1
|
Bailly C, Degand C, Laine W, Sauzeau V, Kluza J. Implication of Rac1 GTPase in molecular and cellular mitochondrial functions. Life Sci 2024; 342:122510. [PMID: 38387701 DOI: 10.1016/j.lfs.2024.122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Rac1 is a member of the Rho GTPase family which plays major roles in cell mobility, polarity and migration, as a fundamental regulator of actin cytoskeleton. Signal transduction by Rac1 occurs through interaction with multiple effector proteins, and its activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). The small protein is mainly anchored to the inner side of the plasma membrane but it can be found in endocellular compartments, notably endosomes and cell nuclei. The protein localizes also into mitochondria where it contributes to the regulation of mitochondrial dynamics, including both mitobiogenesis and mitophagy, in addition to signaling processes via different protein partners, such as the proapoptotic protein Bcl-2 and chaperone sigma-1 receptor (σ-1R). The mitochondrial form of Rac1 (mtRac1) has been understudied thus far, but it is as essential as the nuclear or plasma membrane forms, via its implication in regulation of oxidative stress and DNA damages. Rac1 is subject to diverse post-translational modifications, notably to a geranylgeranylation which contributes importantly to its mitochondrial import and its anchorage to mitochondrial membranes. In addition, Rac1 contributes to the mitochondrial translocation of other proteins, such as p53. The mitochondrial localization and functions of Rac1 are discussed here, notably in the context of human diseases such as cancers. Inhibitors of Rac1 have been identified (NSC-23766, EHT-1864) and some are being developed for the treatment of cancer (MBQ-167) or central nervous system diseases (JK-50561). Their effects on mtRac1 warrant further investigations. An overview of mtRac1 is provided here.
Collapse
Affiliation(s)
- Christian Bailly
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France.
| | - Claire Degand
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - William Laine
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| | - Jérôme Kluza
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
2
|
Yang CM, Lee IT, Hsiao LD, Yu ZY, Yang CC. Rhamnetin Prevents Bradykinin-Induced Expression of Matrix Metalloproteinase-9 in Rat Brain Astrocytes by Suppressing Protein Kinase-Dependent AP-1 Activation. Biomedicines 2023; 11:3198. [PMID: 38137419 PMCID: PMC10740693 DOI: 10.3390/biomedicines11123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Bradykinin (BK) has been recognized as a stimulant for matrix metalloproteinase (MMP)-9 expression, contributing to neuroinflammation. Modulating the BK/MMP-9 pathway offers potential in the treatment of neuroinflammatory disorders. Rhamnetin (RNT), a flavonoid compound known for its antioxidant and anti-inflammatory effects, has shown promise. However, the specific mechanisms through which RNT inhibits BK-induced MMP-9 expression remain unclear. Therefore, this study aims to delve into the intricate mechanisms underlying this process. Here, we initially demonstrated that RNT effectively attenuated BK-induced MMP-9 expression and its associated cell migration in rat brain astrocyte-1 (RBA-1) cells. Further investigation revealed that BK-driven MMP-9 protein, mRNA, and promoter activity linked to cell migration relied on c-Src, Pyk2, EGFR, PDGFR, PI3K/Akt, JNK1/2, and c-Jun. This was validated by the inhibition of these effects through specific inhibitors, a finding substantiated by the introduction of siRNAs targeting these signaling molecules. Notably, the phosphorylated levels of these signaling components induced by BK were significantly reduced by their respective inhibitors and RNT, underscoring the inhibitory role of RNT in this process. These findings indicate that, in RBA-1 cells, RNT diminishes the heightened induction of MMP-9 triggered by BK through the inhibition of c-Src/Pyk2/PDGFR and EGFR/PI3K/Akt/JNK1/2-dependent AP-1 activation. This suggests that RNT holds promise as a potential therapeutic approach for addressing neuroinflammation in the brain.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-M.Y.); (L.-D.H.); (Z.-Y.Y.)
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-M.Y.); (L.-D.H.); (Z.-Y.Y.)
| | - Zih-Yao Yu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (C.-M.Y.); (L.-D.H.); (Z.-Y.Y.)
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan 333008, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| |
Collapse
|
3
|
Pandey J, Larson-Casey JL, Patil MH, Joshi R, Jiang CS, Zhou Y, He C, Carter AB. NOX4-TIM23 interaction regulates NOX4 mitochondrial import and metabolic reprogramming. J Biol Chem 2023; 299:104695. [PMID: 37044213 PMCID: PMC10193017 DOI: 10.1016/j.jbc.2023.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Pulmonary fibrosis is a progressive lung disease characterized by macrophage activation. Asbestos-induced expression of nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4 (NOX4) in lung macrophages mediates fibrotic progression by the generation of mitochondrial reactive oxygen species (ROS), modulating mitochondrial biogenesis, and promoting apoptosis resistance; however, the mechanism(s) by which NOX4 localizes to mitochondria during fibrosis is not known. Here, we show that NOX4 localized to the mitochondrial matrix following asbestos exposure in lung macrophages via direct interaction with TIM23. TIM23 and NOX4 interaction was found in lung macrophages from human subjects with asbestosis, while it was absent in mice harboring a conditional deletion of NOX4 in lung macrophages. This interaction was localized to the proximal transmembrane region of NOX4. Mechanistically, TIM23 augmented NOX4-induced mitochondrial ROS and metabolic reprogramming to oxidative phosphorylation. Silencing TIM23 decreased mitochondrial ROS and oxidative phosphorylation. These observations highlight the important role of the mitochondrial translocase TIM23 interaction with NOX4. Moreover, this interaction is required for mitochondrial redox signaling and metabolic reprogramming in lung macrophages.
Collapse
Affiliation(s)
- Jyotsana Pandey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Larson-Casey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mallikarjun H Patil
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rutwij Joshi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chun-Sun Jiang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chao He
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Medicine, Birmingham VAMC, Birmingham, Alabama, USA.
| |
Collapse
|
4
|
Dimic-Janjic S, Hoda MA, Milenkovic B, Kotur-Stevuljevic J, Stjepanovic M, Gompelmann D, Jankovic J, Miljkovic M, Milin-Lazovic J, Djurdjevic N, Maric D, Milivojevic I, Popevic S. The usefulness of MMP-9, TIMP-1 and MMP-9/TIMP-1 ratio for diagnosis and assessment of COPD severity. Eur J Med Res 2023; 28:127. [PMID: 36935521 PMCID: PMC10026402 DOI: 10.1186/s40001-023-01094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/10/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Inflammation, oxidative stress and an imbalance between proteases and protease inhibitors are recognized pathophysiological features of chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate serum levels of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in patients with COPD and to assess their relationship with lung function, symptom severity scores and recent acute exacerbations. METHODS In this observational cohort study, serum levels of MMP-9 and TIMP-1 and the MMP-9/TIMP-1 ratio in the peripheral blood of COPD patients with stable disease and healthy controls were determined, and their association with lung function (postbronchodilator spirometry, body plethysmography, single breath diffusion capacity for carbon monoxide), symptom severity scores (mMRC and CAT) and exacerbation history were assessed. RESULTS COPD patients (n = 98) had significantly higher levels of serum MMP-9 and TIMP-1 and a higher MMP-9/TIMP-1 ratio than healthy controls (n = 47) (p ≤ 0.001). The areas under the receiver operating characteristic curve for MMP-9, TIMP-1 and the MMP-9/TIMP-1 ratio for COPD diagnosis were 0.974, 0.961 and 0.910, respectively (all p < 0.05). MMP-9 and the MMP-9/TIMP-1 ratio were both negatively correlated with FVC, FEV1, FEV1/FVC, VC, and IC (all p < 0.05). For MMP-9, a positive correlation was found with RV/TLC% (p = 0.005), and a positive correlation was found for the MMP-9/TIMP-1 ratio with RV% and RV/TLC% (p = 0.013 and 0.002, respectively). Patients with COPD GOLD 3 and 4 presented greater MMP-9 levels and a greater MMP-9/TIMP-1 ratio compared to GOLD 1 and 2 patients (p ≤ 0.001). No correlation between diffusion capacity for carbon monoxide and number of acute exacerbations in the previous year was found. CONCLUSIONS COPD patients have elevated serum levels of MMP-9 and TIMP-1 and MMP-9/TIMP-1 ratio. COPD patients have an imbalance between MMP-9 and TIMP-1 in favor of a pro-proteolytic environment, which overall indicates the importance of the MMP-9/TIMP-1 ratio as a potential biomarker for COPD diagnosis and severity.
Collapse
Affiliation(s)
- Sanja Dimic-Janjic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia.
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Branislava Milenkovic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| | - Jelena Kotur-Stevuljevic
- Faculty of Pharmacy, Department for Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mihailo Stjepanovic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| | - Daniela Gompelmann
- Division of Pulmonology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jelena Jankovic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| | - Milica Miljkovic
- Faculty of Pharmacy, Department for Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Jelena Milin-Lazovic
- Faculty of Medicine, Institute for Medical Statistics and Informatics, University of Belgrade, Belgrade, Serbia
| | - Natasa Djurdjevic
- Clinic for Pulmonology, University Clinical Center of Serbia, Koste Todorovica 26, Belgrade, Serbia
| | - Dragana Maric
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| | - Ivan Milivojevic
- Clinic for Pulmonology, University Clinical Center of Serbia, Koste Todorovica 26, Belgrade, Serbia
| | - Spasoje Popevic
- Faculty of Medicine, University of Belgrade, Clinic for Pulmonology, University Clinical Center of Serbia, Dr Subotica 8, Belgrade, Serbia
| |
Collapse
|
5
|
Muangthong T, Chusangnin P, Hassametto A, Tanomrat R, Suwannalert P. Thioredoxin Reductase-1 as a Potential Biomarker in Fibroblast-Associated HCT116 Cancer Cell Progression and Dissemination in a Zebrafish Model. Cancers (Basel) 2022; 15:cancers15010056. [PMID: 36612053 PMCID: PMC9817953 DOI: 10.3390/cancers15010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment, especially that of fibroblasts, strongly promotes colorectal cancer (CRC) progression. Progressive cancers usually accumulate high reactive oxygen species (ROS), leading to oxidative stress. The stress relates to the expression of thioredoxin reductase-1 (TrxR-1), which is an oxidative stress sensitivity molecule. This study aimed to investigate TrxR-1 expression as an indication of colon-fibroblast-inducing colorectal cancer progression and metastasis. We found that the high proliferative fibroblast-cultured media (FCM) contained pro-inflammatory cytokines that have a high ability to influence HCT116 and CRC cell progression, when compared with complete media (CM) as a control in terms of growth (CM = 100.00%, FCM = 165.96%), migration (CM = 32.22%, FCM = 83.07%), invasion (CM = 130 cells/field, FCM = 449 cells/field), and EMT transformation while decreasing E-cadherin expression (CM = 1.00, FCM = 0.69) and shape factor (CM = 0.94, FCM = 0.61). In addition, the overexpression of TrxR-1 is associated with cellular oxidant enchantment in FCM-treated cells. A dot plot analysis showed a strong relation between the EMT process and the overexpression of TrxR-1 in FCM-treated cells (CM = 13/100 cells, FCM = 45/100 cells). The cancer transplantation of the adult zebrafish model illustrated a significantly higher number of microtumors in FCM-treated cells (CM = 4.33 ± 1.51/HPF, FCM = 25.00 ± 13.18/HPF) disseminated in the intraperitoneal cavity with TrxR-1 positive cells. The overexpression of TrxR-1 indicated fibroblast-associated CRC progression in HCT116 cells and the zebrafish model. Therefore, TrxR-1 could be applied as a novel biomarker for colorectal cancer progression and prognostic evaluation.
Collapse
Affiliation(s)
- Tharathip Muangthong
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pornnapat Chusangnin
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Artchaya Hassametto
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Rataya Tanomrat
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
6
|
Cho J, Johnson BD, Watt KD, Niven AS, Yeo D, Kim CH. Exercise training attenuates pulmonary inflammation and mitochondrial dysfunction in a mouse model of high-fat high-carbohydrate-induced NAFLD. BMC Med 2022; 20:429. [PMID: 36348343 PMCID: PMC9644617 DOI: 10.1186/s12916-022-02629-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) can lead to pulmonary dysfunction that is associated with pulmonary inflammation. Moreover, little is known regarding the therapeutic role of exercise training on pulmonary pathophysiology in NAFLD. The present study aimed to investigate the effect of exercise training on high-fat high-carbohydrate (HFHC)-induced pulmonary dysfunction in C57BL/6 mice. METHODS Male C57BL/6 mice (N = 40) were fed a standard Chow (n = 20) or an HFHC (n = 20) diet for 15 weeks. After 8 weeks of dietary treatment, they were further assigned to 4 subgroups for the remaining 7 weeks: Chow (n = 10), Chow plus exercise (Chow+EX, n = 10), HFHC (n = 10), or HFHC plus exercise (HFHC+EX, n = 10). Both Chow+EX and HFHC+EX mice were subjected to treadmill running. RESULTS Chronic exposure to the HFHC diet resulted in obesity with hepatic steatosis, impaired glucose tolerance, and elevated liver enzymes. The HFHC significantly increased fibrotic area (p < 0.001), increased the mRNA expression of TNF-α (4.1-fold, p < 0.001), IL-1β (5.0-fold, p < 0.001), col1a1 (8.1-fold, p < 0.001), and Timp1 (6.0-fold, p < 0.001) in the lung tissue. In addition, the HFHC significantly altered mitochondrial function (p < 0.05) along with decreased Mfn1 protein levels (1.8-fold, p < 0.01) and increased Fis1 protein levels (1.9-fold, p < 0.001). However, aerobic exercise training significantly attenuated these pathophysiologies in the lungs in terms of ameliorating inflammatory and fibrogenic effects by enhancing mitochondrial function in lung tissue (p < 0.001). CONCLUSIONS The current findings suggest that exercise training has a beneficial effect against pulmonary abnormalities in HFHC-induced NAFLD through improved mitochondrial function.
Collapse
Affiliation(s)
- Jinkyung Cho
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.,Department of Sport Science, Korea Institute of Sport Science, Seoul, Republic of Korea
| | - Bruce D Johnson
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Kymberly D Watt
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alexander S Niven
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dongwook Yeo
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Chul-Ho Kim
- Department of Cardiovascular Disease, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Rangarajan S, Locy ML, Chanda D, Kurundkar A, Kurundkar D, Larson‐Casey JL, Londono P, Bagchi RA, Deskin B, Elajaili H, Nozik ES, Deshane JS, Zmijewski JW, Eickelberg O, Thannickal VJ. Mitochondrial uncoupling protein-2 reprograms metabolism to induce oxidative stress and myofibroblast senescence in age-associated lung fibrosis. Aging Cell 2022; 21:e13674. [PMID: 35934931 PMCID: PMC9470902 DOI: 10.1111/acel.13674] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial dysfunction has been associated with age-related diseases, including idiopathic pulmonary fibrosis (IPF). We provide evidence that implicates chronic elevation of the mitochondrial anion carrier protein, uncoupling protein-2 (UCP2), in increased generation of reactive oxygen species, altered redox state and cellular bioenergetics, impaired fatty acid oxidation, and induction of myofibroblast senescence. This pro-oxidant senescence reprogramming occurs in concert with conventional actions of UCP2 as an uncoupler of oxidative phosphorylation with dissipation of the mitochondrial membrane potential. UCP2 is highly expressed in human IPF lung myofibroblasts and in aged fibroblasts. In an aging murine model of lung fibrosis, the in vivo silencing of UCP2 induces fibrosis regression. These studies indicate a pro-fibrotic function of UCP2 in chronic lung disease and support its therapeutic targeting in age-related diseases associated with impaired tissue regeneration and organ fibrosis.
Collapse
Affiliation(s)
- Sunad Rangarajan
- Division of Pulmonary Sciences and Critical Care, Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Morgan L. Locy
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Diptiman Chanda
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Ashish Kurundkar
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Deepali Kurundkar
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jennifer L. Larson‐Casey
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Pilar Londono
- Division of Pulmonary Sciences and Critical Care, Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Rushita A. Bagchi
- Division of Cardiology, Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Brian Deskin
- Division of Pulmonary and Critical Care, Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Hanan Elajaili
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of PediatricsUniversity of ColoradoAuroraColoradoUSA
| | - Eva S. Nozik
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of PediatricsUniversity of ColoradoAuroraColoradoUSA
| | - Jessy S. Deshane
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jaroslaw W. Zmijewski
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy and Critical Care, Department of MedicineUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Victor J. Thannickal
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
8
|
Li J, Wang Y, Wang R, Wu MY, Shan J, Zhang YC, Xu HM. Study on the molecular mechanisms of tetrandrine against pulmonary fibrosis based on network pharmacology, molecular docking and experimental verification. Heliyon 2022; 8:e10201. [PMID: 36046534 PMCID: PMC9421403 DOI: 10.1016/j.heliyon.2022.e10201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/09/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Aims This study aims to screen the potential targets of tetrandrine (Tet) against pulmonary fibrosis (PF) based on network pharmacological analysis, molecular docking and experimental verification. Main methods The network pharmacology methods were employed to predict targets, construct Tet-PF-intersection target-pathway networks, and screen the candidate targets. The molecular docking was performed using AutoDockTools1.5.6. TGF-β1-induced human lung adenocarcinoma A549 cells were used as an in vitro experimental verification model, taking dexamethasone (Dex) as the positive control, to verify the effects of Tet on the mRNA expression of the candidate targets. Key findings Six candidate targets were predicted based on network pharmacology and molecular docking, namely PIK3CA, PDPK1, RAC1, PTK2, KDR, and RPS6KB1. The experimental verification results showed that Dex and Tet presented quite different pharmacological effects. Specifically, compared with the model group, both Dex and Tet (5 μΜ) significantly increased the mRNA expression of PIK3CA and KDR (P < 0.001). Dex up-regulated the mRNA expression of PDPK1 and RAC1, while Tet (1.25 μΜ) down-regulated (P < 0.001). Dex up-regulated the mRNA expression of PTK2, but Tet had no effect. Dex down-regulated RPS6KB1 mRNA expression, while Tet (5 μΜ) up-regulated (P < 0.01). Significance Combined with the results of theoretical calculation and experimental verification, and considering the roles of these targets in the pathogenesis of PF, Tet might antagonize PF by acting on PDPK1 and RAC1. The results of this study will provide scientific reference for the prevention and clinical diagnosis and treatment of PF.
Collapse
Affiliation(s)
- Jie Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yi Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Rui Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Meng-Yu Wu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Jing Shan
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ying-Chi Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Hai-Ming Xu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| |
Collapse
|
9
|
Ma H, Wu X, Li Y, Xia Y. Research Progress in the Molecular Mechanisms, Therapeutic Targets, and Drug Development of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:963054. [PMID: 35935869 PMCID: PMC9349351 DOI: 10.3389/fphar.2022.963054] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Recent studies have identified the key role of crosstalk between dysregulated epithelial cells, mesenchymal, immune, and endothelial cells in IPF. In addition, genetic mutations and environmental factors (e.g., smoking) have also been associated with the development of IPF. With the recent development of sequencing technology, epigenetics, as an intermediate link between gene expression and environmental impacts, has also been reported to be implicated in pulmonary fibrosis. Although the etiology of IPF is unknown, many novel therapeutic targets and agents have emerged from clinical trials for IPF treatment in the past years, and the successful launch of pirfenidone and nintedanib has demonstrated the promising future of anti-IPF therapy. Therefore, we aimed to gain an in-depth understanding of the underlying molecular mechanisms and pathogenic factors of IPF, which would be helpful for the diagnosis of IPF, the development of anti-fibrotic drugs, and improving the prognosis of patients with IPF. In this study, we summarized the pathogenic mechanism, therapeutic targets and clinical trials from the perspective of multiple cell types, gene mutations, epigenetic and environmental factors.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
10
|
Ebrahim HA, Kamar SS, Haidara MA, Latif NSA, Ellatif MA, ShamsEldeen AM, Al-Ani B, Dawood AF. Association of resveratrol with the suppression of TNF-α/NF-kB/iNOS/HIF-1α axis-mediated fibrosis and systemic hypertension in thioacetamide-induced liver injury. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1087-1095. [PMID: 35729229 DOI: 10.1007/s00210-022-02264-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
Abstract
Chronic liver injury can lead to hepatic failure and the only available method of treatment would be liver transplantation. The link between inflammation (TNF-α), nuclear factor-kappa B (NF-kB), nitrosative stress (iNOS) and hypoxia-inducible factor-1α (HIF-1α) in thioacetamide (TAA) induced liver fibrosis, and hypertension with and without the incorporation of the anti-inflammatory and antioxidant resveratrol (RES) has not been investigated before. Consequently, we injected rats with either 200 mg/kg TAA for 8 weeks starting at week 2 (model group) or pretreated them before TAA injections with RES (20 mg/kg) for 2 weeks and continued them on RES and TAA until being culled at week 10 (protective group). In the model group, we documented the induction of hepatic fibrosis and upregulation of tumor necrosis factor-α (TNF-α), NF-kB, inducible nitric oxide synthase (iNOS), HIF-1α and the profibrotic biomarkers alpha-smooth muscle actin (α-SMA) and matrix metalloproteinase-9 (MMP-9) that was significantly (p ≤ 0.0014) ameliorated by RES. RES also significantly (p ≤ 0.0232) reduced triglycerides (TG), cholesterol (CHOL), very low-density lipoprotein (vLDL-C), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure, and heart rate (HR) induction by TAA. Also, a significant (p < 0.0001) positive correlation between TNF-α/NF-kB/iNOS/HIF-1α axis-mediated fibrosis and hypertension and liver injury biomarkers was observed. These findings suggest that in the hepatotoxic compound, TAA is associated with TNF-α/NF-kB/iNOS/HIF-1α-mediated fibrosis and hypertension, whilst being inhibited by RES.
Collapse
Affiliation(s)
- Hasnaa A Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samaa S Kamar
- Department of Medical Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Haidara
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha S Abdel Latif
- Department of Medical Pharmacology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Abd Ellatif
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Medical Biochemistry, College of Medicine, Mansoura University, Mansoura, Egypt
| | - Asmaa M ShamsEldeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| |
Collapse
|
11
|
Inhibition of proinflammatory signaling impairs fibrosis of bone marrow mesenchymal stromal cells in myeloproliferative neoplasms. Exp Mol Med 2022; 54:273-284. [PMID: 35288649 PMCID: PMC8980093 DOI: 10.1038/s12276-022-00742-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/04/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022] Open
Abstract
Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been identified as a major cellular source of fibrosis, the exact molecular mechanism and signaling pathways involved have not been identified thus far. Here, we show that BM-MSCs contribute to fibrosis in myeloproliferative neoplasms (MPNs) by differentiating into αSMA-positive myofibroblasts. These cells display a dysregulated extracellular matrix with increased FN1 production and secretion of profibrotic MMP9 compared to healthy donor cells. Fibrogenic TGFβ and inflammatory JAK2/STAT3 and NFκB signaling pathway activity is increased in BM-MSCs of MPN patients. Moreover, coculture with mononuclear cells from MPN patients was sufficient to induce fibrosis in healthy BM-MSCs. Inhibition of JAK1/2, SMAD3 or NFκB significantly reduced the fibrotic phenotype of MPN BM-MSCs and was able to prevent the development of fibrosis induced by coculture of healthy BM-MSCs and MPN mononuclear cells with overly active JAK/STAT signaling, underlining their involvement in fibrosis. Combined treatment with JAK1/2 and SMAD3 inhibitors showed synergistic and the most favorable effects on αSMA and FN1 expression in BM-MSCs. These results support the combined inhibition of TGFβ and inflammatory signaling to extenuate fibrosis in MPN. The treatment of fibrosis in patients with rare bone marrow disorders could be improved with a combined therapy that targets inflammatory pathways. Myeloproliferative neoplasms (MPN) are a group of bone marrow disorders characterized by the over-production of blood cells, which can lead to fibrosis in the bone marrow. Vladan Čokić at the University of Belgrade, Serbia, and co-workers examined how stem cells known as mesenchymal stromal cells from the bone marrow contribute to MPN fibrosis. They found an increase in three pro-inflammatory signaling pathways in MPN patients, resulting in the stromal cells differentiating into cells with dysregulated extracellular matrices. The differentiated cells did not behave correctly nor degrade properly, triggering fibrosis. The team combined two drugs that target the inflammatory signaling pathways, and successfully inhibited the development of fibrosis in MPN cell cultures.
Collapse
|
12
|
Zhang G, Bai R, Huang J, Gao Y, Yun X, Haji AA. OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1160-1169. [PMID: 35666278 DOI: 10.1093/jpp/rgac023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/23/2022] [Indexed: 11/14/2022]
Affiliation(s)
- Gong Zhang
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Yanan University Affiliated Hospital, Yanan, Shaanxi, China
| | - Rong Bai
- Yanan University Affiliated Hospital, Yanan, Shaanxi, China
| | - Jianlin Huang
- Yanan University Affiliated Hospital, Yanan, Shaanxi, China
| | - Yafeng Gao
- Yanan University Affiliated Hospital, Yanan, Shaanxi, China
| | - Xiuli Yun
- Yanan University Affiliated Hospital, Yanan, Shaanxi, China
| | - Akber Aisa Haji
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
13
|
Gu L, Surolia R, Larson-Casey JL, He C, Davis D, Kang J, Antony VB, Carter AB. Targeting Cpt1a-Bcl-2 interaction modulates apoptosis resistance and fibrotic remodeling. Cell Death Differ 2022; 29:118-132. [PMID: 34413485 PMCID: PMC8738732 DOI: 10.1038/s41418-021-00840-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial calcium uniporter (MCU) regulates metabolic reprogramming in lung macrophages and the progression of pulmonary fibrosis. Fibrosis progression is associated with apoptosis resistance in lung macrophages; however, the mechanism(s) by which apoptosis resistance occurs is poorly understood. Here, we found a marked increase in mitochondrial B-cell lymphoma-2 (Bcl-2) in lung macrophages from subjects with idiopathic pulmonary fibrosis (IPF). Similar findings were seen in bleomycin-injured wild-type (WT) mice, whereas Bcl-2 was markedly decreased in mice expressing a dominant-negative mitochondrial calcium uniporter (DN-MCU). Carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme for fatty acid β-oxidation, directly interacted with Bcl-2 by binding to its BH3 domain, which anchored Bcl-2 in the mitochondria to attenuate apoptosis. This interaction was dependent on Cpt1a activity. Lung macrophages from IPF subjects had a direct correlation between CPT1A and Bcl-2, whereas the absence of binding induced apoptosis. The deletion of Bcl-2 in macrophages protected mice from developing pulmonary fibrosis. Moreover, mice had resolution when Bcl-2 was deleted or was inhibited with ABT-199 after fibrosis was established. These observations implicate an interplay between macrophage fatty acid β-oxidation, apoptosis resistance, and dysregulated fibrotic remodeling.
Collapse
Affiliation(s)
- Linlin Gu
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Ranu Surolia
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Jennifer L. Larson-Casey
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Chao He
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Dana Davis
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Jungsoon Kang
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Veena B. Antony
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - A. Brent Carter
- grid.265892.20000000106344187Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.280808.a0000 0004 0419 1326Birmingham VAMC, Birmingham, AL USA
| |
Collapse
|
14
|
Proteomic profile of mesothelial exosomes isolated from peritoneal dialysis effluent of children with focal segmental glomerulosclerosis. Sci Rep 2021; 11:20807. [PMID: 34675284 PMCID: PMC8531449 DOI: 10.1038/s41598-021-00324-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
Peritoneal dialysis (PD) is the worldwide recognized preferred dialysis treatment for children affected by end-stage kidney disease (ESKD). However, due to the unphysiological composition of PD fluids, the peritoneal membrane (PM) of these patients may undergo structural and functional alterations, which may cause fibrosis. Several factors may accelerate this process and primary kidney disease may have a causative role. In particular, patients affected by steroid resistant primary focal segmental glomerulosclerosis, a rare glomerular disease leading to nephrotic syndrome and ESKD, seem more prone to develop peritoneal fibrosis. The mechanism causing this predisposition is still unrecognized. To better define this condition, we carried out, for the first time, a new comprehensive comparative proteomic mass spectrometry analysis of mesothelial exosomes from peritoneal dialysis effluent (PDE) of 6 pediatric patients with focal segmental glomerular sclerosis (FSGS) versus 6 patients affected by other primary renal diseases (No FSGS). Our omic study demonstrated that, despite the high overlap in the protein milieu between the two study groups, machine learning allowed to identify a core list of 40 proteins, with ANXA13 as most promising potential biomarker, to distinguish, in our patient population, peritoneal dialysis effluent exosomes of FSGS from No FSGS patients (with 100% accuracy). Additionally, the Weight Gene Co-expression Network Analysis algorithm identified 17 proteins, with PTP4A1 as the most statistically significant biomarker associated to PD vintage and decreased PM function. Altogether, our data suggest that mesothelial cells of FSGS patients are more prone to activate a pro-fibrotic machinery. The role of the proposed biomarkers in the PM pathology deserves further investigation. Our results need further investigations in a larger population to corroborate these findings and investigate a possible increased risk of PM loss of function or development of encapsulating peritoneal sclerosis in FSGS patients, thus to eventually carry out changes in PD treatment and management or implement new solutions.
Collapse
|
15
|
Yue L, Shi Y, Su X, Ouyang L, Wang G, Ye T. Matrix metalloproteinases inhibitors in idiopathic pulmonary fibrosis: Medicinal chemistry perspectives. Eur J Med Chem 2021; 224:113714. [PMID: 34315043 DOI: 10.1016/j.ejmech.2021.113714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disease with limited therapeutic options and a particularly poor prognosis. Matrix metalloproteinases (MMPs), promising targets for the treatment of IPF, have been identified as playing a pivotal role in IPF. Although the pathological processes of MMPs and IPF have been verified, there are no MMP inhibitors for the treatment of IPF in the clinic. In this review, we will present the latest developments in MMP inhibitors, including pharmacophores, binding modes, selectivity and optimization strategies. In addition, we will also discuss the future development direction of MMP inhibitors based on emerging tools and techniques.
Collapse
Affiliation(s)
- Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaojie Shi
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guan Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
16
|
Larson-Casey JL, Gu L, Kang J, Dhyani A, Carter AB. NOX4 regulates macrophage apoptosis resistance to induce fibrotic progression. J Biol Chem 2021; 297:100810. [PMID: 34023385 PMCID: PMC8214193 DOI: 10.1016/j.jbc.2021.100810] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/03/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary fibrosis is a progressive lung disease often occurring secondary to environmental exposure. Asbestos exposure is an important environmental mediator of lung fibrosis and remains a significant cause of disease despite strict regulations to limit exposure. Lung macrophages play an integral role in the pathogenesis of fibrosis induced by asbestos (asbestosis), in part by generating reactive oxygen species (ROS) and promoting resistance to apoptosis. However, the mechanism by which macrophages acquire apoptosis resistance is not known. Here, we confirm that macrophages isolated from asbestosis subjects are resistant to apoptosis and show they are associated with enhanced mitochondrial content of NADPH oxidase 4 (NOX4), which generates mitochondrial ROS generation. Similar results were seen in chrysotile-exposed WT mice, while macrophages from Nox4-/- mice showed increased apoptosis. NOX4 regulated apoptosis resistance by activating Akt1-mediated Bcl-2-associated death phosphorylation. Demonstrating the importance of NOX4-mediated apoptosis resistance in fibrotic remodeling, mice harboring a conditional deletion of Nox4 in monocyte-derived macrophages exhibited increased apoptosis and were protected from pulmonary fibrosis. Moreover, resolution occurred when Nox4 was deleted in monocyte-derived macrophages in mice with established fibrosis. These observations suggest that NOX4 regulates apoptosis resistance in monocyte-derived macrophages and contributes to the pathogenesis of pulmonary fibrosis. Targeting NOX4-mediated apoptosis resistance in monocyte-derived macrophages may provide a novel therapeutic target to protect against the development and/or progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Linlin Gu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jungsoon Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ashish Dhyani
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA.
| |
Collapse
|
17
|
Staphylococcus aureus on the effect of expression of MMPs/TIMPs and uPA system in bovine mammary fibroblasts. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:411-419. [DOI: 10.1016/j.jmii.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/19/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023]
|
18
|
Wu R, Högberg J, Adner M, Stenius U, Zheng H. Crystalline silica particles induce DNA damage in respiratory epithelium by ATX secretion and Rac1 activation. Biochem Biophys Res Commun 2021; 548:91-97. [PMID: 33636640 DOI: 10.1016/j.bbrc.2021.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/05/2021] [Indexed: 11/28/2022]
Abstract
Autotaxin (ATX) and its product lysophosphatidic acid (LPA) have been implicated in lung fibrosis and cancer. We have studied their roles in DNA damage induced by carcinogenic crystalline silica particles (CSi). In an earlier study on bronchial epithelia, we concluded that ATX, via paracrine signaling, amplifies DNA damage. This effect was seen at 6-16 h. A succeeding study showed that CSi induced NLRP3 phosphorylation, mitochondrial depolarization, double strand breaks (DSBs), and NHEJ repair enzymes within minutes. In the current study we hypothesized a role for the ATX-LPA axis also in this rapid DNA damage. Using 16HBE human bronchial epithelial cells, we show ATX secretion at 3 min, and that ATX inhibitors (HA130 and PF8380) prevented both CSi-induced mitochondrial depolarization and DNA damage (detected by γH2AX and Comet assay analysis). Experiments with added LPA gave similar rapid effects as CSi. Furthermore, Rac1 was activated at 3 min, and a Rac1 inhibitor (NSC23766) prevented mitochondrial depolarization and genotoxicity. In mice the bronchial epithelia exhibited histological signs of ATX activation and signs of DSBs (53BP1 positive nuclei) minutes after a single inhalation of CSi. Our data indicate that CSi rapidly activate the ATX-LPA axis and within minutes this leads to DNA damage in bronchial epithelial cells. Thus, ATX mediates very rapid DNA damaging effects of inhaled particles.
Collapse
Affiliation(s)
- Rongrong Wu
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Huiyuan Zheng
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden.
| |
Collapse
|
19
|
Role of microRNAs in Lung Carcinogenesis Induced by Asbestos. J Pers Med 2021; 11:jpm11020097. [PMID: 33546236 PMCID: PMC7913345 DOI: 10.3390/jpm11020097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are a class of small noncoding endogenous RNAs 19–25 nucleotides long, which play an important role in the post-transcriptional regulation of gene expression by targeting mRNA targets with subsequent repression of translation. MicroRNAs are involved in the pathogenesis of numerous diseases, including cancer. Lung cancer is the leading cause of cancer death in the world. Lung cancer is usually associated with tobacco smoking. However, about 25% of lung cancer cases occur in people who have never smoked. According to the International Agency for Research on Cancer, asbestos has been classified as one of the cancerogenic factors for lung cancer. The mechanism of malignant transformation under the influence of asbestos is associated with the genotoxic effect of reactive oxygen species, which initiate the processes of DNA damage in the cell. However, epigenetic mechanisms such as changes in the microRNA expression profile may also be implicated in the pathogenesis of asbestos-induced lung cancer. Numerous studies have shown that microRNAs can serve as a biomarker of the effects of various adverse environmental factors on the human body. This review examines the role of microRNAs, the expression profile of which changes upon exposure to asbestos, in key processes of carcinogenesis, such as proliferation, cell survival, metastasis, neo-angiogenesis, and immune response avoidance.
Collapse
|
20
|
The Paradoxical Effect of PARP Inhibitor BGP-15 on Irinotecan-Induced Cachexia and Skeletal Muscle Dysfunction. Cancers (Basel) 2020; 12:cancers12123810. [PMID: 33348673 PMCID: PMC7766767 DOI: 10.3390/cancers12123810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Both cancer and the chemotherapy used to treat it are drivers of cachexia, a life-threatening body-wasting condition which complicates cancer treatment. Poly-(ADP-ribose) polymerase (PARP) inhibitors are currently being investigated as a treatment against cancer. Here, we present paradoxical evidence that they might also be useful for mitigating the skeletal muscle specific side-effects of anti-cancer chemotherapy or exacerbate them. BGP-15 is a small molecule PARP inhibitor which protected against irinotecan (IRI)-induced cachexia and loss of skeletal muscle mass and dysfunction in our study. However, peculiarly, BGP-15 adjuvant therapy reduced protein synthesis rates and the expression of key cytoskeletal proteins associated with the dystrophin-associated protein complex and increased matrix metalloproteinase activity, while it increased the propensity for fast-twitch muscles to tear during fatiguing contraction. Our data suggest that both IRI and BGP-15 cause structural remodeling involving proteins associated with the contractile apparatus, cytoskeleton and/or the extracellular matrix which may be only transient and ultimately beneficial or may paradoxically onset a muscular dystrophy phenotype and be detrimental if more permanent. Abstract Chemotherapy-induced muscle wasting and dysfunction is a contributing factor to cachexia alongside cancer and increases the risk of morbidity and mortality. Here, we investigate the effects of the chemotherapeutic agent irinotecan (IRI) on skeletal muscle mass and function and whether BGP-15 (a poly-(ADP-ribose) polymerase-1 (PARP-1) inhibitor and heat shock protein co-inducer) adjuvant therapy could protect against IRI-induced skeletal myopathy. Healthy 6-week-old male Balb/C mice (n = 24; 8/group) were treated with six intraperitoneal injections of either vehicle, IRI (30 mg/kg) or BGP-15 adjuvant therapy (IRI+BGP; 15 mg/kg) over two weeks. IRI reduced lean and tibialis anterior mass, which were attenuated by IRI+BGP treatment. Remarkably, IRI reduced muscle protein synthesis, while IRI+BGP reduced protein synthesis further. These changes occurred in the absence of a change in crude markers of mammalian/mechanistic target of rapamycin (mTOR) Complex 1 (mTORC1) signaling and protein degradation. Interestingly, the cytoskeletal protein dystrophin was reduced in both IRI- and IRI+BGP-treated mice, while IRI+BGP treatment also decreased β-dystroglycan, suggesting significant remodeling of the cytoskeleton. IRI reduced absolute force production of the soleus and extensor digitorum longus (EDL) muscles, while IRI+BGP rescued absolute force production of the soleus and strongly trended to rescue force output of the EDL (p = 0.06), which was associated with improvements in mass. During the fatiguing stimulation, IRI+BGP-treated EDL muscles were somewhat susceptible to rupture at the musculotendinous junction, likely due to BGP-15’s capacity to maintain the rate of force development within a weakened environment characterized by significant structural remodeling. Our paradoxical data highlight that BGP-15 has some therapeutic advantage by attenuating IRI-induced skeletal myopathy; however, its effects on the remodeling of the cytoskeleton and extracellular matrix, which appear to make fast-twitch muscles more prone to tearing during contraction, could suggest the induction of muscular dystrophy and, thus, require further characterization.
Collapse
|
21
|
Kasashima S, Kawashima A, Kasashima F, Matsumoto Y, Yamamoto Y, Ozaki S, Takemura H. Adventitial matrix metalloproteinase production and distribution of immunoglobulin G4-related abdominal aortic aneurysms. JVS Vasc Sci 2020; 1:151-165. [PMID: 34617043 PMCID: PMC8489202 DOI: 10.1016/j.jvssci.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Objective IgG4-related diseases are systemic inflammatory fibrous lesions characterized by elevated serum IgG4 and infiltration of IgG4-positive plasmacytes. They can manifest in vascular lesions as frequently formed aneurysms with prominent thickening of the adventitia (IgG4-related abdominal aortic aneurysm; IgG4-AAA). Matrix metalloproteinases (MMPs) degrade the extracellular matrix, mainly in the tunica media, resulting in destruction of aortic structures to cause enlargement of the aneurysm. However, the expression of adventitial MMPs in IgG4-AAAs is poorly understood. Methods MMPs and MMPs-presenting cells in the adventitia of IgG4-AAAs (n = 19) of human surgical specimens were evaluated by immunohistochemistry and dual messenger RNA in situ hybridization. The results were compared with those from control groups of non-IgG4-related inflammatory AAA (n = 18), atherosclerotic AAA (aAAA; n = 11), and autopsy cases (n = 11). Preoperative serum MMPs levels of these groups were compared with the histologic data. Results Expression of MMP-9, MMP-2, and MMP-14 at the protein and messenger RNA levels in the adventitia was significantly higher in IgG4-AAAs than in controls. Other MMPs were scarce. The total number of MMP-9-positive cells was positively correlated with the diameter of the aneurysm (R = 0.461; P = .031), the adventitial thickness (R = 0.688; P < .001), and the number of IgG4-positive cells (R = 0.764; P < .001). Within lymphoid follicles, MMP-9-presenting cells were predominantly detected in large follicular dendritic cells, followed by histiocytes, fibroblasts, and plasmacytic dendritic cells. Outside lymphoid follicles, fibroblasts, and histiocytes mainly expressed MMP-9, and tissue dendritic cells also produced MMP-9. The levels of MMP-9 derived from follicular dendritic cells and histiocytes and plasmacytic dendritic cells outside lymphoid follicles were significantly higher in IgG4-AAA group than in other groups. Expression of adventitial MMP-2 and MMP-14 by histiocytes and fibroblasts was predominantly detected outside lymphoid follicles. Serum MMP-9 levels were significantly higher in IgG4-AAAs (835 ng/mL) than in controls, and correlated with serum IgG4 levels and the total numbers of adventitial MMP-9-positive cells, whereas serum MMP-2 levels did not differ among the three aneurysmal groups. Conclusions MMP-9 production in adventitial immune cells concerning lymphoid follicles was characteristic of IgG4-AAAs and might work in its activity with aneurysmal dilatation and adventitial thickening. Expressions of adventitial MMP-2 and MMP-14 were detected in histiocytes and fibroblasts outside lymphoid follicles, and were less concerned with the activity of IgG4-AAAs. This retrospective multicenter study analyzed adventitial matrix metalloproteinases (MMPs) production in 19 patients with IgG4-related abdominal aortic aneurysms (AAAs) and 40 control cases. Adventitial MMP-9 production by various kinds of immune cells was increased in patients with IgG4-related AAAs and concerned with IgG4-AAA activity to cause aneurysmal progression and adventitial fibrosis, compared with aAAA. Serum MMP-9 levels reflected histologic MMP-9. Adventitial MMP-2 and MMP-14 were less concerned with IgG4-AAA activity. Thus, for IgG4-AAA patients, monitoring serum MMP-9 level might be the exacerbating factors related to adverse events during the treatment course.
Collapse
Affiliation(s)
- Satomi Kasashima
- Department of Clinical Laboratory Science, Graduate School of Health Science, Kanazawa University, Kanazawa, Japan
- Department of Pathology, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
- Department of Clinical Laboratory, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
- Correspondence: Satomi Kasashima, MD, PhD, Department of Clinical Laboratory Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Atsuhiro Kawashima
- Department of Pathology, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
- Department of Clinical Laboratory, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
| | - Fuminori Kasashima
- Department of Cardiovascular Surgery, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
| | - Yasushi Matsumoto
- Department of Cardiovascular Surgery, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
| | - Yoshitaka Yamamoto
- Department of Cardiovascular Surgery, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
| | - Satoru Ozaki
- Department of Clinical Laboratory Science, Graduate School of Health Science, Kanazawa University, Kanazawa, Japan
| | - Hirofumi Takemura
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
22
|
Larson-Casey JL, Vaid M, Gu L, He C, Cai GQ, Ding Q, Davis D, Berryhill TF, Wilson LS, Barnes S, Neighbors JD, Hohl RJ, Zimmerman KA, Yoder BK, Longhini ALF, Hanumanthu VS, Surolia R, Antony VB, Carter AB. Increased flux through the mevalonate pathway mediates fibrotic repair without injury. J Clin Invest 2020; 129:4962-4978. [PMID: 31609245 DOI: 10.1172/jci127959] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Macrophages are important in mounting an innate immune response to injury as well as in repair of injury. Gene expression of Rho proteins is known to be increased in fibrotic models; however, the role of these proteins in idiopathic pulmonary fibrosis (IPF) is not known. Here, we show that BAL cells from patients with IPF have a profibrotic phenotype secondary to increased activation of the small GTPase Rac1. Rac1 activation requires a posttranslational modification, geranylgeranylation, of the C-terminal cysteine residue. We found that by supplying more substrate for geranylgeranylation, Rac1 activation was substantially increased, resulting in profibrotic polarization by increasing flux through the mevalonate pathway. The increased flux was secondary to greater levels of acetyl-CoA from metabolic reprogramming to β oxidation. The polarization mediated fibrotic repair in the absence of injury by enhancing macrophage/fibroblast signaling. These observations suggest that targeting the mevalonate pathway may abrogate the role of macrophages in dysregulated fibrotic repair.
Collapse
Affiliation(s)
| | - Mudit Vaid
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Guo-Qiang Cai
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Qiang Ding
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Dana Davis
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Taylor F Berryhill
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Landon S Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey D Neighbors
- Department of Medicine, and.,Department of Pharmacology, College of Medicine, Penn State University, Hershey, Pennsylvania, USA.,Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Raymond J Hohl
- Department of Medicine, and.,Department of Pharmacology, College of Medicine, Penn State University, Hershey, Pennsylvania, USA.,Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | | | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, and
| | - Ana Leda F Longhini
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vidya Sagar Hanumanthu
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ranu Surolia
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - Veena B Antony
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, and.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
23
|
Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacol Res 2020; 152:104591. [PMID: 31837390 DOI: 10.1016/j.phrs.2019.104591] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
|
24
|
Larson-Casey JL, He C, Carter AB. Mitochondrial quality control in pulmonary fibrosis. Redox Biol 2020; 33:101426. [PMID: 31928788 PMCID: PMC7251238 DOI: 10.1016/j.redox.2020.101426] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanisms underlying the pathogenesis of pulmonary fibrosis remain incompletely understood. Emerging evidence suggests changes in mitochondrial quality control are a critical determinant in many lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary hypertension, acute lung injury, lung cancer, and in the susceptibility to pulmonary fibrosis. Once thought of as the kidney-bean shaped powerhouses of the cell, mitochondria are now known to form interconnected networks that rapidly and continuously change their size to meet cellular metabolic demands. Mitochondrial quality control modulates cell fate and homeostasis, and diminished mitochondrial quality control results in mitochondrial dysfunction, increased reactive oxygen species (ROS) production, reduced ATP production, and often induces intrinsic apoptosis. Here, we review the role of the mitochondria in alveolar epithelial cells, lung macrophages, and fibroblasts within the context of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States; Birmingham VAMC, Birmingham, AL, 35294, United States.
| |
Collapse
|
25
|
He C, Larson-Casey JL, Davis D, Hanumanthu VS, Longhini ALF, Thannickal VJ, Gu L, Carter AB. NOX4 modulates macrophage phenotype and mitochondrial biogenesis in asbestosis. JCI Insight 2019; 4:126551. [PMID: 31434799 DOI: 10.1172/jci.insight.126551] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophage activation is implicated in the development of pulmonary fibrosis by generation of profibrotic molecules. Although NADPH oxidase 4 (NOX4) is known to contribute to pulmonary fibrosis, its effects on macrophage activation and mitochondrial redox signaling are unclear. Here, we show that NOX4 is crucial for lung macrophage profibrotic polarization and fibrotic repair after asbestos exposure. NOX4 was elevated in lung macrophages from subjects with asbestosis, and mice harboring a deletion of NOX4 in lung macrophages were protected from asbestos-induced fibrosis. NOX4 promoted lung macrophage profibrotic polarization and increased production of profibrotic molecules that induce collagen deposition. Mechanistically, NOX4 further augmented mitochondrial ROS production and induced mitochondrial biogenesis. Targeting redox signaling and mitochondrial biogenesis prevented the profibrotic polarization of lung macrophages by reducing the production of profibrotic molecules. These observations provide evidence that macrophage NOX4 is a potentially novel therapeutic target to halt the development of asbestos-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Chao He
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | | | - Dana Davis
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Vidya Sagar Hanumanthu
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ana Leda F Longhini
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
26
|
Cui Y, Huang L, Huo T, Dong F, Wang G, Zhang Q. Man-made mineral fiber effects on the expression of anti-oncogenes P53 and P16 and oncogenes C-JUN and C-FOS in the lung tissue of Wistar rats. Toxicol Ind Health 2019; 35:431-444. [PMID: 31131716 DOI: 10.1177/0748233719851699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Man-made mineral fibers (MMMFs) are substitutes for asbestos. MMMFs are widely used as insulation, but their molecular mechanisms underlying the tumorigenic effects in vivo have been poorly studied. For this reason, this work aimed to explore the properties and carcinogenic molecular mechanisms of MMMFs. The three MMMFs, rock wool (RW), glass fibers (GFs), and ceramic fibers (CFs), were prepared into respirable dust. Particle size, morphology, and chemical composition were analyzed by laser particle analyzer, scanning electron microscope, and X-ray fluorescence spectrometer, respectively. The Wistar rats were administered multiple intratracheal instillations of three MMMFs once a month. Then, several parameters (e.g. body mass, lung mass, and lung histology) were measured at 1, 3, and 6 months. After that, levels of P53, P16, C-JUN, and C-FOS mRNA and protein were measured by quantitative real-time reverse transcription polymerase chain reaction and Western blotting. This work found that exposure to MMMFs could influence the growth of body mass and increase lung mass. General conditions showed white nodules and irregular atrophy. In addition, MMMFs could lead to inactivation of anti-oncogene P16 and activation of proto-oncogenes (C-JUN and C-FOS) in the mRNA and protein levels, in which GF and CF were more obvious compared with RW. The effect of MMMFs was different, which may be related to the physical and chemical characteristics of different MMMFs. In conclusion, MMMFs (GF and CF) could induce an unbalanced expression of cancer-related genes in the lung tissues of rats. The understanding of the determinants of toxicity and carcinogenicity provides a scientific basis for developing and introducing new safer MMMF products, and the present study provides some useful insights into the carcinogenic mechanism of MMMFs.
Collapse
Affiliation(s)
- Yan Cui
- 1 School of Public Health, Southwest Medical University, Luzhou, China
| | - Liuwen Huang
- 2 School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Tingting Huo
- 3 Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, China
| | - Faqin Dong
- 3 Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, China
| | - Guojun Wang
- 4 Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qingbi Zhang
- 1 School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Coordination between Rac1 and Rab Proteins: Functional Implications in Health and Disease. Cells 2019; 8:cells8050396. [PMID: 31035701 PMCID: PMC6562727 DOI: 10.3390/cells8050396] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
The small GTPases of the Rho family regulate many aspects of actin dynamics, but are functionally connected to many other cellular processes. Rac1, a member of this family, besides its known function in the regulation of actin cytoskeleton, plays a key role in the production of reactive oxygen species, in gene transcription, in DNA repair, and also has been proven to have specific roles in neurons. This review focuses on the cooperation between Rac1 and Rab proteins, analyzing how the coordination between these GTPases impact on cells and how alterations of their functions lead to disease.
Collapse
|
28
|
Shao R, Wang FJ, Lyu M, Yang J, Zhang P, Zhu Y. Ability to Suppress TGF-β-Activated Myofibroblast Differentiation Distinguishes the Anti-pulmonary Fibrosis Efficacy of Two Danshen-Containing Chinese Herbal Medicine Prescriptions. Front Pharmacol 2019; 10:412. [PMID: 31105564 PMCID: PMC6491955 DOI: 10.3389/fphar.2019.00412] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited treatment options. It also leads to progressive respiratory failure, which subsequently affects the heart functionality, a pathological heart-lung interaction increasingly noticed and defined as pulmonary-heart disease (PHD). Traditional Chinese medicine (TCM) theory for treating “phlegm-stasis cementation syndrome” may suggest a possibility of treating PHD complication with Chinese medicine prescriptions previously used for cardiovascular diseases. Methods: Here, we evaluate the efficacies of two compound Chinese medicine prescriptions, Danlou prescription (DLP) and Danhong prescription (DHP), which share a common herbal component, Salvia miltiorrhiza (Danshen), on pulmonary fibrosis. Severity grades of Bleomycin (BLM)-induced pulmonary fibrosis were assessed by micro-Computerized Tomography (μCT) in accordance with the clinical evaluation standard. Lung pathological changes and collagen deposition were investigated by histopathology. Myofibroblast differentiation was assessed by immunohistochemistry of α-SMA and TGF-β receptor type II expression in situ. Network pharmacology analysis of the drug-target interaction in IPF progression for DLP or DHP was performed using Ingenuity® Pathways Analysis (IPA) system. Results: We show that a non-invasive μCT effectively monitor and quantify BLM-induced pulmonary fibrosis and its treatment efficacy by Chinese medicine prescription in rodents. In addition, although both containing Salvia miltiorrhiza, DLP but not DHP mitigates BLM-induced lung fibrosis by inhibiting the TGF-β signaling-activated myofibroblast differentiation and α-SMA expression in a mouse model. Core analysis by IPA revealed that DLP ingredients regulated not only pulmonary fibrosis related inflammatory genes but also genes associated with myofibroblast activation and collagen deposition. Conclusion: This study suggests that a clinically efficacious cardiovascular Chinese herbal medicine (DLP) can be successfully repurposed to treat a lung disease in pulmonary fibrosis guided by TCM theory. Our comparative study between DLP and DHP demonstrated a critical requirement of suppressing both pro-inflammatory and pro-fibrotic pathways for the treatment of pulmonary fibrosis, supporting that a multi-component prescription capable of “removing both phlegm and blood stasis” will better achieve co-protection of heart and lung in PHD.
Collapse
Affiliation(s)
- Rui Shao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Fu-Jiang Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Ming Lyu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Jian Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Peng Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| |
Collapse
|
29
|
Li Z, Zhang W, Li Y, Cao S, Liu S, Ning L, Jiao X, Liu Z, Xing X, Li Y, Zhou Y. TIPE2 acts as a biomarker for GIST risk category and suppresses the viability and invasiveness of GIST cells. Cell Biosci 2018; 8:62. [PMID: 30534358 PMCID: PMC6282356 DOI: 10.1186/s13578-018-0261-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022] Open
Abstract
Evaluating the risk category of gastrointestinal stromal tumors (GISTs) is crucial for predicting prognosis and choosing treatment strategies, and tumor metastasis usually represent poor prognosis. Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) is a novel described tumor suppressor. In the present study, TIPE2 expression was detected using a total of 96 human GIST specimens by immunohistochemistry. The effect of TIPE2 on proliferation and invasiveness of GIST cells and its related mechanisms were explored in vitro. It was found that TIPE2 expression was gradually decreased in accordance with GIST risk grades and negatively associated with tumor size, mitotic count and risk category. Moreover, TIPE2 was identified as a biomarker for evaluating the risk grade of GIST. TIPE2 markedly suppressed the viability, colony formation, migration and invasion of GIST cells. Furthermore, TIPE2 induced apoptosis and suppressed MMP-9 expression of GIST cells by targeting Rac1. In conclusion, these results indicate that TIPE2 plays a pivotal role in the progression of GIST. TIPE2 serves as a promising biomarker for evaluating GIST risk grade and a potential target for treatment of GIST.
Collapse
Affiliation(s)
- Zequn Li
- 1Department of General Surgery, Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong People's Republic of China
| | - Wei Zhang
- 2Department of Emergency Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Li
- 1Department of General Surgery, Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong People's Republic of China
| | - Shougen Cao
- 1Department of General Surgery, Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong People's Republic of China
| | - Shanglong Liu
- 1Department of General Surgery, Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong People's Republic of China
| | - Liang Ning
- 3Department of Emergency General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuelong Jiao
- 1Department of General Surgery, Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong People's Republic of China
| | - Zimin Liu
- 4Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoming Xing
- 5Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujun Li
- 5Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanbing Zhou
- 1Department of General Surgery, Affiliated Hospital of Qingdao University, 16# Jiangsu Road, Qingdao, Shandong People's Republic of China
| |
Collapse
|
30
|
Malsin ES, Kamp DW. The mitochondria in lung fibrosis: friend or foe? Transl Res 2018; 202:1-23. [PMID: 30036495 DOI: 10.1016/j.trsl.2018.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) and other forms of lung fibrosis are age-associated diseases with increased deposition of mesenchymal collagen that promotes respiratory malfunction and eventual death from respiratory failure. Our understanding of the pathobiology underlying pulmonary fibrosis is incomplete and current therapies available to slow or treat lung fibrosis are limited. Evidence reviewed herein demonstrates key involvement of mitochondrial dysfunction in diverse pulmonary cell populations, including alveolar epithelial cells (AEC), fibroblasts, and macrophages and/or immune cells that collectively advances the development of pulmonary fibrosis. The mitochondria have an important role in regulating whether fibrogenic stimuli results in the return of normal healthy function ("friend") or the development of pulmonary fibrosis ("foe"). In particular, we summarize the evidence suggesting that AEC mitochondrial dysfunction is important in mediating lung fibrosis signaling via mechanisms involving imbalances in the levels of reactive oxygen species, endoplasmic reticulum stress response, mitophagy, apoptosis and/or senescence, and inflammatory signaling. Further, we review the emerging evidence suggesting that dysfunctional mitochondria in AECs and other cell types play crucial roles in modulating nearly all aspects of the 9 hallmarks of aging in the context of pulmonary fibrosis as well as some novel molecular pathways that have recently been identified. Finally, we discuss the potential translational aspects of these studies as well as the key knowledge gaps necessary for better informing our understanding of the pathobiology of the mitochondria in mediating pulmonary fibrosis. We reason that targeting deficient mitochondria-derived pathways may provide innovative future treatment strategies that are urgently needed for lung fibrosis.
Collapse
Affiliation(s)
- Elizabeth S Malsin
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David W Kamp
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center and Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
31
|
Malinovskaya NA, Morgun AV, Pisareva NV, Osipova ED, Boytsova EB, Panina YA, Zhukov EL, Medvedeva NN, Salmina AB. Changes in the Permeability and Expression of Markers of the Structural and Functional Integrity of the Blood–Brain Barrier under Early Postnatal Hypoxia in vivo. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Jia W, Li Z, Chen J, Sun L, Liu C, Wang S, Chi J, Niu J, Lai H. TIPE2 acts as a biomarker for tumor aggressiveness and suppresses cell invasiveness in papillary thyroid cancer (PTC). Cell Biosci 2018; 8:49. [PMID: 30186591 PMCID: PMC6119276 DOI: 10.1186/s13578-018-0247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a newly described negative immune regulator and is closely associated with various tumors. However, the expression and roles of TIPE2 in PTC is unknown. Results In the present study, TIPE2 upregulation in PTC tissues was found to be negatively associated with tumor size, capsule infiltration, peripheral infiltration and tumor T stage, which could be used to predict tumor invasiveness. TIPE2 overexpression significantly suppressed the viability, proliferation, migration and invasion of PTC cells. Moreover, TIPE2 suppressed tumor invasiveness by inhibiting Rac1, leading to decreased expression of uPA and MMP9. Conclusions These results indicate that TIPE2 is a potential biomarker for predicting tumor aggressiveness and suppresses tumor invasiveness in a Rac1-dependent manner. Electronic supplementary material The online version of this article (10.1186/s13578-018-0247-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenyu Jia
- 1Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong People's Republic of China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong People's Republic of China
| | - Zequn Li
- 3Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong People's Republic of China
| | - Junyu Chen
- 4Department of Endocrinology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Lei Sun
- 4Department of Endocrinology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Chuanqian Liu
- 5Department of Traditional Chinese Medicine, The First People's Hospital of Jining, Jining, Shandong People's Republic of China
| | - Shaping Wang
- Clinical Laboratory, Weihai Wendeng Central Hospital, Weihai, Shandong People's Republic of China
| | - Jingwei Chi
- 7Key Laboratory of Thyroid Disease, Affiliated Hospital of Qingdao University, Qingdao, Shandong People's Republic of China
| | - Jun Niu
- 8Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong People's Republic of China
| | - Hong Lai
- 4Department of Endocrinology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| |
Collapse
|
33
|
Zhu W, Huang Y, Ye Y, Wang Y. Deferoxamine preconditioning ameliorates mechanical ventilation-induced lung injury in rat model via ROS in alveolar macrophages: a randomized controlled study. BMC Anesthesiol 2018; 18:116. [PMID: 30121078 PMCID: PMC6098841 DOI: 10.1186/s12871-018-0576-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
Background Mechanical ventilation (MV) can provide effective breathing support; however, ventilatior-induced lung injury (VILI) has also been widely recognized in clinical practice, including in the healthy lung. Unfortunately, the morbidity and mortality of VILI remain unacceptably high, and no satisfactory therapeutic effect can be achieved. The current study aimed to examine the effects of iron chelator preconditioning on the mitochondrial reactive oxygen species (ROS) in alveolar macrophages and pathological lung injury in VILI. Methods Twenty four healthy male Sprague–Dawley (SD) rats (250–300 g in weight) were randomly divided into 3 groups, including the control group (NC group, n = 8), the high-volume mechanical ventilation group (HV group, n = 8), and the deferoxamine treatment group (HV + DFO group, n = 8). Rats in the HV and HV + DFO groups were subjected to high-volume MV at a dose of 40 ml/kg. DFO was administered at a dose of 200 mg/kg 15 min prior to over-ventilation. Spontaneously breathing anesthetized rats were used as the controls. The animals were sacrificed after 4 h of high-volume ventilation or under control conditions, the animals were sacrificed. Purified alveolar macrophages from bronchoalveolar lavage fluid (BALF) and lung tissue were collected for further analysis through light microscopy and flow cytometry. Results Compared with the controls, the high-volume-ventilated rats had exhibited typical lung edema and histological lung injury, and ROS were markedly increased in alveolar macrophages and mitochondria. Moreover, all indices of VILI were remarkably different in rats treated with DFO preconditioning. DFO could ameliorate lung injury in the mechanically ventilated SD rat model. Conclusions DFO preconditioning contributes to mitigating the histological lung damage while reducing ROS levels in alveolar macrophages and mitochondria, suggesting that iron metabolism in alveolar macrophages may participate in VILI.
Collapse
Affiliation(s)
- Weilin Zhu
- Department of Anesthesia, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Yuansi Huang
- Department of Anesthesia, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yuqiong Ye
- Department of Anesthesia, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yafeng Wang
- Department of Anesthesia, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| |
Collapse
|
34
|
Wang W, Yang C, Wang XY, Zhou LY, Lao GJ, Liu D, Wang C, Hu MD, Zeng TT, Yan L, Ren M. MicroRNA-129 and -335 Promote Diabetic Wound Healing by Inhibiting Sp1-Mediated MMP-9 Expression. Diabetes 2018; 67:1627-1638. [PMID: 29748291 DOI: 10.2337/db17-1238] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
Abstract
Diabetic wounds are recalcitrant to healing. However, the mechanism causing this dysfunction is not fully understood. High expression of matrix metalloproteinase-9 (MMP-9) is indicative of poor wound healing. In this study, we show that specificity protein-1 (Sp1), a regulator of MMP-9, binds directly to its promoter and enhances its expression. Additionally, we demonstrated that Sp1 is the direct target of two microRNAs (miRNAs), miR-129 and -335, which are significantly downregulated in diabetic skin tissues. In vitro experiments confirmed that miR-129 or -335 overexpression inhibits MMP-9 promoter activity and protein expression by targeting Sp1, whereas the inhibition of these miRNAs has the opposite effect. The beneficial role of miR-129 or miR-335 in diabetic wound healing was confirmed by the topical administration of miRNA agomirs in diabetic animals. This treatment downregulated Sp1-mediated MMP-9 expression, increased keratinocyte migration, and recovered skin thickness and collagen content. The combined treatment with miR-129 and miR-335 induced a synergistic effect on Sp1 repression and MMP-9 downregulation both in vitro and in vivo. This study demonstrates the regulatory mechanism of Sp1-mediated MMP-9 expression in diabetic wound healing and highlights the potential therapeutic benefits of miR-129 and -335 in delayed wound healing in diabetes.
Collapse
Affiliation(s)
- Wei Wang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China Diabetes-Related Chronic Wound Treatment Training Center, Guangzhou, People's Republic of China
| | - Xiao Yi Wang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Yan Zhou
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Guo Juan Lao
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX
| | - Dan Liu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China Diabetes-Related Chronic Wound Treatment Training Center, Guangzhou, People's Republic of China
| | - Chuan Wang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China Diabetes-Related Chronic Wound Treatment Training Center, Guangzhou, People's Republic of China
| | - Meng Die Hu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ting Ting Zeng
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China Diabetes-Related Chronic Wound Treatment Training Center, Guangzhou, People's Republic of China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China Diabetes-Related Chronic Wound Treatment Training Center, Guangzhou, People's Republic of China
| |
Collapse
|
35
|
Chaâbane M, Elwej A, Ghorbel I, Chelly S, Mnif H, Boudawara T, Ellouze Chaabouni S, Zeghal N, Soudani N. Penconazole alters redox status, cholinergic function and lung’s histoarchitecture of adult rats: Reversal effect of vitamin E. Biomed Pharmacother 2018; 102:645-652. [DOI: 10.1016/j.biopha.2018.03.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
|
36
|
Arnoldussen YJ, Skaug V, Aleksandersen M, Ropstad E, Anmarkrud KH, Einarsdottir E, Chin-Lin F, Granum Bjørklund C, Kasem M, Eilertsen E, Apte RN, Zienolddiny S. Inflammation in the pleural cavity following injection of multi-walled carbon nanotubes is dependent on their characteristics and the presence of IL-1 genes. Nanotoxicology 2018; 12:522-538. [PMID: 29742950 DOI: 10.1080/17435390.2018.1465139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Upon inhalation, multi-walled carbon nanotubes (MWCNTs) may reach the subpleura and pleural spaces, and induce pleural inflammation and/or mesothelioma in humans. However, the mechanisms of MWCNT-induced pathology after direct intrapleural injections are still only partly elucidated. In particular, a role of the proinflammatory interleukin-1 (IL-1) cytokines in pleural inflammation has so far not been published. We examined the MWCNT-induced pleural inflammation, gene expression abnormalities, and the modifying role of IL-1α and β cytokines following intrapleural injection of two types of MWCNTs (CNT-1 and CNT-2) compared with crocidolite asbestos in IL-1 wild-type (WT) and IL-1α/β KO (IL1-KO) mice. Histopathological examination of the pleura 28 days post-exposure revealed mesothelial cell hyperplasia, leukocyte infiltration, and fibrosis occurring in the CNT-1 (Mitsui-7)-exposed group. The pleura of these mice also showed the greatest changes in mRNA and miRNA expression levels, closely followed by CNT-2. In addition, the CNT-1-exposed group also presented the greatest infiltrations of leukocytes and proliferation of fibrous tissue. WT mice were more prone to development of sustained inflammation and fibrosis than IL1-KO mice. Prominent differences in genetic and epigenetic changes were also observed between the two genotypes. In conclusion, the fibrotic response to MWCNTs in the pleura depends on the particles' physico-chemical properties and on the presence or absence of the IL-1 genes. Furthermore, we found that CNT-1 was the most potent inducer of inflammatory responses, followed by CNT-2 and crocidolite asbestos.
Collapse
Affiliation(s)
- Yke Jildouw Arnoldussen
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Vidar Skaug
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Mona Aleksandersen
- b Department of Basic Sciences and Aquatic Medicine , Faculty of Veterinary Medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Erik Ropstad
- c Department of Production Animal Clinical Sciences , Faculty of Veterinary Medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Kristine Haugen Anmarkrud
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Elin Einarsdottir
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Fang Chin-Lin
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Cesilie Granum Bjørklund
- c Department of Production Animal Clinical Sciences , Faculty of Veterinary Medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Mayes Kasem
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Einar Eilertsen
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Ron N Apte
- d The Shraga Segal Department of Microbiology, Immunology, and Genetics, The Faculty of Health Sciences , Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Shanbeh Zienolddiny
- a Department of Biological and Chemical Work Environment , National Institute of Occupational Health , Oslo , Norway
| |
Collapse
|
37
|
Afratis NA, Selman M, Pardo A, Sagi I. Emerging insights into the role of matrix metalloproteases as therapeutic targets in fibrosis. Matrix Biol 2018; 68-69:167-179. [PMID: 29428229 DOI: 10.1016/j.matbio.2018.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 01/18/2023]
Abstract
Fibrosis is the extensive accumulation and buildup of extracellular matrix components, especially fibrillar collagens, during wound healing in response to tissue injury. During all individual stages of fibrosis ECM proteases, mainly matrix metalloproteinases, have diverse roles. The functional role of MMPs and their endogenous inhibitors are differentiated among their family members, and according to the different stages of fibrosis. MMPs levels are elevated in several inflammatory and non-inflammatory fibrotic tissues contributing to the development, progression or resolution of the disease, whereas in other tissues their expression levels can be diminished or be stable to the baseline. The biological roles of MMPs during fibrosis are not fully resolved, but they seem to differ according the specific member of the family, the affected tissue and the stage of the fibrotic response. Remarkably, some members of the family exhibit profibrotic actions while other function as antifibrotic molecules. Diverse animal models indicate that MMPs are contributing in processes related to immunity, tissue repair and ECM turnover, providing significant impact on mechanisms related to fibrosis. For that purpose, these proteases are considered as pharmacological targets and new biological drugs have been developed in order to treat fibrosis.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, CDMX 14080, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónma de México, CDMX 04510, Mexico
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
38
|
Maruhashi R, Akizuki R, Sato T, Matsunaga T, Endo S, Yamaguchi M, Yamazaki Y, Sakai H, Ikari A. Elevation of sensitivity to anticancer agents of human lung adenocarcinoma A549 cells by knockdown of claudin-2 expression in monolayer and spheroid culture models. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:470-479. [PMID: 29247669 DOI: 10.1016/j.bbamcr.2017.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023]
Abstract
Claudins, tight junctional proteins, regulate the paracellular permeability of ions and small molecules. Claudin-2 is highly expressed in human lung adenocarcinoma cells and is involved in the up-regulation of cell proliferation. However, the effect of claudin-2 on cellular sensitivity to anticancer agents has not been clarified. The cytotoxicity of anticancer agents such as cisplatin, gefitinib and doxorubicin (DXR) was increased by claudin-2 knockdown in A549 cells. Claudin-2 knockdown also significantly decreased the expression level of multidrug resistance-associated protein/ABCC2. The expression levels of other drug efflux transporters were unchanged. The intracellular accumulation of 5-chloromethylfluorescein diacetate (CMFDA) and DXR, substrates of ABCC2, was increased by claudin-2 knockdown, whereas the efflux was decreased. MK-571, an inhibitor of ABCC2, enhanced the cytotoxicity of anticancer agents. Claudin-2 knockdown decreased the levels of p-c-Jun and nuclear Sp1. SP600125, an inhibitor of c-Jun, and mithramycin, an inhibitor of Sp1, decreased the level of ABCC2. The promoter activity of ABCC2 was decreased by claudin-2 knockdown, SP600125 and mithramycin treatments, suggesting that claudin-2 is involved in the up-regulation of ABCC2 expression at the transcriptional level. Claudin-2 knockdown increased the paracellular permeability of DXR in a 2D monolayer culture model. In addition, the accumulation of DXR into spheroids was enhanced by claudin-2 knockdown, resulting in a reduction in cell viability. We suggest that claudin-2 may be a novel therapeutic target in lung adenocarcinoma, because claudin-2 knockdown increased the accumulation of anticancer agents in cancer cells and spheroids.
Collapse
Affiliation(s)
- Ryohei Maruhashi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Risa Akizuki
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomonari Sato
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Masahiko Yamaguchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuhiro Yamazaki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hideki Sakai
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
39
|
Liu X, Chen Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med 2017; 15:207. [PMID: 29029603 PMCID: PMC5640915 DOI: 10.1186/s12967-017-1306-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/30/2017] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critically involved in reactive oxygen species (ROS)-dependent lung diseases, such as lung fibrosis, asbestos, chronic airway diseases and lung cancer. Mitochondrial DNA (mtDNA) encodes mitochondrial proteins and is more sensitive to oxidants than nuclear DNA. Damage to mtDNA causes mitochondrial dysfunction, including electron transport chain impairment and mitochondrial membrane potential loss. Furthermore, damaged mtDNA also acts as a damage-associated molecular pattern (DAMP) that drives inflammatory and immune responses. In this review, crosstalk among alveolar epithelial cells, alveolar macrophages and mitochondria is examined. ROS-related transcription factors and downstream cell signaling pathways are also discussed. We conclude that targeting oxidative stress with antioxidant agents, such as thiol molecules, polyphenols and superoxide dismutase (SOD), and promoting mitochondrial biogenesis should be considered as novel strategies for treating lung diseases that currently have no effective treatment options.
Collapse
Affiliation(s)
- Xiaojing Liu
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Diseases, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.,Geriatric Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No 600 Yishan Road, Shanghai, China
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Diseases, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
40
|
He C, Larson-Casey JL, Gu L, Ryan AJ, Murthy S, Carter AB. Cu,Zn-Superoxide Dismutase-Mediated Redox Regulation of Jumonji Domain Containing 3 Modulates Macrophage Polarization and Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 55:58-71. [PMID: 26699812 DOI: 10.1165/rcmb.2015-0183oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
M2 macrophages are implicated in the development of pulmonary fibrosis as they generate profibrotic signals. The polarization process, at least in part, is regulated by epigenetic modulation. Because Cu,Zn-superoxide dismutase-induced H2O2 can polarize macrophages to a profibrotic M2 phenotype, we hypothesized that modulation of the redox state of the cell is involved in the epigenetic modulation of the macrophage phenotype. In this study, we show that signal transducer and activator of transcription 6 (STAT6) regulates Jumonji domain containing (Jmjd) 3, a histone H3 lysine 27 demethylase, and mutation of a redox-sensitive cysteine in STAT6 attenuates jmjd3 expression. Moreover, Jmjd3 deficiency abrogates profibrotic M2 gene expression. Treatment with leflunomide, which reduces mitochondrial reactive oxygen species production and tyrosine phosphorylation, inhibits jmjd3 expression and M2 polarization, as well as development of a fibrotic phenotype. Taken together, these observations provide evidence that the redox regulation of Jmjd3 is a unique regulatory mechanism for Cu,Zn-superoxide dismutase-mediated profibrotic M2 polarization. Furthermore, leflunomide, which reduces reactive oxygen species production and tyrosine phosphorylation, may prove to be therapeutic in the treatment of asbestos-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Chao He
- Departments of 1Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology
| | - Jennifer L Larson-Casey
- Departments of 1Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology.,2 Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Linlin Gu
- 2 Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Alan J Ryan
- 3 Internal Medicine, Carver College of Medicine, and
| | - Shubha Murthy
- 3 Internal Medicine, Carver College of Medicine, and
| | - A Brent Carter
- Departments of 1Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology.,4 Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa.,5 Iowa City Veterans Administration Center, Iowa City, Iowa.,2 Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and.,6 Birmingham Veterans Administration Center, Birmingham, Alabama
| |
Collapse
|
41
|
Slomiany BL, Slomiany A. Role of LPS-elicited signaling in triggering gastric mucosal inflammatory responses to H. pylori: modulatory effect of ghrelin. Inflammopharmacology 2017; 25:415-429. [PMID: 28516374 DOI: 10.1007/s10787-017-0360-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
Infection with Helicobacter pylori is a primary culprit in the etiology of gastric disease, and its cell-wall lipopolysaccharide (LPS) is recognized as a potent endotoxin responsible for triggering a pattern of the mucosal inflammatory responses. The engagement by the LPS of gastric mucosal Toll-like receptor 4 (TLR4) leads to initiation of signal transduction events characterized by the activation of mitogen-activated protein kinase (MAPK) cascade, induction of phosphoinositide-specific phospholipase C (PLC)/protein kinase C (PKC)/phosphatidylinositol 3-kinase (PI3K) pathway, and up-regulation in Src/Akt. These signaling events in turn exert their influence over H. pylori-elicited excessive generation of NO and PGE2 caused by the disturbances in nitric oxide synthase and cyclooxygenase isozyme systems, increase in epidermal growth factor receptor transactivation, and the induction in matrix metalloproteinase-9 (MMP-9) release. Interestingly, the extent of gastric mucosal inflammatory response to H. pylori is influenced by a peptide hormone, ghrelin, the action of which relays on the growth hormone secretagogue receptor type 1a (GHS-R1a)-mediated mobilization of G-protein dependent transduction pathways. Yet, the signals triggered by TLR-4 activation as well as those arising through GHS-R1a stimulation converge at MAPK and PLC/PKC/PI3K pathways that form a key integration node for proinflammatory signals generated by H. pylori LPS as well as for those involved in modulation of inflammation by ghrelin. Hence, therapeutic targeting these signals' convergence and integration node could provide a novel and attractive opportunities for developing more effective treatments of H. pylori-related gastric disease.
Collapse
Affiliation(s)
- B L Slomiany
- Research Center, C855, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA
| | - A Slomiany
- Research Center, C855, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA.
| |
Collapse
|
42
|
Gu L, Larson-Casey JL, Carter AB. Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization. FASEB J 2017; 31:3072-3083. [PMID: 28351840 DOI: 10.1096/fj.201601371r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 11/11/2022]
Abstract
Fibrosis in multiple organs, including the liver, kidney, and lung, often occurs secondary to environmental exposure. Asbestos exposure is one important environmental cause of lung fibrosis. The mechanisms that mediate fibrosis is not fully understood, although mitochondrial oxidative stress in alveolar macrophages is critical for fibrosis development. Mitochondrial Ca2+ levels can be associated with production of reactive oxygen species. Here, we show that patients with asbestosis have higher levels of mitochondrial Ca2+ compared with normal patients. The mitochondrial calcium uniporter (MCU) is a highly selective ion channel that transports Ca2+ into the mitochondrial matrix to modulate metabolism. Asbestos exposure increased mitochondrial Ca2+ influx in alveolar macrophages from wild-type, but not MCU+/-, mice. MCU expression polarized macrophages to a profibrotic phenotype after exposure to asbestos, and the profibrotic polarization was regulated by MCU-mediated ATP production. Profibrotic polarization was abrogated when MCU was absent or its activity was blocked. Of more importance, mice that were deficient in MCU were protected from pulmonary fibrosis. Regulation of mitochondrial Ca2+ suggests that MCU may play a pivotal role in the development of fibrosis and could potentially be a therapeutic target for pulmonary fibrosis.-Gu, L., Larson-Casey, J. L., Carter, A. B. Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization.
Collapse
Affiliation(s)
- Linlin Gu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Larson-Casey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; .,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
43
|
Kim SJ, Cheresh P, Jablonski RP, Morales-Nebreda L, Cheng Y, Hogan E, Yeldandi A, Chi M, Piseaux R, Ridge K, Michael Hart C, Chandel N, Scott Budinger GR, Kamp DW. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage. Free Radic Biol Med 2016; 101:482-490. [PMID: 27840320 PMCID: PMC5928521 DOI: 10.1016/j.freeradbiomed.2016.11.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022]
Abstract
RATIONALE Alveolar epithelial cell (AEC) injury and mitochondrial dysfunction are important in the development of lung fibrosis. Our group has shown that in the asbestos exposed lung, the generation of mitochondrial reactive oxygen species (ROS) in AEC mediate mitochondrial DNA (mtDNA) damage and apoptosis which are necessary for lung fibrosis. These data suggest that mitochondrial-targeted antioxidants should ameliorate asbestos-induced lung. OBJECTIVE To determine whether transgenic mice that express mitochondrial-targeted catalase (MCAT) have reduced lung fibrosis following exposure to asbestos or bleomycin and, if so, whether this occurs in association with reduced AEC mtDNA damage and apoptosis. METHODS Crocidolite asbestos (100µg/50µL), TiO2 (negative control), bleomycin (0.025 units/50µL), or PBS was instilled intratracheally in 8-10 week-old wild-type (WT - C57Bl/6J) or MCAT mice. The lungs were harvested at 21d. Lung fibrosis was quantified by collagen levels (Sircol) and lung fibrosis scores. AEC apoptosis was assessed by cleaved caspase-3 (CC-3)/Surfactant protein C (SFTPC) immunohistochemistry (IHC) and semi-quantitative analysis. AEC (primary AT2 cells from WT and MCAT mice and MLE-12 cells) mtDNA damage was assessed by a quantitative PCR-based assay, apoptosis was assessed by DNA fragmentation, and ROS production was assessed by a Mito-Sox assay. RESULTS Compared to WT, crocidolite-exposed MCAT mice exhibit reduced pulmonary fibrosis as measured by lung collagen levels and lung fibrosis score. The protective effects in MCAT mice were accompanied by reduced AEC mtDNA damage and apoptosis. Similar findings were noted following bleomycin exposure. Euk-134, a mitochondrial SOD/catalase mimetic, attenuated MLE-12 cell DNA damage and apoptosis. Finally, compared to WT, asbestos-induced MCAT AT2 cell ROS production was reduced. CONCLUSIONS Our finding that MCAT mice have reduced pulmonary fibrosis, AEC mtDNA damage and apoptosis following exposure to asbestos or bleomycin suggests an important role for AEC mitochondrial H2O2-induced mtDNA damage in promoting lung fibrosis. We reason that strategies aimed at limiting AEC mtDNA damage arising from excess mitochondrial H2O2 production may be a novel therapeutic target for mitigating pulmonary fibrosis.
Collapse
Affiliation(s)
- Seok-Jo Kim
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Paul Cheresh
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Renea P Jablonski
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Luisa Morales-Nebreda
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Yuan Cheng
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Erin Hogan
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Anjana Yeldandi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Monica Chi
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Raul Piseaux
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Karen Ridge
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - C Michael Hart
- Atlanta VA Medical Center, Decatur, GA, United States; Department of Medicine, Emory University, Atlanta, GA, United States
| | - Navdeep Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - G R Scott Budinger
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - David W Kamp
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
44
|
Hamers AAJ, Argmann C, Moerland PD, Koenis DS, Marinković G, Sokolović M, de Vos AF, de Vries CJM, van Tiel CM. Nur77-deficiency in bone marrow-derived macrophages modulates inflammatory responses, extracellular matrix homeostasis, phagocytosis and tolerance. BMC Genomics 2016; 17:162. [PMID: 26932821 PMCID: PMC4774191 DOI: 10.1186/s12864-016-2469-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023] Open
Abstract
Background The nuclear orphan receptor Nur77 (NR4A1, TR3, or NGFI-B) has been shown to modulate the inflammatory response of macrophages. To further elucidate the role of Nur77 in macrophage physiology, we compared the transcriptome of bone marrow-derived macrophages (BMM) from wild-type (WT) and Nur77-knockout (KO) mice. Results In line with previous observations, SDF-1α (CXCL12) was among the most upregulated genes in Nur77-deficient BMM and we demonstrated that Nur77 binds directly to the SDF-1α promoter, resulting in inhibition of SDF-1α expression. The cytokine receptor CX3CR1 was strongly downregulated in Nur77-KO BMM, implying involvement of Nur77 in macrophage tolerance. Ingenuity pathway analyses (IPA) to identify canonical pathways regulation and gene set enrichment analyses (GSEA) revealed a potential role for Nur77 in extracellular matrix homeostasis. Nur77-deficiency increased the collagen content of macrophage extracellular matrix through enhanced expression of several collagen subtypes and diminished matrix metalloproteinase (MMP)-9 activity. IPA upstream regulator analyses discerned the small GTPase Rac1 as a novel regulator of Nur77-mediated gene expression. We identified an inhibitory feedback loop with increased Rac1 activity in Nur77-KO BMM, which may explain the augmented phagocytic activity of these cells. Finally, we predict multiple chronic inflammatory diseases to be influenced by macrophage Nur77 expression. GSEA and IPA associated Nur77 to osteoarthritis, chronic obstructive pulmonary disease, rheumatoid arthritis, psoriasis, and allergic airway inflammatory diseases. Conclusions Altogether these data identify Nur77 as a modulator of macrophage function and an interesting target to treat chronic inflammatory disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2469-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anouk A J Hamers
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Present address: Department of Inflammation Biology, La Jolla Institute for Allergy and Immunology, San Diego, USA.
| | - Carmen Argmann
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Present address: Institute for Genomics and Multiscale Biology Mount Sinai Hospital, New York, USA.
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Duco S Koenis
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Goran Marinković
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Milka Sokolović
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. .,Present address: European Food Information Council, Brussels, Belgium.
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Claudia M van Tiel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Helicobacter pylori-elicited induction in gastric mucosal matrix metalloproteinase-9 (MMP-9) release involves ERK-dependent cPLA2 activation and its recruitment to the membrane-localized Rac1/p38 complex. Inflammopharmacology 2016; 24:87-95. [PMID: 26886372 DOI: 10.1007/s10787-016-0261-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/04/2016] [Indexed: 01/23/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of endopeptidases implicated in a wide rage of degenerative and inflammatory diseases, including Helicobacter pylori-associated gastritis, and gastric and duodenal ulcer. As gastric mucosal inflammatory responses to H. pylori are characterized by the rise in MMP-9 production, as well as the induction in mitogen-activated protein kinase (MAPK) and Rac1 activation, we investigated the role of Rac1/MAPK in the processes associated with the release of MMP-9. We show that H. pylori LPS-elicited induction in gastric mucosal MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A2 (cPLA2). Further, we demonstrate that the LPS-induced MMP-9 release requires ERK-mediated phosphorylation of cPLA2 on Ser(505) that is essential for its membrane localization with Rac1, and that this process necessitates p38 participation. Moreover, we reveal that the activation and membrane translocation of p38 to the Rac1-GTP complex plays a pivotal role in cPLA2-dependent enhancement in MMP-9 release. Hence, our findings provide a strong evidence for the role of ERK/cPLA2 and Rac1/p38/cPLA2 cascade in H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 release.
Collapse
|
46
|
Abstract
The production of reactive oxygen species, including H2O2, is a process that can be used in signaling, cell death, or immune response. To quantify oxidative stress in cells, a fluorescence technique has been modified from a previously described method to measure H2O2 release from cells (1-5). This assay takes advantage of H2O2-mediated oxidation of horseradish peroxidase (HRP) to Complex I, which, in turn, oxidizes p-hydroxyphenylacetic acid (pHPA) to a stable, fluorescent pHPA dimer (2,2'-dihydroxy-biphenyl-5,5' diacetate [(pHPA)2]). The H2O2-dependent HRP-mediated oxidation of pHPA is a sensitive and specific assay for quantifying H2O2 release from cells. This assay can measure H2O2 release from whole cells, mitochondria, or the NADPH oxidase.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA 35294; Birmingham Veterans Administration Medical Center, Birmingham, AL, USA 35294
| |
Collapse
|
47
|
Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2015; 53:585-600. [PMID: 26121236 PMCID: PMC4742954 DOI: 10.1165/rcmb.2015-0020tr] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.
Collapse
Affiliation(s)
- Vanessa J. Craig
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California–San Diego, La Jolla, California
| | - Li Zhang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
| | - James S. Hagood
- Division of Pediatric Respiratory Medicine, University of California–San Diego, La Jolla, California, and
- Rady Children’s Hospital of San Diego, San Diego, California; and
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
48
|
The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis. Int J Mol Sci 2015; 16:21486-519. [PMID: 26370974 PMCID: PMC4613264 DOI: 10.3390/ijms160921486] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/29/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022] Open
Abstract
Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer.
Collapse
|
49
|
Osborn-Heaford HL, Murthy S, Gu L, Larson-Casey JL, Ryan AJ, Shi L, Glogauer M, Neighbors JD, Hohl R, Carter AB. Targeting the isoprenoid pathway to abrogate progression of pulmonary fibrosis. Free Radic Biol Med 2015; 86:47-56. [PMID: 25958207 PMCID: PMC4554879 DOI: 10.1016/j.freeradbiomed.2015.04.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/07/2015] [Accepted: 04/27/2015] [Indexed: 11/22/2022]
Abstract
Fibrotic remodeling in lung injury is a major cause of morbidity. The mechanism that mediates the ongoing fibrosis is unclear, and there is no available treatment to abate the aberrant repair. Reactive oxygen species (ROS) have a critical role in inducing fibrosis by modulating extracellular matrix deposition. Specifically, mitochondrial hydrogen peroxide (H2O2) production by alveolar macrophages is directly linked to pulmonary fibrosis as inhibition of mitochondrial H2O2 attenuates the fibrotic response in mice. Prior studies indicate that the small GTP-binding protein, Rac1, directly mediates H2O2 generation in the mitochondrial intermembrane space. Geranylgeranylation of the C-terminal cysteine residue (Cys(189)) is required for Rac1 activation and mitochondrial import. We hypothesized that impairment of geranylgeranylation would limit mitochondrial oxidative stress and, thus, abrogate progression of pulmonary fibrosis. By targeting the isoprenoid pathway with a novel agent, digeranyl bisphosphonate (DGBP), which impairs geranylgeranylation, we demonstrate that Rac1 mitochondrial import, mitochondrial oxidative stress, and progression of the fibrotic response to lung injury are significantly attenuated. These observations reveal that targeting the isoprenoid pathway to alter Rac1 geranylgeranylation halts the progression of pulmonary fibrosis after lung injury.
Collapse
Affiliation(s)
| | | | - Linlin Gu
- Deparment of Medicine, University of Alabama at Birmingham, AL
| | - Jennifer L Larson-Casey
- Free Radical and Radiation Biology Program, University of Iowa
- Deparment of Medicine, University of Alabama at Birmingham, AL
| | - Alan J Ryan
- Department of Internal Medicine, University of Iowa
| | - Lei Shi
- Human Toxicology Program, University of Iowa
| | - Michael Glogauer
- Canadian Institutes of Health Research Group in Matrix Dynamics, University of Toronto, Toronto, Ontario, Canada
| | | | - Raymond Hohl
- Department of Internal Medicine, University of Iowa
- Department of Pharmacology, University of Iowa
| | - A Brent Carter
- Department of Internal Medicine, University of Iowa
- Free Radical and Radiation Biology Program, University of Iowa
- Human Toxicology Program, University of Iowa
- Deparment of Medicine, University of Alabama at Birmingham, AL
- Iowa City VA Healthcare System, Iowa City, IA
- Birmingham VAMC, Birmingham, AL
| |
Collapse
|
50
|
Murthy S, Larson-Casey JL, Ryan AJ, He C, Kobzik L, Carter AB. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure. FASEB J 2015; 29:3527-36. [PMID: 25953850 PMCID: PMC4511206 DOI: 10.1096/fj.15-271304] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/27/2015] [Indexed: 01/04/2023]
Abstract
Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Shubha Murthy
- *Department of Internal Medicine, Department of Radiation Oncology, and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, Iowa City, Iowa, USA; Harvard School of Public Health, Boston, Massachusetts, USA; Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA; and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Larson-Casey
- *Department of Internal Medicine, Department of Radiation Oncology, and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, Iowa City, Iowa, USA; Harvard School of Public Health, Boston, Massachusetts, USA; Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA; and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alan J Ryan
- *Department of Internal Medicine, Department of Radiation Oncology, and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, Iowa City, Iowa, USA; Harvard School of Public Health, Boston, Massachusetts, USA; Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA; and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chao He
- *Department of Internal Medicine, Department of Radiation Oncology, and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, Iowa City, Iowa, USA; Harvard School of Public Health, Boston, Massachusetts, USA; Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA; and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lester Kobzik
- *Department of Internal Medicine, Department of Radiation Oncology, and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, Iowa City, Iowa, USA; Harvard School of Public Health, Boston, Massachusetts, USA; Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA; and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- *Department of Internal Medicine, Department of Radiation Oncology, and the Graduate Program in Free Radical and Radiation Biology, Carver College of Medicine, Iowa City, Iowa, USA; Harvard School of Public Health, Boston, Massachusetts, USA; Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA; and University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|