1
|
Lu L, Ma D, Xi Z. Coexpression of TP53, BIM, and PTEN Enhances the Therapeutic Efficacy of Non-Small-Cell Lung Cancer. Biomacromolecules 2024; 25:792-808. [PMID: 38237562 DOI: 10.1021/acs.biomac.3c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
For non-small-cell lung cancer (NSCLC), the ubiquitous occurrence of concurrent multiple genomic alterations poses challenges to single-gene therapy. To increase therapeutic efficacy, we used the branch-PCR method to develop a multigene nanovector, NP-TP53-BIM-PTEN, that carried three therapeutic gene expression cassettes for coexpression. NP-TP53-BIM-PTEN exhibited a uniform size of 104.8 ± 24.2 nm and high serum stability. In cell transfection tests, NP-TP53-BIM-PTEN could coexpress TP53, BIM, and PTEN in NCI-H1299 cells and induce cell apoptosis with a ratio of up to 94.9%. Furthermore, NP-TP53-BIM-PTEN also inhibited cell proliferation with a ratio of up to 42%. In a mouse model bearing an NCI-H1299 xenograft tumor, NP-TP53-BIM-PTEN exhibited a stronger inhibitory effect on the NCI-H1299 xenograft tumor than the other test vectors without any detectable side effects. These results exhibited the potential of NP-TP53-BIM-PTEN as an effective and safe multigene nanovector to enhance NSCLC therapy efficacy, which will provide a framework for genome therapy with multigene combinations.
Collapse
Affiliation(s)
- Liqing Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Pan Q, Portelli S, Nguyen TB, Ascher DB. Characterization on the oncogenic effect of the missense mutations of p53 via machine learning. Brief Bioinform 2023; 25:bbad428. [PMID: 38018912 PMCID: PMC10685404 DOI: 10.1093/bib/bbad428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
Dysfunctions caused by missense mutations in the tumour suppressor p53 have been extensively shown to be a leading driver of many cancers. Unfortunately, it is time-consuming and labour-intensive to experimentally elucidate the effects of all possible missense variants. Recent works presented a comprehensive dataset and machine learning model to predict the functional outcome of mutations in p53. Despite the well-established dataset and precise predictions, this tool was trained on a complicated model with limited predictions on p53 mutations. In this work, we first used computational biophysical tools to investigate the functional consequences of missense mutations in p53, informing a bias of deleterious mutations with destabilizing effects. Combining these insights with experimental assays, we present two interpretable machine learning models leveraging both experimental assays and in silico biophysical measurements to accurately predict the functional consequences on p53 and validate their robustness on clinical data. Our final model based on nine features obtained comparable predictive performance with the state-of-the-art p53 specific method and outperformed other generalized, widely used predictors. Interpreting our models revealed that information on residue p53 activity, polar atom distances and changes in p53 stability were instrumental in the decisions, consistent with a bias of the properties of deleterious mutations. Our predictions have been computed for all possible missense mutations in p53, offering clinical diagnostic utility, which is crucial for patient monitoring and the development of personalized cancer treatment.
Collapse
Affiliation(s)
- Qisheng Pan
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - Stephanie Portelli
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - Thanh Binh Nguyen
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - David B Ascher
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| |
Collapse
|
3
|
Cloete I, Smith VM, Jackson RA, Pepper A, Pepper C, Vogler M, Dyer MJS, Mitchell S. Computational modeling of DLBCL predicts response to BH3-mimetics. NPJ Syst Biol Appl 2023; 9:23. [PMID: 37280330 PMCID: PMC10244332 DOI: 10.1038/s41540-023-00286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
In healthy cells, pro- and anti-apoptotic BCL2 family and BH3-only proteins are expressed in a delicate equilibrium. In contrast, this homeostasis is frequently perturbed in cancer cells due to the overexpression of anti-apoptotic BCL2 family proteins. Variability in the expression and sequestration of these proteins in Diffuse Large B cell Lymphoma (DLBCL) likely contributes to variability in response to BH3-mimetics. Successful deployment of BH3-mimetics in DLBCL requires reliable predictions of which lymphoma cells will respond. Here we show that a computational systems biology approach enables accurate prediction of the sensitivity of DLBCL cells to BH3-mimetics. We found that fractional killing of DLBCL, can be explained by cell-to-cell variability in the molecular abundances of signaling proteins. Importantly, by combining protein interaction data with a knowledge of genetic lesions in DLBCL cells, our in silico models accurately predict in vitro response to BH3-mimetics. Furthermore, through virtual DLBCL cells we predict synergistic combinations of BH3-mimetics, which we then experimentally validated. These results show that computational systems biology models of apoptotic signaling, when constrained by experimental data, can facilitate the rational assignment of efficacious targeted inhibitors in B cell malignancies, paving the way for development of more personalized approaches to treatment.
Collapse
Affiliation(s)
- Ielyaas Cloete
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Victoria M Smith
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research center, University of Leicester, Leicester, UK
| | - Ross A Jackson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research center, University of Leicester, Leicester, UK
| | - Andrea Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Meike Vogler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Martin J S Dyer
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research center, University of Leicester, Leicester, UK
| | - Simon Mitchell
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK.
| |
Collapse
|
4
|
Darvish L, Bahreyni Toossi MT, Azimian H, Shakeri M, Dolat E, Ahmadizad Firouzjaei A, Rezaie S, Amraee A, Aghaee-Bakhtiari SH. The role of microRNA-induced apoptosis in diverse radioresistant cancers. Cell Signal 2023; 104:110580. [PMID: 36581218 DOI: 10.1016/j.cellsig.2022.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Resistance to cancer radiotherapy is one of the biggest concerns for success in treating and preventing recurrent disease. Malignant tumors may develop when they block genetic mutations associated with apoptosis or abnormal expression of apoptosis; Tumor treatment may induce the expression of apoptosis-related genes to promote tumor cell apoptosis. MicroRNAs have been shown to contribute to forecasting prognosis, distinguishing between cancer subtypes, and affecting treatment outcomes in cancer. Constraining these miRNAs may be an attractive treatment strategy to help overcome radiation resistance. The delivery of these future treatments is still challenging due to the excess downstream targets that each miRNA can control. Understanding the role of miRNAs brings us one step closer to attaining patient treatment and improving patient outcomes. This review summarized the current information on the role of microRNA-induced apoptosis in determining the radiosensitivity of various cancers.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Shakeri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Rezaie
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Nuclear corepressors NCOR1/NCOR2 regulate B cell development, maintain genomic integrity and prevent transformation. Nat Immunol 2022; 23:1763-1776. [PMID: 36316474 PMCID: PMC9772092 DOI: 10.1038/s41590-022-01343-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022]
Abstract
The nuclear corepressors NCOR1 and NCOR2 interact with transcription factors involved in B cell development and potentially link these factors to alterations in chromatin structure and gene expression. Herein, we demonstrate that Ncor1/2 deletion limits B cell differentiation via impaired recombination, attenuates pre-BCR signaling and enhances STAT5-dependent transcription. Furthermore, NCOR1/2-deficient B cells exhibited derepression of EZH2-repressed gene modules, including the p53 pathway. These alterations resulted in aberrant Rag1 and Rag2 expression and accessibility. Whole-genome sequencing of Ncor1/2 DKO B cells identified increased number of structural variants with cryptic recombination signal sequences. Finally, deletion of Ncor1 alleles in mice facilitated leukemic transformation, whereas human leukemias with less NCOR1 correlated with worse survival. NCOR1/2 mutations in human leukemia correlated with increased RAG expression and number of structural variants. These studies illuminate how the corepressors NCOR1/2 regulate B cell differentiation and provide insights into how NCOR1/2 mutations may promote B cell transformation.
Collapse
|
6
|
Guven-Maiorov E, Sakakibara N, Ponnamperuma RM, Dong K, Matar H, King KE, Weinberg WC. Delineating functional mechanisms of the p53/p63/p73 family of transcription factors through identification of protein-protein interactions using interface mimicry. Mol Carcinog 2022; 61:629-642. [PMID: 35560453 PMCID: PMC9949960 DOI: 10.1002/mc.23405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/08/2022]
Abstract
Members of the p53 family of transcription factors-p53, p63, and p73-share a high degree of homology; however, members can be activated in response to different stimuli, perform distinct (sometimes opposing) roles and are expressed in different tissues. The level of complexity is increased further by the transcription of multiple isoforms of each homolog, which may interact or interfere with each other and can impact cellular outcome. Proteins perform their functions through interacting with other proteins (and/or with nucleic acids). Therefore, identification of the interactors of a protein and how they interact in 3D is essential to fully comprehend their roles. By utilizing an in silico protein-protein interaction prediction method-HMI-PRED-we predicted interaction partners of p53 family members and modeled 3D structures of these protein interaction complexes. This method recovered experimentally known interactions while identifying many novel candidate partners. We analyzed the similarities and differences observed among the interaction partners to elucidate distinct functions of p53 family members and provide examples of how this information may yield mechanistic insight to explain their overlapping versus distinct/opposing outcomes in certain contexts. While some interaction partners are common to p53, p63, and p73, the majority are unique to each member. Nevertheless, most of the enriched pathways associated with these partners are common to all members, indicating that the members target the same biological pathways but through unique mediators. p63 and p73 have more common enriched pathways compared to p53, supporting their similar developmental roles in different tissues.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,National Cancer Institute, Bethesda, MD, United States.,Postal and email addresses of corresponding authors FDA/CDER/OPQ/OBP, Building 52-72/2306, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States, ,
| | - Nozomi Sakakibara
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Roshini M. Ponnamperuma
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Kun Dong
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,National Cancer Institute, Bethesda, MD, United States
| | - Hector Matar
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Kathryn E. King
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Wendy C. Weinberg
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,Postal and email addresses of corresponding authors FDA/CDER/OPQ/OBP, Building 52-72/2306, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States, ,
| |
Collapse
|
7
|
Effect of prior exposure to enriched environment on cellular apoptosis after experimental stroke. Mol Biol Rep 2022; 49:6541-6551. [PMID: 35507114 DOI: 10.1007/s11033-022-07494-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Growing evidence, including our previous studies, has demonstrated that an enriched environment (EE) after cerebral ischemia/reperfusion (I/R) injury improves neurofunctional recovery in rats. However, whether EE exposure prior to injury could play a neuroprotective role in stroke has seldom been investigated. In this study, we examined the neuroprotective effects of prior exposure to EE and investigated the potential anti-apoptotic effect in rats after cerebral I/R injury. METHODS AND RESULTS Rats were housed in EE or standard conditions (SC) for four weeks and then randomly assigned to receive 120 min of right middle cerebral occlusion (MCAO) or sham operation. Based on the housing environment and the procedure they underwent, the rats were divided into the following three groups: preischemic EE + MCAO (PIEE), preischemic SC + MCAO (PISC) and preischemic SC + sham-operated (sham). Forty-eight hours after the operation, the rats were subjected to a series of assessments. We found that prior exposure to EE improved functional outcomes, reduced infarct volume and attenuated histological damage. The apoptotic cell numbers in the ischemic penumbra cortex decreased in PIEE group, as did the p53, PUMA, Bax and AIF expression levels. The protein expression of Bcl-2 and HSP70 was increased in the PIEE group compared with the PISC group. PIEE treatment also significantly increased the BDNF level in the ischemic penumbra. In addition, inhibition of cell apoptosis and upregulation of BDNF expression levels were correlated with the improved functional recovery of MCAO rats. CONCLUSIONS These findings suggest that EE preconditioning inhibited cell apoptosis and upregulated BDNF expression in the penumbra of MCAO rats, which may contribute to neurofunctional recovery after stroke.
Collapse
|
8
|
Feng Y, Wang H, Chen Z, Chen B. High glucose mediates the ChREBP/p300 transcriptional complex to activate proapoptotic genes Puma and BAX and contributes to intervertebral disc degeneration. Bone 2021; 153:116164. [PMID: 34461288 DOI: 10.1016/j.bone.2021.116164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
Emerging evidence shows that obesity and type 2 diabetes (T2D) are associated with intervertebral disc degeneration (IDD). However, the underlying mechanisms are still obscure. Here, we found that serum glucose concentrations were significantly increased in T2D-IDD patients. Detection of molecular changes indicated that two glucose transporters (GLUTs), including GLUT1 and GLUT4, were hyperactivated in these IDD patients with obesity. Using a microarray assay to detect the dysregulated genes in IDD patients with obesity, we identified 33 differentially expressed genes and verified only two proapoptotic genes, including Puma (p53 upregulated modulator of apoptosis) and BAX (BCL2 associated X) responded to glucose. The mechanistic investigation revealed that carbohydrate-responsive element-binding protein (ChREBP) coupled with the histone acetyltransferase p300 to bind to the promoter of Puma and BAX genes and activated their expression in the condition of high glucose. The accumulation of Puma and BAX triggered mitochondrial dysfunction and caspase activation, resulting in apoptosis. Moreover, we found that glucose could accelerate the occurrence of IDD in a rat model. Interestingly, we administrated two GLUT inhibitors (BAY-876 and Fasentin) in rats injected glucose and found that these two inhibitors could reverse the defects of IDD by decreasing apoptosis. Our in vitro and in vivo data support a model in which high glucose activates the ChREBP/p300 transcriptional complex to bind to the promoters of Puma and BAX, causing apoptosis and IDD pathogenesis. Our discovery suggests that the control of glucose absorption in T2D-IDD patients may decrease the outcome of IDD.
Collapse
Affiliation(s)
- Yu Feng
- Department of Traumatic Orthopedics, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hantao Wang
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Chen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Bin Chen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
Omran Z, H. Dalhat M, Abdullah O, Kaleem M, Hosawi S, A Al-Abbasi F, Wu W, Choudhry H, Alhosin M. Targeting Post-Translational Modifications of the p73 Protein: A Promising Therapeutic Strategy for Tumors. Cancers (Basel) 2021; 13:cancers13081916. [PMID: 33921128 PMCID: PMC8071514 DOI: 10.3390/cancers13081916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/11/2023] Open
Abstract
The tumor suppressor p73 is a member of the p53 family and is expressed as different isoforms with opposing properties. The TAp73 isoforms act as tumor suppressors and have pro-apoptotic effects, whereas the ΔNp73 isoforms lack the N-terminus transactivation domain and behave as oncogenes. The TAp73 protein has a high degree of similarity with both p53 function and structure, and it induces the regulation of various genes involved in the cell cycle and apoptosis. Unlike those of the p53 gene, the mutations in the p73 gene are very rare in tumors. Cancer cells have developed several mechanisms to inhibit the activity and/or expression of p73, from the hypermethylation of its promoter to the modulation of the ratio between its pro- and anti-apoptotic isoforms. The p73 protein is also decorated by a panel of post-translational modifications, including phosphorylation, acetylation, ubiquitin proteasomal pathway modifications, and small ubiquitin-related modifier (SUMO)ylation, that regulate its transcriptional activity, subcellular localization, and stability. These modifications orchestrate the multiple anti-proliferative and pro-apoptotic functions of TAp73, thereby offering multiple promising candidates for targeted anti-cancer therapies. In this review, we summarize the current knowledge of the different pathways implicated in the regulation of TAp73 at the post-translational level. This review also highlights the growing importance of targeting the post-translational modifications of TAp73 as a promising antitumor strategy, regardless of p53 status.
Collapse
Affiliation(s)
- Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mahmood H. Dalhat
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mohammed Kaleem
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Salman Hosawi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Fahd A Al-Abbasi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Hani Choudhry
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Mahmoud Alhosin
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
- Correspondence: ; Tel.: +96-65-9795-9354
| |
Collapse
|
10
|
Travassos IO, Mello-Andrade F, Caldeira RP, Pires WC, da Silva PFF, Correa RS, Teixeira T, Martins-Oliveira A, Batista AA, de Silveira-Lacerda EP. Ruthenium (II)/allopurinol complex inhibits breast cancer progression via multiple targets. J Biol Inorg Chem 2021; 26:385-401. [PMID: 33837856 DOI: 10.1007/s00775-021-01862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Metal complexes based on ruthenium have established excellent activity with less toxicity and great selectivity for tumor cells. This study aims to assess the anticancer potential of ruthenium(II)/allopurinol complexes called [RuCl2(allo)2(PPh3)2] (1) and [RuCl2(allo)2(dppb)] (2), where allo means allopurinol, PPh3 is triphenylphosphine and dppb, 1,4-bis(diphenylphosphino)butane. The complexes were synthesized and characterized by elemental analysis, IR, UV-Vis and NMR spectroscopies, cyclic voltammetry, molar conductance measurements, as well as the X-ray crystallographic analysis of complex 2. The antitumor effects of compounds were determined by cytotoxic activity and cellular and molecular responses to cell death mechanisms. Complex 2 showed good antitumor profile prospects because in addition to its cytotoxicity, it causes cell cycle arrest, induction of DNA damage, morphological and biochemical alterations in the cells. Moreover, complex 2 induces cell death by p53-mediated apoptosis, caspase activation, increased Beclin-1 levels and decreased ROS levels. Therefore, complex 2 can be considered a suitable compound in antitumor treatment due to its cytotoxic mechanism.
Collapse
Affiliation(s)
- Ingrid O Travassos
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Francyelli Mello-Andrade
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.,Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás, 74055-110, Brazil
| | - Raíssa P Caldeira
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Wanessa C Pires
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Paula F F da Silva
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | - Tamara Teixeira
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | | | - Alzir A Batista
- Department of Chemistry, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP, 13565-905, Brazil
| | - Elisângela P de Silveira-Lacerda
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.
| |
Collapse
|
11
|
Zhang W, Gong J, Yang H, Wan L, Peng Y, Wang X, Sun J, Li F, Geng Y, Li D, Liu N, Mei G, Cao Y, Yan Q, Li H, Zhang Y, He X, Zhang Q, Zhang R, Wu F, Zhong H, Wei C. The Mitochondrial Protein MAVS Stabilizes p53 to Suppress Tumorigenesis. Cell Rep 2021; 30:725-738.e4. [PMID: 31968249 DOI: 10.1016/j.celrep.2019.12.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 10/30/2019] [Accepted: 12/13/2019] [Indexed: 12/28/2022] Open
Abstract
Recent reports have shown the critical role of the mitochondrial antiviral signaling (MAVS) protein in virus-induced apoptosis, but the involvement of MAVS in tumorigenesis is still poorly understood. Herein, we report that MAVS is a key regulator of p53 activation and is critical for protecting against tumorigenesis. We find that MAVS promotes p53-dependent cell death in response to DNA damage. MAVS interacts with p53 and mediates p53 mitochondrial recruitment under genotoxic stress. Mechanistically, MAVS inhibits p53 ubiquitination by blocking the formation of the p53-murine double-minute 2 (MDM2) complex, leading to the stabilization of p53. Notably, compared with their wild-type littermates, MAVS knockout mice display decreased resistance to azoxymethane (AOM) or AOM/dextran sulfate sodium salt (DSS)-induced colon cancer. MAVS expression is significantly downregulated in human colon cancer tissues. These results unveil roles for MAVS in DNA damage response and tumor suppression.
Collapse
Affiliation(s)
- Wanchuan Zhang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Jing Gong
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Huan Yang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Luming Wan
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yumeng Peng
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaolin Wang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Jin Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Feng Li
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yunqi Geng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Dongyu Li
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Ning Liu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Gangwu Mei
- Wei Sai Te Biotechnology Company, Beijing, China
| | - Yuan Cao
- Department of Laboratory Medicine, The General Hospital of Jinan Military Region, Jinan, Shandong 250031, China
| | - Qiulin Yan
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Huilong Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yanhong Zhang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Xiang He
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Qiaozhi Zhang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Rui Zhang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Hui Zhong
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China.
| | - Congwen Wei
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China.
| |
Collapse
|
12
|
Fatima S, Suhail N, Alrashed M, Wasi S, Aljaser FS, AlSubki RA, Alsharidah AS, Banu N. Epigallocatechin gallate and coenzyme Q10 attenuate cisplatin-induced hepatotoxicity in rats via targeting mitochondrial stress and apoptosis. J Biochem Mol Toxicol 2021; 35:e22701. [PMID: 33393703 DOI: 10.1002/jbt.22701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/14/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022]
Abstract
Despite the extensive use of cisplatin (CP) as a chemotherapeutic agent, its clinical use is often restricted by undesirable side effects, such as toxicity to normal tissues. The aim of this study was to probe the effect of a combinatorial treatment of low multiple doses of antioxidants on CP-induced toxicity and the mitochondrial apoptotic pathway in hepatocytes. Animals received a single toxic dose of CP (7.5 mg/kg body weight) with or without combined multiple doses of epigallocatechin gallate (EGCG) and coenzyme Q10 (CoQ10) (15 and 5 mg/kg body weight, respectively). CP-treated animals showed altered biochemical parameters, denoting hepatotoxicity, which was markedly improved by the multidose treatment with EGCG + CoQ10. The increased levels of oxidants found in the cytosolic and mitochondrial fractions isolated from the liver of CP-administered rats were significantly attenuated by the combinatorial doses of antioxidants. EGCG + CoQ10 ameliorated the CP-induced compromised antioxidant defenses, oxidative modification of macromolecules, decreased activities of respiratory chain enzymes, altered membrane depolarization, and swelling of liver mitochondria. Furthermore, EGCG + CoQ10 treatment inhibited CP-induced apoptosis by suppressing the activation and mitochondrial accumulation of proapoptotic proteins and preventing the inhibition of antiapoptotic protein expression, cytochrome c efflux, caspase-3 activation, and DNA fragmentation. Histological findings further confirmed the protective effects of EGCG + CoQ10 against CP-induced cellular injury. Our findings revealed that the combination of EGCG and CoQ10, owing to their individual antioxidant properties, can be an effective remedy, which by maintaining redox hemostasis attenuate the mitochondrial stress-mediated molecular and cellular processes involved in CP-induced liver toxicity and cell death.
Collapse
Affiliation(s)
- Sabiha Fatima
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nida Suhail
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - May Alrashed
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics Research, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Samina Wasi
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Feda S Aljaser
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics Research, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Roua A AlSubki
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics Research, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ashwag S Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Naheed Banu
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraidah, Qassim, Saudi Arabia
| |
Collapse
|
13
|
Han J, Goldstein LA, Hou W, Watkins SC, Rabinowich H. Involvement of CASP9 (caspase 9) in IGF2R/CI-MPR endosomal transport. Autophagy 2020; 17:1393-1409. [PMID: 32397873 DOI: 10.1080/15548627.2020.1761742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recently, we reported that increased expression of CASP9 pro-domain, at the endosomal membrane in response to HSP90 inhibition, mediates a cell-protective effect that does not involve CASP9 apoptotic activity. We report here that a non-apoptotic activity of endosomal membrane CASP9 facilitates the retrograde transport of IGF2R/CI-MPR from the endosomes to the trans-Golgi network, indicating the involvement of CASP9 in endosomal sorting and lysosomal biogenesis. CASP9-deficient cells demonstrate the missorting of CTSD (cathepsin D) and other acid hydrolases, accumulation of late endosomes, and reduced degradation of bafilomycin A1-sensitive proteins. In the absence of CASP9, IGF2R undergoes significant degradation, and its rescue is achieved by the re-expression of a non-catalytic CASP9 mutant. This endosomal activity of CASP9 is potentially mediated by herein newly identified interactions of CASP9 with the components of the endosomal membrane transport complexes. These endosomal complexes include the retromer VPS35 and the SNX dimers, SNX1-SNX5 and SNX2-SNX6, which are involved in the IGF2R retrieval mechanism. Additionally, CASP9 interacts with HGS/HRS/ESCRT-0 and the CLTC (clathrin heavy chain) that participate in the initiation of the endosomal ESCRT degradation pathway. We propose that endosomal CASP9 inhibits the endosomal membrane degradative subdomain(s) from initiating the ESCRT-mediated degradation of IGF2R, allowing its retrieval to transport-designated endosomal membrane subdomain(s). These findings are the first to identify a cell survival, non-apoptotic function for CASP9 at the endosomal membrane, a site distinctly removed from the cytoplasmic apoptosome. Via its non-apoptotic endosomal function, CASP9 impacts the retrograde transport of IGF2R and, consequently, lysosomal biogenesis.Abbreviations: ACTB: actin beta; ATG7: autophagy related 7; BafA1: bafilomycin A1; CASP: caspase; CLTC/CHC: clathrin, heavy chain; CTSD: cathepsin D; ESCRT: endosomal sorting complexes required for transport; HEXB: hexosaminidase subunit beta; HGS/HRS/ESCRT-0: hepatocyte growth factor-regulated tyrosine kinase substrate; IGF2R/CI-MPR: insulin like growth factor 2 receptor; ILV: intraluminal vesicles; KD: knockdown; KO: knockout; M6PR/CD-MPR: mannose-6-phosphate receptor, cation dependent; MEF: murine embryonic fibroblasts; MWU: Mann-Whitney U test; PepA: pepstatin A; RAB7A: RAB7, member RAS oncogene family; SNX-BAR: sorting nexin dimers with a Bin/Amphiphysin/Rvs (BAR) domain each; TGN: trans-Golgi network; TUBB: tubulin beta; VPS26: VPS26 retromer complex component; VPS29: VPS29 retromer complex component; VPS35: VPS35 retromer complex component.
Collapse
Affiliation(s)
- Jie Han
- Departments of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Leslie A Goldstein
- Departments of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Wen Hou
- Departments of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Simon C Watkins
- Cell Biology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hannah Rabinowich
- Departments of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Wang JD, Katz SG, Morgan EA, Yang DT, Pan X, Xu ML. Proapoptotic protein BIM as a novel prognostic marker in mantle cell lymphoma. Hum Pathol 2019; 93:54-64. [PMID: 31425695 PMCID: PMC7038910 DOI: 10.1016/j.humpath.2019.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Numerous studies have demonstrated many genetic aberrations in MCL in addition to the characteristic t(11:14), including frequent biallelic deletions of Bim, a proapoptotic member of the BCL-2 family. In mice, Bim deletion coupled with cyclin D1 overexpression generates pathologic and molecular features of human MCL. Since the regulation of apoptosis is crucial in MCL pathogenesis, we hypothesize that BIM expression may be associated with tumor cell survival. Clinical data and tissue from 100 nodal MCL cases between 1988 and 2009 were collected from three large academic medical centers. The average patient age of our MCL cohort was 65.5 years old (range, 42-97) with a 2:1 male to female ratio. Immunohistochemistry was performed with a validated anti-BIM antibody. Patients were separated into low and high BIM-expressing categories with a cutoff of 80%. As expected for a proapoptotic tumor suppressor, patients with high BIM expression were less likely to have progressive disease and more likely to have a complete response (P = .022). In addition, high BIM-expressing MCL tumors revealed a trend toward increased overall survival with this trend persisting in sub-analysis of Ann Arbor stages III and IV. No correlation between BIM expression, Ki-67 index, and MIPI score was observed, suggesting a role for BIM as a novel independent prognostic factor. While BIM is only one member of a complex family of apoptosis-regulating proteins, these findings may yield clinically relevant information for the prognosis and therapeutic susceptibility of MCL.
Collapse
Affiliation(s)
- Jeff D Wang
- Department of Pathology, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT 06510.
| | - Samuel G Katz
- Department of Pathology, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT 06510.
| | - Elizabeth A Morgan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.
| | - David T Yang
- Department of Pathology, University of Wisconsin Medical Center, Madison, WI 53705-2281.
| | - Xueliang Pan
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210.
| | - Mina L Xu
- Department of Pathology, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT 06510.
| |
Collapse
|
15
|
Kwon HJ, Kim LH, Ahn CH, Yang IH, Hong KO, Doo Hong S, Shin JA, Cho SD. A new insight into the apoptotic effect of nitidine chloride targeting Checkpoint kinase 2 in human cervical cancer in vitro. J Clin Biochem Nutr 2019; 65:193-202. [PMID: 31777420 PMCID: PMC6877403 DOI: 10.3164/jcbn.19-28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
Nitidine chloride (NC), a natural, bioactive, phytochemical alkaloid derived from the roots of Zanthoxylum nitidum, has been reported to exhibit anti-tumor activity against various types of cancer. However, the potential therapeutic role of NC in human cervical cancer has not yet been studied. We are the first to report that NC acts as a potential apoptosis-inducing agent for human cervical cancer in vitro. NC treatment of human cervical cancer cell lines induced caspase-mediated apoptosis, thereby reducing cell viability. Phospho-kinase proteome profiling using a human phospho-kinase array revealed that NC treatment phosphorylated Checkpoint kinase 2 (Chk2) at Thr68, which activates Chk2 in both cell lines. We also found that NC significantly affected the p53/Bim signaling axis, which was accompanied by mitochondrial membrane depolarization and cytochrome c release from the mitochondria into the cytosol. In addition, NC profoundly increased phosphorylation of the histone variant H2AX at Ser139, a typical marker of DNA damage. Taken together, these results provide in vitro evidence that NC can increase Chk2 activation, thereby acting as an attractive cell death inducer for treatment of human cervical cancer.
Collapse
Affiliation(s)
- Hye-Jeong Kwon
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Chi-Hyun Ahn
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Kyoung-Ok Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Seong Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
16
|
p53 at the Crossroads between Different Types of HDAC Inhibitor-Mediated Cancer Cell Death. Int J Mol Sci 2019; 20:ijms20102415. [PMID: 31096697 PMCID: PMC6567317 DOI: 10.3390/ijms20102415] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer is a complex genetic and epigenetic-based disease that has developed an armada of mechanisms to escape cell death. The deregulation of apoptosis and autophagy, which are basic processes essential for normal cellular activity, are commonly encountered during the development of human tumors. In order to assist the cancer cell in defeating the imbalance between cell growth and cell death, histone deacetylase inhibitors (HDACi) have been employed to reverse epigenetically deregulated gene expression caused by aberrant post-translational protein modifications. These interfere with histone acetyltransferase- and deacetylase-mediated acetylation of both histone and non-histone proteins, and thereby exert a wide array of HDACi-stimulated cytotoxic effects. Key determinants of HDACi lethality that interfere with cellular growth in a multitude of tumor cells are apoptosis and autophagy, which are either mutually exclusive or activated in combination. Here, we compile known molecular signals and pathways involved in the HDACi-triggered induction of apoptosis and autophagy. Currently, the factors that determine the mode of HDACi-elicited cell death are mostly unclear. Correspondingly, we also summarized as yet established intertwined mechanisms, in particular with respect to the oncogenic tumor suppressor protein p53, that drive the interplay between apoptosis and autophagy in response to HDACi. In this context, we also note the significance to determine the presence of functional p53 protein levels in the cancer cell. The confirmation of the context-dependent function of autophagy will pave the way to improve the benefit from HDACi-mediated cancer treatment.
Collapse
|
17
|
Zhou L, Xu G. Cereblon attenuates DNA damage-induced apoptosis by regulating the transcription-independent function of p53. Cell Death Dis 2019; 10:69. [PMID: 30683842 PMCID: PMC6347596 DOI: 10.1038/s41419-019-1317-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022]
Abstract
Cereblon (CRBN) is the substrate receptor of the cullin 4-RING E3 ligase complex and has been employed for targeted protein degradation in the treatment of cancers. However, its normal physiological functions and molecular mechanism in the regulation of DNA damage response are largely unknown. Here we find that CRBN plays a protective role against DNA damage-induced apoptosis in cell lines and primary cells. Mechanistic studies demonstrate that although CRBN does not affect the ubiquitination and degradation of the tumor suppressor p53, it directly interacts with p53 and therefore, suppresses the interaction between p53 and anti-apoptotic regulators Bcl-2 and Bcl-XL. CRBN depletion enhances the interaction between p53 and Bcl-2/Bcl-XL, reduces mitochondrial membrane potential, increases the cleavage of caspase-3 and poly(ADP-ribose) polymerase 1, and thus promotes DNA damage-induced apoptosis in cell lines and primary cells upon etoposide treatment. Moreover, Crbn knockout mice exhibit increased mortality upon etoposide challenge. Taken together, our data elucidate a novel molecular mechanism by which CRBN inhibits DNA damage response in vitro and in vivo. This work extends our understanding of the broad spectrum of physiological roles for CRBN and may suggest its potential application in the treatment of DNA damage-associated diseases.
Collapse
Affiliation(s)
- Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
18
|
Cui L, Zhou F, Chen C, Wang CC. Overexpression of CCDC69 activates p14 ARF/MDM2/p53 pathway and confers cisplatin sensitivity. J Ovarian Res 2019; 12:4. [PMID: 30651135 PMCID: PMC6334460 DOI: 10.1186/s13048-019-0479-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/03/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The aim of the study is to explore the relationship between CCDC69 expression and resistance of ovarian cancer cells to cisplatin and reveal the underlying mechanism. METHODS One hundred thirty five ovarian cancer patients with intact chemo-response information from The Cancer Genome Atlas (TCGA) database were included and analyzed. Stable CCDC69 overexpressing 293 and ovarian cancer A2780 cell lines were established and subjected to examine cell apoptosis and cell cycle distribution using CCK-8 assay and flow cytometry. Cell cycle and apoptosis pathway were evaluated by immunoblots. Stability of p14ARF/MDM2/p53 pathway related proteins were determined by half-life analysis and ubiquitination experiments. RESULTS We found that CCDC69 expression was significantly higher in chemo-sensitive groups compared with chemo-resistant groups from TCGA database. High CCDC69 expression was associated longer survival. CCDC69 overexpressing 293 and A2780 cells with wildtype p53 and contributes to cisplatin sensitivity following treatment with cisplatin. We further found over-expression of CCDC69 activated p14ARF/MDM2/p53 pathway. Importantly, we also demonstrated that CCDC69 expression extended p53 and p14ARF protein half-life and shortened MDM2 protein half-life. Ubiquitination assay revealing a decrease in p14 ubiquitination in CCDC69 over-expression cells comparing to cells expressing empty vector. CONCLUSIONS It is tempting to conclude that targeting CCDC69 may play a role in cisplatin resistance.
Collapse
Affiliation(s)
- Long Cui
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children Hospital, Guangzhou, 511400, Guangdong, China. .,Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Fang Zhou
- School of Nursing, The First Affiliated Hospital, Xuzhou Medical University, Xuzhou, China
| | - Cui Chen
- Intensive Care Unit, The First Affiliated Hospital, Xuzhou Medical University, Xuzhou, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| |
Collapse
|
19
|
García-Aranda M, Pérez-Ruiz E, Redondo M. Bcl-2 Inhibition to Overcome Resistance to Chemo- and Immunotherapy. Int J Mol Sci 2018; 19:E3950. [PMID: 30544835 PMCID: PMC6321604 DOI: 10.3390/ijms19123950] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Abstract: According to the World Health Organization (WHO), cancer is a leading cause of death worldwide. The identification of novel targets for cancer treatment is an area of intense work that has led Bcl-2 over-expression to be proposed as one of the hallmarks of cancer and Bcl-2 inhibition as a promising strategy for cancer treatment. In this review, we describe the different pathways related to programmed cell death, the role of Bcl-2 family members in apoptosis resistance to anti-cancer treatments, and the potential utility of Bcl-2 inhibitors to overcome resistance to chemo- and immunotherapy.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, REDISSEC, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Málaga, Spain.
| | - Elisabet Pérez-Ruiz
- Oncology Department, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Research Unit, REDISSEC, Hospital Costa del Sol, Universidad de Málaga, Autovía A-7 km 187, 29603 Marbella, Málaga, Spain.
| |
Collapse
|
20
|
Epigenetic Targeting of Autophagy via HDAC Inhibition in Tumor Cells: Role of p53. Int J Mol Sci 2018; 19:ijms19123952. [PMID: 30544838 PMCID: PMC6321134 DOI: 10.3390/ijms19123952] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor development and progression is the consequence of genetic as well as epigenetic alterations of the cell. As part of the epigenetic regulatory system, histone acetyltransferases (HATs) and deacetylases (HDACs) drive the modification of histone as well as non-histone proteins. Derailed acetylation-mediated gene expression in cancer due to a delicate imbalance in HDAC expression can be reversed by histone deacetylase inhibitors (HDACi). Histone deacetylase inhibitors have far-reaching anticancer activities that include the induction of cell cycle arrest, the inhibition of angiogenesis, immunomodulatory responses, the inhibition of stress responses, increased generation of oxidative stress, activation of apoptosis, autophagy eliciting cell death, and even the regulation of non-coding RNA expression in malignant tumor cells. However, it remains an ongoing issue how tumor cells determine to respond to HDACi treatment by preferentially undergoing apoptosis or autophagy. In this review, we summarize HDACi-mediated mechanisms of action, particularly with respect to the induction of cell death. There is a keen interest in assessing suitable molecular factors allowing a prognosis of HDACi-mediated treatment. Addressing the results of our recent study, we highlight the role of p53 as a molecular switch driving HDACi-mediated cellular responses towards one of both types of cell death. These findings underline the importance to determine the mutational status of p53 for an effective outcome in HDACi-mediated tumor therapy.
Collapse
|
21
|
Pan Y, Li P, Jia R, Wang M, Yin Z, Cheng A. Regulation of Apoptosis During Porcine Circovirus Type 2 Infection. Front Microbiol 2018; 9:2086. [PMID: 30233552 PMCID: PMC6131304 DOI: 10.3389/fmicb.2018.02086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Apoptosis, an indispensable innate immune mechanism, regulates cellular homeostasis by removing unnecessary or damaged cells. It contains three signaling pathways: the mitochondria-mediated pathway, the death receptor pathway and the endoplasmic reticulum pathway. The importance of apoptosis in host defenses is stressed by the observation that multiple viruses have evolved various strategies to inhibit apoptosis, thereby blunting the host immune responses and promoting viral propagation. Porcine Circovirus type 2 (PCV2) utilizes various strategies to induce or inhibit programmed cell death. In this article, we review the latest research progress of the apoptosis mechanisms during infection with PCV2, including several proteins of PCV2 regulate apoptosis via interacting with host proteins and multiple signaling pathways involved in PCV2-induced apoptosis, which provides scientific basis for the pathogenesis and prevention of PCV2.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Pengfei Li
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
22
|
Han J, Goldstein LA, Hou W, Chatterjee S, Burns TF, Rabinowich H. HSP90 inhibition targets autophagy and induces a CASP9-dependent resistance mechanism in NSCLC. Autophagy 2018; 14:958-971. [PMID: 29561705 PMCID: PMC6103412 DOI: 10.1080/15548627.2018.1434471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macroautophagy/autophagy has emerged as a resistance mechanism to anticancer drug treatments that induce metabolic stress. Certain tumors, including a subset of KRAS-mutant NSCLCs have been shown to be addicted to autophagy, and potentially vulnerable to autophagy inhibition. Currently, autophagy inhibition is being tested in the clinic as a therapeutic component for tumors that utilize this degradation process as a drug resistance mechanism. The current study provides evidence that HSP90 (heat shock protein 90) inhibition diminishes the expression of ATG7, thereby impeding the cellular capability of mounting an effective autophagic response in NSCLC cells. Additionally, an elevation in the expression level of CASP9 (caspase 9) prodomain in KRAS-mutant NSCLC cells surviving HSP90 inhibition appears to serve as a cell survival mechanism. Initial characterization of this survival mechanism suggests that the altered expression of CASP9 is mainly ATG7 independent; it does not involve the apoptotic activity of CASP9; and it localizes to a late endosomal and pre-lysosomal phase of the degradation cascade. HSP90 inhibitors are identified here as a pharmacological approach for targeting autophagy via destabilization of ATG7, while an induced expression of CASP9, but not its apoptotic activity, is identified as a resistance mechanism to the cellular stress brought about by HSP90 inhibition.
Collapse
Affiliation(s)
- Jie Han
- a Department of Pathology , University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Leslie A Goldstein
- a Department of Pathology , University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Wen Hou
- a Department of Pathology , University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Suman Chatterjee
- b Department of Medicine, Division of Hematology-Oncology , University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Timothy F Burns
- b Department of Medicine, Division of Hematology-Oncology , University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Hannah Rabinowich
- a Department of Pathology , University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| |
Collapse
|
23
|
Vuillier C, Lohard S, Fétiveau A, Allègre J, Kayaci C, King LE, Braun F, Barillé-Nion S, Gautier F, Dubrez L, Gilmore AP, Juin PP, Maillet L. E2F1 interacts with BCL-xL and regulates its subcellular localization dynamics to trigger cell death. EMBO Rep 2018; 19:234-243. [PMID: 29233828 PMCID: PMC5797968 DOI: 10.15252/embr.201744046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
E2F1 is the main pro-apoptotic effector of the pRB-regulated tumor suppressor pathway by promoting the transcription of various pro-apoptotic proteins. We report here that E2F1 partly localizes to mitochondria, where it favors mitochondrial outer membrane permeabilization. E2F1 interacts with BCL-xL independently from its BH3 binding interface and induces a stabilization of BCL-xL at mitochondrial membranes. This prevents efficient control of BCL-xL over its binding partners, in particular over BAK resulting in the induction of cell death. We thus identify a new, non-BH3-binding regulator of BCL-xL localization dynamics that influences its anti-apoptotic activity.
Collapse
Affiliation(s)
| | - Steven Lohard
- CRCINA, INSERM, U1232, Université de Nantes, Nantes, France
| | | | - Jennifer Allègre
- LNC, INSERM, UMR866, Université de Bourgogne Franche-Comté, Dijon, France
| | - Cémile Kayaci
- LNC, INSERM, UMR866, Université de Bourgogne Franche-Comté, Dijon, France
| | - Louise E King
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | | | | | - Fabien Gautier
- CRCINA, INSERM, U1232, Université de Nantes, Nantes, France
- ICO René Gauducheau, Saint Herblain, France
| | - Laurence Dubrez
- LNC, INSERM, UMR866, Université de Bourgogne Franche-Comté, Dijon, France
| | - Andrew P Gilmore
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Philippe P Juin
- CRCINA, INSERM, U1232, Université de Nantes, Nantes, France
- ICO René Gauducheau, Saint Herblain, France
| | | |
Collapse
|
24
|
MicroRNA-34a Encapsulated in Hyaluronic Acid Nanoparticles Induces Epigenetic Changes with Altered Mitochondrial Bioenergetics and Apoptosis in Non-Small-Cell Lung Cancer Cells. Sci Rep 2017. [PMID: 28623259 PMCID: PMC5473901 DOI: 10.1038/s41598-017-02816-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Therapies targeting epigenetic changes for cancer treatment are in Phase I/II trials; however, all of these target only nuclear DNA. Emerging evidence suggests presence of methylation marks on mitochondrial DNA (mtDNA); but their contribution in cancer is unidentified. Expression of genes encoded on mtDNA are altered in cancer cells, along with increased glycolytic flux. Such glycolytic flux and elevated reactive oxygen species is supported by increased antioxidant; glutathione. MicroRNA-34a can translocate to mitochondria, mediate downstream apoptotic effects of tumor suppressor P53, and inhibit the antioxidant response element Nrf-2, resulting in depleted glutathione levels. Based on such strong rationale, we encapsulated microRNA-34a in our well-established Hyaluronic-Acid nanoparticles and delivered to cisplatin-sensitive and cisplatin-resistant A549-lung adenocarcinoma cells. Successful delivery and uptake in cells resulted in altered ATP levels, decreased glycolytic flux, Nrf-2 and glutathione levels, ultimately resulting in caspase-3 activation and apoptosis. Most important were the concurrent underlying molecular changes in epigenetic status of D-loop on the mtDNA and transcription of mtDNA-encoded genes. Although preliminary, we provide a novel therapeutic approach in form of altered mitochondrial bioenergetics and redox status of cancer cells with underlying changes in epigenetic status of mtDNA that can subsequently results in induction of cancer cell apoptosis.
Collapse
|
25
|
Maj MA, Ma J, Krukowski KN, Kavelaars A, Heijnen CJ. Inhibition of Mitochondrial p53 Accumulation by PFT-μ Prevents Cisplatin-Induced Peripheral Neuropathy. Front Mol Neurosci 2017; 10:108. [PMID: 28458631 PMCID: PMC5394177 DOI: 10.3389/fnmol.2017.00108] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/30/2017] [Indexed: 02/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), a debilitating major side effect of cancer treatment, is characterized by pain and sensory loss in hand and feet. Platinum-based chemotherapeutics like cisplatin frequently induce CIPN. The molecular mechanism underlying these neurotoxic symptoms is incompletely understood and there are no preventive or curative interventions. We hypothesized that cisplatin acts as a cellular stressor that triggers p53 accumulation at mitochondria, leading to mitochondrial dysfunction and CIPN. To test this hypothesis, we examined the effect of the small molecule pifithrin-μ (PFT-μ), an inhibitor of p53 mitochondrial association on CIPN and the associated mitochondrial dysfunction. We show here for the first time that in vivo cisplatin rapidly increases mitochondrial accumulation of p53 in dorsal root ganglia (DRG), spinal cord, and peripheral nerve without evidence for apoptosis. Cisplatin-treatment also reduced mitochondrial membrane potential and lead to abnormal mitochondrial morphology and impaired mitochondrial function in DRG neurons. Pre-treatment with PFT-μ prevented the early cisplatin-induced increase in mitochondrial p53 and the reduction in mitochondrial membrane potential. Inhibition of the early mitochondrial p53 accumulation by PFT-μ also prevented the abnormalities in mitochondrial morphology and mitochondrial bioenergetics (reduced oxygen consumption rate, maximum respiratory capacity, and adenosine triphosphate synthesis) that develop in DRG and peripheral nerve after cisplatin-treatment. Functionally, inhibition of mitochondrial p53 accumulation prevented the hallmarks of CIPN including mechanical allodynia, peripheral sensory loss (numbness) as quantified by an adhesive-removal task, and loss of intra-epidermal nerve fibers. In conclusion, PFT-μ is a potential neuroprotective agent that prevents cisplatin-induced mitochondrial dysfunction in DRG and peripheral nerves thereby protecting against CIPN through blockade of the early cisplatin-induced increase in mitochondrial p53. Notably, there is accumulating evidence that PFT-μ has anti-tumor activities and could therefore be an attractive candidate to prevent CIPN while promoting tumor cell death.
Collapse
|
26
|
Jin H, Komita M, Koseki H, Aoe T. Sublethal endoplasmic reticulum stress caused by the mutation of immunoglobulin heavy chain-binding protein induces the synthesis of a mitochondrial protein, pyrroline-5-carboxylate reductase 1. Cell Stress Chaperones 2017; 22:77-85. [PMID: 27796797 PMCID: PMC5225059 DOI: 10.1007/s12192-016-0741-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/19/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022] Open
Abstract
Most human neurodegenerative diseases are sporadic and appear later in life. Aging and neurodegeneration are closely associated, and recent investigations reveal that endoplasmic reticulum (ER) stress is involved in the progression of these features. Immunoglobulin heavy chain-binding protein (BiP) is an ER chaperone that is central to ER functions. We produced knock-in mice expressing a mutant BiP that lacked the retrieval sequence to elucidate the effect of a functional defect in an ER chaperone in multicellular organisms. The homozygous mutant BiP mice died within several hours after birth because of respiratory failure with an impaired biosynthesis of pulmonary surfactant by alveolar type II cells. The heterozygous mutant BiP mice grew up to be apparently normal adults, although some of them revealed motor disabilities as they aged. Here, we report that the synthesis of a mitochondrial protein, pyrroline-5-carboxylate reductase 1 (PYCR1), is enhanced in the brains of homozygous mutant BiP mice. We performed a two-dimensional gel analysis followed by liquid chromatography-tandem mass spectrometry. PYCR1 was identified as one of the enhanced proteins. We also found that sublethal ER stress caused by tunicamycin treatment induced the synthesis of PYCR1 in murine fibroblasts. PYCR1 has been shown to be related to the aging process. Mutations in the PYCR1 gene cause cutis laxa with progeroid features and mental retardation. These findings suggest a pathophysiological interaction between ER stress and a mitochondrial function in aging.
Collapse
Affiliation(s)
- Hisayo Jin
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Mari Komita
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Tomohiko Aoe
- Pain Center, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara City, Chiba, 299-0111, Japan.
| |
Collapse
|
27
|
Reshi L, Wu HC, Wu JL, Wang HV, Hong JR. GSIV serine/threonine kinase can induce apoptotic cell death via p53 and pro-apoptotic gene Bax upregulation in fish cells. Apoptosis 2016; 21:443-58. [PMID: 26833308 DOI: 10.1007/s10495-016-1219-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Previous studies have shown that GSIV induces apoptotic cell death through upregulation of the pro-apoptotic genes Bax and Bak in Grouper fin cells (GF-1 cells). However, the role of viral genome-encoded protein(s) in this death process remains unknown. In this study, we demonstrated that the Giant seaperch iridovirus (GSIV) genome encoded a serine/threonine kinase (ST kinase) protein, and induced apoptotic cell death via a p53-mediated Bax upregulation approach and a downregulation of Bcl-2 in fish cells. The ST kinase expression profile was identified through Western blot analyses, which indicated that expression started at day 1 h post-infection (PI), increased up to day 3, and then decreased by day 5 PI. This profile indicated the role of ST kinase expression during the early and middle phases of viral replication. We then cloned the ST kinase gene and tested its function in fish cells. The ST kinase was transiently expressed and used to investigate possible novel protein functions. The transient expression of ST kinase in GF-1 cells resulted in apoptotic cell features, as revealed with Terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) assays and Hoechst 33258 staining at 24 h (37 %) and 48 h post-transfection (PT) (49 %). Then, through studies on the mechanism of cell death, we found that ST kinase overexpression could upregulate the anti-stress gene p53 and the pro-apoptotic gene Bax at 48 h PT. Interestingly, this upregulation of p53 and Bax also correlated to alterations in the mitochondria function that induced loss of mitochondrial membrane potential (MMP) and activated the initiator caspase-9 and the effector caspase-3 in the downstream. Moreover, when the p53-dependent transcriptional downstream gene was blocked by a specific transcriptional inhibitor, it was found that pifithrin-α not only reduced Bax expression, but also averted cell death in GF-1 cells during the ST kinase overexpression. Taken altogether, these results suggested that aquatic GSIV ST kinase could induce apoptosis via upregulation of p53 and Bax expression, resulting in mitochondrial disruption, which activated a downstream caspases-mediated cell death pathway.
Collapse
Affiliation(s)
- Latif Reshi
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC.,Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Horng-Cherng Wu
- Laboratory Department of Food Science and Technology, Chin Nan University of Pharmacy and Science, Tainan, 717, Taiwan, ROC
| | - Jen-Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
| | - Hao-Ven Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC.
| |
Collapse
|
28
|
Le Pen J, Maillet L, Sarosiek K, Vuillier C, Gautier F, Montessuit S, Martinou JC, Letaï A, Braun F, Juin PP. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis 2016; 7:e2083. [PMID: 26844698 PMCID: PMC4849148 DOI: 10.1038/cddis.2015.400] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 01/08/2023]
Abstract
Proapoptotic molecules directly targeting the BCL-2 family network are promising anticancer therapeutics, but an understanding of the cellular stress signals that render them effective is still elusive. We show here that the tumor suppressor p53, at least in part by transcription independent mechanisms, contributes to cell death induction and full activation of BAX by BH3 mimetic inhibitors of BCL-xL. In addition to mildly facilitating the ability of compounds to derepress BAX from BCL-xL, p53 also provides a death signal downstream of anti-apoptotic proteins inhibition. This death signal cooperates with BH3-induced activation of BAX and it is independent from PUMA, as enhanced p53 can substitute for PUMA to promote BAX activation in response to BH3 mimetics. The acute sensitivity of mitochondrial priming to p53 revealed here is likely to be critical for the clinical use of BH3 mimetics.
Collapse
Affiliation(s)
- J Le Pen
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - L Maillet
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - K Sarosiek
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C Vuillier
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - F Gautier
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Centre de Lutte contre le Cancer René Gauducheau, Saint Herblain, France
| | - S Montessuit
- Department of Cell Biology, University of Geneva, Geneva,Switzerland
| | - J C Martinou
- Department of Cell Biology, University of Geneva, Geneva,Switzerland
| | - A Letaï
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - F Braun
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - P P Juin
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Centre de Lutte contre le Cancer René Gauducheau, Saint Herblain, France
| |
Collapse
|
29
|
Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2-dependent adult T-cell leukemia. Proc Natl Acad Sci U S A 2015; 112:12480-5. [PMID: 26396258 DOI: 10.1073/pnas.1516208112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adult T-cell leukemia (ATL) develops in individuals infected with human T-cell lymphotropic virus-1 (HTLV-1). Presently there is no curative therapy for ATL. HTLV-1-encoded protein Tax (transactivator from the X-gene region) up-regulates Bcl-xL (B-cell lymphoma-extra large) expression and activates interleukin-2 (IL-2), IL-9, and IL-15 autocrine/paracrine systems, resulting in amplified JAK/STAT signaling. Inhibition of JAK signaling reduces cytokine-dependent ex vivo proliferation of peripheral blood mononuclear cells (PBMCs) from ATL patients in smoldering/chronic stages. Currently, two JAK inhibitors are approved for human use. In this study, we examined activity of multiple JAK inhibitors in ATL cell lines. The selective JAK inhibitor ruxolitinib was examined in a high-throughput matrix screen combined with >450 potential therapeutic agents, and Bcl-2/Bcl-xL inhibitor navitoclax was identified as a strong candidate for multicomponent therapy. The combination was noted to strongly activate BAX (Bcl-2-associated X protein), effect mitochondrial depolarization, and increase caspase 3/7 activities that lead to cleavage of PARP (poly ADP ribose polymerase) and Mcl-1 (myeloid cell leukemia 1). Ruxolitinib and navitoclax independently demonstrated modest antitumor efficacy, whereas the combination dramatically lowered tumor burden and prolonged survival in an ATL murine model. This combination strongly blocked ex vivo proliferation of five ATL patients' PBMCs. These studies provide support for a therapeutic trial in patients with smoldering/chronic ATL using a drug combination that inhibits JAK signaling and antiapoptotic protein Bcl-xL.
Collapse
|
30
|
Upadhyay M, Gupta S, Bhadauriya P, Ganesh S. Lafora disease proteins laforin and malin negatively regulate the HIPK2-p53 cell death pathway. Biochem Biophys Res Commun 2015; 464:106-11. [PMID: 26102034 DOI: 10.1016/j.bbrc.2015.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/02/2015] [Indexed: 01/05/2023]
Abstract
Lafora disease (LD) is an autosomal recessive, progressive, and fatal form of a neurodegenerative disorder characterized by the presence of Lafora polyglucosan bodies. LD is caused by defects in either the laforin protein phosphatase or the malin E3 ubiquitin ligase. Laforin and malin were shown play key roles in proteolytic processes, unfolded stress response, and glycogen metabolism. Therefore, the LD proteins laforin and malin are thought to function as pro-survival factors and their loss thus could result in neurodegeneration. To understand the molecular pathway leading to the cell death in LD, in the present study, we investigated the possible role of LD proteins in the p53-mediated cell death pathway. We show that loss of laforin or malin results in the increased level and activity of p53, both in cellular and animal models of LD, and that this is primarily due to the increased levels of Hipk2, a proapoptotic activator of p53. Overexpression of laforin or malin confers protection against Hipk2-mediated cell death by targeting the Hipk2 to the cytoplasmic compartment. Taken together, our study strengthens the notion that laforin and malin are pro-survival factors, and that the activation of Hipk2-p53 cell death pathway might underlie neurodegeneration in LD.
Collapse
Affiliation(s)
- Mamta Upadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Smriti Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Pratibha Bhadauriya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India; Center of Excellence for Chemical Biology, Indian Institute of Technology, Kanpur, India.
| |
Collapse
|
31
|
Seth R, Corniola RS, Gower-Winter SD, Morgan TJ, Bishop B, Levenson CW. Zinc deficiency induces apoptosis via mitochondrial p53- and caspase-dependent pathways in human neuronal precursor cells. J Trace Elem Med Biol 2015; 30:59-65. [PMID: 25467851 DOI: 10.1016/j.jtemb.2014.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/13/2014] [Accepted: 10/28/2014] [Indexed: 01/29/2023]
Abstract
Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent increases in the pro-apoptotic mitochondrial protein BAX leading to a loss of mitochondrial membrane potential as demonstrated by a 25% decrease in JC-1 red:green fluorescence ratio. Disruption of mitochondrial membrane integrity was accompanied by efflux of the apoptosis inducing factor (AIF) from the mitochondria and translocation to the nucleus with a significant increase in reactive oxygen species (ROS) after 24h of zinc deficiency. Measurement of caspase cleavage, mRNA, and treatment with caspase inhibitors revealed the involvement of caspases 2, 3, 6, and 7 in zinc deficiency-mediated apoptosis. Down-stream targets of caspase activation, including the nuclear structure protein lamin and polyADP ribose polymerase (PARP), which participates in DNA repair, were also cleaved. Transfection with a dominant-negative p53 construct and use of the p53 inhibitor, pifithrin-μ, established that these alterations were largely dependent on p53. Together these data identify a cascade of events involving mitochondrial p53 as well as p53-dependent caspase-mediated mechanisms leading to apoptosis during zinc deficiency.
Collapse
Affiliation(s)
- Rohit Seth
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Rikki S Corniola
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA; Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Shannon D Gower-Winter
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Thomas J Morgan
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Brian Bishop
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Cathy W Levenson
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA; Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
32
|
Zhang J, Ma K, Qi T, Wei X, Zhang Q, Li G, Chiu JF. P62 regulates resveratrol-mediated Fas/Cav-1 complex formation and transition from autophagy to apoptosis. Oncotarget 2015; 6:789-801. [PMID: 25596736 PMCID: PMC4359255 DOI: 10.18632/oncotarget.2733] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/08/2014] [Indexed: 02/05/2023] Open
Abstract
Resveratrol is a potential polyphenol drug used in cancer treatment. We examined the relationship between autophagy and apoptosis in RSV-treated non-small lung adenocarcinoma A549 cells. Resveratrol treatment increased autophagy and autophagy-mediated degradation of P62. Immunocytochemistry revealed P62 co-localized with Fas/Cav-1 complexes, known to induce apoptosis. However, siRNA-mediated P62 downregulation enhanced formation of Fas/Cav-1 complexes, suggesting that P62 inhibited Fas/Cav-1 complex formation. Fas/Cav-1 complexes triggered caspase-8 activation and cleavage of Beclin-1, releasing a C-terminal Beclin-1 peptide that translocated to the mitochondria and initiate apoptosis. Inhibition of autophagy by siRNA-mediated repression of Beclin-1 also blocked RSV-induced apoptosis, showing a dependence of apoptosis on autophagy. P62 knockdown by siRNA accelerated the activation of caspase-8 and initiate apoptosis, while Cav-1 knockdown inhibited apoptosis, but increased autophagy. Inhibition of autophagy by 3-MA prevented both P62 degradation and induction of apoptosis, whereas inhibition of apoptosis by z-IETD-FMK or z-DEVD-FMK enhanced both P62 induction and autophagic cell death. In conclusion, P62 links resveratrol-induced autophagy to apoptosis. P62 blocks apoptosis by inhibiting Fas/Cav-1 complex formation, but RSV-induced autophagic degradation of P62 enables formation of Fas/Cav-1 complexes which then activate caspase-8-mediated Beclin-1 cleavage, resulting in translocation of the Beclin-1 C-terminal fragment to the mitochondria to initiate apoptosis.
Collapse
Affiliation(s)
- Jun Zhang
- Open Laboratory for Tumor Molecular Biology/Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Ke Ma
- Open Laboratory for Tumor Molecular Biology/Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Tingting Qi
- Open Laboratory for Tumor Molecular Biology/Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Xiaoning Wei
- Open Laboratory for Tumor Molecular Biology/Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Qing Zhang
- Open Laboratory for Tumor Molecular Biology/Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Guanwu Li
- Open Laboratory for Tumor Molecular Biology/Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Jen-Fu Chiu
- Open Laboratory for Tumor Molecular Biology/Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| |
Collapse
|
33
|
Modulation of mitochondrial function by stem cell-derived cellular components. Biochem Biophys Res Commun 2014; 448:403-8. [DOI: 10.1016/j.bbrc.2014.04.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 12/22/2022]
|
34
|
Liu JC, Lerou PH, Lahav G. Stem cells: balancing resistance and sensitivity to DNA damage. Trends Cell Biol 2014; 24:268-74. [PMID: 24721782 PMCID: PMC4342985 DOI: 10.1016/j.tcb.2014.03.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 01/01/2023]
Abstract
Embryonic stem cells (ESCs) are known to be very sensitive to DNA damage and undergo rapid apoptosis even after low-damage doses. By contrast, adult stem cells show variable sensitivity to damage. Here we describe the multiple pathways that have been proposed to affect the sensitivity of stem cells to damage, including proximity to the apoptotic threshold (mitochondrial priming) and the p53 signaling pathway, through activation of transcription or direct interaction with proapoptotic proteins in the cytoplasm. We also discuss which cellular factors might connect mitochondrial priming with pluripotency and the potential therapeutic advances that can be achieved by better understanding of the molecular mechanisms leading to sensitivity or resistance of embryonic or adult stem cells from different tissues.
Collapse
Affiliation(s)
- Julia C Liu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Paul H Lerou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Han J, Hou W, Goldstein LA, Stolz DB, Watkins SC, Rabinowich H. A Complex between Atg7 and Caspase-9: A NOVEL MECHANISM OF CROSS-REGULATION BETWEEN AUTOPHAGY AND APOPTOSIS. J Biol Chem 2014; 289:6485-6497. [PMID: 24362031 PMCID: PMC3945314 DOI: 10.1074/jbc.m113.536854] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/18/2013] [Indexed: 12/19/2022] Open
Abstract
Several cross-talk mechanisms between autophagy and apoptosis have been identified, in which certain co-regulators are shared, allowing the same protein to participate in these opposing processes. Our studies suggest that caspase-9 is a novel co-regulator of apoptosis and autophagy and that its caspase catalytic activity is dispensable for its autophagic role. We provide evidence that caspase-9 facilitates the early events leading to autophagosome formation; that it forms a complex with Atg7; that Atg7 is not a direct substrate for caspase-9 proteolytic activity; and that, depending on the cellular context, Atg7 represses the apoptotic capability of caspase-9, whereas the latter enhances the Atg7-mediated formation of light chain 3-II. The repression of caspase-9 apoptotic activity is mediated by its direct interaction with Atg7, and it is not related to the autophagic function of Atg7. We propose that the Atg7·caspase-9 complex performs a dual function of linking caspase-9 to the autophagic process while keeping in check its apoptotic activity.
Collapse
Affiliation(s)
- Jie Han
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Wen Hou
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Leslie A Goldstein
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Donna B Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Hannah Rabinowich
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
36
|
Méndez-Callejas GM, Leone S, Tanzarella C, Antoccia A. Combretastatin A-4 induces p53 mitochondrial-relocalisation independent-apoptosis in non-small lung cancer cells. Cell Biol Int 2013; 38:296-308. [DOI: 10.1002/cbin.10199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/04/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Gina Marcela Méndez-Callejas
- Departament of Science University ‘Roma Tre’; V.le G. Marconi 446 00146 Rome Italy
- Universidad de Ciencias Aplicadas y Ambientales; Calle 222 55-37 Bogotá Colombia
| | - Stefano Leone
- Departament of Science University ‘Roma Tre’; V.le G. Marconi 446 00146 Rome Italy
| | - Caterina Tanzarella
- Departament of Science University ‘Roma Tre’; V.le G. Marconi 446 00146 Rome Italy
| | - Antonio Antoccia
- Departament of Science University ‘Roma Tre’; V.le G. Marconi 446 00146 Rome Italy
| |
Collapse
|
37
|
Yao H, Mi S, Gong W, Lin J, Xu N, Perrett S, Xia B, Wang J, Feng Y. Anti-apoptosis proteins Mcl-1 and Bcl-xL have different p53-binding profiles. Biochemistry 2013; 52:6324-34. [PMID: 23977882 DOI: 10.1021/bi400690m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
One of the transcription-independent mechanisms of the tumor suppressor p53 discovered in recent years involves physical interaction between p53 and proteins of the Bcl-2 family. In this paper, significant differences between the interaction of p53 with Mcl-1 and Bcl-xL were demonstrated by NMR spectroscopy and isothermal titration calorimetry. Bcl-xL was found to bind strongly to the p53 DNA-binding domain (DBD) with a dissociation constant (Kd) of ~600 nM, whereas Mcl-1 binds to the p53 DBD weakly with a dissociation constant in the mM range. In contrast, the p53 transactivation domain (TAD) binds weakly to Bcl-xL with a Kd ~ 300-500 μM and strongly to Mcl-1 with a Kd ~ 10-20 μM. NMR titrations indicate that although the p53 TAD binds to the BH3-binding grooves of both Bcl-xL and Mcl-1, Bcl-xL prefers to bind to the first subdomain (TAD1) in the p53 TAD, and Mcl-1 prefers to bind to the second subdomain (TAD2). Therefore, Mcl-1 and Bcl-xL have different p53-binding profiles. This indicates that the detailed interaction mechanisms are different, although both Mcl-1 and Bcl-xL can mediate transcription-independent cytosolic roles of p53. The revealed differences in binding sites and binding affinities should be considered when BH3 mimetics are used in cancer therapy development.
Collapse
Affiliation(s)
- Hongwei Yao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vannuvel K, Renard P, Raes M, Arnould T. Functional and morphological impact of ER stress on mitochondria. J Cell Physiol 2013; 228:1802-18. [PMID: 23629871 DOI: 10.1002/jcp.24360] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
Over the past years, knowledge and evidence about the existence of crosstalks between cellular organelles and their potential effects on survival or cell death have been constantly growing. More recently, evidence accumulated showing an intimate relationship between endoplasmic reticulum (ER) and mitochondria. These close contacts not only establish extensive physical links allowing exchange of lipids and calcium but they can also coordinate pathways involved in cell life and death. It is now obvious that ER dysfunction/stress and unfolded protein response (UPR) as well as mitochondria play major roles in apoptosis. However, while the effects of major ER stress on cell death have been largely studied and reviewed, it becomes more and more evident that cells might regularly deal with sublethal ER stress, a condition that does not necessarily lead to cell death but might affect the function/activity of other organelles such as mitochondria. In this review, we will particularly focus on these new, interesting and intriguing metabolic and morphological events that occur during the early adaptative phase of the ER stress, before the onset of cell death, and that remain largely unknown. Relevance and implication of these mitochondrial changes in response to ER stress conditions for human diseases such as type II diabetes and Alzheimer's disease will also be considered.
Collapse
Affiliation(s)
- Kayleen Vannuvel
- Laboratory of Biochemistry and Cellular Biology, URBC-NARILIS, University of Namur, Namur, Belgium
| | | | | | | |
Collapse
|
39
|
Han J, Hou W, Lu C, Goldstein LA, Stolz DB, Watkins SC, Rabinowich H. Interaction between Her2 and Beclin-1 proteins underlies a new mechanism of reciprocal regulation. J Biol Chem 2013; 288:20315-25. [PMID: 23703612 PMCID: PMC3711298 DOI: 10.1074/jbc.m113.461350] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/22/2013] [Indexed: 12/31/2022] Open
Abstract
Beclin-1 is a key regulator of autophagy that functions in the context of two phase-specific complexes in the initiation and maturation of autophagosomes. Its known interacting proteins include autophagy effectors, Bcl-2 family members, and organelle membrane anchor proteins. Here we report a newly identified interaction between Beclin-1 and the protein tyrosine kinase receptor Her2. We demonstrate that in Her2-expressing breast carcinoma cells that do not succumb to lapatinib, this Her1/2 inhibitor disrupts the cell surface interaction between Her2 and Beclin-1. The data suggest that the ensuing autophagic response is correlatively associated with the release of Beclin-1 from its complex with Her2 and with the subsequent increase in cytosolic Beclin-1. Upon its interaction with Her2, Beclin-1 up-regulates the phosphorylation levels of Her2 and Akt. The Beclin-1 evolutionarily conserved domain is required both for the interaction of Beclin-1 with Her2 and for the increased Her2 and Akt phosphorylation. These findings shed new light on mechanisms involved in lapatinib-mediated autophagy in Her2-expressing breast carcinoma cell lines and in Beclin-1 signaling in these cells.
Collapse
Affiliation(s)
- Jie Han
- From the Departments of Pathology and
| | - Wen Hou
- From the Departments of Pathology and
| | | | | | - Donna B. Stolz
- Cell Biology and Physiology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Simon C. Watkins
- Cell Biology and Physiology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
40
|
Coffin AB, Rubel EW, Raible DW. Bax, Bcl2, and p53 differentially regulate neomycin- and gentamicin-induced hair cell death in the zebrafish lateral line. J Assoc Res Otolaryngol 2013; 14:645-59. [PMID: 23821348 DOI: 10.1007/s10162-013-0404-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/20/2013] [Indexed: 12/19/2022] Open
Abstract
Sensorineural hearing loss is a normal consequence of aging and results from a variety of extrinsic challenges such as excessive noise exposure and certain therapeutic drugs, including the aminoglycoside antibiotics. The proximal cause of hearing loss is often death of inner ear hair cells. The signaling pathways necessary for hair cell death are not fully understood and may be specific for each type of insult. In the lateral line, the closely related aminoglycoside antibiotics neomycin and gentamicin appear to kill hair cells by activating a partially overlapping suite of cell death pathways. The lateral line is a system of hair cell-containing sense organs found on the head and body of aquatic vertebrates. In the present study, we use a combination of pharmacologic and genetic manipulations to assess the contributions of p53, Bax, and Bcl2 in the death of zebrafish lateral line hair cells. Bax inhibition significantly protects hair cells from neomycin but not from gentamicin toxicity. Conversely, transgenic overexpression of Bcl2 attenuates hair cell death due to gentamicin but not neomycin, suggesting a complex interplay of pro-death and pro-survival proteins in drug-treated hair cells. p53 inhibition protects hair cells from damage due to either aminoglycoside, with more robust protection seen against gentamicin. Further experiments evaluating p53 suggest that inhibition of mitochondrial-specific p53 activity confers significant hair cell protection from either aminoglycoside. These results suggest a role for mitochondrial p53 activity in promoting hair cell death due to aminoglycosides, likely upstream of Bax and Bcl2.
Collapse
Affiliation(s)
- Allison B Coffin
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 357923, Seattle, WA, 98195, USA,
| | | | | |
Collapse
|
41
|
Bhattacharya S, Chaum E, Johnson DA, Johnson LR. Age-related susceptibility to apoptosis in human retinal pigment epithelial cells is triggered by disruption of p53-Mdm2 association. Invest Ophthalmol Vis Sci 2012; 53:8350-66. [PMID: 23139272 DOI: 10.1167/iovs.12-10495] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD). METHODS Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53. RESULTS We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis. CONCLUSIONS Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | |
Collapse
|
42
|
Lee H, Haque S, Nieto J, Trott J, Inman JK, McCormick S, Chiorazzi N, Mongini PKA. A p53 axis regulates B cell receptor-triggered, innate immune system-driven B cell clonal expansion. THE JOURNAL OF IMMUNOLOGY 2012; 188:6093-108. [PMID: 22611237 DOI: 10.4049/jimmunol.1103037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Resting mature human B cells undergo a dynamic process of clonal expansion, followed by clonal contraction, during an in vitro response to surrogate C3d-coated Ag and innate immune system cytokines, IL-4 and BAFF. In this study, we explore the mechanism for clonal contraction through following the time- and division-influenced expression of several pro- and anti-apoptotic proteins within CFSE-labeled cultures. Several findings, involving both human and mouse B cells, show that a mitochondria-dependent apoptotic pathway involving p53 contributes to the high activation-induced cell death (AICD) susceptibility of replicating blasts. Activated B cell clones exhibit elevated p53 protein and elevated mRNA/protein of proapoptotic molecules known to be under direct p53 transcriptional control, Bax, Bad, Puma, Bid, and procaspase 6, accompanied by reduced anti-apoptotic Bcl-2. Under these conditions, Bim levels were not increased. The finding that full-length Bid protein significantly declines in AICD-susceptible replicating blasts, whereas Bid mRNA does not, suggests that Bid is actively cleaved to short-lived, proapoptotic truncated Bid. AICD was diminished, albeit not eliminated, by p53 small interfering RNA transfection, genetic deletion of p53, or Bcl-2 overexpression. DNA damage is a likely trigger for p53-dependent AICD because susceptible lymphoblasts expressed significantly elevated levels of both phosphorylated ataxia telangiectasia mutated-Ser(1980) and phospho-H2AX-Ser(139). Deficiency in activation-induced cytosine deaminase diminishes but does not ablate murine B cell AICD, indicating that activation-induced cytosine deaminase-induced DNA damage is only in part responsible. Evidence for p53-influenced AICD during this route of T cell-independent clonal expansion raises the possibility that progeny bearing p53 mutations might undergo positive selection in peripherally inflamed tissues with elevated levels of IL-4 and BAFF.
Collapse
Affiliation(s)
- Hyunjoo Lee
- Laboratory of B Cell Biology, Karches Center for Chronic Lymphocytic Leukemia Research, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lambrou GI, Papadimitriou L, Chrousos GP, Vlahopoulos SA. Glucocorticoid and proteasome inhibitor impact on the leukemic lymphoblast: multiple, diverse signals converging on a few key downstream regulators. Mol Cell Endocrinol 2012; 351:142-51. [PMID: 22273806 DOI: 10.1016/j.mce.2012.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/01/2012] [Indexed: 11/28/2022]
Abstract
Twenty years ago a proteasome inhibitor was suggested as therapy for glucocorticoid-resistant multiple myeloma, a disease that involves terminally differentiated B cells. Since then, research has proven that it has utility on a number of tumors resistant to chemotherapy. Hematologic malignancy, however, often involves lesser differentiated cells, which have a high potential to modulate their intrinsic machinery and thereby activate alternative rescue pathways. A corresponding multiplicity of therapies is not always practical. One approach to conditions with heterogeneous physiology is to identify key biochemical mediators, thereby reducing the number of treatment targets. Results from several ongoing studies indicate convergence of genomically diverse signal pathways to a limited number of key downstream regulators of apoptosis. Convergence of pathways can be exploited to address the problem of genetic heterogeneity in acute leukemia: this would mean treating multiple molecular aberrations with fewer drugs and enhanced therapeutic benefit.
Collapse
Affiliation(s)
- George I Lambrou
- Horemio Research Institute, First Department of Pediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | | | | | | |
Collapse
|
44
|
Inhibition of Mcl-1 promotes senescence in cancer cells: implications for preventing tumor growth and chemotherapy resistance. Mol Cell Biol 2012; 32:1879-92. [PMID: 22451485 DOI: 10.1128/mcb.06214-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although senescence in oncogenesis has been widely studied, little is known regarding the role of this process in chemotherapy resistance. Thus, from the standpoint of enhancing and improving cancer therapy, a better understanding of the molecular machinery involved in chemotherapy-related senescence is paramount. We show for the first time that Mcl-1, a Bcl-2 family member, plays an important role in preventing chemotherapy-induced senescence (CIS). Overexpression of Mcl-1 in p53⁺ cell lines inhibits CIS. Conversely, downregulation of Mcl-1 makes cells sensitive to CIS. Surprisingly, downregulation of Mcl-1 in p53⁻ cells restored CIS to similar levels as p53⁺ cells. In all cases where senescence can be induced, we observed increased p21 expression. Moreover, we show that the domain of Mcl-1 responsible for its antisenescent effects is distinct from that known to confer its antiapoptotic qualities. In vivo we observe that downregulation of Mcl-1 can almost retard tumor growth regardless of p53 status, while overexpression of Mcl-1 in p53⁺ cells conferred resistance to CIS and promoted tumor outgrowth. In summary, our data reveal that Mcl-1 can inhibit CIS in both a p53-dependent and -independent manner in vitro and in vivo and that this Mcl-1-mediated inhibition can enhance tumor growth in vivo.
Collapse
|
45
|
Athar M, Elmets CA, Kopelovich L. Pharmacological activation of p53 in cancer cells. Curr Pharm Des 2011; 17:631-9. [PMID: 21391904 DOI: 10.2174/138161211795222595] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 12/25/2022]
Abstract
Tumor suppressor p53 is a transcription factor that regulates a large number of genes and guards against genomic instability. Under multiple cellular stress conditions, p53 functions to block cell cycle progression transiently unless proper DNA repair occurs. Failure of DNA repair mechanisms leads to p53-mediated induction of cell death programs. p53 also induces permanent cell cycle arrest known as cellular senescence. During neoplastic progression, p53 is often mutated and fails to efficiently perform these functions. It has been observed that cancers carrying a wild-type p53 may also have interrupted downstream p53 regulatory signaling leading to disruption in p53 functions. Therefore, strategies to reactivate p53 provide an attractive approach for blocking tumor pathogenesis and its progression. p53 activation may also lead to regression of existing early neoplastic lesions and therefore may be important in developing cancer chemoprevention protocols. A large number of small molecules capable of reactivating p53 have been developed and some are progressing through clinical trials for prospective human applications. However, several questions remain to be answered at this stage. For example, it is not certain if pharmacological activation of p53 will restore all of its multifaceted biological responses, assuming that the targeted cell is not killed following p53 activation. It remains to be demonstrated whether the distinct biological effects regulated by specific post-translationally modified p53 can effectively be restored by refolding mutant p53. Mutant p53 can be classified as a loss-of-function or gain-of-function protein depending on the type of mutation. It is also unclear whether reactivation of mutant p53 has similar consequences in cells carrying gain-of-function and loss-of-function p53 mutants. This review provides a description of various pharmacological approaches tested to activate p53 (both wild-type and mutant) and to assess the effects of activated p53 on neoplastic progression.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology, The University of Alabama at Birmingham, Volker Hall, Room 509, 1530 3rd Avenue South, Birmingham, Alabama 35294-0019, USA.
| | | | | |
Collapse
|
46
|
Sutherland HS, Hwang IY, Marshall ES, Lindsay BS, Denny WA, Gilchrist C, Joseph WR, Greenhalgh D, Richardson E, Kestell P, Ding A, Baguley BC. Therapeutic reactivation of mutant p53 protein by quinazoline derivatives. Invest New Drugs 2011; 30:2035-45. [DOI: 10.1007/s10637-011-9744-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/24/2011] [Indexed: 11/24/2022]
|
47
|
Nambiar D, Rajamani P, Singh RP. Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy. Mutat Res 2011; 728:139-57. [PMID: 22030216 DOI: 10.1016/j.mrrev.2011.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 02/01/2023]
Abstract
Ionizing radiation (IR)-induced cellular damage is implicated in carcinogenesis as well as therapy of cancer. Advances in radiation therapy have led to the decrease in dosage and localizing the effects to the tumor; however, the development of radioresistance in cancer cells and radiation toxicity to normal tissues are still the major concerns. The development of radioresistance involves several mechanisms, including the activation of mitogenic and survival signaling, induction of DNA repair, and changes in redox signaling and epigenetic regulation. The current strategy of combining radiation with standard cytotoxic chemotherapeutic agents can potentially lead to unwanted side effects due to both agents. Thus agents are needed that could improve the efficacy of radiation killing of cancer cells and prevent the damage to normal cells and tissues caused by the direct and bystander effects of radiation, without have its own systemic toxicity. Chemopreventive phytochemicals, usually non-toxic agents with both cancer preventive and therapeutic activities, could rightly fit in this approach. In this regard, naturally occurring compounds, including curcumin, parthenolide, genistein, gossypol, ellagic acid, withaferin, plumbagin and resveratrol, have shown considerable potential. These agents suppress the radiation-induced activation of receptor tyrosine kinases and nuclear factor-κB signaling, can modify cell survival and DNA repair efficacy, and may potentiate ceramide signaling. These radiosensitizing and counter radioresistance mechanisms of phytochemicals in cancer cells are also associated with changes in epigenetic gene regulation. Because radioresistance involves multiple mechanisms, more studies are needed to discover novel phytochemicals having multiple mechanisms of radiosensitization and to overcome radioresistance of cancer cells. Pre-clinical studies are needed to address the appropriate dosage, timing, and duration of the application of phytochemicals with radiation to justify clinical trials. Nonetheless, some phytochemicals in combination with IR may play a significant role in enhancing the therapeutic index of cancer treatment.
Collapse
Affiliation(s)
- Dhanya Nambiar
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
48
|
Yang G, Jiang Y, Rao K, Chen X, Wang Q, Liu A, Xiong W, Yuan J. Mitochondrial dysfunction and transactivation of p53-dependent apoptotic genes in BaP-treated human fetal lung fibroblasts. Hum Exp Toxicol 2011; 30:1904-13. [DOI: 10.1177/0960327111401637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzo(a)pyrene (BaP) has been shown to be an inducer of apoptosis. However, mechanisms involved in BaP-induced mitochondrial dysfunction are not well-known. In this study, human fetal lung fibroblasts cells were treated with BaP (8, 16, 32, 64 and 128 μM) for 4 and 12 h. Cell viability, intracellular level of reactive oxygen species (ROS), total antioxidant capacity (T-AOC), mitochondrial membrane potential (Δ Ψm) and cytochrome c release were determined. Changes in transcriptional levels of p53-dependent apoptotic genes ( p53, APAF1, CASPASE3, CASPASE9, NOXA and PUMA) were measured. At time point of 4 h, BaP induced the intracellular ROS generation in 64 ( p < .05) and 128 μM BaP groups ( p < .01) but decreased the T-AOC activities in 32, 64 ( p < .05 for both) and 128 μM BaP groups ( p < .01). At time point of 12 h, Δ Ψm significantly decreased in ≥32 μM BaP groups ( p < .05 for all). Amount of mitochondrial cytochrome c significantly increased in 128 μM BaP group ( p < .01). Transcriptional levels of CASPASE3, CASPASE9, APAF1 and PUMA were up-regulated in all BaP groups ( p < .05 for all) and in ≥32 μM groups for NOXA ( p < .05). But only in 16 μM BaP group a relatively little expression of p53 mRNA was observed ( p < .05). The results indicate that in the earlier period BaP promoted the generation of excessive ROS and subsequently the mitochondrial depolarization, whereas transactivations of the p53-dependent apoptotic genes were significantly induced at the later period.
Collapse
Affiliation(s)
- Guangtao Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Jiang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaimin Rao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiong
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Role of HDAC3 on p53 expression and apoptosis in T cells of patients with multiple sclerosis. PLoS One 2011; 6:e16795. [PMID: 21346816 PMCID: PMC3035634 DOI: 10.1371/journal.pone.0016795] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 01/14/2011] [Indexed: 11/19/2022] Open
Abstract
Background Histone deacetylase 3 (HDAC3) belongs to a family of proteins which plays an important role in protein acetylation, chromatin remodeling and transcription of genes, including those that are involved in cell proliferation and cell death. While increased expression of HDAC3 is seen in neoplastic cells, the role of HDAC3 in T cells and their role in autoimmune disease is not known. Methodology/Principal Findings Applying Affymetrix GeneChip Human Gene 1.0 ST Array and the mixed effects model for gene set analysis, we compared gene expression profiles between multiple sclerosis (MS) patients and healthy controls (HC). Within the Apoptosis_GO gene set, the constitutive expression level of HDAC3 in peripheral blood mononuclear cell (PBMC) was significantly increased in MS patients when compared to controls. Following addition of trichostatin A (TSA), an inhibitor of HDAC3, we examined the expression of p53 by flow cytometry and p53 targeted genes by real time RT-PCR in MS and HC. Culture of PBMC with TSA resulted in increased expression of p53 in HC but not in MS patients. TSA treated T cells from MS patients also showed reduced sensitivity to apoptosis when compared to HC, which was independent of activation of p53 targeted pro-apoptotic genes. Conclusion/Significance MS patients, when compared to controls, show an increased expression of HDAC3 and relative resistance to TSA induced apoptosis in T cells. Increased expression of HDAC3 in PBMC of MS patients may render putative autoreactive lymphocytes resistance to apoptosis and thereby contribute to autoimmunity.
Collapse
|
50
|
Bell A, Bell D, Weber RS, El-Naggar AK. CpG island methylation profiling in human salivary gland adenoid cystic carcinoma. Cancer 2011; 117:2898-909. [PMID: 21692051 DOI: 10.1002/cncr.25818] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND DNA methylation is a fundamental epigenetic event associated with physiologic and pathologic conditions, including cancer. Hypermethylation of CpG islands at active gene promoters leads to transcriptional repression, whereas hypomethylation is associated with gene overexpression. The aim of this study was to identify genes in adenoid cystic carcinoma (ACC) of salivary gland strongly deregulated by epigenetic CpG island methylation, to validate selected genes by conventional techniques, and to correlate the findings with clinicopathologic factors. METHODS The authors analyzed 16 matched normal and tumor tissues for aberrant DNA methylation using the methylated CpG island amplification and microarray method and the pyrosequencing technique. RESULTS Microarray analysis showed hypomethylation in 7 and hypermethylation in 32 CpG islands. Hypomethylation was identified in CpG islands near FBXO17, PHKG1, LOXL1, DOCK1, and PARVG. Hypermethylation was identified near genes encoding predominantly transcription factors (EN1, FOXE1, GBX2, FOXL1, TBX4, MEIS1, LBX2, NR2F2, POU3F3, IRX3, TFAP2C, NKX2-4, PITX1, NKX2-5), and 13 genes with different functions (MT1H, EPHX3, AQPEP, BCL2L11, SLC35D3, S1PR5, PNLIPRP1, CLIC6, RASAL, XRN2, GSTM5, FNDC1, INSRR). Four CpG islands by EN1, FOXE1, TBX4, and PITX1 were validated by pyrosequencing. CONCLUSIONS The highly methylated genes in tumor versus normal tissue are linked to developmental, apoptotic, and other fundamental cellular pathways, suggesting that down-regulation of these genes is associated with ACC development and progression. With EN1 hypermethylation showing potential as a possible biomarker for ACC in salivary gland, the biological and therapeutic implications of these findings require further preclinical investigations.
Collapse
Affiliation(s)
- Achim Bell
- Department of Pathology and Cancer Institute, The University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | | | |
Collapse
|