1
|
Lee KO, Kim EH, Kim G, Jung JY, Katayama S, Nakamura S, Suh JY. Biophysical characterization of the domain association between cytosolic A and B domains of the mannitol transporter enzymes II(Mtl) in the presence and absence of a connecting linker. Protein Sci 2016; 25:1803-11. [PMID: 27438678 PMCID: PMC5029529 DOI: 10.1002/pro.2988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 11/12/2022]
Abstract
The mannitol transporter enzyme II(Mtl) of the bacterial phosphotransferase system is a multi-domain protein that catalyzes mannitol uptake and phosphorylation. Here we investigated the domain association between cytosolic A and B domains of enzyme II(Mtl) , which are natively connected in Escherichia coli, but separated in Thermoanaerobacter tengcongensis. NMR backbone assignment and residual dipolar couplings indicated that backbone folds were well conserved between the homologous domains. The equilibrium binding of separately expressed domains, however, exhibited ∼28-fold higher affinity compared to the natively linked ones. Phosphorylation of the active site loop significantly contributed to the binding by reducing conformational dynamics at the binding interface, and a few key mutations at the interface were critical to further stabilize the complex by hydrogen bonding and hydrophobic interactions. The affinity increase implicated that domain associations in cell could be maintained at an optimal level regardless of the linker.
Collapse
Affiliation(s)
- Ko On Lee
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 151-742, Republic of Korea
| | - Eun-Hee Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk, 363-883, Republic of Korea
| | - Gowoon Kim
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 151-742, Republic of Korea
| | - Jea Yeon Jung
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 151-742, Republic of Korea
| | - Shigeru Katayama
- Department of Bioscience and Biotechnology, Shinshu University, Ina, Nagano, 399-4598, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Soichiro Nakamura
- Department of Bioscience and Biotechnology, Shinshu University, Ina, Nagano, 399-4598, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 151-742, Republic of Korea.
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
2
|
Grecu D, Assairi L. CK2 phosphorylation of human centrins 1 and 2 regulates their binding to the DNA repair protein XPC, the centrosomal protein Sfi1 and the phototransduction protein transducin β. FEBS Open Bio 2014; 4:407-19. [PMID: 24918055 PMCID: PMC4050191 DOI: 10.1016/j.fob.2014.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 11/24/2022] Open
Abstract
Centrins are calcium-binding proteins that can interact with several cellular targets (Sfi1, XPC, Sac3 and transducin β) through the same hydrophobic triad. However, two different orientations of the centrin-binding motif have been observed: W(1)xxL(4)xxxL(8) for XPC (xeroderma pigmentosum group C protein) and the opposite orientation L(8)xxxL(4)xxW(1) for Sfi1 (suppressor of fermentation-induced loss of stress resistance protein 1), Sac3 and transducin β. Centrins are also phosphorylated by several protein kinases, among which is CK2. The purpose of this study was to determine the binding mechanism of human centrins to three targets (transducin β, Sfi1 and XPC), and the effects of in vitro phosphorylation by CK2 of centrins 1 and 2 with regard to this binding mechanism. We identified the centrin-binding motif at the COOH extremity of transducin β. Human centrin 1 binds to transducin β only in the presence of calcium with a binding constant lower than the binding constant observed for Sfi1 and for XPC. The affinity constants of centrin 1 were 0.10 10(6) M(-1), 249 10(6) M(-1) and 52.5 10(6) M(-1) for Trd, R17-Sfi1 and P17-XPC respectively. CK2 phosphorylates human centrin 1 at residue T138 and human centrin 2 at residues T138 and S158. Consequently CK2 phosphorylation abolished the binding of centrin 1 to transducin β and reduced the binding to Sfi1 and XPC. CK2 phosphorylation of centrin 2 at T138 and S158 abolished the binding to Sfi1 as assessed using a C-HsCen2 T138D-S158D phosphomimetic form of centrin 2.
Collapse
Affiliation(s)
- Dora Grecu
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France
| | - Liliane Assairi
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France
| |
Collapse
|
3
|
McCoy JG, Levin EJ, Zhou M. Structural insight into the PTS sugar transporter EIIC. Biochim Biophys Acta Gen Subj 2014; 1850:577-85. [PMID: 24657490 DOI: 10.1016/j.bbagen.2014.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/12/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND The enzyme IIC (EIIC) component of the phosphotransferase system (PTS) is responsible for selectively transporting sugar molecules across the inner bacterial membrane. This is accomplished in parallel with phosphorylation of the sugar, which prevents efflux of the sugar back across the membrane. This process is a key part of an extensive signaling network that allows bacteria to efficiently utilize preferred carbohydrate sources. SCOPE OF REVIEW The goal of this review is to examine the current understanding of the structural features of the EIIC and how it mediates concentrative, selective sugar transport. The crystal structure of an N,N'-diacetylchitobiose transporter is used as a structural template for the glucose superfamily of PTS transporters. MAJOR CONCLUSIONS Comparison of protein sequences in context with the known EIIC structure suggests that members of the glucose superfamily of PTS transporters may exhibit variations in topology. Despite these differences, a conserved histidine and glutamate appear to have roles shared across the superfamily in sugar binding and phosphorylation. In the proposed transport model, a rigid body motion between two structural domains and movement of an intracellular loop provide the substrate binding site with alternating access, and reveal a surface required for interaction with the phosphotransfer protein responsible for catalysis. GENERAL SIGNIFICANCE The structural and functional data discussed here give a preliminary understanding of how transport in EIIC is achieved. However, given the great sequence diversity between varying glucose-superfamily PTS transporters and lack of data on conformational changes needed for transport, additional structures of other members and conformations are still required. This article is part of a Special Issue entitled: Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Jason G McCoy
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elena J Levin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Mittermaier A, Meneses E. Analyzing protein-ligand interactions by dynamic NMR spectroscopy. Methods Mol Biol 2013; 1008:243-66. [PMID: 23729255 DOI: 10.1007/978-1-62703-398-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy can provide detailed information on protein-ligand interactions that is inaccessible using other biophysical techniques. This chapter focuses on NMR-based approaches for extracting affinity and rate constants for weakly binding transient protein complexes with lifetimes of less than about a second. Several pulse sequences and analytical techniques are discussed, including line-shape simulations, spin-echo relaxation dispersion methods (CPMG), and magnetization exchange (EXSY) experiments.
Collapse
|
5
|
Clore GM, Venditti V. Structure, dynamics and biophysics of the cytoplasmic protein-protein complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Trends Biochem Sci 2013; 38:515-30. [PMID: 24055245 PMCID: PMC3831880 DOI: 10.1016/j.tibs.2013.08.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
Abstract
The bacterial phosphotransferase system (PTS) couples phosphoryl transfer, via a series of bimolecular protein-protein interactions, to sugar transport across the membrane. The multitude of complexes in the PTS provides a paradigm for studying protein interactions, and for understanding how the same binding surface can specifically recognize a diverse array of targets. Fifteen years of work aimed at solving the solution structures of all soluble protein-protein complexes of the PTS has served as a test bed for developing NMR and integrated hybrid approaches to study larger complexes in solution and to probe transient, spectroscopically invisible states, including encounter complexes. We review these approaches, highlighting the problems that can be tackled with these methods, and summarize the current findings on protein interactions.
Collapse
Affiliation(s)
- G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| | | |
Collapse
|
6
|
Jung YS, Cai M, Clore GM. Solution structure of the IIAChitobiose-HPr complex of the N,N'-diacetylchitobiose branch of the Escherichia coli phosphotransferase system. J Biol Chem 2012; 287:23819-29. [PMID: 22593574 DOI: 10.1074/jbc.m112.371492] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The solution structure of the complex of enzyme IIA of the N,N'-diacetylchitobiose (Chb) transporter with the histidine phosphocarrier protein HPr has been solved by NMR. The IIA(Chb)-HPr complex completes the structure elucidation of representative cytoplasmic complexes for all four sugar branches of the bacterial phosphoryl transfer system (PTS). The active site His-89 of IIA(Chb) was mutated to Glu to mimic the phosphorylated state. IIA(Chb)(H89E) and HPr form a weak complex with a K(D) of ~0.7 mM. The interacting binding surfaces, concave for IIA(Chb) and convex for HPr, complement each other in terms of shape, residue type, and charge distribution, with predominantly hydrophobic residues, interspersed by some uncharged polar residues, located centrally, and polar and charged residues at the periphery. The active site histidine of HPr, His-15, is buried within the active site cleft of IIA(Chb) formed at the interface of two adjacent subunits of the IIA(Chb) trimer, thereby coming into close proximity with the active site residue, H89E, of IIA(Chb). A His89-P-His-15 pentacoordinate phosphoryl transition state can readily be modeled without necessitating any significant conformational changes, thereby facilitating rapid phosphoryl transfer. Comparison of the IIA(Chb)-HPr complex with the IIA(Chb)-IIB(Chb) complex, as well as with other cytoplasmic complexes of the PTS, highlights a unifying mechanism for recognition of structurally diverse partners. This involves generating similar binding surfaces from entirely different underlying structural elements, large interaction surfaces coupled with extensive redundancy, and side chain conformational plasticity to optimize diverse sets of intermolecular interactions.
Collapse
Affiliation(s)
- Young-Sang Jung
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
7
|
Mo G, Zhou H, Kawamura T, Dahlquist FW. Solution structure of a complex of the histidine autokinase CheA with its substrate CheY. Biochemistry 2012; 51:3786-98. [PMID: 22494339 DOI: 10.1021/bi300147m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the bacterial chemotaxis two-component signaling system, the histidine-containing phosphotransfer domain (the "P1" domain) of CheA receives a phosphoryl group from the catalytic domain (P4) of CheA and transfers it to the cognate response regulator (RR) CheY, which is docked by the P2 domain of CheA. Phosphorylated CheY then diffuses into the cytoplasm and interacts with the FliM moiety of the flagellar motors, thereby modulating the direction of flagellar rotation. Structures of various histidine phosphotransfer domains (HPt) complexed with their cognate RR domains have been reported. Unlike the Escherichia coli chemotaxis system, however, these systems lack the additional domains dedicated to binding to the response regulators, and the interaction of an HPt domain with an RR domain in the presence of such a domain has not been examined on a structural basis. In this study, we used modern nuclear magnetic resonance techniques to construct a model for the interaction of the E. coli CheA P1 domain (HPt) and CheY (RR) in the presence of the CheY-binding domain, P2. Our results indicate that the presence of P2 may lead to a slightly different relative orientation of the HPt and RR domains versus those seen in such complex structures previously reported.
Collapse
Affiliation(s)
- Guoya Mo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | | | | | | |
Collapse
|
8
|
Yuwen T, Post CB, Skrynnikov N. Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media? JOURNAL OF BIOMOLECULAR NMR 2011; 51:131-50. [PMID: 21947922 PMCID: PMC4721247 DOI: 10.1007/s10858-011-9548-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/07/2011] [Indexed: 05/13/2023]
Abstract
Many proteins have modular design with multiple globular domains connected via flexible linkers. As a simple model of such system, we study a tandem construct consisting of two identical SH3 domains and a variable-length Gly/Ser linker. When the linker is short, this construct represents a dumbbell-shaped molecule with limited amount of domain-domain mobility. Due to its elongated shape, this molecule efficiently aligns in steric alignment media. As the length of the linker increases, the two domains become effectively uncoupled and begin to behave as independent entities. Consequently, their degree of alignment drops, approaching that found in the (near-spherical) isolated SH3 domains. To model the dependence of alignment parameters on the length of the interdomain linker, we have generated in silico a series of conformational ensembles representing SH3 tandems with different linker length. These ensembles were subsequently used as input for alignment prediction software PALES. The predicted alignment tensors were compared with the results of experimental measurements using a series of tandem-SH3 samples in PEG/hexanol alignment media. This comparison broadly confirmed the expected trends. At the same time, it has been found that the isolated SH3 domain aligns much stronger than expected. This finding can be attributed to complex morphology of the PEG/hexanol media and/or to weak site-specific interactions between the protein and the media. In the latter case, there are strong indications that electrostatic interactions may play a role. The fact that PEG/hexanol does not behave as a simple steric media should serve as a caution for studies that use PALES as a quantitative prediction tool (especially for disordered proteins). Further progress in this area depends on our ability to accurately model the anisotropic media and its site-specific interactions with protein molecules. Once this ability is improved, it should be possible to use the alignment parameters as a measure of domain-domain cooperativity, thus identifying the situations where two domains transiently interact with each other or become coupled through a partially structured linker.
Collapse
Affiliation(s)
- Tairan Yuwen
- Department of Chemistry, Purdue University, West Lafayette IN 47907, USA
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907, USA
| | - Nikolai Skrynnikov
- Department of Chemistry, Purdue University, West Lafayette IN 47907, USA
| |
Collapse
|