1
|
Tatomir A, Vlaicu S, Nguyen V, Luzina IG, Atamas SP, Drachenberg C, Papadimitriou J, Badea TC, Rus HG, Rus V. RGC-32 mediates proinflammatory and profibrotic pathways in immune-mediated kidney disease. Clin Immunol 2024; 265:110279. [PMID: 38878807 DOI: 10.1016/j.clim.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Systemic lupus erythematosus is an autoimmune disease that results in immune-mediated damage to kidneys and other organs. We investigated the role of response gene to complement-32 (RGC-32), a proinflammatory and profibrotic mediator induced by TGFβ and C5b-9, in nephrotoxic nephritis (NTN), an experimental model that mimics human lupus nephritis. Proteinuria, loss of renal function and kidney histopathology were attenuated in RGC-32 KO NTN mice. RGC-32 KO NTN mice displayed downregulation of the CCL20/CCR6 and CXCL9/CXCR3 ligand/receptor pairs resulting in decreased renal recruitment of IL-17+ and IFNγ+ cells and subsequent decrease in the influx of innate immune cells. RGC-32 deficiency attenuated renal fibrosis as demonstrated by decreased deposition of collagen I, III and fibronectin. Thus, RGC-32 is a unique mediator shared by the Th17 and Th1 dependent proinflammatory and profibrotic pathways and a potential novel therapeutic target in the treatment of immune complex mediated glomerulonephritis such as lupus nephritis.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Neurology Service, Veterans Administration Medical Health Care Center, Baltimore, MD, USA
| | - Sonia Vlaicu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Internal Medicine, Medical Clinic nr. 1, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vinh Nguyen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Irina G Luzina
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sergei P Atamas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Tudor C Badea
- Research and Development Institute, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - Horea G Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Neurology Service, Veterans Administration Medical Health Care Center, Baltimore, MD, USA
| | - Violeta Rus
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Zhang J, Sun Y, Tang K, Xu H, Xiao J, Li Y. RGC32 promotes the progression of ccRCC by activating the NF-κB/SHP2/EGFR signaling pathway. Aging (Albany NY) 2024; 16:205890. [PMID: 38809518 DOI: 10.18632/aging.205890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The role and clinical significance of the response gene to complement 32 (RGC32) in various cancers have been documented, yet its implications in clear cell Renal Cell Carcinoma (ccRCC) remain underexplored. METHODS This study investigated RGC32's diagnostic and prognostic relevance in ccRCC using bioinformatics methods with data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). The impact of RGC32 on ccRCC progression was assessed through nude mouse tumor assays. Immunohistochemistry evaluated RGC32 levels in ccRCC and adjacent normal tissues, while cell proliferation, migration, and invasion capabilities were analyzed using CCK-8, monoclonal proliferation assays, Transwell, and wound healing assays, respectively. Western blotting measured relevant protein expressions. RESULTS Bioinformatics analysis highlighted RGC32's significant role in ccRCC pathogenesis. Elevated RGC32 expression in ccRCC tissues was linked to disease progression. Functionally, RGC32 was found to enhance the expression of proteins such as p-PI3K, CyclinA1, CyclinD1, p-STAT3, MMP2, MMP3, MMP9, p-SMAD2/3, Snail, Slug, and N-Cadherin via the NF-κB/SHP2/EGFR pathway, while decreasing E-cadherin levels. Moreover, RGC32 facilitated ccRCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). CONCLUSION RGC32 is a pivotal factor in ccRCC development, primarily through the activation of the NF-κB/SHP2/EGFR signaling pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Department of Oncology, Zibo Central Hospital, Zibo, China
| | - Yindi Sun
- Department of Oncology, Zibo Central Hospital, Zibo, China
| | - Kai Tang
- Department of Urology, Zibo Central Hospital, Zibo, China
| | - Huirong Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese, Jinan, China
| | - Junjuan Xiao
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yan Li
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
3
|
Cheng S, Wan X, Yang L, Qin Y, Chen S, Liu Y, Sun Y, Qiu Y, Huang L, Qin Q, Cui X, Wu M, Liu M. RGCC-mediated PLK1 activity drives breast cancer lung metastasis by phosphorylating AMPKα2 to activate oxidative phosphorylation and fatty acid oxidation. J Exp Clin Cancer Res 2023; 42:342. [PMID: 38102722 PMCID: PMC10722681 DOI: 10.1186/s13046-023-02928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND More than 90% of the mortality of triple-negative breast cancer (TNBC) patients is attributed to cancer metastasis with organotropism. The lung is a frequent site of TNBC metastasis. However, the precise molecular mechanism for lung-specific metastasis of TNBC is not well understood. METHODS RNA sequencing was performed to identify patterns of gene expression associated with lung metastatic behavior using 4T1-LM3, MBA-MB-231-LM3, and their parental cells (4T1-P, MBA-MB-231-P). Expressions of RGCC, called regulator of cell cycle or response gene to complement 32 protein, were detected in TNBC cells and tissues by qRT-PCR, western blotting, and immunohistochemistry. Kinase activity assay was performed to evaluate PLK1 kinase activity. The amount of phosphorylated AMP-activated protein kinase α2 (AMPKα2) was detected by immunoblotting. RGCC-mediated metabolism was determined by UHPLC system. Oxidative phosphorylation was evaluated by JC-1 staining and oxygen consumption rate (OCR) assay. Fatty acid oxidation assay was conducted to measure the status of RGCC-mediated fatty acid oxidation. NADPH and ROS levels were detected by well-established assays. The chemical sensitivity of cells was evaluated by CCK8 assay. RESULTS RGCC is aberrantly upregulated in pulmonary metastatic cells. High level of RGCC is significantly related with lung metastasis in comparison with other organ metastases. RGCC can effectively promote kinase activity of PLK1, and the activated PLK1 phosphorylates AMPKα2 to facilitate TNBC lung metastasis. Mechanistically, the RGCC/PLK1/AMPKα2 signal axis increases oxidative phosphorylation of mitochondria to generate more energy, and promotes fatty acid oxidation to produce abundant NADPH. These metabolic changes contribute to sustaining redox homeostasis and preventing excessive accumulation of potentially detrimental ROS in metastatic tumor cells, thereby supporting TNBC cell survival and colonization during metastases. Importantly, targeting RGCC in combination with paclitaxel/carboplatin effectively suppresses pulmonary TNBC lung metastasis in a mouse model. CONCLUSIONS RGCC overexpression is significantly associated with lung-specific metastasis of TNBC. RGCC activates AMPKα2 and downstream signaling through RGCC-driven PLK1 activity to facilitate TNBC lung metastasis. The study provides implications for RGCC-driven OXPHOS and fatty acid oxidation as important therapeutic targets for TNBC treatment.
Collapse
Affiliation(s)
- Shaojie Cheng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Liping Yang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yilu Qin
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Shanchun Chen
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Yongcan Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxiang Qiu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Luyi Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Qizhong Qin
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojiang Cui
- Department of Surgery, Department of Obstetrics and Gynecology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 91006, USA
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China.
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China.
| |
Collapse
|
4
|
Zhao C, Liu X, Liu L, Li J, Liu X, Tao W, Wang D, Wei J. Smoothened mediates medaka spermatogonia proliferation via Gli1-Rgcc-Cdk1 axis†. Biol Reprod 2023; 109:772-784. [PMID: 37552059 DOI: 10.1093/biolre/ioad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023] Open
Abstract
The proliferation of spermatogonia directly affects spermatogenesis and male fertility, but its underlying molecular mechanisms are poorly understood. In this study, Smoothened (Smo), the central transducer of Hedgehog signaling pathway, was characterized in medaka (Oryzias latipes), and its role and underlying mechanisms in the proliferation of spermatogonia were investigated. Smo was highly expressed in spermatogonia. In ex vivo testicular organ culture and a spermatogonial cell line (SG3) derived from medaka mature testis, Smo activation promoted spermatogonia proliferation, while its inhibition induced apoptosis. The expression of glioma-associated oncogene homolog 1 (gli1) and regulator of cell cycle (rgcc) was significantly upregulated in SG3 after Smo activation. Furthermore, Gli1 transcriptionally upregulated the expression of rgcc, and Rgcc overexpression rescued cell apoptosis caused by Smo or Gli1 inhibition. Co-immunoprecipitation assay indicated that Rgcc could interact with cyclin-dependent kinase 1 (Cdk1) to regulate the cell cycle of spermatogonia. Collectively, our study firstly reveals that Smo mediates the proliferation of spermatogonia through Gli1-Rgcc-Cdk1 axis. In addition, Smo and Gli1 are necessary of the survival of spermatogonia. This study deepens our understanding of spermatogonia proliferation and survival at the molecular level, and provides insights into male fertility control and reproductive disease treatment.
Collapse
Affiliation(s)
- Changle Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiang Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lei Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianeng Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xingyong Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Wu Z, Wang X, Liang H, Liu F, Li Y, Zhang H, Wang C, Wang Q. Identification of Signature Genes of Dilated Cardiomyopathy Using Integrated Bioinformatics Analysis. Int J Mol Sci 2023; 24:ijms24087339. [PMID: 37108502 PMCID: PMC10139023 DOI: 10.3390/ijms24087339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by left ventricular or biventricular enlargement with systolic dysfunction. To date, the underlying molecular mechanisms of dilated cardiomyopathy pathogenesis have not been fully elucidated, although some insights have been presented. In this study, we combined public database resources and a doxorubicin-induced DCM mouse model to explore the significant genes of DCM in full depth. We first retrieved six DCM-related microarray datasets from the GEO database using several keywords. Then we used the "LIMMA" (linear model for microarray data) R package to filter each microarray for differentially expressed genes (DEGs). Robust rank aggregation (RRA), an extremely robust rank aggregation method based on sequential statistics, was then used to integrate the results of the six microarray datasets to filter out the reliable differential genes. To further improve the reliability of our results, we established a doxorubicin-induced DCM model in C57BL/6N mice, using the "DESeq2" software package to identify DEGs in the sequencing data. We cross-validated the results of RRA analysis with those of animal experiments by taking intersections and identified three key differential genes (including BEX1, RGCC and VSIG4) associated with DCM as well as many important biological processes (extracellular matrix organisation, extracellular structural organisation, sulphur compound binding, and extracellular matrix structural components) and a signalling pathway (HIF-1 signalling pathway). In addition, we confirmed the significant effect of these three genes in DCM using binary logistic regression analysis. These findings will help us to better understand the pathogenesis of DCM and may be key targets for future clinical management.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Liang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Fangfang Liu
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingxuan Li
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunying Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Qiao Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
6
|
Wiltbank AT, Steinson ER, Criswell SJ, Piller M, Kucenas S. Cd59 and inflammation regulate Schwann cell development. eLife 2022; 11:e76640. [PMID: 35748863 PMCID: PMC9232220 DOI: 10.7554/elife.76640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.
Collapse
Affiliation(s)
- Ashtyn T Wiltbank
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
- Program in Fundamental Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Emma R Steinson
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Stacey J Criswell
- Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - Melanie Piller
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
- Program in Fundamental Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
7
|
Liu Z, Qin T, Yuan X, Yang J, Shi W, Zhang X, Jia Y, Liu S, Wang J, Li K. Anlotinib Downregulates RGC32 Which Provoked by Bevacizumab. Front Oncol 2022; 12:875888. [PMID: 35664796 PMCID: PMC9158131 DOI: 10.3389/fonc.2022.875888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bevacizumab is the representative drug in antiangiogenic therapy for lung cancer. However, it induced resistance in some neoplasm. Anlotinib, a novel multi-target tyrosine kinase inhibitor which has an inhibitory action on both angiogenesis and malignancy, is possible to reverse the resistance. Methods Transwell migration and invasion experiments of bevacizumab with or without anlotinib were conducted to verify the activated/inhibited ability of lung adenocarcinoma cells. We sequenced A549 cells with enhanced migration and invasion abilities after bevacizumab treatment, screened out the differentially expressed gene and further confirmed by western blot and q-PCR assays. We also investigated immunohistochemical staining of tumor tissue in mice and human lung adenocarcinoma. Results Bevacizumab facilitated migration and invasion of lung adenocarcinoma cells. Differentially expressed gene RGC32 was screened out. Bevacizumab upregulated the expression of RGC32, N-cadherin, and MMP2 through ERK-MAPK and PI3K-AKT pathways. Anlotinib downregulated their expression and reversed the effect of bevacizumab on A549 cells. In vivo experiments confirmed that higher-dose bevacizumab facilitated metastasis in tumor-bearing nude mice and upregulated the expression of RGC32, N-cadherin, and MMP2, whereas anlotinib abrogated its effect. Expression of both RGC32 and N-cadherin positively correlated with lymph node metastasis and stage in lung adenocarcinoma was found. Survival analysis revealed that higher expressions of RGC32 and N-cadherin were associated with poor progression-free survival and overall survival. Conclusions Bevacizumab may promote invasion and metastasis of lung adenocarcinoma cells by upregulating RGC32 through ERK-MAPK and PI3K-AKT pathways to promote epithelial-mesenchymal transition, whereas anlotinib reverses the effect. RGC32 and N-cadherin are independent prognostic factors in lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhujun Liu
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Tingting Qin
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaohan Yuan
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China.,National Key Discipline of Pediatrics (Capital Medical University), Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wei Shi
- Research and Development Department, Jiangsu Chia-Tai Tian Qing Pharmaceutical Co., Ltd., Nanjing, China
| | - Xiaoling Zhang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yanan Jia
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Shaochuan Liu
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Wang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Kai Li
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Vlaicu SI, Tatomir A, Fosbrink M, Nguyen V, Boodhoo D, Cudrici C, Badea TC, Rus V, Rus H. RGC-32′ dual role in smooth muscle cells and atherogenesis. Clin Immunol 2022; 238:109020. [DOI: 10.1016/j.clim.2022.109020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
|
9
|
Luzina IG, Rus V, Lockatell V, Courneya JP, Hampton BS, Fishelevich R, Misharin AV, Todd NW, Badea TC, Rus H, Atamas SP. Regulator of Cell Cycle Protein (RGCC/RGC-32) Protects against Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 66:146-157. [PMID: 34668840 PMCID: PMC8845131 DOI: 10.1165/rcmb.2021-0022oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Some previous studies in tissue fibrosis have suggested a profibrotic contribution from elevated expression of a protein termed either RGCC (regulator of cell cycle) or RGC-32 (response gene to complement 32 protein). Our analysis of public gene expression datasets, by contrast, revealed a consistent decrease in RGCC mRNA levels in association with pulmonary fibrosis. Consistent with this observation, we found that stimulating primary adult human lung fibroblasts with transforming growth factor (TGF)-β in cell cultures elevated collagen expression and simultaneously attenuated RGCC mRNA and protein levels. Moreover, overexpression of RGCC in cultured lung fibroblasts attenuated the stimulating effect of TGF-β on collagen levels. Similar to humans with pulmonary fibrosis, the levels of RGCC were also decreased in vivo in lung tissues of wild-type mice challenged with bleomycin in both acute and chronic models. Mice with constitutive RGCC gene deletion accumulated more collagen in their lungs in response to chronic bleomycin challenge than did wild-type mice. RNA-Seq analyses of lung fibroblasts revealed that RGCC overexpression alone had a modest transcriptomic effect, but in combination with TGF-β stimulation, induced notable transcriptomic changes that negated the effects of TGF-β, including on extracellular matrix-related genes. At the level of intracellular signaling, RGCC overexpression delayed early TGF-β-induced Smad2/3 phosphorylation, elevated the expression of total and phosphorylated antifibrotic mediator STAT1, and attenuated the expression of a profibrotic mediator STAT3. We conclude that RGCC plays a protective role in pulmonary fibrosis and that its decline permits collagen accumulation. Restoration of RGCC expression may have therapeutic potential in pulmonary fibrosis.
Collapse
Affiliation(s)
- Irina G. Luzina
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Violeta Rus
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Virginia Lockatell
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Jean-Paul Courneya
- Health Sciences and Human Services Library, University of Maryland–Baltimore, Baltimore, Maryland
| | | | - Rita Fishelevich
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Nevins W. Todd
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Tudor C. Badea
- Retinal Circuits Development and Genetics Unit, National Eye Institute, Bethesda, Maryland; and,Faculty of Medicine, Research and Development Institute, Transilvania University of Brașov, Brașov, Romania
| | - Horea Rus
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Sergei P. Atamas
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| |
Collapse
|
10
|
Guo Z, Chen M, Chao Y, Cai C, Liu L, Zhao L, Li L, Bai QR, Xu Y, Niu W, Shi L, Bi Y, Ren D, Yuan F, Shi S, Zeng Q, Han K, Shi Y, Bian S, He G. RGCC balances self-renewal and neuronal differentiation of neural stem cells in the developing mammalian neocortex. EMBO Rep 2021; 22:e51781. [PMID: 34323349 DOI: 10.15252/embr.202051781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
During neocortical development, neural stem cells (NSCs) divide symmetrically to self-renew at the early stage and then divide asymmetrically to generate post-mitotic neurons. The molecular mechanisms regulating the balance between NSC self-renewal and neurogenesis are not fully understood. Using mouse in utero electroporation (IUE) technique and in vitro human NSC differentiation models including cerebral organoids (hCOs), we show here that regulator of cell cycle (RGCC) modulates NSC self-renewal and neuronal differentiation by affecting cell cycle regulation and spindle orientation. RGCC deficiency hampers normal cell cycle process and dysregulates the mitotic spindle, thus driving more cells to divide asymmetrically. These modulations diminish the NSC population and cause NSC pre-differentiation that eventually leads to brain developmental malformation in hCOs. We further show that RGCC might regulate NSC spindle orientation by affecting the organization of centrosome and microtubules. Our results demonstrate that RGCC is essential to maintain the NSC pool during cortical development and suggest that RGCC defects could have etiological roles in human brain malformations.
Collapse
Affiliation(s)
- Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxia Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yiming Chao
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chunhai Cai
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linbo Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanxin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyue Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Zeng
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
A bacterial tyrosine phosphatase modulates cell proliferation through targeting RGCC. PLoS Pathog 2021; 17:e1009598. [PMID: 34015051 PMCID: PMC8172045 DOI: 10.1371/journal.ppat.1009598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 04/30/2021] [Indexed: 01/22/2023] Open
Abstract
Tyrosine phosphatases are often weaponized by bacteria colonizing mucosal barriers to manipulate host cell signal transduction pathways. Porphyromonas gingivalis is a periodontal pathogen and emerging oncopathogen which interferes with gingival epithelial cell proliferation and migration, and induces a partial epithelial mesenchymal transition. P. gingivalis produces two tyrosine phosphatases, and we show here that the low molecular weight tyrosine phosphatase, Ltp1, is secreted within gingival epithelial cells and translocates to the nucleus. An ltp1 mutant of P. gingivalis showed a diminished ability to induce epithelial cell migration and proliferation. Ltp1 was also required for the transcriptional upregulation of Regulator of Growth and Cell Cycle (RGCC), one of the most differentially expressed genes in epithelial cells resulting from P. gingivalis infection. A phosphoarray and siRNA showed that P. gingivalis controlled RGCC expression through Akt, which was activated by phosphorylation on S473. Akt activation is opposed by PTEN, and P. gingivalis decreased the amount of PTEN in epithelial cells. Ectopically expressed Ltp1 bound to PTEN, and reduced phosphorylation of PTEN at Y336 which controls proteasomal degradation. Ltp-1 induced loss of PTEN stability was prevented by chemical inhibition of the proteasome. Knockdown of RGCC suppressed upregulation of Zeb2 and mesenchymal markers by P. gingivalis. RGCC inhibition was also accompanied by a reduction in production of the proinflammatory cytokine IL-6 in response to P. gingivalis. Elevated IL-6 levels can contribute to periodontal destruction, and the ltp1 mutant of P. gingivalis incited less bone loss compared to the parental strain in a murine model of periodontal disease. These results show that P. gingivalis can deliver Ltp1 within gingival epithelial cells, and establish PTEN as the target for Ltp1 phosphatase activity. Disruption of the Akt1/RGCC signaling axis by Ltp1 facilitates P. gingivalis-induced increases in epithelial cell migration, proliferation, EMT and inflammatory cytokine production. Bacteria colonizing the oral cavity can induce inflammatory destruction of the periodontal tissues, and are increasingly associated with oral squamous cell carcinoma. P. gingivalis, a major periodontal pathogen, can subvert epithelial pathways that control important physiological processes relating to innate immunity and cell fate; however, little is known about the effector molecules. Here we show that P. gingivalis can deliver a tyrosine phosphatase, Ltp1, within epithelial cells, and Ltp1 phosphatase activity destabilizes PTEN, a negative regulator of Akt1 signaling. The production of RGCC is thus increased and this leads to increased epithelial cell migration, proliferation, a partial mesenchymal phenotype and inflammatory cytokine production. Ltp1 phosphatase activity thus provides a mechanistic basis for a number of P. gingivalis properties that contribute to disease. Indeed, an Ltp1-deficient mutant was less pathogenic in a murine model of periodontitis. These results contribute to deciphering the pathophysiological events that underlie oral bacterial diseases that initiate at mucosal barriers.
Collapse
|
12
|
Tatomir A, Beltrand A, Nguyen V, Boodhoo D, Mekala A, Cudrici C, Badea TC, Muresanu DF, Rus V, Rus H. RGC-32 Regulates Generation of Reactive Astrocytes in Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 11:608294. [PMID: 33569054 PMCID: PMC7868332 DOI: 10.3389/fimmu.2020.608294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022] Open
Abstract
Astrocytes are increasingly recognized as critical contributors to multiple sclerosis pathogenesis. We have previously shown that lack of Response Gene to Complement 32 (RGC-32) alters astrocyte morphology in the spinal cord at the peak of experimental autoimmune encephalomyelitis (EAE), suggesting a role for RGC-32 in astrocyte differentiation. In this study, we analyzed the expression and distribution of astrocytes and astrocyte progenitors by immunohistochemistry in spinal cords of wild-type (WT) and RGC-32-knockout (KO) mice with EAE and of normal adult mice. Our analysis showed that during acute EAE, WT astrocytes had a reactive morphology and increased GFAP expression, whereas RGC-32 KO astrocytes had a morphology similar to that of radial glia and an increased expression of progenitor markers such as vimentin and fatty acid binding protein 7 (FABP7). In control mice, GFAP expression and astrocyte density were also significantly higher in the WT group, whereas the number of vimentin and FABP7-positive radial glia was significantly higher in the RGC-32 KO group. In vitro studies on cultured neonatal astrocytes from WT and RGC-32 KO mice showed that RGC-32 regulates a complex array of molecular networks pertaining to signal transduction, growth factor expression and secretion, and extracellular matrix (ECM) remodeling. Among the most differentially expressed factors were insulin-like growth factor 1 (IGF1), insulin-like growth factor binding proteins (IGFBPs), and connective tissue growth factor (CTGF); their expression was downregulated in RGC-32-depleted astrocytes. The nuclear translocation of STAT3, a transcription factor critical for astrogliogenesis and driving glial scar formation, was also impaired after RGC-32 silencing. Taken together, these data suggest that RGC-32 is an important regulator of astrocyte differentiation during EAE and that in the absence of RGC-32, astrocytes are unable to fully mature and become reactive astrocytes.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Cell Differentiation
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Fatty Acid-Binding Protein 7/metabolism
- Female
- Glial Fibrillary Acidic Protein/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Rats, Sprague-Dawley
- Signal Transduction
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Vimentin/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Austin Beltrand
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Vinh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Armugam Mekala
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Cornelia Cudrici
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tudor C. Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, Bethesda, MD, United States
| | - Dafin F. Muresanu
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
13
|
Single-cell RNA sequencing in vision research: Insights into human retinal health and disease. Prog Retin Eye Res 2020; 83:100934. [PMID: 33383180 DOI: 10.1016/j.preteyeres.2020.100934] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023]
Abstract
Gene expression provides valuable insight into cell function. As such, vision researchers have frequently employed gene expression studies to better understand retinal physiology and disease. With the advent of single-cell RNA sequencing, expression experiments provide an unparalleled resolution of information. Instead of studying aggregated gene expression across all cells in a heterogenous tissue, single-cell technology maps RNA to an individual cell, which facilitates grouping of retinal and choroidal cell types for further study. Single-cell RNA sequencing has been quickly adopted by both basic and translational vision researchers, and single-cell level gene expression has been studied in the visual systems of animal models, retinal organoids, and primary human retina, RPE, and choroid. These experiments have generated detailed atlases of gene expression and identified new retinal cell types. Likewise, single-cell RNA sequencing investigations have characterized how gene expression changes in the setting of many retinal diseases, including how choroidal endothelial cells are altered in age-related macular degeneration. In addition, this technology has allowed vision researchers to discover drivers of retinal development and model rare retinal diseases with induced pluripotent stem cells. In this review, we will overview the growing number of single-cell RNA sequencing studies in the field of vision research. We will summarize experimental considerations for designing single-cell RNA sequencing experiments and highlight important advancements in retinal, RPE, choroidal, and retinal organoid biology driven by this technology. Finally, we generalize these findings to genes involved in retinal degeneration and outline the future of single-cell expression experiments in studying retinal disease.
Collapse
|
14
|
Field NS, Elbulok OA, Dybas JM, Moser EK, Dar AA, Spruce LA, Fazelinia H, Seeholzer SH, Oliver PM. Itch attenuates CD4 T-cell proliferation in mice by limiting WBP2 protein stability. Eur J Immunol 2020; 50:1468-1483. [PMID: 32459862 DOI: 10.1002/eji.201948323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 01/26/2023]
Abstract
To mount an antipathogen response, CD4 T cells must undergo rapid cell proliferation; however, poorly controlled expansion can result in diseases such as autoimmunity. One important regulator of T-cell activity is the E3 ubiquitin ligase Itch. Itch deficient patients suffer from extensive autoinflammation. Similarly, Itch deficient mice exhibit inflammation characterized by high numbers of activated CD4 T cells. While the role of Itch in limiting CD4 T-cell cytokine production has been extensively studied, it is less clear whether and how Itch regulates proliferation of these cells. We determined that Itch deficient CD4 T cells are hyperproliferative in vitro and in vivo, due to increased S phase entry. Whole cell proteomics analysis of Itch deficient primary mouse CD4 T cells revealed increased abundance of the β-catenin coactivator WW domain-binding protein 2 (WBP2). Furthermore, Itch deficient cells demonstrate increased WBP2 protein stability, and Itch and WBP2 interact in CD4 T cells. Knockdown of WBP2 in CD4 T cells caused reduced proliferation. Together, our data support that Itch attenuates CD4 T cell proliferation by promoting WBP2 degradation. This study identifies novel roles for Itch and WBP2 in regulating CD4 T cell proliferation, providing insight into how Itch may prevent inflammation.
Collapse
Affiliation(s)
- Natania S Field
- Cell and Molecular Biology Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar A Elbulok
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M Dybas
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily K Moser
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Asif A Dar
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A Spruce
- Cell Pathology Division, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Cell Pathology Division, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steven H Seeholzer
- Cell Pathology Division, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paula M Oliver
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Yang ZH, Li J, Chen WZ, Kong FS. Oncogenic gene RGC-32 is a direct target of miR-26b and facilitates tongue squamous cell carcinoma aggressiveness through EMT and PI3K/AKT signalling. Cell Biochem Funct 2020; 38:943-954. [PMID: 32325539 DOI: 10.1002/cbf.3520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/12/2022]
Abstract
Growing data have recognized the significance of Response Gene to Complement (RGC)-32 in numerous tumour developments. Notwithstanding, the functional role and underlying mechanism of it in tongue squamous cell carcinoma (TSCC) remain enigmatic. Here, to identify the impact of RGC-32 in TSCC, its expression in multiple TSCC cells was measured and loss-of-function experiments in cell lines were performed to illuminate the function of it induced TSCC progression, via si-RNA knockdown, CCK-8, colony formation, wound-healing, transwell, flow cytometry and western blot assays. To clarify potential mechanism, expressions of hallmarks in epithelial-mesenchymal transition (EMT) process and PI3K/AKT signalling were assessed, and the upstream miR regulator of RGC-32 was predicted and verified by applying bioinformatic approaches and dual-luciferase reporter assay, respectively. Finally, the rescue experiments were applied to better elucidate the effect of miR-26b/RGC-32 axis in TSCC behaviours. As a result, RGC-32 was upregulated in TSCC cells and knocking down of it abrogated cell proliferation, trans-migration and invasion, whilst promoted apoptosis in TSCC, which was regulated through repressing EMT and inactivation of PI3K/AKT signalling. Subsequently, miR-26b was predicted and identified as an upstream regulator of RGC-32, and the pro-tumorigenic effect of RGC-32 was reversed by miR-26b overexpression. Collectively, our results demonstrated that RGC-32 facilitated TSCC progression, which was modulated by activations of PI3K/AKT pathway and EMT process, and reduction of its negative regulator of miR-26b. These findings highlight a novel role of miR-26b/RGC-32 axis in TSCC and underlying mechanism, encouraging a potent usage in TSCC treatment. SIGNIFICANCE OF THE STUDY: We first uncovered that Response Gene to Complement-32 played a significantly pro-tumorigenic role in tongue squamous cell carcinoma (TSCC), which was closely regulated by downregulation of miR-26b and activations of epithelial-mesenchymal transition process and PI3K/AKT signalling. These findings contribute to better understand the molecular mechanism in carcinogenesis of TSCC, and shed some light on promising strategy for TSCC therapeutics.
Collapse
Affiliation(s)
- Zhong-Heng Yang
- Department of Stomatology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Juan Li
- Department of Pathology, The Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Wei-Zhi Chen
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fan-Shuang Kong
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
16
|
Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proc Natl Acad Sci U S A 2019; 116:24100-24107. [PMID: 31712411 PMCID: PMC6883845 DOI: 10.1073/pnas.1914143116] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retinal pigment epithelium and the choroid are complex tissues whose dysfunction can lead to irreversible visual loss. In this study, single-cell RNA sequencing of both of these tissues was performed to characterize gene expression patterns specific to the retinal pigment epithelium and all major choroidal cell populations. Unique gene expression signatures of arterial, venous, and choriocapillaris vascular beds within the choroid were identified. RGCC, a gene that responds to complement and has been shown to induce endothelial apoptosis, was specifically expressed in choriocapillaris endothelial cells. This study provides potential insight into the molecular mechanisms of choroidal vascular disease and its contribution to age-related macular degeneration. The human retinal pigment epithelium (RPE) and choroid are complex tissues that provide crucial support to the retina. Disease affecting either of these supportive tissues can lead to irreversible blindness in the setting of age-related macular degeneration. In this study, single-cell RNA sequencing was performed on macular and peripheral regions of RPE-choroid from 7 human donor eyes in 2 independent experiments. In the first experiment, total RPE/choroid preparations were evaluated and expression profiles specific to RPE and major choroidal cell populations were identified. As choroidal endothelial cells represent a minority of the total RPE/choroidal cell population but are strongly implicated in age-related macular degeneration (AMD) pathogenesis, a second single-cell RNA-sequencing experiment was performed using endothelial cells enriched by magnetic separation. In this second study, we identified gene expression signatures along the choroidal vascular tree, classifying the transcriptome of human choriocapillaris, arterial, and venous endothelial cells. We found that the choriocapillaris highly and specifically expresses the regulator of cell cycle gene (RGCC), a gene that responds to complement activation and induces apoptosis in endothelial cells. In addition, RGCC was the most up-regulated choriocapillaris gene in a donor diagnosed with AMD. These results provide a characterization of the human RPE and choriocapillaris transcriptome, offering potential insight into the mechanisms of choriocapillaris response to complement injury and choroidal vascular disease in age-related macular degeneration.
Collapse
|
17
|
Zhang J, Lei JR, Yuan LL, Wen R, Yang J. Response gene to complement-32 promotes cell survival via the NF-κB pathway in non-small-cell lung cancer. Exp Ther Med 2019; 19:107-114. [PMID: 31853279 PMCID: PMC6909658 DOI: 10.3892/etm.2019.8177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
Response gene to complement (RGC)-32 regulates the cell cycle in response to complement activation. The present study demonstrated that the expression level of RGC-32 is higher in human non-small-cell lung cancer (NSCLC) tissues compared with health controls. Overexpressing RGC-32 induced p65 nucleus translocation, significantly increased nuclear p65 levels and promoted the proliferation of A549 cells. Knockdown of RGC-32 by short hairpin RNA decreased the expression level of nuclear p65 and inhibited cell proliferation. The increase in cell proliferation induced by RGC32 could be abolished by the NF-κB inhibitor pyrrolidine dithiocarbamate. Mechanistic studies indicated that RGC32 mediated NF-κB downstream genes, including vascular cell adhesion protein 1, interleukin-6, cyclin dependent kinase inhibitor 2C, testin and vascular endothelial growth factor A. In summary, the present study demonstrated a novel role of RGC-32 in the progression of NSCLC via the NF-κB pathway and p65. Therefore, RGC-32 could be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China.,Department of Respiratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jun-Rong Lei
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ling-Ling Yuan
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ru Wen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Jiong Yang
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
18
|
Response gene to complement 32 expression in macrophages augments paracrine stimulation-mediated colon cancer progression. Cell Death Dis 2019; 10:776. [PMID: 31601783 PMCID: PMC6786990 DOI: 10.1038/s41419-019-2006-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/15/2019] [Accepted: 09/24/2019] [Indexed: 01/26/2023]
Abstract
M2-polarized tumor associated macrophages (TAMs) play an important role in tumor progression. It has been reported that response gene to complement 32 (RGC-32) promotes M2 macrophage polarization. However, whether RGC-32 expression in macrophages could play a potential role in tumor progression remain unclear. Here we identified that increasing RGC-32 expression in colon cancer and tumor associated macrophages was positively correlated with cancer progression. In vitro studies confirmed that colon cancer cells upregulated RGC-32 expression of macrophages via secreting TGF-β1. RGC-32 expression promoted macrophage migration. In addition, stimulation of HCT-116 cells with the condition mediums of RGC-32-silienced or over-expressed macrophages affected tumor cell colony formation and migration via altered COX-2 expression. In an animal model, macrophages with RGC-32 knockdown significantly decreased the expression of COX-2 and Ki67 in the xenografts, and partly inhibited tumor growth. Together, our results provide the evidences for a critical role of TGF-β1/RGC-32 pathway in TAMs and colon cancer cells during tumor progression.
Collapse
|
19
|
Crncec A, Hochegger H. Triggering mitosis. FEBS Lett 2019; 593:2868-2888. [PMID: 31602636 DOI: 10.1002/1873-3468.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Entry into mitosis is triggered by the activation of cyclin-dependent kinase 1 (Cdk1). This simple reaction rapidly and irreversibly sets the cell up for division. Even though the core step in triggering mitosis is so simple, the regulation of this cellular switch is highly complex, involving a large number of interconnected signalling cascades. We do have a detailed knowledge of most of the components of this network, but only a poor understanding of how they work together to create a precise and robust system that ensures that mitosis is triggered at the right time and in an orderly fashion. In this review, we will give an overview of the literature that describes the Cdk1 activation network and then address questions relating to the systems biology of this switch. How is the timing of the trigger controlled? How is mitosis insulated from interphase? What determines the sequence of events, following the initial trigger of Cdk1 activation? Which elements ensure robustness in the timing and execution of the switch? How has this system been adapted to the high levels of replication stress in cancer cells?
Collapse
Affiliation(s)
- Adrijana Crncec
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
20
|
Brocard M, Khasnis S, Wood CD, Shannon-Lowe C, West MJ. Pumilio directs deadenylation-associated translational repression of the cyclin-dependent kinase 1 activator RGC-32. Nucleic Acids Res 2019; 46:3707-3725. [PMID: 29385536 PMCID: PMC5909466 DOI: 10.1093/nar/gky038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Response gene to complement-32 (RGC-32) activates cyclin-dependent kinase 1, regulates the cell cycle and is deregulated in many human tumours. We previously showed that RGC-32 expression is upregulated by the cancer-associated Epstein-Barr virus (EBV) in latently infected B cells through the relief of translational repression. We now show that EBV infection of naïve primary B cells also induces RGC-32 protein translation. In EBV-immortalised cell lines, we found that RGC-32 depletion resulted in cell death, indicating a key role in B cell survival. Studying RGC-32 translational control in EBV-infected cells, we found that the RGC-32 3′untranslated region (3′UTR) mediates translational repression. Repression was dependent on a single Pumilio binding element (PBE) adjacent to the polyadenylation signal. Mutation of this PBE did not affect mRNA cleavage, but resulted in increased polyA tail length. Consistent with Pumilio-dependent recruitment of deadenylases, we found that depletion of Pumilio in EBV-infected cells increased RGC-32 protein expression and polyA tail length. The extent of Pumilio binding to the endogenous RGC-32 mRNA in EBV-infected cell lines also correlated with RGC-32 protein expression. Our data demonstrate the importance of RGC-32 for the survival of EBV-immortalised B cells and identify Pumilio as a key regulator of RGC-32 translation.
Collapse
Affiliation(s)
- Michèle Brocard
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Sarika Khasnis
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - C David Wood
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Michelle J West
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
21
|
Cui XB, Luan JN, Dong K, Chen S, Wang Y, Watford WT, Chen SY. Response by Cui et al to Letter Regarding Article, "RGC-32 (Response Gene to Complement 32) Deficiency Protects Endothelial Cells From Inflammation and Attenuates Atherosclerosis". Arterioscler Thromb Vasc Biol 2019; 38:e97-e98. [PMID: 29793994 DOI: 10.1161/atvbaha.118.311146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Bing Cui
- Department of Physiology and Pharmacology, University of Georgia, Athens
| | - Jun-Na Luan
- Department of Physiology and Pharmacology, University of Georgia, Athens
| | - Kun Dong
- Department of Physiology and Pharmacology, University of Georgia, Athens
| | - Sisi Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens
| | - Yongyi Wang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Wendy T Watford
- Department of Infectious Diseases, University of Georgia, Athens
| | - Shi-You Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens
| |
Collapse
|
22
|
Vlaicu SI, Tatomir A, Anselmo F, Boodhoo D, Chira R, Rus V, Rus H. RGC-32 and diseases: the first 20 years. Immunol Res 2019; 67:267-279. [DOI: 10.1007/s12026-019-09080-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Tatomir A, Tegla CA, Martin A, Boodhoo D, Nguyen V, Sugarman AJ, Mekala A, Anselmo F, Talpos-Caia A, Cudrici C, Badea TC, Rus V, Rus H. RGC-32 regulates reactive astrocytosis and extracellular matrix deposition in experimental autoimmune encephalomyelitis. Immunol Res 2019; 66:445-461. [PMID: 30006805 DOI: 10.1007/s12026-018-9011-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular matrix (ECM) deposition in active demyelinating multiple sclerosis (MS) lesions may impede axonal regeneration and can modify immune reactions. Response gene to complement (RGC)-32 plays an important role in the mediation of TGF-β downstream effects, but its role in gliosis has not been investigated. To gain more insight into the role played by RGC-32 in gliosis, we investigated its involvement in TGF-β-induced ECM expression and the upregulation of the reactive astrocyte markers α-smooth muscle actin (α-SMA) and nestin. In cultured neonatal rat astrocytes, collagens I, IV, and V, fibronectin, α-SMA, and nestin were significantly induced by TGF-β stimulation, and RGC-32 silencing resulted in a significant reduction in their expression. Using astrocytes isolated from RGC-32 knock-out (KO) mice, we found that the expression of TGF-β-induced collagens I, IV, and V, fibronectin, and α-SMA was significantly reduced in RGC-32 KO mice when compared with wild-type (WT) mice. SIS3 inhibition of Smad3 phosphorylation was also associated with a significant reduction in RGC-32 nuclear translocation and TGF-β-induced collagen I expression. In addition, during experimental autoimmune encephalomyelitis (EAE), RGC-32 KO mouse astrocytes displayed an elongated, bipolar phenotype, resembling immature astrocytes and glial progenitors whereas those from WT mice had a reactive, hypertrophied phenotype. Taken together, our data demonstrate that RGC-32 plays an important role in mediating TGF-β-induced reactive astrogliosis in EAE. Therefore, RGC-32 may represent a new target for therapeutic intervention in MS.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Cosmin A Tegla
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA
| | - Alvaro Martin
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Vinh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adam J Sugarman
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Armugam Mekala
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Freidrich Anselmo
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Anamaria Talpos-Caia
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
- Department of Rheumatology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Cudrici
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tudor C Badea
- Retinal Circuit Development and Genetics Unit, N-NRL, National Eye Institute, Bethesda, MD, USA
| | - Violeta Rus
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Horea Rus
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA.
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA.
- Veterans Administration Multiple Sclerosis Center of Excellence-East, Baltimore, MD, USA.
| |
Collapse
|
24
|
Yu T, Wang L, Zhao C, Qian B, Yao C, He F, Zhu Y, Cai M, Li M, Zhao D, Zhang J, Wang Y, Qiu W. Sublytic C5b-9 induces proliferation of glomerular mesangial cells via ERK5/MZF1/RGC-32 axis activated by FBXO28-TRAF6 complex. J Cell Mol Med 2019; 23:5654-5671. [PMID: 31184423 PMCID: PMC6653533 DOI: 10.1111/jcmm.14473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/06/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Mesangioproliferative glomerulonephritis (MsPGN) is characterized by the proliferation of glomerular mesangial cells (GMCs) and accumulation of extracellular matrix (ECM), followed by glomerulosclerosis and renal failure of patients. Although our previous studies have demonstrated that sublytic C5b‐9 complex formed on the GMC membrane could trigger GMC proliferation and ECM expansion of rat Thy‐1 nephritis (Thy‐1N) as an animal model of MsPGN, their mechanisms are still not fully elucidated. In the present studies, we found that the levels of response gene to complement 32 (RGC‐32), myeloid zinc finger 1 (MZF1), phosphorylated extracellular signal‐regulated kinase 5 (phosphorylated ERK5, p‐ERK5), F‐box only protein 28 (FBXO28) and TNF receptor‐associated factor 6 (TRAF6) were all markedly up‐regulated both in the renal tissues of rats with Thy‐1N (in vivo) and in the GMCs upon sublytic C5b‐9 stimulation (in vitro). Further in vitro experiments revealed that up‐regulated FBXO28 and TRAF6 could form protein complex binding to ERK5 and enhance ERK5 K63‐ubiquitination and subsequent phosphorylation. Subsequently, ERK5 activation contributed to MZF1 expression and MZF1‐dependent RGC‐32 up‐regulation, finally resulting in GMC proliferative response. Furthermore, the MZF1‐binding element within RGC‐32 promoter and the functions of FBXO28 domains were identified. Additionally, knockdown of renal FBXO28, TRAF6, ERK5, MZF1 and RGC‐32 genes respectively markedly reduced GMC proliferation and ECM production in Thy‐1N rats. Together, these findings indicate that sublytic C5b‐9 induces GMC proliferative changes in rat Thy‐1N through ERK5/MZF1/RGC‐32 axis activated by the FBXO28‐TRAF6 complex, which might provide a new insight into MsPGN pathogenesis.
Collapse
Affiliation(s)
- Tianyi Yu
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lulu Wang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chenhui Zhao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Baomei Qian
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunlei Yao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Fengxia He
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yufeng Zhu
- Clinical Medical Science of the First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mengyuan Cai
- Clinical Medical Science of the First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing medical University, Nanjing, People's Republic of China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing medical University, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Hoffman WH, Cudrici CD, Boodhoo D, Tatomir A, Rus V, Rus H. Intracerebral matrix metalloproteinase 9 in fatal diabetic ketoacidosis. Exp Mol Pathol 2019; 108:97-104. [PMID: 30986397 PMCID: PMC6563901 DOI: 10.1016/j.yexmp.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/22/2019] [Accepted: 04/11/2019] [Indexed: 02/08/2023]
Abstract
There is increasing awareness that in addition to the metabolic crisis of diabetic ketoacidosis (DKA) caused by severe insulin deficiency, the immune inflammatory response is likely an active multicomponent participant in both the acute and chronic insults of this medical crisis, with strong evidence of activation for both the cytokine and complement system. Recent studies report that the matrix metalloproteinase enzymes and their inhibitors are systemically activated in young Type 1 diabetes mellitus (T1D) patients during DKA and speculate on their involvement in blood-brain barrier (BBB) disruption. Based on our previous studies, we address the question if matrix metalloproteinase 9 (MMP9) is expressed in the brain in the fatal brain edema (BE) of DKA. Our data show significant expression of MMP9 on the cells present in brain intravascular areas. The presence of MMP9 in intravascular cells and that of MMP+ cells seen passing the BBB indicates a possible role in tight junction protein disruption of the BBB, possibly leading to neurological complications including BE. We have also shown that MMP9 is expressed on neurons in the hippocampal areas of both BE/DKA cases investigated, while expression of tissue inhibitor of metalloproteinases 1 (TIMP1) was reduced in the same areas. We can speculate that intraneuronal MMP9 can be a sign of neurodegeneration. Further studies are necessary to determine the role of MMP9 in the pathogenesis of the neurologic catastrophe of the brain edema of DKA. Inhibition of MMP9 expression might be helpful in preserving neuronal function and BBB integrity during DKA.
Collapse
Affiliation(s)
- William H Hoffman
- Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Cornelia D Cudrici
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Vlaicu SI, Tatomir A, Rus V, Rus H. Role of C5b-9 and RGC-32 in Cancer. Front Immunol 2019; 10:1054. [PMID: 31156630 PMCID: PMC6530392 DOI: 10.3389/fimmu.2019.01054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/24/2019] [Indexed: 01/13/2023] Open
Abstract
The complement system represents an effective arsenal of innate immunity as well as an interface between innate and adaptive immunity. Activation of the complement system culminates with the assembly of the C5b-9 terminal complement complex on cell membranes, inducing target cell lysis. Translation of this sequence of events into a malignant setting has traditionally afforded C5b-9 a strict antitumoral role, in synergy with antibody-dependent tumor cytolysis. However, in recent decades, a plethora of evidence has revised this view, highlighting the tumor-promoting properties of C5b-9. Sublytic C5b-9 induces cell cycle progression by activating signal transduction pathways (e.g., Gi protein/ phosphatidylinositol 3-kinase (PI3K)/Akt kinase and Ras/Raf1/ERK1) and modulating the activation of cancer-related transcription factors, while shielding malignant cells from apoptosis. C5b-9 also induces Response Gene to Complement (RGC)-32, a gene that contributes to cell cycle regulation by activating the Akt and CDC2 kinases. RGC-32 is expressed by tumor cells and plays a dual role in cancer, functioning as either a tumor promoter by endorsing malignancy initiation, progression, invasion, metastasis, and angiogenesis, or as a tumor suppressor. In this review, we present recent data describing the versatile, multifaceted roles of C5b-9 and its effector, RGC-32, in cancer.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alexandru Tatomir
- Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Violeta Rus
- Division of Rheumatology and Immunology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
27
|
Liao WL, Lin JM, Liu SP, Chen SY, Lin HJ, Wang YH, Lei YJ, Huang YC, Tsai FJ. Loss of Response Gene to Complement 32 (RGC-32) in Diabetic Mouse Retina Is Involved in Retinopathy Development. Int J Mol Sci 2018; 19:ijms19113629. [PMID: 30453650 PMCID: PMC6275084 DOI: 10.3390/ijms19113629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is a severe and recurrent microvascular complication in diabetes. The multifunctional response gene to complement 32 (RGC-32) is involved in the regulation of cell cycle, proliferation, and apoptosis. To investigate the role of RGC-32 in the development of DR, we used human retinal microvascular endothelial cells under high-glucose conditions and type 2 diabetes (T2D) mice (+Leprdb/ + Leprdb, db/db). The results showed that RGC-32 expression increased moderately in human retinal endothelial cells under hyperglycemic conditions. Histopathology and RGC-32 expression showed no significant changes between T2D and control mice retina at 16 and 24 weeks of age. However, RGC-32 expression was significantly decreased in T2D mouse retina compared to the control group at 32 weeks of age, which develop features of the early clinical stages of DR, namely reduced retinal thickness and increased ganglion cell death. Moreover, immunohistochemistry showed that RGC-32 was predominantly expressed in the photoreceptor inner segments of control mice, while the expression was dramatically lowered in the T2D retinas. Furthermore, we found that the level of anti-apoptotic protein Bcl-2 was decreased (approximately 2-fold) with a concomitant increase in cleaved caspase-3 (approximately 3-fold) in T2D retina compared to control. In summary, RGC-32 may lose its expression in T2D retina with features of DR, suggesting that it plays a critical role in DR pathogenesis.
Collapse
Affiliation(s)
- Wen-Ling Liao
- Center for Personalized Medicine, China Medical University Hospital and Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan.
| | - Jane-Ming Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Ophthalmology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Shih-Ping Liu
- Center for Translational Medicine, China Medical University Hospital and Graduate Institute of Biomedical Science, China Medical University, Taichung 404, Taiwan and Department of Social Work, Asia University, Taichung 413, Taiwan.
| | - Shih-Yin Chen
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Ophthalmology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yeh-Han Wang
- Department of Anatomical Pathology, Taipei Institute of Pathology, Taipei 103, Taiwan and Institute of Public Health, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yu-Jie Lei
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yu-Chuen Huang
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
- Department of Medical Genetics, China Medical University Hospital and Children's Hospital of China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
28
|
Phosphorylated SIRT1 as a biomarker of relapse and response to treatment with glatiramer acetate in multiple sclerosis. Exp Mol Pathol 2018; 105:175-180. [DOI: 10.1016/j.yexmp.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/16/2018] [Indexed: 11/24/2022]
|
29
|
Cui XB, Chen SY. Response Gene to Complement 32 in Vascular Diseases. Front Cardiovasc Med 2018; 5:128. [PMID: 30280101 PMCID: PMC6153333 DOI: 10.3389/fcvm.2018.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
Response gene to complement 32 (RGC32) is a protein that was identified in rat oligodendrocytes after complement activation. It is expressed in most of the organs and tissues, such as brain, placenta, heart, and the liver. Functionally, RGC32 is involved in various physiological and pathological processes, including cell proliferation, differentiation, fibrosis, metabolic disease, and cancer. Emerging evidences support the roles of RGC32 in vascular diseases. RGC32 promotes injury-induced vascular neointima formation by mediating smooth muscle cell (SMC) proliferation and migration. Moreover, RGC32 mediates endothelial cell activation and facilitates atherosclerosis development. Its involvement in macrophage phagocytosis and activation as well as T-lymphocyte cell cycle activation also suggests that RGC32 is important for the development and progression of inflammatory vascular diseases. In this mini-review, we provide an overview on the roles of RGC32 in regulating functions of SMCs, endothelial cells, and immune cells, and discuss their contributions to vascular diseases.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, United States
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, United States
| |
Collapse
|
30
|
Chen YJ, Chang WA, Wu LY, Hsu YL, Chen CH, Kuo PL. Systematic Analysis of Differential Expression Profile in Rheumatoid Arthritis Chondrocytes Using Next-Generation Sequencing and Bioinformatics Approaches. Int J Med Sci 2018; 15:1129-1142. [PMID: 30123050 PMCID: PMC6097257 DOI: 10.7150/ijms.27056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Cartilage destruction in rheumatoid arthritis (RA) occurs primarily in the pannus-cartilage interface. The close contact of the synovium-cartilage interface implicates crosstalk between synovial fibroblasts and chondrocytes. The aim of this study is to explore the differentially expressed genes and novel microRNA regulations potentially implicated in the dysregulated cartilage homeostasis in joint destruction of RA. Total RNAs were extracted from human primary cultured normal and RA chondrocytes for RNA and small RNA expression profiling using next-generation sequencing. Using systematic bioinformatics analyses, we identified 463 differentially expressed genes in RA chondrocytes were enriched in biological functions related to altered cell cycle process, inflammatory response and hypoxic stimulation. Moreover, fibroblast growth factor 9 (FGF9), kynureninase (KYNU), and regulator of cell cycle (RGCC) were among the top dysregulated genes identified to be potentially affected in the RA joint microenvironment, having similar expression patterns observed in arrays of clinical RA synovial tissues from the Gene Expression Omnibus database. Additionally, among the 31 differentially expressed microRNAs and 10 candidate genes with potential microRNA-mRNA interactions in RA chondrocytes, the novel miR-140-3p-FGF9 interaction was validated in different microRNA prediction databases, and proposed to participate in the pathogenesis of joint destruction through dysregulated cell growth in RA. The findings provide new perspectives for target genes in the management of cartilage destruction in RA.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
31
|
The complement system as a biomarker of disease activity and response to treatment in multiple sclerosis. Immunol Res 2018; 65:1103-1109. [PMID: 29116612 DOI: 10.1007/s12026-017-8961-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The complement system has an established role in the pathogenesis of MS, and evidence suggests that its components can be used as biomarkers of disease-state activity and response to treatment in MS. Plasma C4a levels have been found to be significantly elevated in patients with active relapsing-remitting MS (RRMS), as compared to both controls and patients with stable RRMS. C3 levels are also significantly elevated in the cerebrospinal fluid (CSF) of patients with RRMS, and C3 levels are correlated with clinical disability. Furthermore, increased levels of factor H can predict the transition from relapsing to progressive disease, since factor H levels have been found to increase progressively with disease progression over a 2-year period in patients transitioning from RRMS to secondary progressive (SP) MS. In addition, elevations in C3 are seen in primary progressive (PP) MS. Complement components can also differentiate RRMS from neuromyelitis optica. Response gene to complement (RGC)-32, a novel molecule induced by complement activation, is a possible biomarker of relapse and response to glatiramer acetate (GA) therapy, since RGC-32 mRNA expression is significantly decreased during relapse and increased in responders to GA treatment. The predictive accuracy of RGC-32 as a potential biomarker (by ROC analysis) is 90% for detecting relapses and 85% for detecting a response to GA treatment. Thus, complement components can serve as biomarkers of disease activity to differentiate MS subtypes and to measure response to therapy.
Collapse
|
32
|
Zhu L, Ding Y. RGC-32 induces transition of pancreatic cancer to epithelial mesenchyme in vivo. Pancreatology 2018; 18:572-576. [PMID: 29886073 DOI: 10.1016/j.pan.2018.05.480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study was undertaken to investigate the induction of transition of pancreatic cancer to epithelial mesenchyme by RGC-32. METHODS Primary human pancreatic cancer cell line BXPC-3 was transfected with lentivirus overexpressing the response gene to complement-32 gene (RGC-32) and used to induce tumor in mice. The tumor sizes were measured and the expression of cytokeratin, e-cadherin and vimentin at mRNA using real time PCR and at protein levels by Western blot. RESULTS Compared with the control, mice inoculated with the cells transfected with empty vector had similar tumor size while those inoculated with the cells transfected with RGC-32 expressing virus had significantly greater tumor size. HE staining showed that tumors were formed in all treatments. Molecular analyses showed that there was no difference in the expression of the cytokeratin, e-cadherin and vimentin genes at mRNA and protein levels between control and empty vector groups. However, mice derived from cells transfected with RGC-32 expressing virus had reduced cytokeratin and e-cadherin expression and increased vimentin expression. CONCLUSIONS These data suggest that RGC-32 promotes the proliferation of pancreatic cancer and induces the epithelial-mesenchymal transition (EMT). It would be a future direction of research to investigate the regulatory mechanism of signal molecules downstream RGC-32 on EMT-related transcription factors and deliberate the role of RGC-32 in tumorigenicity. As a result, RGC-32 may become a new therapeutic target for cancers.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Ying Ding
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
33
|
Rus H, Talpos-Caia A, Tatomir A, Vlaicu SI. Letter by Rus et al Regarding Article, "RGC-32 (Response Gene to Complement 32) Deficiency Protects Endothelial Cells From Inflammation and Attenuates Atherosclerosis". Arterioscler Thromb Vasc Biol 2018; 38:e96. [PMID: 29793993 DOI: 10.1161/atvbaha.118.311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore
| | | | - Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, Baltimore
| | - Sonia I Vlaicu
- Department of Neurology, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
34
|
New insights into the roles of RGC-32. Cell Mol Immunol 2018; 15:803-804. [PMID: 29503443 DOI: 10.1038/cmi.2017.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
|
35
|
Cui XB, Luan JN, Dong K, Chen S, Wang Y, Watford WT, Chen SY. RGC-32 (Response Gene to Complement 32) Deficiency Protects Endothelial Cells From Inflammation and Attenuates Atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38:e36-e47. [PMID: 29449334 DOI: 10.1161/atvbaha.117.310656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective of this study is to determine the role and underlying mechanisms of RGC-32 (response gene to complement 32 protein) in atherogenesis. APPROACH AND RESULTS RGC-32 was mainly expressed in endothelial cells of atherosclerotic lesions in both ApoE-/- (apolipoprotein E deficient) mice and human patients. Rgc-32 deficiency (Rgc32-/-) attenuated the high-fat diet-induced and spontaneously developed atherosclerotic lesions in ApoE-/- mice without affecting serum cholesterol concentration. Rgc32-/- seemed to decrease the macrophage content without altering collagen and smooth muscle contents or lesional macrophage proliferation in the lesions. Transplantation of WT (wild type) mouse bone marrow to lethally irradiated Rgc32-/- mice did not alter Rgc32-/--caused reduction of lesion formation and macrophage accumulation, suggesting that RGC-32 in resident vascular cells, but not the macrophages, plays a critical role in the atherogenesis. Of importance, Rgc32-/- decreased the expression of ICAM-1 (intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) in endothelial cells both in vivo and in vitro, resulting in a decrease in TNF-α (tumor necrosis factor-α)-induced monocyte-endothelial cell interaction. Mechanistically, RGC-32 mediated the ICAM-1 and VCAM-1 expression, at least partially, through NF (nuclear factor)-κB signaling pathway. RGC-32 directly interacted with NF-κB and facilitated its nuclear translocation and enhanced TNF-α-induced NF-κB binding to ICAM-1 and VCAM-1 promoters. CONCLUSIONS RGC-32 mediates atherogenesis by facilitating monocyte-endothelial cell interaction via the induction of endothelial ICAM-1 and VCAM-1 expression, at least partially, through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Jun-Na Luan
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Kun Dong
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Sisi Chen
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Yongyi Wang
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Wendy T Watford
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.).
| |
Collapse
|
36
|
Hershkovitz-Rokah O, Geva P, Salmon-Divon M, Shpilberg O, Liberman-Aronov S. Network analysis of microRNAs, genes and their regulation in diffuse and follicular B-cell lymphomas. Oncotarget 2018; 9:7928-7941. [PMID: 29487703 PMCID: PMC5814270 DOI: 10.18632/oncotarget.23974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) are short non-coding regulatory RNAs that control gene expression at the post-transcriptional level and play an important role in cancer development and progression, acting either as oncogenes or as tumor suppressors. Identification of aberrantly expressed miRs in patients with hematological malignancies as compared to healthy individuals has suggested that these molecules may serve as novel clinical diagnostic and prognostic biomarkers. We conducted a systematic literature review of articles published between 2007 and 2017 and re-analyzed experimentally-validated human miR expression signatures in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) from various biological sources (tumor tissue, peripheral blood, bone marrow and cell lines). A unique miR expression pattern was observed for each disease. Compared to healthy individuals, 61 miRs were aberrantly expressed in DLBCL and 85 in FL; 20-30% of aberrantly expressed miRs overlapped between the two lymphoma subtypes. Analysis of integrative positive and negative miRNA-mRNA relationships using the Ingenuity Pathway Analysis (IPA) system revealed 970 miR-mRNA pairs for DLBCL and 90 for FL. Through gene ontology analysis, we found potential regulatory pathways that are deregulated in DLBCL and FL due to improper expression of miR target genes. By comparing the expression level of the aberrantly expressed miRs in DLBCL to their expression levels in other malignancies, we identified seven miRs that are aberrantly expressed in DLBCL tumor tissues (miR-15a, miR-16, miR-17, miR-106, miR-21, miR-155 and miR-34a-5p). This specific expression pattern may be a potential diagnostic tool for DLBCL.
Collapse
Affiliation(s)
- Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.,Translational Research Laboratory, Assuta Medical Centers, Tel Aviv, Israel.,Institude of Hematology, Assuta Medical Centers, Tel Aviv, Israel
| | - Polina Geva
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Ofer Shpilberg
- Translational Research Laboratory, Assuta Medical Centers, Tel Aviv, Israel.,Institude of Hematology, Assuta Medical Centers, Tel Aviv, Israel.,Pre-Medicine Department, School of Health Sciences, Ariel University, Ariel, Israel
| | - Stella Liberman-Aronov
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
37
|
Vlaicu SI, Tatomir A, Boodhoo D, Vesa S, Mircea PA, Rus H. The role of complement system in adipose tissue-related inflammation. Immunol Res 2017; 64:653-64. [PMID: 26754764 DOI: 10.1007/s12026-015-8783-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the common factor linking adipose tissue to the metabolic context of obesity, insulin resistance and atherosclerosis are associated with a low-grade chronic inflammatory status, to which the complement system is an important contributor. Adipose tissue synthesizes complement proteins and is a target of complement activation. C3a-desArg/acylation-stimulating protein stimulates lipogenesis and affects lipid metabolism. The C3a receptor and C5aR are involved in the development of adipocytes' insulin resistance through macrophage infiltration and the activation of adipose tissue. The terminal complement pathway has been found to be instrumental in promoting hyperglycemia-associated tissue damage, which is characteristic of the major vascular complications of diabetes mellitus and diabetic ketoacidosis. As a mediator of the effects of the terminal complement complex C5b-9, RGC-32 has an impact on energy expenditure as well as lipid and glucose metabolic homeostasis. All of this evidence, taken together, indicates an important role for complement activation in metabolic diseases.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA.,Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA.,Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Stefan Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Petru A Mircea
- Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA. .,Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA. .,Veterans Administration Multiple Sclerosis Center of Excellence, Baltimore, MD, USA.
| |
Collapse
|
38
|
Zhu L, Zhao Q. Hypoxia-inducible factor 1α participates in hypoxia-induced epithelial-mesenchymal transition via response gene to complement 32. Exp Ther Med 2017; 14:1825-1831. [PMID: 28810656 DOI: 10.3892/etm.2017.4665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to explore the function of response gene to complement 32 (RGC-32) in hypoxia-induced epithelial-mesenchymal transition (EMT) in pancreatic cancer. Three kinds of hypoxia-inducible factor 1α (HIF-1α) small interfering (si)RNA were synthesized and the different effects on the expression of HIF-1α were detected by western blotting. In human pancreatic cancer BxPC-3 cells, HIF-1α levels were diminished using siRNA transfection or HIF-1α inhibitor pretreatment, and the expression levels of RGC-32 and EMT-associated proteins were analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting. Subsequently, the protein levels of epithelial marker, E-cadherin, and mesenchymal marker, vimentin, were determined by western blotting. Results demonstrated that HIF-1α-Homo-488 siRNA and HIF-1α-Homo-1216 siRNA diminished the protein level of HIF-1α. Compared with normoxia, hypoxia induced the levels of HIF-1α, RGC-32, N-cadherin and vimentin, but suppressed the expression of E-cadherin and cytokeratins. The inhibition of HIF-1α by HIF-1α-Homo-1216 siRNA transfection or HIF-1α inhibitor repressed hypoxia-induced HIF-1α, RGC-32, N-cadherin and vimentin, but increased the expression of E-cadherin and cytokeratins. When RGC-32 was knocked down, hypoxia-induced vimentin was suppressed; however, hypoxia-suppressed N-cadherin was released. In conclusion, the present results demonstrated that hypoxia induced the expression of HIF-1α to activate the levels of RGC-32, in turn to regulate the expression EMT-associated proteins for EMT. These findings revealed the function of RGC-32 in hypoxia-induced EMT and may have identified a novel link between HIF-1α and EMT for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
39
|
Rus V, Nguyen V, Tatomir A, Lees JR, Mekala AP, Boodhoo D, Tegla CA, Luzina IG, Antony PA, Cudrici CD, Badea TC, Rus HG. RGC-32 Promotes Th17 Cell Differentiation and Enhances Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2017; 198:3869-3877. [PMID: 28356385 DOI: 10.4049/jimmunol.1602158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023]
Abstract
Th17 cells play a critical role in autoimmune diseases, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Response gene to complement (RGC)-32 is a cell cycle regulator and a downstream target of TGF-β that mediates its profibrotic activity. In this study, we report that RGC-32 is preferentially upregulated during Th17 cell differentiation. RGC-32-/- mice have normal Th1, Th2, and regulatory T cell differentiation but show defective Th17 differentiation in vitro. The impaired Th17 differentiation is associated with defects in IFN regulatory factor 4, B cell-activating transcription factor, retinoic acid-related orphan receptor γt, and SMAD2 activation. In vivo, RGC-32-/- mice display an attenuated experimental autoimmune encephalomyelitis phenotype accompanied by decreased CNS inflammation and reduced frequency of IL-17- and GM-CSF-producing CD4+ T cells. Collectively, our results identify RGC-32 as a novel regulator of Th17 cell differentiation in vitro and in vivo and suggest that RGC-32 is a potential therapeutic target in multiple sclerosis and other Th17-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Violeta Rus
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201; .,Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201
| | - Vinh Nguyen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201.,Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201
| | - Alexandru Tatomir
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Armugam P Mekala
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Dallas Boodhoo
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Cosmin A Tegla
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Irina G Luzina
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201.,Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201
| | - Paul A Antony
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Cornelia D Cudrici
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Tudor C Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Horea G Rus
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
40
|
Kong BW, Hudson N, Seo D, Lee S, Khatri B, Lassiter K, Cook D, Piekarski A, Dridi S, Anthony N, Bottje W. RNA sequencing for global gene expression associated with muscle growth in a single male modern broiler line compared to a foundational Barred Plymouth Rock chicken line. BMC Genomics 2017; 18:82. [PMID: 28086790 PMCID: PMC5237145 DOI: 10.1186/s12864-016-3471-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023] Open
Abstract
Background Modern broiler chickens exhibit very rapid growth and high feed efficiency compared to unselected chicken breeds. The improved production efficiency in modern broiler chickens was achieved by the intensive genetic selection for meat production. This study was designed to investigate the genetic alterations accumulated in modern broiler breeder lines during selective breeding conducted over several decades. Methods To identify genes important in determining muscle growth and feed efficiency in broilers, RNA sequencing (RNAseq) was conducted with breast muscle in modern pedigree male (PeM) broilers (n = 6 per group), and with an unselected foundation broiler line (Barred Plymouth Rock; BPR). The RNAseq analysis was carried out using Ilumina Hiseq (2 x 100 bp paired end read) and raw reads were assembled with the galgal4 reference chicken genome. With normalized RPM values, genes showing >10 average read counts were chosen and genes showing <0.05 p-value and >1.3 fold change were considered as differentially expressed (DE) between PeM and BPR. DE genes were subjected to Ingenuity Pathway Analysis (IPA) for bioinformatic functional interpretation. Results The results indicate that 2,464 DE genes were identified in the comparison between PeM and BPR. Interestingly, the expression of genes encoding mitochondrial proteins in chicken are significantly biased towards the BPR group, suggesting a lowered mitochondrial content in PeM chicken muscles compared to BPR chicken. This result is inconsistent with more slow muscle fibers bearing a lower mitochondrial content in the PeM. The molecular, cellular and physiological functions of DE genes in the comparison between PeM and BPR include organismal injury, carbohydrate metabolism, cell growth/proliferation, and skeletal muscle system development, indicating that cellular mechanisms in modern broiler lines are tightly associated with rapid growth and differential muscle fiber contents compared to the unselected BPR line. Particularly, PDGF (platelet derived growth factor) signaling and NFE2L2 (nuclear factor, erythroid 2-like 2; also known as NRF2) mediated oxidative stress response pathways appear to be activated in modern broiler compared to the foundational BPR line. Upstream and network analyses revealed that the MSTN (myostatin) –FST (follistatin) interactions and inhibition of AR (androgen receptor) were predicted to be effective regulatory factors for DE genes in modern broiler line. PRKAG3 (protein kinase, AMP-activated, gamma 3 non-catalytic subunit) and LIPE (lipase E) are predicted as core regulatory factors for myogenic development, nutrient and lipid metabolism. Conclusion The highly upregulated genes in PeM may represent phenotypes of subclinical myopathy commonly observed in the commercial broiler breast tissue, that can lead to muscle hardening, named as woody breast. By investigating global gene expression in a highly selected pedigree broiler line and a foundational breed (Barred Plymouth Rock), the results provide insight into cellular mechanisms that regulate muscle growth, fiber composition and feed efficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3471-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nicholas Hudson
- School of Agriculture and Food Science, University of Queensland, Gatton, Australia
| | - Dongwon Seo
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Seok Lee
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Bhuwan Khatri
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kentu Lassiter
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Devin Cook
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Alissa Piekarski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nicholas Anthony
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Walter Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| |
Collapse
|
41
|
Counts SE, Mufson EJ. Regulator of Cell Cycle (RGCC) Expression During the Progression of Alzheimer's Disease. Cell Transplant 2016; 26:693-702. [PMID: 27938491 DOI: 10.3727/096368916x694184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Unscheduled cell cycle reentry of postmitotic neurons has been described in cases of mild cognitive impairment (MCI) and Alzheimer's disease (AD) and may form a basis for selective neuronal vulnerability during disease progression. In this regard, the multifunctional protein regulator of cell cycle (RGCC) has been implicated in driving G1/S and G2/M phase transitions through its interactions with cdc/cyclin-dependent kinase 1 (cdk1) and is induced by p53, which mediates apoptosis in neurons. We tested whether RGCC levels were dysregulated in frontal cortex samples obtained postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), MCI, or AD. RGCC mRNA and protein levels were upregulated by ∼50%-60% in MCI and AD compared to NCI, and RGCC protein levels were associated with poorer antemortem global cognitive performance in the subjects examined. To test whether RGCC might regulate neuronal cell cycle reentry and apoptosis, we differentiated neuronotypic PC12 cultures with nerve growth factor (NGF) followed by NGF withdrawal to induce abortive cell cycle activation and cell death. Experimental reduction of RGCC levels increased cell survival and reduced levels of the cdk1 target cyclin B1. RGCC may be a candidate cell cycle target for neuroprotection during the onset of AD.
Collapse
|
42
|
Vlaicu SI, Tatomir A, Boodhoo D, Ito T, Fosbrink M, Cudrici C, Mekala AP, Ciriello J, Crişan D, Boţan E, Rus V, Rus H. RGC-32 is expressed in the human atherosclerotic arterial wall: Role in C5b-9-induced cell proliferation and migration. Exp Mol Pathol 2016; 101:221-230. [DOI: 10.1016/j.yexmp.2016.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/21/2023]
|
43
|
Shen YL, Liu HJ, Sun L, Niu XL, Kuang XY, Wang P, Hao S, Huang WY. Response gene to complement 32 regulates the G2/M phase checkpoint during renal tubular epithelial cell repair. Cell Mol Biol Lett 2016; 21:19. [PMID: 28536621 PMCID: PMC5415738 DOI: 10.1186/s11658-016-0021-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/10/2016] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this study was to evaluate the influence of RGC-32 (response gene to complement 32) on cell cycle progression in renal tubular epithelial cell injury. Methods NRK-52E cells with overexpressed or silenced RGC-32 were constructed via transient transfection with RGC-32 expression plasmid and RGC-32 siRNA plasmid, and the cell cycle distribution was determined. The expression levels of fibrosis factors, including smooth muscle action (α-SMA), fibronectin (FN) and E-cadherin, were assessed in cells with silenced RGC-32. Results The cells were injured via TNF-α treatment, and the injury was detectable by the enhanced expression of neutrophil gelatinase-associated lipocalin (NGAL). RGC-32 expression also increased significantly. The number of cells at G2/M phase increased dramatically in RGC-32 silenced cells, indicating that RGC-32 silencing induced G2/M arrest. In addition, after treatment with TNF-α, the NRK-52E cells with silenced RGC-32 showed significantly increased expression of α-SMA and FN, but decreased expression of E-cadherin. Conclusions The results of this study suggest that RGC-32 probably has an important impact on the repair process of renal tubular epithelial cells in vitro by regulating the G2/M phase checkpoint, cell fibrosis and cell adhesion. However, the exact mechanism needs to be further elucidated.
Collapse
Affiliation(s)
- Yun-Lin Shen
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Hua-Jie Liu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Lei Sun
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Xiao-Ling Niu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Xin-Yu Kuang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Ping Wang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Wen-Yan Huang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| |
Collapse
|
44
|
Promoter Methylation and mRNA Expression of Response Gene to Complement 32 in Breast Carcinoma. J Cancer Epidemiol 2016; 2016:7680523. [PMID: 27118972 PMCID: PMC4828546 DOI: 10.1155/2016/7680523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/23/2015] [Accepted: 03/08/2016] [Indexed: 12/21/2022] Open
Abstract
Background. Response gene to complement 32 (RGC32), induced by activation of complements, has been characterized as a cell cycle regulator; however, its role in carcinogenesis is still controversial. In the present study we compared RGC32 promoter methylation patterns and mRNA expression in breast cancerous tissues and adjacent normal tissues. Materials and Methods. Sixty-three breast cancer tissues and 63 adjacent nonneoplastic tissues were included in our study. Design. Nested methylation-specific polymerase chain reaction (Nested-MSP) and quantitative PCR (qPCR) were used to determine RGC32 promoter methylation status and its mRNA expression levels, respectively. Results. RGC32 methylation pattern was not different between breast cancerous tissue and adjacent nonneoplastic tissue (OR = 2.30, 95% CI = 0.95–5.54). However, qPCR analysis displayed higher levels of RGC32 mRNA in breast cancerous tissues than in noncancerous tissues (1.073 versus 0.959; P = 0.001), irrespective of the promoter methylation status. The expression levels and promoter methylation of RGC32 were not correlated with any of patients' clinical characteristics (P > 0.05). Conclusion. Our findings confirmed upregulation of RGC32 in breast cancerous tumors, but it was not associated with promoter methylation patterns.
Collapse
|
45
|
Martin A, Tegla CA, Cudrici CD, Kruszewski AM, Azimzadeh P, Boodhoo D, Mekala AP, Rus V, Rus H. Role of SIRT1 in autoimmune demyelination and neurodegeneration. Immunol Res 2015; 61:187-97. [PMID: 25281273 DOI: 10.1007/s12026-014-8557-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by chronic inflammation of the central nervous system, in which many factors can act together to influence disease susceptibility and progression. SIRT1 is a member of the histone deacetylase class III family of proteins and is an NAD(+)-dependent histone and protein deacetylase. SIRT1 can induce chromatin silencing through the deacetylation of histones and plays an important role as a key regulator of a wide variety of cellular and physiological processes including DNA damage, cell survival, metabolism, aging, and neurodegeneration. It has gained a lot of attention recently because many studies in animal models of demyelinating and neurodegenerative diseases have shown that SIRT1 induction can ameliorate the course of the disease. SIRT1 expression was found to be decreased in the peripheral blood mononuclear cells of MS patients during relapses. SIRT1 represents a possible biomarker of relapses and a potential new target for therapeutic intervention in MS. Modulation of SIRT1 may be a valuable strategy for treating or preventing MS and neurodegenerative central nervous system disorders.
Collapse
Affiliation(s)
- Alvaro Martin
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sun L, Shen YL, Liu HJ, Hu YJ, Kang YL, Huang WY. The expression of response gene to complement 32 on renal ischemia reperfusion injury in rat. Ren Fail 2015; 38:276-81. [PMID: 26652201 DOI: 10.3109/0886022x.2015.1120118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To investigate the expression of response gene to complement 32 (RGC32) in rat with acute kidney injury (AKI) and to explore the role of RGC32 in renal injury and repair induced by ischemia reperfusion. Rats were randomly divided into two groups, including sham operation group (n = 48) and acute ischemia reperfusion injury (IRI) group (n = 48). Rats were sacrificed following reperfusion 2 h, 6 h, 24 h, 48 h, 72 h, 1 week (w), 2 w, and 4 w. The distribution and expression of RGC32 in renal tissue were observed by means of immunohistochemistry. The mean density of the images detected by Image-Pro Plus 6 was designated as the representative RGC32 expression levels. Meanwhile, RGC32 mRNA expression was measured by qPCR. RGC32 mainly expressed in cytoplasm of proximal tubular epithelial cells. However, RGC32 did not express in renal interstitium and vessels. The expression levels of RGC32 measured by immunohistochemistry at different reperfusion time were 0.0168 ± 0.0029, 0.0156 ± 0.0021, 0.0065 ± 0.0013, 0.0075 ± 0.0013, 0.0096 ± 0.0014, 0.0132 ± 0.0016, 0.0169 ± 0.0014, 0.0179 ± 0.0022, respectively. Compared with the sham group, the level of RGC32 expression in IRI group was significant lower at 24 h, 48 h, 72 h after IRI (p < 0.05). The expression levels of RGC32 mRNA at different reperfusion time measured by qPCR were corroborated the immunohistochemistry finding. The in vitro experiments show the expression of α-SMA and extracellular matrix expression increased signification when the RGC32 was silenced. Our data showed that the RGC32 expression in AKI rat decreased significantly reduces with different reperfusion time and performs a time-dependent manner. RGC32 may play an important role in the pathogenesis of AKI following IRI and repair in rat.
Collapse
Affiliation(s)
- Lei Sun
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yun-Lin Shen
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Hua-Jie Liu
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yu-Jie Hu
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yu-Lin Kang
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Wen-Yan Huang
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| |
Collapse
|
47
|
Zhao P, Gao D, Wang Q, Song B, Shao Q, Sun J, Ji C, Li X, Li P, Qu X. Response gene to complement 32 (RGC-32) expression on M2-polarized and tumor-associated macrophages is M-CSF-dependent and enhanced by tumor-derived IL-4. Cell Mol Immunol 2015; 12:692-9. [PMID: 25418473 PMCID: PMC4716617 DOI: 10.1038/cmi.2014.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/01/2014] [Accepted: 10/01/2014] [Indexed: 02/08/2023] Open
Abstract
Response gene to complement 32 (RGC-32) is a cell cycle regulator involved in the proliferation, differentiation and migration of cells and has also been implicated in angiogenesis. Here we show that RGC-32 expression in macrophages is induced by IL-4 and reduced by LPS, indicating a link between RGC-32 expression and M2 polarization. We demonstrated that the increased expression of RGC-32 is characteristic of alternatively activated macrophages, in which this protein suppresses the production of pro-inflammatory cytokine IL-6 and promotes the production of the anti-inflammatory mediator TGF-β. Consistent with in vitro data, tumor-associated macrophages (TAMs) express high levels of RGC-32, and this expression is induced by tumor-derived ascitic fluid in an M-CSF- and/or IL-4-dependent manner. Collectively, these results establish RGC-32 as a marker for M2 macrophage polarization and indicate that this protein is a potential target for cancer immunotherapy, targeting tumor-associated macrophages.
Collapse
Affiliation(s)
- Peng Zhao
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
- Biotherapy Center, Qingdao Central Hospital, the Second Affiliated Hospital, Qingdao University Medical College, Qingdao, China
| | - Daiqing Gao
- Biotherapy Center, Qingdao Central Hospital, the Second Affiliated Hospital, Qingdao University Medical College, Qingdao, China
| | - Qingjie Wang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Bingfeng Song
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Qianqian Shao
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Jintang Sun
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Chunyan Ji
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Xingang Li
- Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Li
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
48
|
Kruszewski AM, Rao G, Tatomir A, Hewes D, Tegla CA, Cudrici CD, Nguyen V, Royal W, Bever CT, Rus V, Rus H. RGC-32 as a potential biomarker of relapse and response to treatment with glatiramer acetate in multiple sclerosis. Exp Mol Pathol 2015; 99:498-505. [PMID: 26407760 DOI: 10.1016/j.yexmp.2015.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023]
Abstract
Currently there is critical need for the identification of reliable biomarkers to help guide clinical management of multiple sclerosis (MS) patients. We investigated the combined roles of Response Gene to Complement 32 (RGC-32), FasL, CDC2, AKT, and IL-21 as possible biomarkers of relapse and response to glatiramer acetate (GA) treatment in relapsing-remitting MS (RRMS) patients. Over the course of 2 years, a cohort of 15 GA-treated RRMS patients was clinically monitored and peripheral blood mononuclear cells (PBMCs) were collected at 0, 3, 6, and 12 months. Target gene mRNA expression was measured in patients' isolated PBMCs by real-time qRT-PCR. Compared to stable MS patients, those with acute relapses exhibited decreased expression of RGC-32 (p<0.0001) and FasL (p<0.0001), increased expression of IL-21 (p=0.04), but no change in CDC2 or AKT. Compared to non-responders, responders to GA treatment showed increased expression of RGC-32 (p<0.0001) and FasL (p<0.0001), and decreased expression of IL-21 (p=0.02). Receiver operating characteristic (ROC) analysis was used to assess the predictive accuracy of each putative biomarker. The probability of accurately detecting relapse was 90% for RGC-32, 88% for FasL, and 75% for IL-21. The probability of accurately detecting response to GA was 85% for RGC-32, 90% for FasL, and 85% for IL-21. Our data suggest that RGC-32, FasL, and IL-21 could serve as potential biomarkers for the detection of MS relapse and response to GA therapy.
Collapse
Affiliation(s)
- Adam M Kruszewski
- Department of Neurology, University of Maryland, School of Medicine, United States
| | - Gautam Rao
- Department of Neurology, University of Maryland, School of Medicine, United States
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, United States
| | - Daniel Hewes
- Department of Neurology, University of Maryland, School of Medicine, United States
| | - Cosmin A Tegla
- Department of Neurology, University of Maryland, School of Medicine, United States; Research Service, Veterans Administration Maryland Health Care System, United States
| | - Cornelia D Cudrici
- Department of Neurology, University of Maryland, School of Medicine, United States
| | - Vingh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, United States
| | - Walter Royal
- Department of Neurology, University of Maryland, School of Medicine, United States; Veterans Administration Multiple Sclerosis Center of Excellence East, Baltimore, MD, USA
| | - Christopher T Bever
- Department of Neurology, University of Maryland, School of Medicine, United States; Research Service, Veterans Administration Maryland Health Care System, United States; Veterans Administration Multiple Sclerosis Center of Excellence East, Baltimore, MD, USA
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, United States
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, United States; Research Service, Veterans Administration Maryland Health Care System, United States; Veterans Administration Multiple Sclerosis Center of Excellence East, Baltimore, MD, USA.
| |
Collapse
|
49
|
Vlaicu SI, Tatomir A, Rus V, Mekala AP, Mircea PA, Niculescu F, Rus H. The role of complement activation in atherogenesis: the first 40 years. Immunol Res 2015; 64:1-13. [DOI: 10.1007/s12026-015-8669-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Li X, Ottosson S, Wang S, Jernberg E, Boldrup L, Gu X, Nylander K, Li A. Wilms' tumor gene 1 regulates p63 and promotes cell proliferation in squamous cell carcinoma of the head and neck. BMC Cancer 2015; 15:342. [PMID: 25929687 PMCID: PMC4421988 DOI: 10.1186/s12885-015-1356-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/23/2015] [Indexed: 12/15/2022] Open
Abstract
Background Wilms’ tumor gene 1 (WT1) can act as a suppressor or activator of tumourigenesis in different types of human malignancies. The role of WT1 in squamous cell carcinoma of the head and neck (SCCHN) is not clear. Overexpression of WT1 has been reported in SCCHN, suggesting a possible oncogenic role for WT1. In the present study we aimed at investigating the function of WT1 and its previously identified protein partners p63 and p53 in the SCCHN cell line FaDu. Methods Silencing RNA (siRNA) technology was applied to knockdown of WT1, p63 and p53 in FaDu cells. Cell proliferation was detected using MTT assay. Chromatin immunoprecipitation (ChIP)/PCR analysis was performed to confirm the effect of WT1 on the p63 promoter. Protein co-immunoprecipitation (co-IP) was used to find protein interaction between WT1 and p53/p63. Microarray analysis was used to identify changes of gene expression in response to knockdown of either WT1 or p63. WT1 RNA level was detected using real-time quantitative PCR (RT-qPCR) in patients with SCCHN. Results We found that WT1 and p63 promoted cell proliferation, while mutant p53 (R248L) possessed the ability to suppress cell proliferation. We reported a novel positive correlation between WT1 and p63 expression. Subsequently, p63 was identified as a WT1 target gene. Furthermore, expression of 18 genes involved in cell proliferation, cell cycle regulation and DNA replication was significantly altered by downregulation of WT1 and p63 expression. Several known WT1 and p63 target genes were affected by WT1 knockdown. Protein interaction was demonstrated between WT1 and p53 but not between WT1 and p63. Additionally, high WT1 mRNA levels were detected in SCCHN patient samples. Conclusions Our findings suggest that WT1 and p63 act as oncogenes in SCCHN, affecting multiple genes involved in cancer cell growth. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1356-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xingru Li
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, By 6 M, 2nd floor, Umeå, 90185, Sweden.
| | - Sofia Ottosson
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, By 6 M, 2nd floor, Umeå, 90185, Sweden.
| | - Sihan Wang
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, By 6 M, 2nd floor, Umeå, 90185, Sweden.
| | - Emma Jernberg
- Department of Medical Biosciences, Pathology, Umeå University, By 6 M, 2nd floor, Umeå, 90185, Sweden.
| | - Linda Boldrup
- Department of Medical Biosciences, Pathology, Umeå University, By 6 M, 2nd floor, Umeå, 90185, Sweden.
| | - Xiaolian Gu
- Department of Medical Biosciences, Pathology, Umeå University, By 6 M, 2nd floor, Umeå, 90185, Sweden.
| | - Karin Nylander
- Department of Medical Biosciences, Pathology, Umeå University, By 6 M, 2nd floor, Umeå, 90185, Sweden.
| | - Aihong Li
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, By 6 M, 2nd floor, Umeå, 90185, Sweden.
| |
Collapse
|