. Science 2014; 346:718-722. [PMID: 25278503 DOI: 10.1126/science.1258026] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human mitochondrial ribosomes are highly divergent from all other known ribosomes and are specialized to exclusively translate membrane proteins. They are linked with hereditary mitochondrial diseases and are often the unintended targets of various clinically useful antibiotics. Using single-particle cryogenic electron microscopy, we have determined the structure of its large subunit to 3.4 angstrom resolution, revealing 48 proteins, 21 of which are specific to mitochondria. The structure unveils an adaptation of the exit tunnel for hydrophobic nascent peptides, extensive remodeling of the central protuberance, including recruitment of mitochondrial valine transfer RNA (tRNA(Val)) to play an integral structural role, and changes in the tRNA binding sites related to the unusual characteristics of mitochondrial tRNAs.
Collapse
Affiliation(s)
- Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Alexey Amunts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Xiao-Chen Bai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Yoichiro Sugimoto
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Patricia C Edwards
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
14
|
Ran Q, Hao P, Xiao Y, Xiang L, Ye X, Deng X, Zhao J, Li Z. CRIF1 interacting with CDK2 regulates bone marrow microenvironment-induced G0/G1 arrest of leukemia cells. PLoS One 2014; 9:e85328. [PMID: 24520316 PMCID: PMC3919709 DOI: 10.1371/journal.pone.0085328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/26/2013] [Indexed: 01/10/2023] Open
Abstract
Background To assess the level of CR6-interacting factor 1 (CRIF1), a cell cycle negative regulator, in patients with leukemia and investigate the role of CRIF1 in regulating leukemia cell cycle. Methods We compared the CRIF1 level in bone marrow (BM) samples from healthy and acute myeloid leukemia (AML), iron deficiency anemia (IDA) and AML-complete remission (AML-CR) subjects. We also manipulated CRIF1 level in the Jurkat cells using lentivirus-mediated overexpression or siRNA-mediated depletion. Co-culture with the BM stromal cells (BMSCs) was used to induce leukemia cell cycle arrest and mimic the BM microenvironment. Results We found significant decreases of CRIF1 mRNA and protein in the AML group. CRIF1 overexpression increased the proportion of Jurkat cells arrested in G0/G1, while depletion of endogenous CRIF1 decreased cell cycle arrest. Depletion of CRIF1 reversed BMSCs induced cell cycle arrest in leukemia cells. Co-immunoprecipitation showed a specific binding of CDK2 to CRIF1 in Jurkat cells during cell cycle arrest. Co-localization of two proteins in both nucleus and cytoplasm was also observed with immunofluorescent staining. Conclusion CRIF1 may play a regulatory role in the BM microenvironment-induced leukemia cell cycle arrest possibly through interacting with CDK2 and acting as a cyclin-dependent kinase inhibitor.
Collapse
Affiliation(s)
- Qian Ran
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Ping Hao
- Oncologic Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yanni Xiao
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Lixing Xiang
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xingde Ye
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiaojun Deng
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhongjun Li
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
15
|
Impact of high-fat feeding on basic helix-loop-helix transcription factors controlling enteroendocrine cell differentiation. Int J Obes (Lond) 2014; 38:1440-8. [PMID: 24480860 DOI: 10.1038/ijo.2014.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/03/2013] [Accepted: 01/17/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Gut hormones secreted by enteroendocrine cells (EECs) play a major role in energy regulation. Differentiation of EEC is controlled by the expression of basic helix-loop-helix (bHLH) transcription factors. High-fat (HF) feeding alters gut hormone levels; however, the impact of HF feeding on bHLH transcription factors in mediating EEC differentiation and subsequent gut hormone secretion and expression is not known. METHODS Outbred Sprague-Dawley rats were maintained on chow or HF diet for 12 weeks. Gene and protein expression of intestinal bHLH transcription factors, combined with immunofluorescence studies, were analyzed for both groups in the small intestine and colon. Gut permeability, intestinal lipid and carbohydrate transporters as well as circulating levels and intestinal protein expression of gut peptides were determined. RESULTS We showed that HF feeding resulted in hyperphagia and increased adiposity. HF-fed animals exhibited decreased expression of bHLH transcription factors controlling EEC differentiation (MATH1, NGN3, NEUROD1) and increased expression of bHLH factors modulating enterocyte expression. Furthermore, HF-fed animals had decreased number of total EECs and L-cells. This was accompanied by increased gut permeability and expression of lipid and carbohydrate transporters, and a decrease in circulating and intestinal gut hormone levels. CONCLUSIONS Taken together, our results demonstrate that HF feeding caused decreased secretory lineage (that is, EECs) differentiation through downregulation of bHLH transcription factors, resulting in reduced EEC number and gut hormone levels. Thus, impaired EEC differentiation pathways by HF feeding may promote hyperphagia and subsequent obesity.
Collapse
|
16
|
Tan JA, Bai S, Grossman G, Titus MA, Harris Ford O, Pop EA, Smith GJ, Mohler JL, Wilson EM, French FS. Mechanism of androgen receptor corepression by CKβBP2/CRIF1, a multifunctional transcription factor coregulator expressed in prostate cancer. Mol Cell Endocrinol 2014; 382:302-313. [PMID: 24103312 PMCID: PMC3880566 DOI: 10.1016/j.mce.2013.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/27/2013] [Indexed: 01/12/2023]
Abstract
The transcription factor coregulator Casein kinase IIβ-binding protein 2 or CR6-interacting factor 1 (CKβBP2/CRIF1) binds the androgen receptor (AR) in prostate cancer cells and in response to dihydrotestosterone localizes with AR on the prostate-specific antigen gene enhancer, but does not bind DNA suggesting CKβBP2/CRIF1 localization in chromatin is determined by AR. In this study we show also that CKβBP2/CRIF1 inhibits wild-type AR and AR N-terminal transcriptional activity, binds to the AR C-terminal region, inhibits interaction of the AR N- and C-terminal domains (N/C interaction) and competes with p160 coactivator binding to the AR C-terminal domain, suggesting CKβBP2/CRIF1 interferes with AR activation functions 1 and 2. CKβBP2/CRIF1 is expressed mainly in stromal cells of benign prostatic hyperplasia and in stroma and epithelium of prostate cancer. CKβBP2/CRIF1 protein is increased in epithelium of androgen-dependent prostate cancer compared to benign prostatic hyperplasia and decreased slightly in castration recurrent epithelium compared to androgen-dependent prostate cancer. The multifunctional CKβBP2/CRIF1 is a STAT3 interacting protein and reported to be a coactivator of STAT3. CKβBP2/CRIF1 is expressed with STAT3 in prostate cancer where STAT3 may help to offset the AR repressor effect of CKβBP2/CRIF1 and allow AR regulation of prostate cancer growth.
Collapse
Affiliation(s)
- Jiann-An Tan
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Suxia Bai
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Gail Grossman
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Mark A Titus
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - O Harris Ford
- Lineberger Comprehensive Cancer Center, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Elena A Pop
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Gary J Smith
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - James L Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Department of Urology, University of Buffalo, School of Medicine and Biotechnology, Buffalo, NY, United States
| | - Elizabeth M Wilson
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States
| | - Frank S French
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, School of Medicine, Chapel Hill, NC, United States.
| |
Collapse
|
17
|
Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J 2013; 32:938-53. [PMID: 23474895 DOI: 10.1038/emboj.2013.31] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/24/2013] [Indexed: 01/04/2023] Open
Abstract
How regulatory information is encoded in the genome is poorly understood and poses a challenge when studying biological processes. We demonstrate here that genomic redistribution of Oct4 by alternative partnering with Sox2 and Sox17 is a fundamental regulatory event of endodermal specification. We show that Sox17 partners with Oct4 and binds to a unique 'compressed' Sox/Oct motif that earmarks endodermal genes. This is in contrast to the pluripotent state where Oct4 selectively partners with Sox2 at 'canonical' binding sites. The distinct selection of binding sites by alternative Sox/Oct partnering is underscored by our demonstration that rationally point-mutated Sox17 partners with Oct4 on pluripotency genes earmarked by the canonical Sox/Oct motif. In an endodermal differentiation assay, we demonstrate that the compressed motif is required for proper expression of endodermal genes. Evidently, Oct4 drives alternative developmental programs by switching Sox partners that affects enhancer selection, leading to either an endodermal or pluripotent cell fate. This work provides insights in understanding cell fate transcriptional regulation by highlighting the direct link between the DNA sequence of an enhancer and a developmental outcome.
Collapse
|
18
|
Tadi S, Kim SJ, Ryu MJ, Park T, Jeong JS, Kim YH, Kweon GR, Shong M, Yim YH. Metabolic Rebalancing of CR6 Interaction Factor 1-Deficient Mouse Embryonic Fibroblasts: A Mass Spectrometry-Based Metabolic Analysis. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.1.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Shin J, Lee SH, Kwon MC, Yang DK, Seo HR, Kim J, Kim YY, Im SK, Abel ED, Kim KT, Park WJ, Kong YY. Cardiomyocyte specific deletion of Crif1 causes mitochondrial cardiomyopathy in mice. PLoS One 2013; 8:e53577. [PMID: 23308255 PMCID: PMC3537664 DOI: 10.1371/journal.pone.0053577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/03/2012] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are key organelles dedicated to energy production. Crif1, which interacts with the large subunit of the mitochondrial ribosome, is indispensable for the mitochondrial translation and membrane insertion of respiratory subunits. To explore the physiological function of Crif1 in the heart, Crif1(f/f) mice were crossed with Myh6-cre/Esr1 transgenic mice, which harbor cardiomyocyte-specific Cre activity in a tamoxifen-dependent manner. The tamoxifen injections were given at six weeks postnatal, and the mutant mice survived only five months due to hypertrophic heart failure. In the mutant cardiac muscles, mitochondrial mass dramatically increased, while the inner structure was altered with lack of cristae. Mutant cardiac muscles showed decreased rates of oxygen consumption and ATP production, suggesting that Crif1 plays a critical role in the maintenance of both mitochondrial structure and respiration in cardiac muscles.
Collapse
Affiliation(s)
- Juhee Shin
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Seok Hong Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Min-Chul Kwon
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Dong Kwon Yang
- Global Research Laboratory and Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Ha-Rim Seo
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Yoon-Young Kim
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Sun-Kyoung Im
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Evan Dale Abel
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Woo Jin Park
- Global Research Laboratory and Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Young-Yun Kong
- Department of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
20
|
Multiple roles of the epithelium-specific ETS transcription factor, ESE-1, in development and disease. J Transl Med 2012; 92:320-30. [PMID: 22157719 DOI: 10.1038/labinvest.2011.186] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The E26 transformation-specific (ETS) family of transcription factors comprises of 27 and 26 members in humans and mice, respectively, which are known to regulate many different biological processes, including cell proliferation, cell differentiation, embryonic development, neoplasia, hematopoiesis, angiogenesis, and inflammation. The epithelium-specific ETS transcription factor-1 (ESE-1) is a physiologically important ETS transcription factor, which has been shown to play a role in the pathogenesis of various diseases, and was originally characterized as having an epithelial-restricted expression pattern, thus placing it within the epithelium-specific ETS subfamily. Despite a large body of published work on ETS biology, much remains to be learned about the precise functions of ESE-1 and other epithelium-specific ETS factors in regulating diverse disease processes. Clues as to the specific function of ESE-1 in the setting of various diseases can be obtained from studies aimed at examining the expression of putative target genes regulated by ESE-1. Thus, this review will focus primarily on the various roles of ESE-1 in different pathophysiological processes, including regulation of epithelial cell differentiation during both intestinal development and lung regeneration; regulation of dendritic cell-driven T-cell differentiation during allergic airway inflammation; regulation of mammary gland development and breast cancer; and regulation of the effects of inflammatory stimuli within the setting of synovial joint and vascular inflammation. Understanding the exact mechanisms by which ESE-1 regulates these processes can have important implications for the treatment of a wide range of diseases.
Collapse
|
21
|
Elf3 plays a role in regulating bronchiolar epithelial repair kinetics following Clara cell-specific injury. J Transl Med 2011; 91:1514-29. [PMID: 21709667 DOI: 10.1038/labinvest.2011.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
E74-like transcription factor-3 (Elf3), a member of the E26 transformation-specific transcription factor family, is strongly expressed in epithelial-rich tissues, such as small intestine, fetal lung, and various lung cancers. Although previous studies have shown a defect in terminal differentiation of the small intestinal epithelium of Elf3-deficient (Elf3-/-) mice during embryonic development, very little is known about the role Elf3 may play in repair of the airway epithelium after injury. In order to investigate whether Elf3 is involved in regeneration of the bronchiolar epithelium after Clara cell-specific injury, we administered naphthalene to both wild-type (Elf3+/+) and Elf3-/- mice. Histopathological analysis revealed no significant difference in the extent of naphthalene-induced Clara cell necrosis between Elf3+/+ mice and Elf3-/- mice. In the bronchiolar epithelium of Elf3-/- mice, there was a substantial delay in the kinetics of cell proliferation and mitosis along with Clara cell renewal, whereas in the peribronchiolar interstitium, there was a significantly greater level of cell proliferation and mitosis in Elf3-/- mice than in Elf3+/+ mice. Last, the intensity of immunopositive signal for transforming growth factor-β type II receptor, which is a well-known transcriptional target gene of Elf3 and involved in the induction of epithelial cell differentiation, was significantly lower in the bronchiolar epithelium of Elf3-/- mice when compared with Elf3+/+ mice. Taken together, our results suggest that Elf3 plays an important role in the regulation of lung cell proliferation and differentiation during repair of the injured bronchiolar airway epithelium.
Collapse
|
22
|
Spence JR, Lauf R, Shroyer NF. Vertebrate intestinal endoderm development. Dev Dyn 2011; 240:501-20. [PMID: 21246663 DOI: 10.1002/dvdy.22540] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2010] [Indexed: 12/12/2022] Open
Abstract
The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence, as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes.
Collapse
|
23
|
Kang HJ, Hong YB, Kim HJ, Bae I. CR6-interacting factor 1 (CRIF1) regulates NF-E2-related factor 2 (NRF2) protein stability by proteasome-mediated degradation. J Biol Chem 2010; 285:21258-68. [PMID: 20427290 PMCID: PMC2898415 DOI: 10.1074/jbc.m109.084590] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Free radicals generated by oxidative stress cause damage that can contribute to numerous chronic diseases. Mammalian cells respond to this damage by increased transcription of cytoprotective phase II genes, which are regulated by NRF2. Previously, it has been shown that NRF2 protein levels increase after oxidative stress because its negative regulator, KEAP1, loses its ability to bind NRF2 and cause its proteasome-mediated degradation during oxidative stress. Here, we show that CRIF1, a protein previously known as cell cycle regulator and transcription cofactor, is also able to negatively regulate NRF2 protein stability. However, in contrast to KEAP1, which regulates NRF2 stability only under normal reducing conditions, CRIF1 regulates NRF2 stability and its target gene expression under both reducing and oxidative stress conditions. Thus, CRIF1-NRF2 interactions and their consequences are redox-independent. In addition, we found that CRIF1, unlike KEAP1 (which only interacts with N-terminal region of NRF2), physically interacts with both N- and C-terminal regions of NRF2 and promotes NRF2 ubiquitination and subsequent proteasome-mediated NRF2 protein degradation.
Collapse
Affiliation(s)
- Hyo Jin Kang
- Departments of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | |
Collapse
|