1
|
Jaiswal A, Singh R. CtBP: A global regulator of balancing acts and homeostases. Biochim Biophys Acta Rev Cancer 2023; 1878:188886. [PMID: 37001619 DOI: 10.1016/j.bbcan.2023.188886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The classical role of C-terminal binding protein (CtBP) is that of a global corepressor. However, its exact mechanism of repression is not known. In this review, we elucidate the repression motif used by CtBP. Further, we provide other unifying features of its mechanism of action. For example, in the presence of a high NADH/NAD+ ratio in the cell, causing a low glycolytic condition, the NADH-bound dimeric form of CtBP causes global repression, maintaining balances and homeostases of many cellular processes, under the cell surveillance of p53 and NFkB. In contrast, in the presence of a low NADH/NAD+ ratio, causing a high glycolytic condition, the NADH-free monomeric form of CtBP blocks p53 function and NFkB-mediated transcription. Further, a low NADH/NAD+ ratio upsets the homeostases and balances in the absence of the cell surveillances of p53 and NFkB, causing global instability, the dominant outcome of CtBP's action in carcinogenesis, in cells in a high glycolytic state.
Collapse
|
2
|
Paredes R, Doleschall N, Connors K, Geary B, Meyer S. EVI1 protein interaction dynamics: targetable for therapeutic intervention? Exp Hematol 2021; 107:1-8. [PMID: 34958895 DOI: 10.1016/j.exphem.2021.12.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
High expression of the transcriptional regulator EVI1 encoded at the MECOM locus at 3q26 is one of the most aggressive oncogenic drivers in acute myeloid leukaemia (AML) and carries a very poor prognosis. How EVI1 confers leukaemic transformation and chemotherapy resistance in AML is subject to important ongoing clinical and experimental studies. Recent discoveries have revealed critical details about genetic mechanisms of the activation of EVI1 overexpression and downstream events of aberrantly high EVI1 expression. Here we review and discuss aspects concerning the protein interactions of EVI1 and the related proteins MDS-EVI1 and ΔEVI1 from the perspective of their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Nora Doleschall
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Kathleen Connors
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Bethany Geary
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester; Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital; Young Oncology Unit, The Christie NHS Foundation Trust.
| |
Collapse
|
3
|
EVI1 dysregulation: impact on biology and therapy of myeloid malignancies. Blood Cancer J 2021; 11:64. [PMID: 33753715 PMCID: PMC7985498 DOI: 10.1038/s41408-021-00457-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Ecotropic viral integration site 1 (Evi1) was discovered in 1988 as a common site of ecotropic viral integration resulting in myeloid malignancies in mice. EVI1 is an oncogenic zinc-finger transcription factor whose overexpression contributes to disease progression and an aggressive phenotype, correlating with poor clinical outcome in myeloid malignancies. Despite progress in understanding the biology of EVI1 dysregulation, significant improvements in therapeutic outcome remain elusive. Here, we highlight advances in understanding EVI1 biology and discuss how this new knowledge informs development of novel therapeutic interventions. EVI1 is overexpression is correlated with poor outcome in some epithelial cancers. However, the focus of this review is the genetic lesions, biology, and current therapeutics of myeloid malignancies overexpressing EVI1.
Collapse
|
4
|
Wang Z, Wang P, Li Y, Peng H, Zhu Y, Mohandas N, Liu J. Interplay between cofactors and transcription factors in hematopoiesis and hematological malignancies. Signal Transduct Target Ther 2021; 6:24. [PMID: 33468999 PMCID: PMC7815747 DOI: 10.1038/s41392-020-00422-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoiesis requires finely tuned regulation of gene expression at each stage of development. The regulation of gene transcription involves not only individual transcription factors (TFs) but also transcription complexes (TCs) composed of transcription factor(s) and multisubunit cofactors. In their normal compositions, TCs orchestrate lineage-specific patterns of gene expression and ensure the production of the correct proportions of individual cell lineages during hematopoiesis. The integration of posttranslational and conformational modifications in the chromatin landscape, nucleosomes, histones and interacting components via the cofactor–TF interplay is critical to optimal TF activity. Mutations or translocations of cofactor genes are expected to alter cofactor–TF interactions, which may be causative for the pathogenesis of various hematologic disorders. Blocking TF oncogenic activity in hematologic disorders through targeting cofactors in aberrant complexes has been an exciting therapeutic strategy. In this review, we summarize the current knowledge regarding the models and functions of cofactor–TF interplay in physiological hematopoiesis and highlight their implications in the etiology of hematological malignancies. This review presents a deep insight into the physiological and pathological implications of transcription machinery in the blood system.
Collapse
Affiliation(s)
- Zi Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, 410011, ChangSha, Hunan, China. .,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China.
| | - Pan Wang
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Yanan Li
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, 410011, ChangSha, Hunan, China
| | - Yu Zhu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
5
|
Emerging Roles of PRDM Factors in Stem Cells and Neuronal System: Cofactor Dependent Regulation of PRDM3/16 and FOG1/2 (Novel PRDM Factors). Cells 2020; 9:cells9122603. [PMID: 33291744 PMCID: PMC7761934 DOI: 10.3390/cells9122603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) (PR) homologous domain containing (PRDM) transcription factors are expressed in neuronal and stem cell systems, and they exert multiple functions in a spatiotemporal manner. Therefore, it is believed that PRDM factors cooperate with a number of protein partners to regulate a critical set of genes required for maintenance of stem cell self-renewal and differentiation through genetic and epigenetic mechanisms. In this review, we summarize recent findings about the expression of PRDM factors and function in stem cell and neuronal systems with a focus on cofactor-dependent regulation of PRDM3/16 and FOG1/2. We put special attention on summarizing the effects of the PRDM proteins interaction with chromatin modulators (NuRD complex and CtBPs) on the stem cell characteristic and neuronal differentiation. Although PRDM factors are known to possess intrinsic enzyme activity, our literature analysis suggests that cofactor-dependent regulation of PRDM3/16 and FOG1/2 is also one of the important mechanisms to orchestrate bidirectional target gene regulation. Therefore, determining stem cell and neuronal-specific cofactors will help better understanding of PRDM3/16 and FOG1/2-controlled stem cell maintenance and neuronal differentiation. Finally, we discuss the clinical aspect of these PRDM factors in different diseases including cancer. Overall, this review will help further sharpen our knowledge of the function of the PRDM3/16 and FOG1/2 with hopes to open new research fields related to these factors in stem cell biology and neuroscience.
Collapse
|
6
|
Investigating Effects of Fluid Shear Stress on Lymphatic Endothelial Cells. Methods Mol Biol 2018. [PMID: 30242762 DOI: 10.1007/978-1-4939-8712-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recent studies using in vivo models have characterized lymph flow and demonstrated that lymph flow plays a key role in the later stages of lymphatic vascular development, including vascular remodeling, to create a hierarchical collecting vessel network and lymphatic valves (Sweet et al., J Clin Invest 125, 2995-3007, 2015). However, mechanistic insights into the response of lymphatic endothelial cells to fluid flow are difficult to obtain from in vivo studies because of the small size of lymphatic vessels and the technical challenge of lymphatic endothelial cell isolation. On the other hand, in vitro experiments can be tailored to isolate and test specific mechanotransduction pathways more cleanly than conditions in vivo. To measure in vitro the cellular response to flow, cultured primary lymphatic endothelial cells can be exposed to highly specific fluid forces like those believed to exist in vivo. Such in vitro studies have recently helped identify FOXC2 and GATA2 as important transcriptional regulators of lymphatic function during valve formation that are regulated by lymph flow dynamics. This chapter discusses the methods used to expose primary lymphatic endothelial cells (LECs) to lymph fluid dynamics and the relationship of these in vitro studies to in vivo lymphatic biology.
Collapse
|
7
|
Bondy-Chorney E, Denoncourt A, Sai Y, Downey M. Nonhistone targets of KAT2A and KAT2B implicated in cancer biology 1. Biochem Cell Biol 2018; 97:30-45. [PMID: 29671337 DOI: 10.1139/bcb-2017-0297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation is a critical post-translation modification that can impact a protein's localization, stability, and function. Originally thought to only occur on histones, we now know thousands of nonhistone proteins are also acetylated. In conjunction with many other proteins, lysine acetyltransferases (KATs) are incorporated into large protein complexes that carry out these modifications. In this review we focus on the contribution of two KATs, KAT2A and KAT2B, and their potential roles in the development and progression of cancer. Systems biology demands that we take a broad look at protein function rather than focusing on individual pathways or targets. As such, in this review we examine KAT2A/2B-directed nonhistone protein acetylations in cancer in the context of the 10 "Hallmarks of Cancer", as defined by Hanahan and Weinberg. By focusing on specific examples of KAT2A/2B-directed acetylations with well-defined mechanisms or strong links to a cancer phenotype, we aim to reinforce the complex role that these enzymes play in cancer biology.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Yuka Sai
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| |
Collapse
|
8
|
Abstract
Deregulated expression of the ecotropic virus integration site 1 (EVI1) gene is the molecular hallmark of therapy-resistant myeloid malignancies bearing chromosomal inv(3)(q21q26·2) or t(3;3)(q21;q26·2) [hereafter referred to as inv(3)/t(3;3)] abnormalities. EVI1 is a haematopoietic stemness and transcription factor with chromatin remodelling activity. Interestingly, the EVI1 gene also shows overexpression in 6-11% of adult acute myeloid leukaemia (AML) cases that do not carry any 3q aberrations. Deregulated expression of EVI1 is strongly associated with monosomy 7 and 11q23 abnormalities, which are known to be associated with poor response to treatment. However, EVI1 overexpression has been revealed as an important independent adverse prognostic marker in adult AML and defines distinct risk categories in 11q23-rearranged AML. Recently, important progress has been made in the delineation of the mechanism by which EVI1 becomes deregulated in inv(3)/t(3;3) as well as the cooperating mutations in this specific subset of AML with dismal prognosis.
Collapse
Affiliation(s)
- Adil A Hinai
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Peter J M Valk
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Dong S, Chen J. SUMOylation of sPRDM16 promotes the progression of acute myeloid leukemia. BMC Cancer 2015; 15:893. [PMID: 26559765 PMCID: PMC4641379 DOI: 10.1186/s12885-015-1844-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background In addition to genetic and epigenetic alteration, post-translational modification of proteins plays a critical role in the initiation, progression and maturation of acute myeloid leukemia (AML). Methods The SUMOylation site of sPRDM16 at K568 was mutated to arginine by site-directed mutagenesis. THP-1 acute myeloid leukemia cells were transduced with a lentivirus containing wild type or K568 mutant sPRDM16. Proliferation, self-renewal and differentiation of transduced THP-1 cells were analyzed both in vitro cell culture and in mouse xenografts. Gene expression profiles were analyzed by RNA-seq. Results Overexpression of sPRDM16 promoted proliferation, enhanced self-renewal capacity, but inhibited differentiation of THP-1 acute myeloid leukemia cells. We further confirmed that K568 is a bona fide SUMOylation site on sPRDM16. Mutation of the sPRDM16 SUMOylation site at K568 partially abolished the capacity of sPRDM16 to promote proliferation and inhibit differentiation of acute myeloid leukemia cells both in vitro and in mouse xenografts. Furthermore, THP-1 cells overexpressing sPRDM16-K568R mutant exhibited a distinct gene expression profile from wild type sPRDM16 following incubation with PMA. Conclusions Our results suggest that K568 SUMOylation of sPRDM16 plays an important role in the progression of acute myeloid leukemia.
Collapse
Affiliation(s)
- Song Dong
- Department of Hematology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China.
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
10
|
Oxygen-dependent acetylation and dimerization of the corepressor CtBP2 in neural stem cells. Exp Cell Res 2015; 332:128-35. [DOI: 10.1016/j.yexcr.2014.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 11/21/2022]
|
11
|
Yamazaki H, Suzuki M, Otsuki A, Shimizu R, Bresnick EH, Engel JD, Yamamoto M. A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell 2014; 25:415-27. [PMID: 24703906 PMCID: PMC4012341 DOI: 10.1016/j.ccr.2014.02.008] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/20/2013] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Chromosomal inversion between 3q21 and 3q26 results in high-risk acute myeloid leukemia (AML). In this study, we identified a mechanism whereby a GATA2 distal hematopoietic enhancer (G2DHE or -77-kb enhancer) is brought into close proximity to the EVI1 gene in inv(3)(q21;q26) inversions, leading to leukemogenesis. We examined the contribution of G2DHE to leukemogenesis by creating a bacterial artificial chromosome (BAC) transgenic model that recapitulates the inv(3)(q21;q26) allele. Transgenic mice harboring a linked BAC developed leukemia accompanied by EVI1 overexpression-neoplasia that was not detected in mice bearing the same transgene but that was missing the GATA2 enhancer. These results establish the mechanistic basis underlying the pathogenesis of a severe form of leukemia through aberrant expression of the EVI1 proto-oncogene.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosome Inversion
- Chromosomes, Human, Pair 3
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Hematopoiesis/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- MDS1 and EVI1 Complex Locus Protein
- Mice
- Mice, Transgenic
- Proto-Oncogene Mas
- Proto-Oncogenes/genetics
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Transgenes
- Translocation, Genetic
Collapse
Affiliation(s)
- Hiromi Yamazaki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akihito Otsuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Tohoku Medical Megabank, Tohoku University, Sendai 980-8573, Japan.
| |
Collapse
|
12
|
Glass C, Wilson M, Gonzalez R, Zhang Y, Perkins AS. The role of EVI1 in myeloid malignancies. Blood Cells Mol Dis 2014; 53:67-76. [PMID: 24495476 DOI: 10.1016/j.bcmd.2014.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 12/26/2013] [Indexed: 01/01/2023]
Abstract
The EVI1 oncogene at human chr 3q26 is rearranged and/or overexpressed in a subset of acute myeloid leukemias and myelodysplasias. The EVI1 protein is a 135 kDa transcriptional regulator with DNA-binding zinc finger domains. Here we provide a critical review of the current state of research into the molecular mechanisms by which this gene plays a role in myeloid malignancies. The major pertinent cellular effects are blocking myeloid differentiation and preventing cellular apoptosis, and several potential mechanisms for these phenomena have been identified. Evidence supports a role for EVI1 in inducing cellular quiescence, and this may contribute to the resistance to chemotherapy seen in patients with neoplasms that overexpress EVI1. Another isoform, MDS1-EVI1 (or PRDM3), encoded by the same locus as EVI1, harbors an N-terminal histone methyltransferase(HMT) domain; experimental findings indicate that this protein and its HMT activity are critical for the progression of a subset of AMLs, and this provides a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Carolyn Glass
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Michael Wilson
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Ruby Gonzalez
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Archibald S Perkins
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| |
Collapse
|
13
|
EVI1 oncoprotein interacts with a large and complex network of proteins and integrates signals through protein phosphorylation. Proc Natl Acad Sci U S A 2013; 110:E2885-94. [PMID: 23858473 DOI: 10.1073/pnas.1309310110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ecotropic viral integration site-1 (EVI1) is an oncogenic zinc finger transcription factor whose expression is frequently up-regulated in myeloid leukemia and epithelial cancers. To better understand the mechanisms underlying EVI1-associated disease, we sought to define the EVI1 interactome in cancer cells. By using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics, we could confidently assign 78 proteins as EVI1-interacting partners for FLAG-tagged EVI1. Subsequently, we showed that 22 of 27 tested interacting proteins could coimmunoprecipitate with endogenous EVI1 protein, which represented an 81.5% validation rate. Additionally, by comparing the stable isotope labeling by amino acids in cell culture (SILAC) data with high-throughput yeast two hybrid results, we showed that five of these proteins interacted directly with EVI1. Functional classification of EVI1-interacting proteins revealed associations with cellular transcription machinery; modulators of transcription; components of WNT, TGF-β, and RAS pathways; and proteins regulating DNA repair, recombination, and mitosis. We also identified EVI1 phosphorylation sites by MS analysis and showed that Ser538 and Ser858 can be phosphorylated and dephosphorylated by two EVI1 interactome proteins, casein kinase II and protein phosphatase-1α. Finally, mutations that impair EVI1 phosphorylation at these sites reduced EVI1 DNA binding through its C-terminal zinc finger domain and induced cancer cell proliferation. Collectively, these combinatorial proteomic approaches demonstrate that EVI1 interacts with large and complex networks of proteins, which integrate signals from various different signaling pathways important for oncogenesis. Comprehensive analysis of the EVI1 interactome has thus provided an important resource for dissecting the molecular mechanisms of EVI1-associated disease.
Collapse
|
14
|
Singh S, Pradhan AK, Chakraborty S. SUMO1 negatively regulates the transcriptional activity of EVI1 and significantly increases its co-localization with EVI1 after treatment with arsenic trioxide. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2357-68. [PMID: 23770046 DOI: 10.1016/j.bbamcr.2013.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022]
Abstract
Aberrant expression of the proto-oncogene EVI1 (ecotropic virus integration site1) has been implicated not only in myeloid or lymphoid malignancies but also in colon, ovarian and breast cancers. Despite its importance in oncogenesis, the regulatory factors and mechanisms that potentiate the function of EVI1 and its consequences are partially known. Here we demonstrated that EVI1 is post-translationally modified by SUMO1 at lysine residues 533, 698 and 874. Although both EVI1 and SUMO1 were found to co-localize in nuclear speckles, the sumoylation mutant of EVI1 failed to co-localize with SUMO1. Sumoylation abrogated the DNA binding efficiency of EVI1 and also affected EVI1 mediated transactivation. The SUMO ligase PIASy was found to play a bi-directional role on EVI1, PIASy enhanced EVI1 sumoylation and augmented sumoylated EVI1 mediated repression. PIASy was also found to interact with EVI1 and impaired EVI1 transcriptional activity independent of its ligase activity. Arsenic trioxide (ATO) known to act as an antileukemic agent for acute promyelocytic leukemia (APL) not only enhanced EVI1 sumoylation but also enhanced the co-localization of EVI1 and SUMO1 in nuclear bodies distinct from PML nuclear bodies. ATO treatment also affected the Bcl-xL protein expression in EVI1 positive cell line. Thus, the results showed that arsenic treatment enhanced EVI1 sumoylation, deregulated Bcl-xL, which eventually may induce apoptosis in EVI1 positive cancer cells. The study for the first time explores and reports sumoylation of EVI1, which plays an essential role in regulating its function.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Gene Function and Regulation, Institute of Life Sciences, Bhubaneswar, Orissa, India
| | | | | |
Collapse
|
15
|
Phosphorylation of the leukemic oncoprotein EVI1 on serine 196 modulates DNA binding, transcriptional repression and transforming ability. PLoS One 2013; 8:e66510. [PMID: 23776681 PMCID: PMC3680417 DOI: 10.1371/journal.pone.0066510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/10/2013] [Indexed: 11/26/2022] Open
Abstract
The EVI1 (ecotropic viral integration site 1) gene at 3q26 codes for a transcriptional regulator with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid leukaemia (AML) is frequently associated with 3q26 rearrangements and confers extremely poor prognosis. EVI1 mediates transcriptional regulation, signalling, and epigenetic modifications by interacting with DNA, proteins and protein complexes. To explore to what extent protein phosphorylation impacts on EVI1 functions, we analysed endogenous EVI1 protein from a high EVI1 expressing Fanconi anaemia (FA) derived AML cell line. Mass spectrometric analysis of immunoprecipitated EVI1 revealed phosphorylation at serine 196 (S196) in the sixth zinc finger of the N-terminal zinc finger domain. Mutated EVI1 with an aspartate substitution at serine 196 (S196D), which mimics serine phosphorylation of this site, exhibited reduced DNA-binding and transcriptional repression from a gene promotor selectively targeted by the N-terminal zinc finger domain. Forced expression of the S196D mutant significantly reduced EVI1 mediated transformation of Rat1 fibroblasts. While EVI1-mediated serial replating of murine haematopoietic progenitors was maintained by EVI1-S196D, this was associated with significantly higher Evi1-trancript levels compared with WT-EVI1 or EVI1-S196A, mimicking S196 non-phosphorylated EVI1. These data suggest that EVI1 function is modulated by phosphorylation of the first zinc finger domain.
Collapse
|
16
|
Xu X, Woo CH, Steere RR, Lee BC, Huang Y, Wu J, Pang J, Lim JH, Xu H, Zhang W, Konduru AS, Yan C, Cheeseman MT, Brown SDM, Li JD. EVI1 acts as an inducible negative-feedback regulator of NF-κB by inhibiting p65 acetylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:6371-80. [PMID: 22581859 PMCID: PMC3370108 DOI: 10.4049/jimmunol.1103527] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inflammation is a hallmark of many important human diseases. Appropriate inflammation is critical for host defense; however, an overactive response is detrimental to the host. Thus, inflammation must be tightly regulated. The molecular mechanisms underlying the tight regulation of inflammation remain largely unknown. Ecotropic viral integration site 1 (EVI1), a proto-oncogene and zinc finger transcription factor, plays important roles in normal development and leukemogenesis. However, its role in regulating NF-κB-dependent inflammation remains unknown. In this article, we show that EVI1 negatively regulates nontypeable Haemophilus influenzae- and TNF-α-induced NF-κB-dependent inflammation in vitro and in vivo. EVI1 directly binds to the NF-κB p65 subunit and inhibits its acetylation at lysine 310, thereby inhibiting its DNA-binding activity. Moreover, expression of EVI1 itself is induced by nontypeable Haemophilus influenzae and TNF-α in an NF-κB-dependent manner, thereby unveiling a novel inducible negative feedback loop to tightly control NF-κB-dependent inflammation. Thus, our study provides important insights into the novel role for EVI1 in negatively regulating NF-κB-dependent inflammation, and it may also shed light on the future development of novel anti-inflammatory strategies.
Collapse
Affiliation(s)
- Xiangbin Xu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| | - Chang-Hoon Woo
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303, United States of America
- Department of Pharmacology, Yeungnam University School of Medicine, Daegu, Korea 705-717
| | - Rachel R. Steere
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| | - Byung Cheol Lee
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303, United States of America
| | - Yuxian Huang
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States of America
- Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States of America
- Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jinjiang Pang
- Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| | - Jae Hyang Lim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States of America
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303, United States of America
- Address correspondence and reprint requests to Dr. Jian-Dong Lior Dr. Jae Hyang Lim, Center for Inflammation, Immunity and Infection, Box 5090, Georgia State University, Atlanta, GA 30302. (J.D.L.) or (J.H.L.)
| | - Haidong Xu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States of America
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303, United States of America
| | - Wenhong Zhang
- Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Anuhya S. Konduru
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303, United States of America
| | - Chen Yan
- Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| | - Michael T. Cheeseman
- Mammalian Genetics Unit, Medical Research Council Harwell, Harwell, OX11 0RD, United Kingdom
| | - Steve D. M. Brown
- Mammalian Genetics Unit, Medical Research Council Harwell, Harwell, OX11 0RD, United Kingdom
| | - Jian-Dong Li
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States of America
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303, United States of America
- Address correspondence and reprint requests to Dr. Jian-Dong Lior Dr. Jae Hyang Lim, Center for Inflammation, Immunity and Infection, Box 5090, Georgia State University, Atlanta, GA 30302. (J.D.L.) or (J.H.L.)
| |
Collapse
|
17
|
Kataoka K, Kurokawa M. Ecotropic viral integration site 1, stem cell self-renewal and leukemogenesis. Cancer Sci 2012; 103:1371-7. [PMID: 22494115 DOI: 10.1111/j.1349-7006.2012.02303.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/02/2012] [Accepted: 04/08/2012] [Indexed: 12/27/2022] Open
Abstract
It has become evident that acute myeloid leukemia (AML) is organized as a cellular hierarchy initiated and maintained by a subset of self-renewing leukemia stem cells. Recent gene expression profile analysis of human leukemia stem cells and hematopoietic stem cell (HSC) populations identified a key transcriptional program shared by leukemia stem cells and HSC, which is associated with adverse outcomes in AML patients. One molecule that has been established as a pivotal regulator in fine-tuning of stem cell properties as well as a potent oncogenic determinant is ecotropic viral integration site 1 (EVI1). EVI1 is a transcription factor that has stem cell-specific expression pattern and is essential for the regulation of HSC self-renewal. This gene is notorious for its involvement in AML, as its activation confers extremely poor prognosis in patients with AML. Molecular analysis has identified a variety of gene products that are involved in HSC regulation as downstream targets or interacting proteins of EVI1. Thus, exploration of the molecular pathogenesis underlying EVI1-related leukemogenesis provides insight into how shared stemness transcriptional programs contribute to leukemia progression and therapeutic resistance in AML. Here, we review the current knowledge regarding the role of EVI1 in HSC self-renewal and leukemogenesis and highlight the relationship between stem cell self-renewal properties and adverse outcome in myeloid malignancies.
Collapse
Affiliation(s)
- Keisuke Kataoka
- Department of Hematology and Oncology, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
18
|
Yamakawa N, Kaneda K, Saito Y, Ichihara E, Morishita K. The increased expression of integrin α6 (ITGA6) enhances drug resistance in EVI1(high) leukemia. PLoS One 2012; 7:e30706. [PMID: 22295105 PMCID: PMC3266272 DOI: 10.1371/journal.pone.0030706] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/28/2011] [Indexed: 12/20/2022] Open
Abstract
Ecotropic viral integration site-1 (EVI1) is one of the candidate oncogenes for human acute myeloid leukemia (AML) with chromosomal alterations at 3q26. High EVI1 expression (EVI1(high)) is a risk factor for AML with poor outcome. Using DNA microarray analysis, we previously identified that integrin α6 (ITGA6) was upregulated over 10-fold in EVI1(high) leukemia cells. In this study, we determined whether the increased expression of ITGA6 is associated with drug-resistance and increased cell adhesion, resulting in poor prognosis. To this end, we first confirmed the expression pattern of a series of integrin genes using semi-quantitative PCR and fluorescence-activated cell sorter (FACS) analysis and determined the cell adhesion ability in EVI1(high) leukemia cells. We found that the adhesion ability of EVI1(high) leukemia cells to laminin increased with the increased expression of ITGA6 and integrin β4 (ITGB4). The introduction of small-hairpin RNA against EVI1 (shEVI1) into EVI1(high) leukemia cells reduced the cell adhesion ability and downregulated the expression of ITGA6 and ITGB4. In addition, the overexpression of EVI1 in EVI1(low) leukemia cells enhanced their cell adhesion ability and increased the expression of ITGA6 and ITGB4. In a subsequent experiment, the introduction of shRNA against ITGA6 or ITGB4 into EVI1(high) AML cells downregulated their cell adhesion ability; however, the EVI1(high) AML cells transfected with shRNA against ITGA6 could not be maintained in culture. Moreover, treating EVI1(high) leukemia cells with neutralizing antibodies against ITGA6 or ITGB4 resulted in an enhanced responsiveness to anti-cancer drugs and a reduction of their cell adhesion ability. The expression of ITGA6 is significantly elevated in cells from relapsed and EVI1(high) AML cases; therefore, ITGA6 might represent an important therapeutic target for both refractory and EVI1(high) AML.
Collapse
Affiliation(s)
- Norio Yamakawa
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuko Kaneda
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yusuke Saito
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Emi Ichihara
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
19
|
Ecotopic viral integration site 1 (EVI1) regulates multiple cellular processes important for cancer and is a synergistic partner for FOS protein in invasive tumors. Proc Natl Acad Sci U S A 2012; 109:2168-73. [PMID: 22308434 DOI: 10.1073/pnas.1119229109] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ecotropic viral integration site 1 (EVI1) is an oncogenic dual domain zinc finger transcription factor that plays an essential role in the regulation of hematopoietic stem cell renewal, and its overexpression in myeloid leukemia and epithelial cancers is associated with poor patient survival. Despite the discovery of EVI1 in 1988 and its emerging role as a dominant oncogene in various types of cancer, few EVI1 target genes are known. This lack of knowledge has precluded a clear understanding of exactly how EVI1 contributes to cancer. Using a combination of ChIP-Seq and microarray studies in human ovarian carcinoma cells, we show that the two zinc finger domains of EVI1 bind to DNA independently and regulate different sets of target genes. Strikingly, an enriched fraction of EVI1 target genes are cancer genes or genes associated with cancer. We also show that more than 25% of EVI1-occupied genes contain linked EVI1 and activator protein (AP)1 DNA binding sites, and this finding provides evidence for a synergistic cooperative interaction between EVI1 and the AP1 family member FOS in the regulation of cell adhesion, proliferation, and colony formation. An increased number of dual EVI1/AP1 target genes are also differentially regulated in late-stage ovarian carcinomas, further confirming the importance of the functional cooperation between EVI1 and FOS. Collectively, our data indicate that EVI1 is a multipurpose transcription factor that synergizes with FOS in invasive tumors.
Collapse
|
20
|
Fog CK, Galli GG, Lund AH. PRDM proteins: important players in differentiation and disease. Bioessays 2011; 34:50-60. [PMID: 22028065 DOI: 10.1002/bies.201100107] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The PRDM family has recently spawned considerable interest as it has been implicated in fundamental aspects of cellular differentiation and exhibits expanding ties to human diseases. The PRDMs belong to the SET domain family of histone methyltransferases, however, enzymatic activity has been determined for only few PRDMs suggesting that they act by recruiting co-factors or, more speculatively, confer methylation of non-histone targets. Several PRDM family members are deregulated in human diseases, most prominently in hematological malignancies and solid cancers, where they can act as both tumor suppressors or drivers of oncogenic processes. The molecular mechanisms have been delineated for only few PRDMs and little is known about functional redundancy within the family. Future studies should identify target genes of PRDM proteins and the protein complexes in which PRDM proteins reside to provide a more comprehensive understanding of the biological and biochemical functions of this important protein family.
Collapse
Affiliation(s)
- Cathrine K Fog
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Denmark
| | | | | |
Collapse
|
21
|
Sumoylation of MEL1S at lysine 568 and its interaction with CtBP facilitates its repressor activity and the blockade of G-CSF-induced myeloid differentiation. Oncogene 2011; 30:4194-207. [DOI: 10.1038/onc.2011.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Urvalek AM, Lu H, Wang X, Li T, Yu L, Zhu J, Lin Q, Zhao J. Regulation of the oncoprotein KLF8 by a switch between acetylation and sumoylation. Am J Transl Res 2011; 3:121-132. [PMID: 21416054 PMCID: PMC3056558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/20/2010] [Indexed: 05/30/2023]
Abstract
KLF8 regulates target genes by recruiting the p300 and PCAF co-activators via glutamines (Q) 118 and 248, the CtBP co-repressor to 86PVDLS90 or SUMO to lysine (K) 67. Here we examined how these interactions coordinate to regulate KLF8 transactivity. Mass spectrometry and immunoprecipitations determined that p300 and/or PCAF promoted KLF8 acetylation at K67, K93, and K95 and this acetylation was abolished in lysine-to-arginine (R) mutants. Treatment with HDAC inhibitors or expression of co-activators inhibited sumoylation at K67. K93R or K95R mutation exerted high levels of sumoylation while the acetylation mimetic mutations K93Q and K95Q blocked the sumoylation. Interestingly, CtBP promoted sumoylation at K67 of wild-type but not AVALF mutant KLF8, and KLF8 interaction with CtBP was inhibited by treatment with the HDAC inhibitors, ectopic expression of the co-activators, or K93Q or K95Q mutation. Promoter reporter assays showed that CtBP inhibited KLF8 transactivity which was rescued by PCAF or p300 expresson. Finally, KLF8-mediated cyclin D1 protein expression and cell cycle progression were significantly decreased in the K93R and K95R but increased in the K93Q, K95Q, K67R or K67Q mutant. Taken together, these results identified a novel mechanism by which co-activators promote KLF8 transactivity by competing with SUMO for K67 modification and by acetylating K93 and K95 to inhibit CtBP-induced K67 sumoylation.
Collapse
Affiliation(s)
- Alison M Urvalek
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
- Current address: Department of Pharmacology, Weill Medical College of Cornell UniversityNew York, NY 10065,USA
| | - Heng Lu
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
| | - Xianhui Wang
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
- Current address: Ge*NY*sis Center for Excellence in Cancer Genomics, University at AlbanyRensselaer, NY 1214, USA
| | - Tianshu Li
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
| | - Jinghua Zhu
- Center for Functional Genomics, University at AlbanyRensselaer, NY 12144, USA
| | - Qishan Lin
- Center for Functional Genomics, University at AlbanyRensselaer, NY 12144, USA
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of MedicineRensselaer, NY 12144, USA
| |
Collapse
|