1
|
Yang Q, Perfitt TL, Quay J, Hu L, Lawson-Qureshi D, Colbran RJ. Clustering of Ca V 1.3 L-type calcium channels by Shank3. J Neurochem 2023; 167:16-37. [PMID: 37392026 PMCID: PMC10543641 DOI: 10.1111/jnc.15880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 07/02/2023]
Abstract
Clustering of L-type voltage-gated Ca2+ channels (LTCCs) in the plasma membrane is increasingly implicated in creating highly localized Ca2+ signaling nanodomains. For example, neuronal LTCC activation can increase phosphorylation of the nuclear CREB transcription factor by increasing Ca2+ concentrations within a nanodomain close to the channel, without requiring bulk Ca2+ increases in the cytosol or nucleus. However, the molecular basis for LTCC clustering is poorly understood. The postsynaptic scaffolding protein Shank3 specifically associates with one of the major neuronal LTCCs, the CaV 1.3 calcium channel, and is required for optimal LTCC-dependent excitation-transcription coupling. Here, we co-expressed CaV 1.3 α1 subunits with two distinct epitope-tags with or without Shank3 in HEK cells. Co-immunoprecipitation studies using the cell lysates revealed that Shank3 can assemble complexes containing multiple CaV 1.3 α1 subunits under basal conditions. Moreover, CaV 1.3 LTCC complex formation was facilitated by CaV β subunits (β3 and β2a), which also interact with Shank3. Shank3 interactions with CaV 1.3 LTCCs and multimeric CaV 1.3 LTCC complex assembly were disrupted following the addition of Ca2+ to cell lysates, perhaps simulating conditions within an activated CaV 1.3 LTCC nanodomain. In intact HEK293T cells, co-expression of Shank3 enhanced the intensity of membrane-localized CaV 1.3 LTCC clusters under basal conditions, but not after Ca2+ channel activation. Live cell imaging studies also revealed that Ca2+ influx through LTCCs disassociated Shank3 from CaV 1.3 LTCCs clusters and reduced the CaV 1.3 cluster intensity. Deletion of the Shank3 PDZ domain prevented both binding to CaV 1.3 and the changes in multimeric CaV 1.3 LTCC complex assembly in vitro and in HEK293 cells. Finally, we found that shRNA knock-down of Shank3 expression in cultured rat primary hippocampal neurons reduced the intensity of surface-localized CaV 1.3 LTCC clusters in dendrites. Taken together, our findings reveal a novel molecular mechanism contributing to neuronal LTCC clustering under basal conditions.
Collapse
Affiliation(s)
- Qian Yang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA 37232-0615
| | - Tyler L. Perfitt
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA 37232-0615
- Current address: Rare Disease Research Unit, Pfizer Inc
| | - Juliana Quay
- Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA 37232-0615
| | - Lan Hu
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA 37232-0615
| | - Dorian Lawson-Qureshi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA 37232-0615
| | - Roger J. Colbran
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA 37232-0615
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA 37232-0615
- Vanderbilt-Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA 37232-0615
| |
Collapse
|
2
|
Kameyama M, Minobe E, Shao D, Xu J, Gao Q, Hao L. Regulation of Cardiac Cav1.2 Channels by Calmodulin. Int J Mol Sci 2023; 24:ijms24076409. [PMID: 37047381 PMCID: PMC10094977 DOI: 10.3390/ijms24076409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Cav1.2 Ca2+ channels, a type of voltage-gated L-type Ca2+ channel, are ubiquitously expressed, and the predominant Ca2+ channel type, in working cardiac myocytes. Cav1.2 channels are regulated by the direct interactions with calmodulin (CaM), a Ca2+-binding protein that causes Ca2+-dependent facilitation (CDF) and inactivation (CDI). Ca2+-free CaM (apoCaM) also contributes to the regulation of Cav1.2 channels. Furthermore, CaM indirectly affects channel activity by activating CaM-dependent enzymes, such as CaM-dependent protein kinase II and calcineurin (a CaM-dependent protein phosphatase). In this article, we review the recent progress in identifying the role of apoCaM in the channel ‘rundown’ phenomena and related repriming of channels, and CDF, as well as the role of Ca2+/CaM in CDI. In addition, the role of CaM in channel clustering is reviewed.
Collapse
Affiliation(s)
- Masaki Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
- Correspondence:
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| |
Collapse
|
3
|
Zhao J, Segura E, Marsolais M, Parent L. A CACNA1C variant associated with cardiac arrhythmias provides mechanistic insights in the calmodulation of L-type Ca 2+ channels. J Biol Chem 2022; 298:102632. [PMID: 36273583 PMCID: PMC9691931 DOI: 10.1016/j.jbc.2022.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
We recently reported the identification of a de novo single nucleotide variant in exon 9 of CACNA1C associated with prolonged repolarization interval. Recombinant expression of the glycine to arginine variant at position 419 produced a gain in the function of the L-type CaV1.2 channel with increased peak current density and activation gating but without significant decrease in the inactivation kinetics. We herein reveal that these properties are replicated by overexpressing calmodulin (CaM) with CaV1.2 WT and are reversed by exposure to the CaM antagonist W-13. Phosphomimetic (T79D or S81D), but not phosphoresistant (T79A or S81A), CaM surrogates reproduced the impact of CaM WT on the function of CaV1.2 WT. The increased channel activity of CaV1.2 WT following overexpression of CaM was found to arise in part from enhanced cell surface expression. In contrast, the properties of the variant remained unaffected by any of these treatments. CaV1.2 substituted with the α-helix breaking proline residue were more reluctant to open than CaV1.2 WT but were upregulated by phosphomimetic CaM surrogates. Our results indicate that (1) CaM and its phosphomimetic analogs promote a gain in the function of CaV1.2 and (2) the structural properties of the first intracellular linker of CaV1.2 contribute to its CaM-induced modulation. We conclude that the CACNA1C clinical variant mimics the increased activity associated with the upregulation of CaV1.2 by Ca2+-CaM, thus maintaining a majority of channels in a constitutively active mode that could ultimately promote ventricular arrhythmias.
Collapse
Affiliation(s)
- Juan Zhao
- Centre de recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Emilie Segura
- Centre de recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada,Département de Pharmacologie et Physiologie, Faculté de Médecine, Montréal, Québec, Canada
| | - Mireille Marsolais
- Centre de recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada,Département de Pharmacologie et Physiologie, Faculté de Médecine, Montréal, Québec, Canada
| | - Lucie Parent
- Centre de recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada,Département de Pharmacologie et Physiologie, Faculté de Médecine, Montréal, Québec, Canada,For correspondence: Lucie Parent
| |
Collapse
|
4
|
Al Katat A, Zhao J, Calderone A, Parent L. Sympathetic Stimulation Upregulates the Ca 2+ Channel Subunit, Ca Vα2δ1, via the β1 and ERK 1/2 Pathway in Neonatal Ventricular Cardiomyocytes. Cells 2022; 11:188. [PMID: 35053304 PMCID: PMC8774121 DOI: 10.3390/cells11020188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Intracellular Ca2+ overload secondary to chronic hemodynamic stimuli promotes the recruitment of Ca2+-dependent signaling implicated in cardiomyocyte hypertrophy. The present study tested the hypothesis that sympathetic-mediated hypertrophy of neonatal rat ventricular cardiomyocytes (NRVMs) translated to an increase in calcium influx secondary to the upregulation of CaV1.2 channel subunits. Confocal imaging of norepinephrine (NE)-treated NRVMs revealed a hypertrophic response compared to untreated NRVMs. L-type CaV1.2 peak current density was increased 4-fold following a 24-h stimulation with NE. NE-treated NRVMs exhibited a significant upregulation of CaVα2δ1 and CaVβ3 protein levels without significant changes of CaVα1C and CaVβ2 protein levels. Pre-treatment with the β1-blocker metoprolol failed to inhibit hypertrophy or CaVβ3 upregulation whereas CaVα2δ1 protein levels were significantly reduced. NE promoted the phosphorylation of ERK 1/2, and the response was attenuated by the β1-blocker. U0126 pre-treatment suppressed NE-induced ERK1/2 phosphorylation but failed to attenuate hypertrophy. U0126 inhibition of ERK1/2 phosphorylation prevented NE-mediated upregulation of CaVα2δ1, whereas CaVβ3 protein levels remained elevated. Thus, β1-adrenergic receptor-mediated recruitment of the ERK1/2 plays a seminal role in the upregulation of CaVα2δ1 in NRVMs independent of the concomitant hypertrophic response. However, the upregulation of CaVβ3 protein levels may be directly dependent on the hypertrophic response of NRVMs.
Collapse
Affiliation(s)
- Aya Al Katat
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; (A.A.K.); (A.C.)
- Research Center, Montreal Heart Institute, 5000 Rue Belanger, Montréal, QC H1T 1C8, Canada;
| | - Juan Zhao
- Research Center, Montreal Heart Institute, 5000 Rue Belanger, Montréal, QC H1T 1C8, Canada;
| | - Angelino Calderone
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; (A.A.K.); (A.C.)
- Research Center, Montreal Heart Institute, 5000 Rue Belanger, Montréal, QC H1T 1C8, Canada;
| | - Lucie Parent
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; (A.A.K.); (A.C.)
- Research Center, Montreal Heart Institute, 5000 Rue Belanger, Montréal, QC H1T 1C8, Canada;
| |
Collapse
|
5
|
Ferron L, Koshti S, Zamponi GW. The life cycle of voltage-gated Ca 2+ channels in neurons: an update on the trafficking of neuronal calcium channels. Neuronal Signal 2021; 5:NS20200095. [PMID: 33664982 PMCID: PMC7905535 DOI: 10.1042/ns20200095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/26/2023] Open
Abstract
Neuronal voltage-gated Ca2+ (CaV) channels play a critical role in cellular excitability, synaptic transmission, excitation-transcription coupling and activation of intracellular signaling pathways. CaV channels are multiprotein complexes and their functional expression in the plasma membrane involves finely tuned mechanisms, including forward trafficking from the endoplasmic reticulum (ER) to the plasma membrane, endocytosis and recycling. Whether genetic or acquired, alterations and defects in the trafficking of neuronal CaV channels can have severe physiological consequences. In this review, we address the current evidence concerning the regulatory mechanisms which underlie precise control of neuronal CaV channel trafficking and we discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saloni Koshti
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Segura E, Mehta A, Marsolais M, Quan XR, Zhao J, Sauvé R, Spafford JD, Parent L. An ancestral MAGUK protein supports the modulation of mammalian voltage-gated Ca 2+ channels through a conserved Ca Vβ-like interface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183439. [PMID: 32814116 DOI: 10.1016/j.bbamem.2020.183439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/11/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023]
Abstract
Eukaryote voltage-gated Ca2+ channels of the CaV2 channel family are hetero-oligomers formed by the pore-forming CaVα1 protein assembled with auxiliary CaVα2δ and CaVβ subunits. CaVβ subunits are formed by a Src homology 3 (SH3) domain and a guanylate kinase (GK) domain connected through a HOOK domain. The GK domain binds a conserved cytoplasmic region of the pore-forming CaVα1 subunit referred as the "AID". Herein we explored the phylogenetic and functional relationship between CaV channel subunits in distant eukaryotic organisms by investigating the function of a MAGUK protein (XM_004990081) cloned from the choanoflagellate Salpingoeca rosetta (Sro). This MAGUK protein (Sroβ) features SH3 and GK structural domains with a 25% primary sequence identity to mammalian CaVβ. Recombinant expression of its cDNA with mammalian high-voltage activated Ca2+ channel CaV2.3 in mammalian HEK cells produced robust voltage-gated inward Ca2+ currents with typical activation and inactivation properties. Like CaVβ, Sroβ prevents fast degradation of total CaV2.3 proteins in cycloheximide assays. The three-dimensional homology model predicts an interaction between the GK domain of Sroβ and the AID motif of the pore-forming CaVα1 protein. Substitution of AID residues Trp (W386A) and Tyr (Y383A) significantly impaired co-immunoprecipitation of CaV2.3 with Sroβ and functional upregulation of CaV2.3 currents. Likewise, a 6-residue deletion within the GK domain of Sroβ, similar to the locus found in mammalian CaVβ, significantly reduced peak current density. Altogether our data demonstrate that an ancestor MAGUK protein reconstitutes the biophysical and molecular features responsible for channel upregulation by mammalian CaVβ through a minimally conserved molecular interface.
Collapse
Affiliation(s)
- Emilie Segura
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Canada; Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Amrit Mehta
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Mireille Marsolais
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Xin R Quan
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Juan Zhao
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Rémy Sauvé
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Canada
| | - J David Spafford
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Lucie Parent
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Canada; Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H1T 1C8, Canada.
| |
Collapse
|
7
|
Turner M, Anderson DE, Bartels P, Nieves-Cintron M, Coleman AM, Henderson PB, Man KNM, Tseng PY, Yarov-Yarovoy V, Bers DM, Navedo MF, Horne MC, Ames JB, Hell JW. α-Actinin-1 promotes activity of the L-type Ca 2+ channel Ca v 1.2. EMBO J 2020; 39:e102622. [PMID: 31985069 DOI: 10.15252/embj.2019102622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/05/2023] Open
Abstract
The L-type Ca2+ channel CaV 1.2 governs gene expression, cardiac contraction, and neuronal activity. Binding of α-actinin to the IQ motif of CaV 1.2 supports its surface localization and postsynaptic targeting in neurons. We report a bi-functional mechanism that restricts CaV 1.2 activity to its target sites. We solved separate NMR structures of the IQ motif (residues 1,646-1,664) bound to α-actinin-1 and to apo-calmodulin (apoCaM). The CaV 1.2 K1647A and Y1649A mutations, which impair α-actinin-1 but not apoCaM binding, but not the F1658A and K1662E mutations, which impair apoCaM but not α-actinin-1 binding, decreased single-channel open probability, gating charge movement, and its coupling to channel opening. Thus, α-actinin recruits CaV 1.2 to defined surface regions and simultaneously boosts its open probability so that CaV 1.2 is mostly active when appropriately localized.
Collapse
Affiliation(s)
- Matthew Turner
- Department of Chemistry, University of California, Davis, CA, USA
| | - David E Anderson
- Department of Chemistry, University of California, Davis, CA, USA
| | - Peter Bartels
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Andrea M Coleman
- Department of Chemistry, University of California, Davis, CA, USA.,Department of Pharmacology, University of California, Davis, CA, USA
| | - Peter B Henderson
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Kwun Nok Mimi Man
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Pang-Yen Tseng
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Mary C Horne
- Department of Pharmacology, University of California, Davis, CA, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
8
|
An African loss-of-function CACNA1C variant p.T1787M associated with a risk of ventricular fibrillation. Sci Rep 2018; 8:14619. [PMID: 30279520 PMCID: PMC6168548 DOI: 10.1038/s41598-018-32867-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
Calcium regulation plays a central role in cardiac function. Several variants in the calcium channel Cav1.2 have been implicated in arrhythmic syndromes. We screened patients with Brugada syndrome, short QT syndrome, early repolarisation syndrome, and idiopathic ventricular fibrillation to determine the frequency and pathogenicity of Cav1.2 variants. Cav1.2 related genes, CACNA1C, CACNB2 and CACNA2D1, were screened in 65 probands. Missense variants were introduced in the Cav1.2 alpha subunit plasmid by mutagenesis to assess their pathogenicity using patch clamp approaches. Six missense variants were identified in CACNA1C in five individuals. Five of them, A1648T, A1689T, G1795R, R1973Q, C1992F, showed no major alterations of the channel function. The sixth C-terminal variant, Cavα1c-T1787M, present mostly in the African population, was identified in two patients with resuscitated cardiac arrest. The first patient originated from Cameroon and the second was an inhabitant of La Reunion Island with idiopathic ventricular fibrillation originating from Purkinje tissues. Patch-clamp analysis revealed that Cavα1c-T1787M reduces the calcium and barium currents by increasing the auto-inhibition mediated by the C-terminal part and increases the voltage-dependent inhibition. We identified a loss-of-function variant, Cavα1c-T1787M, present in 0.8% of the African population, as a new risk factor for ventricular arrhythmia.
Collapse
|
9
|
Bourdin B, Briot J, Tétreault MP, Sauvé R, Parent L. Negatively charged residues in the first extracellular loop of the L-type Ca V1.2 channel anchor the interaction with the Ca Vα2δ1 auxiliary subunit. J Biol Chem 2017; 292:17236-17249. [PMID: 28864774 PMCID: PMC5655503 DOI: 10.1074/jbc.m117.806893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
Voltage-gated L-type CaV1.2 channels in cardiomyocytes exist as heteromeric complexes. Co-expression of CaVα2δ1 with CaVβ/CaVα1 proteins reconstitutes the functional properties of native L-type currents, but the interacting domains at the CaV1.2/CaVα2δ1 interface are unknown. Here, a homology-based model of CaV1.2 identified protein interfaces between the extracellular domain of CaVα2δ1 and the extracellular loops of the CaVα1 protein in repeats I (IS1S2 and IS5S6), II (IIS5S6), and III (IIIS5S6). Insertion of a 9-residue hemagglutinin epitope in IS1S2, but not in IS5S6 or in IIS5S6, prevented the co-immunoprecipitation of CaV1.2 with CaVα2δ1. IS1S2 contains a cluster of three conserved negatively charged residues Glu-179, Asp-180, and Asp-181 that could contribute to non-bonded interactions with CaVα2δ1. Substitutions of CaV1.2 Asp-181 impaired the co-immunoprecipitation of CaVβ/CaV1.2 with CaVα2δ1 and the CaVα2δ1-dependent shift in voltage-dependent activation gating. In contrast, single substitutions in CaV1.2 in neighboring positions in the same loop (179, 180, and 182–184) did not significantly alter the functional up-regulation of CaV1.2 whole-cell currents. However, a negatively charged residue at position 180 was necessary to convey the CaVα2δ1-mediated shift in the activation gating. We also found a more modest contribution from the positively charged Arg-1119 in the extracellular pore region in repeat III of CaV1.2. We conclude that CaV1.2 Asp-181 anchors the physical interaction that facilitates the CaVα2δ1-mediated functional modulation of CaV1.2 currents. By stabilizing the first extracellular loop of CaV1.2, CaVα2δ1 may up-regulate currents by promoting conformations of the voltage sensor that are associated with the channel's open state.
Collapse
Affiliation(s)
- Benoîte Bourdin
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Julie Briot
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,From the Département de Pharmacologie et Physiologie, Faculté de Médecine, and
| | - Marie-Philippe Tétreault
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Rémy Sauvé
- From the Département de Pharmacologie et Physiologie, Faculté de Médecine, and
| | - Lucie Parent
- Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada .,From the Département de Pharmacologie et Physiologie, Faculté de Médecine, and
| |
Collapse
|
10
|
Tseng PY, Henderson PB, Hergarden AC, Patriarchi T, Coleman AM, Lillya MW, Montagut-Bordas C, Lee B, Hell JW, Horne MC. α-Actinin Promotes Surface Localization and Current Density of the Ca 2+ Channel Ca V1.2 by Binding to the IQ Region of the α1 Subunit. Biochemistry 2017; 56:3669-3681. [PMID: 28613835 DOI: 10.1021/acs.biochem.7b00359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The voltage-gated L-type Ca2+ channel CaV1.2 is crucial for initiating heartbeat and control of a number of neuronal functions such as neuronal excitability and long-term potentiation. Mutations of CaV1.2 subunits result in serious health problems, including arrhythmia, autism spectrum disorders, immunodeficiency, and hypoglycemia. Thus, precise control of CaV1.2 surface expression and localization is essential. We previously reported that α-actinin associates and colocalizes with neuronal CaV1.2 channels and that shRNA-mediated depletion of α-actinin significantly reduces localization of endogenous CaV1.2 in dendritic spines in hippocampal neurons. Here we investigated the hypothesis that direct binding of α-actinin to CaV1.2 supports its surface expression. Using two-hybrid screens and pull-down assays, we identified three point mutations (K1647A, Y1649A, and I1654A) in the central, pore-forming α11.2 subunit of CaV1.2 that individually impaired α-actinin binding. Surface biotinylation and flow cytometry assays revealed that CaV1.2 channels composed of the corresponding α-actinin-binding-deficient mutants result in a 35-40% reduction in surface expression compared to that of wild-type channels. Moreover, the mutant CaV1.2 channels expressed in HEK293 cells exhibit a 60-75% decrease in current density. The larger decrease in current density as compared to surface expression imparted by these α11.2 subunit mutations hints at the possibility that α-actinin not only stabilizes surface localization of CaV1.2 but also augments its ion conducting activity.
Collapse
Affiliation(s)
- Pang-Yen Tseng
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Peter B Henderson
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Anne C Hergarden
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Tommaso Patriarchi
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Andrea M Coleman
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Mark W Lillya
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Carlota Montagut-Bordas
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Boram Lee
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| | - Mary C Horne
- Department of Pharmacology, School of Medicine, University of California , Davis, California 95615-8636, United States
| |
Collapse
|
11
|
Findeisen F, Campiglio M, Jo H, Abderemane-Ali F, Rumpf CH, Pope L, Rossen ND, Flucher BE, DeGrado WF, Minor DL. Stapled Voltage-Gated Calcium Channel (Ca V) α-Interaction Domain (AID) Peptides Act As Selective Protein-Protein Interaction Inhibitors of Ca V Function. ACS Chem Neurosci 2017; 8:1313-1326. [PMID: 28278376 PMCID: PMC5481814 DOI: 10.1021/acschemneuro.6b00454] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
![]()
For many voltage-gated
ion channels (VGICs), creation of a properly functioning ion channel
requires the formation of specific protein–protein interactions
between the transmembrane pore-forming subunits and cystoplasmic accessory
subunits. Despite the importance of such protein–protein interactions
in VGIC function and assembly, their potential as sites for VGIC modulator
development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that
target a prototypic VGIC high affinity protein–protein interaction,
the interaction between the voltage-gated calcium channel (CaV) pore-forming subunit α-interaction domain (AID) and
cytoplasmic β-subunit (CaVβ). We show using
circular dichroism spectroscopy, X-ray crystallography, and isothermal
titration calorimetry that the m-xylyl staples enhance
AID helix formation are structurally compatible with native-like AID:CaVβ interactions and reduce the entropic penalty associated
with AID binding to CaVβ. Importantly, electrophysiological
studies reveal that stapled AID peptides act as effective inhibitors
of the CaVα1:CaVβ interaction
that modulate CaV function in an CaVβ
isoform-selective manner. Together, our studies provide a proof-of-concept
demonstration of the use of protein–protein interaction inhibitors
to control VGIC function and point to strategies for improved AID-based
CaV modulator design.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Daniel L. Minor
- Molecular Biophysics & Integrated Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Segura E, Bourdin B, Tétreault MP, Briot J, Allen BG, Mayer G, Parent L. Proteolytic cleavage of the hydrophobic domain in the Ca Vα2δ1 subunit improves assembly and activity of cardiac Ca V1.2 channels. J Biol Chem 2017; 292:11109-11124. [PMID: 28495885 DOI: 10.1074/jbc.m117.784355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/24/2017] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated L-type CaV1.2 channels in cardiomyocytes exist as heteromeric complexes with the pore-forming CaVα1, CaVβ, and CaVα2δ1 subunits. The full complement of subunits is required to reconstitute the native-like properties of L-type Ca2+ currents, but the molecular determinants responsible for the formation of the heteromeric complex are still being studied. Enzymatic treatment with phosphatidylinositol-specific phospholipase C, a phospholipase C specific for the cleavage of glycosylphosphatidylinositol (GPI)-anchored proteins, disrupted plasma membrane localization of the cardiac CaVα2δ1 prompting us to investigate deletions of its hydrophobic transmembrane domain. Patch-clamp experiments indicated that the C-terminally cleaved CaVα2δ1 proteins up-regulate CaV1.2 channels. In contrast, deleting the residues before the single hydrophobic segment (CaVα2δ1 Δ1059-1063) impaired current up-regulation. CaVα2δ1 mutants G1060I and G1061I nearly eliminated the cell-surface fluorescence of CaVα2δ1, indicated by two-color flow cytometry assays and confocal imaging, and prevented CaVα2δ1-mediated increase in peak current density and modulation of the voltage-dependent gating of CaV1.2. These impacts were specific to substitutions with isoleucine residues because functional modulation was partially preserved in CaVα2δ1 G1060A and G1061A proteins. Moreover, C-terminal fragments exhibited significantly altered mobility in denatured immunoblots of CaVα2δ1 G1060I and CaVα2δ1 G1061I, suggesting that these mutant proteins were impaired in proteolytic processing. Finally, CaVα2δ1 Δ1059-1063, but not CaVα2δ1 G1060A, failed to co-immunoprecipitate with CaV1.2. Altogether, our data support a model in which small neutral hydrophobic residues facilitate the post-translational cleavage of the CaVα2δ1 subunit at the predicted membrane interface and further suggest that preventing GPI anchoring of CaVα2δ1 averts its cell-surface expression, its interaction with CaVα1, and modulation of CaV1.2 currents.
Collapse
Affiliation(s)
- Emilie Segura
- From the Départements de Pharmacologie et Physiologie and.,the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Benoîte Bourdin
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Marie-Philippe Tétreault
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Julie Briot
- From the Départements de Pharmacologie et Physiologie and.,the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Bruce G Allen
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,Médecine, Faculté de Médecine
| | - Gaétan Mayer
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,the Faculté de Pharmacie, and
| | - Lucie Parent
- From the Départements de Pharmacologie et Physiologie and .,the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
13
|
Trafficking of neuronal calcium channels. Neuronal Signal 2017; 1:NS20160003. [PMID: 32714572 PMCID: PMC7373241 DOI: 10.1042/ns20160003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 01/20/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022] Open
Abstract
Neuronal voltage-gated calcium channels (VGCCs) serve complex yet essential physiological functions via their pivotal role in translating electrical signals into intracellular calcium elevations and associated downstream signalling pathways. There are a number of regulatory mechanisms to ensure a dynamic control of the number of channels embedded in the plasma membrane, whereas alteration of the surface expression of VGCCs has been linked to various disease conditions. Here, we provide an overview of the mechanisms that control the trafficking of VGCCs to and from the plasma membrane, and discuss their implication in pathophysiological conditions and their potential as therapeutic targets.
Collapse
|
14
|
Briot J, Tétreault MP, Bourdin B, Parent L. Inherited Ventricular Arrhythmias: The Role of the Multi-Subunit Structure of the L-Type Calcium Channel Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:55-64. [PMID: 28315127 DOI: 10.1007/5584_2016_186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The normal heartbeat is conditioned by transient increases in the intracellular free Ca2+ concentration. Ca2+ influx in cardiomyocytes is regulated by the activity of the heteromeric L-type voltage-activated CaV1.2 channel. A complex network of interactions between the different proteins forming the ion channel supports the kinetics and the activation gating of the Ca2+ influx. Alterations in the biophysical and biochemical properties or in the biogenesis in any of these proteins can lead to serious disturbances in the cardiac rhythm. The multi-subunit nature of the channel complex is better comprehended by examining the high-resolution three-dimensional structure of the closely related CaV1.1 channel. The architectural map identifies precise interaction loci between the different subunits and paves the way for elucidating the mechanistic basis for the regulation of Ca2+ balance in cardiac myocytes under physiological and pathological conditions.
Collapse
Affiliation(s)
- Julie Briot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Institut Cardiologie de Montréal, Université de Montréal, 5000 Bélanger, Montréal, QC, H1T 1C8, Canada
| | - Marie-Philippe Tétreault
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Institut Cardiologie de Montréal, Université de Montréal, 5000 Bélanger, Montréal, QC, H1T 1C8, Canada
| | - Benoîte Bourdin
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Institut Cardiologie de Montréal, Université de Montréal, 5000 Bélanger, Montréal, QC, H1T 1C8, Canada
| | - Lucie Parent
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Institut Cardiologie de Montréal, Université de Montréal, 5000 Bélanger, Montréal, QC, H1T 1C8, Canada.
| |
Collapse
|
15
|
Bourdin B, Segura E, Tétreault MP, Lesage S, Parent L. Determination of the Relative Cell Surface and Total Expression of Recombinant Ion Channels Using Flow Cytometry. J Vis Exp 2016. [PMID: 27768059 DOI: 10.3791/54732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inherited or de novo mutations in cation-selective channels may lead to sudden cardiac death. Alteration in the plasma membrane trafficking of these multi-spanning transmembrane proteins, with or without change in channel gating, is often postulated to contribute significantly in this process. It has thus become critical to develop a method to quantify the change of the relative cell surface expression of cardiac ion channels on a large scale. Herein, a detailed protocol is provided to determine the relative total and cell surface expression of cardiac L-type calcium channels CaV1.2 and membrane-associated subunits in tsA-201 cells using two-color fluorescent cytometry assays. Compared with other microscopy-based or immunoblotting-based qualitative methods, flow cytometry experiments are fast, reproducible, and large-volume assays that deliver quantifiable end-points on large samples of live cells (ranging from 104 to 106 cells) with similar cellular characteristics in a single flow. Constructs were designed to constitutively express mCherry at the intracellular C-terminus (thus allowing a rapid assessment of the total protein expression) and express an extracellular-facing hemagglutinin (HA) epitope to estimate the cell surface expression of membrane proteins using an anti-HA fluorescence conjugated antibody. To avoid false negative, experiments were also conducted in permeabilized cells to confirm the accessibility and proper expression of the HA epitope. The detailed procedure provides: (1) design of tagged DNA (deoxyribonucleic acid) constructs, (2) lipid-mediated transfection of constructs in tsA-201 cells, (3) culture, harvest, and staining of non-permeabilized and permeabilized cells, and (4) acquisition and analysis of fluorescent signals. Additionally, the basic principles of flow cytometry are explained and the experimental design, including the choice of fluorophores, titration of the HA antibody and control experiments, is thoroughly discussed. This specific approach offers objective relative quantification of the total and cell surface expression of ion channels that can be extended to study ion pumps and plasma membrane transporters.
Collapse
Affiliation(s)
- Benoîte Bourdin
- Département de Physiologie Moléculaire et Intégrative, Montreal Heart Institute Research Centre
| | - Emilie Segura
- Département de Physiologie Moléculaire et Intégrative, Montreal Heart Institute Research Centre
| | | | - Sylvie Lesage
- Département de Microbiologie, Infectiologie, Immunologie, Centre de recherche de l'Hôpital Maisonneuve-Rosemont
| | - Lucie Parent
- Département de Physiologie Moléculaire et Intégrative, Montreal Heart Institute Research Centre;
| |
Collapse
|
16
|
Tétreault MP, Bourdin B, Briot J, Segura E, Lesage S, Fiset C, Parent L. Identification of Glycosylation Sites Essential for Surface Expression of the CaVα2δ1 Subunit and Modulation of the Cardiac CaV1.2 Channel Activity. J Biol Chem 2016; 291:4826-43. [PMID: 26742847 DOI: 10.1074/jbc.m115.692178] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Indexed: 12/15/2022] Open
Abstract
Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca(2+) channel complexes. CaVα2δ1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type CaV1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant CaVα2δ1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of CaVα2δ1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the CaVα2δ1-mediated increase in the peak current density and voltage-dependent gating of CaV1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored CaVα2δ1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of CaVα2δ1 as well as the CaVα2δ1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of CaVα2δ1, and furthermore that N-glycosylation of CaVα2δ1 is essential to produce functional L-type Ca(2+) channels.
Collapse
Affiliation(s)
| | - Benoîte Bourdin
- From the Départment de Physiologie Moléculaire et Intégrative, Faculté de Médecine, and
| | - Julie Briot
- From the Départment de Physiologie Moléculaire et Intégrative, Faculté de Médecine, and
| | - Emilie Segura
- From the Départment de Physiologie Moléculaire et Intégrative, Faculté de Médecine, and
| | - Sylvie Lesage
- Départment de Microbiologie, Infectiologie, and Immunologie, Faculté de Médecine, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Céline Fiset
- Faculté de Pharmacie, Institut de Cardiologie de Montréal and
| | - Lucie Parent
- From the Départment de Physiologie Moléculaire et Intégrative, Faculté de Médecine, and
| |
Collapse
|
17
|
Stölting G, de Oliveira RC, Guzman RE, Miranda-Laferte E, Conrad R, Jordan N, Schmidt S, Hendriks J, Gensch T, Hidalgo P. Direct interaction of CaVβ with actin up-regulates L-type calcium currents in HL-1 cardiomyocytes. J Biol Chem 2015; 290:4561-4572. [PMID: 25533460 PMCID: PMC4335199 DOI: 10.1074/jbc.m114.573956] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 12/05/2014] [Indexed: 12/14/2022] Open
Abstract
Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane.
Collapse
Affiliation(s)
- Gabriel Stölting
- From the Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany and
| | | | - Raul E Guzman
- From the Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany and
| | - Erick Miranda-Laferte
- From the Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany and
| | - Rachel Conrad
- From the Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany and
| | - Nadine Jordan
- From the Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany and
| | - Silke Schmidt
- the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Johnny Hendriks
- From the Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany and
| | - Thomas Gensch
- From the Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany and
| | - Patricia Hidalgo
- From the Institute of Complex Systems 4, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany and.
| |
Collapse
|
18
|
Bourdin B, Shakeri B, Tétreault MP, Sauvé R, Lesage S, Parent L. Functional characterization of CaVα2δ mutations associated with sudden cardiac death. J Biol Chem 2014; 290:2854-69. [PMID: 25527503 DOI: 10.1074/jbc.m114.597930] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
L-type Ca(2+) channels play a critical role in cardiac rhythmicity. These ion channels are oligomeric complexes formed by the pore-forming CaVα1 with the auxiliary CaVβ and CaVα2δ subunits. CaVα2δ increases the peak current density and improves the voltage-dependent activation gating of CaV1.2 channels without increasing the surface expression of the CaVα1 subunit. The functional impact of genetic variants of CACNA2D1 (the gene encoding for CaVα2δ), associated with shorter repolarization QT intervals (the time interval between the Q and the T waves on the cardiac electrocardiogram), was investigated after recombinant expression of the full complement of L-type CaV1.2 subunits in human embryonic kidney 293 cells. By performing side-by-side high resolution flow cytometry assays and whole-cell patch clamp recordings, we revealed that the surface density of the CaVα2δ wild-type protein correlates with the peak current density. Furthermore, the cell surface density of CaVα2δ mutants S755T, Q917H, and S956T was not significantly different from the cell surface density of the CaVα2δ wild-type protein expressed under the same conditions. In contrast, the cell surface expression of CaVα2δ D550Y, CaVα2δ S709N, and the double mutant D550Y/Q917H was reduced, respectively, by ≈30-33% for the single mutants and by 60% for the latter. The cell surface density of D550Y/Q917H was more significantly impaired than protein stability, suggesting that surface trafficking of CaVα2δ was disrupted by the double mutation. Co-expression with D550Y/Q917H significantly decreased CaV1.2 currents as compared with results obtained with CaVα2δ wild type. It is concluded that D550Y/Q917H reduced inward Ca(2+) currents through a defect in the cell surface trafficking of CaVα2δ. Altogether, our results provide novel insight in the molecular mechanism underlying the modulation of CaV1.2 currents by CaVα2δ.
Collapse
Affiliation(s)
- Benoîte Bourdin
- From the Département de Physiologie, Montreal Heart Institute Research Centre, and
| | - Behzad Shakeri
- From the Département de Physiologie, Montreal Heart Institute Research Centre, and
| | | | - Rémy Sauvé
- From the Département de Physiologie, Montreal Heart Institute Research Centre, and
| | - Sylvie Lesage
- Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Lucie Parent
- From the Département de Physiologie, Montreal Heart Institute Research Centre, and
| |
Collapse
|
19
|
Li L, Li DP, Chen SR, Chen J, Hu H, Pan HL. Potentiation of high voltage-activated calcium channels by 4-aminopyridine depends on subunit composition. Mol Pharmacol 2014; 86:760-72. [PMID: 25267719 PMCID: PMC4244593 DOI: 10.1124/mol.114.095505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/26/2014] [Indexed: 01/12/2023] Open
Abstract
4-Aminopyridine (4-AP, fampridine) is used clinically to improve neuromuscular function in patients with multiple sclerosis, spinal cord injury, and myasthenia gravis. 4-AP can increase neuromuscular and synaptic transmission by directly stimulating high voltage-activated (HVA) Ca(2+) channels independent of its blocking effect on voltage-activated K(+) channels. Here we provide new evidence that the potentiating effect of 4-AP on HVA Ca(2+) channels depends on the specific combination of voltage-activated calcium channel α1 (Cavα1) and voltage-activated calcium channel β (Cavβ) subunits. Among the four Cavβ subunits examined, Cavβ3 was the most significant subunit involved in the 4-AP-induced potentiation of both L-type and N-type currents. Of particular note, 4-AP at micromolar concentrations selectively potentiated L-type currents reconstituted with Cav1.2, α2δ1, and Cavβ3. In contrast, 4-AP potentiated N-type currents only at much higher concentrations and had little effect on P/Q-type currents. In a phrenic nerve-diaphragm preparation, blocking L-type Ca(2+) channels eliminated the potentiating effect of low concentrations of 4-AP on end-plate potentials. Furthermore, 4-AP enhanced the physical interaction of Cav1.2 and Cav2.2 subunits to Cavβ3 and also increased their trafficking to the plasma membrane. Site-directed mutagenesis identified specific regions in the guanylate kinase, HOOK, and C-terminus domains of the Cavβ3 subunit crucial to the ability of 4-AP to potentiate L-type and N-type currents. Our findings indicate that 4-AP potentiates HVA Ca(2+) channels by enhancing reciprocal Cav1.2-Cavβ3 and Cav2.2-Cavβ3 interactions. The therapeutic effect of 4-AP on neuromuscular function is probably mediated by its actions on Cavβ3-containing L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Li Li
- Center for Neuroscience and Pain Research (L.L., D.-P.L, S.-R.C., J.C., H.-L.P.), Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; College of Bioscience and Biotechnology (J.C.), Hunan Agricultural University, Changsha, P.R. China; and Department of Integrative Biology and Pharmacology (H.H.), The University of Texas Medical School, Houston, Texas
| | - De-Pei Li
- Center for Neuroscience and Pain Research (L.L., D.-P.L, S.-R.C., J.C., H.-L.P.), Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; College of Bioscience and Biotechnology (J.C.), Hunan Agricultural University, Changsha, P.R. China; and Department of Integrative Biology and Pharmacology (H.H.), The University of Texas Medical School, Houston, Texas
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research (L.L., D.-P.L, S.-R.C., J.C., H.-L.P.), Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; College of Bioscience and Biotechnology (J.C.), Hunan Agricultural University, Changsha, P.R. China; and Department of Integrative Biology and Pharmacology (H.H.), The University of Texas Medical School, Houston, Texas
| | - Jinjun Chen
- Center for Neuroscience and Pain Research (L.L., D.-P.L, S.-R.C., J.C., H.-L.P.), Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; College of Bioscience and Biotechnology (J.C.), Hunan Agricultural University, Changsha, P.R. China; and Department of Integrative Biology and Pharmacology (H.H.), The University of Texas Medical School, Houston, Texas
| | - Hongzhen Hu
- Center for Neuroscience and Pain Research (L.L., D.-P.L, S.-R.C., J.C., H.-L.P.), Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; College of Bioscience and Biotechnology (J.C.), Hunan Agricultural University, Changsha, P.R. China; and Department of Integrative Biology and Pharmacology (H.H.), The University of Texas Medical School, Houston, Texas
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research (L.L., D.-P.L, S.-R.C., J.C., H.-L.P.), Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; College of Bioscience and Biotechnology (J.C.), Hunan Agricultural University, Changsha, P.R. China; and Department of Integrative Biology and Pharmacology (H.H.), The University of Texas Medical School, Houston, Texas
| |
Collapse
|
20
|
Protein kinase C-dependent activation of CaV1.2 channels selectively controls human TH2-lymphocyte functions. J Allergy Clin Immunol 2013; 133:1175-83. [PMID: 24365142 DOI: 10.1016/j.jaci.2013.10.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/02/2013] [Accepted: 10/28/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND In addition to calcium release-activated calcium channel/ORAI calcium channels, the role of voltage-gated calcium (Cav1) channels in T-cell calcium signaling is emerging. Cav1 channels are formed by α1 (CaV1.1 to CaV1.4) and auxiliary subunits. We previously demonstrated that mouse TH2 cells selectively overexpressed CaV1.2 and CaV1.3 channels. Knocking down these channels with Cav1 antisense (AS) oligonucleotides inhibited TH2 functions and experimental asthma. OBJECTIVE We investigated the expression profile and role of Cav1 channels in human T-cell subsets, with a focus on TH2 cells. METHODS We compared the profile of CaV1 channel subunit expression in T-cell subsets isolated ex vivo from the blood of healthy donors, as well as in vitro-polarized T-cell subsets, and tested the effect of the Cav1 inhibitors nicardipine and Cav1.2AS on their functions. RESULTS CaV1.4 expression was detectable in CD4(+) T cells, ex vivo TH1 cells, and TH17 cells, whereas Cav1.2 channels predominated in TH2 cells only. T-cell activation resulted in Cav1.4 downregulation, whereas Cav1.2 expression was selectively maintained in polarized TH2 cells and absent in TH1 or TH9 cells. Nicardipine and CaV1.2AS decreased Ca(2+) and cytokine responses in TH2, but not TH1, cells. Protein kinase C (PKC) α/β inhibition decreased Ca(2+) and cytokine responses, whereas both calcium and cytokine responses induced by PKC activation were inhibited by nicardipine or Cav1.2AS in TH2 cells. CONCLUSION This study highlights the selective expression of Cav1.2 channels in human TH2 cells and the role of PKC-dependent Cav1.2 channel activation in TH2 cell function. Blocking PKC or Cav1.2 channel activation in TH2 cells might represent new strategies to treat allergic diseases in human subjects.
Collapse
|
21
|
Demers-Giroux PO, Bourdin B, Sauvé R, Parent L. Cooperative activation of the T-type CaV3.2 channel: interaction between Domains II and III. J Biol Chem 2013; 288:29281-93. [PMID: 23970551 PMCID: PMC3795230 DOI: 10.1074/jbc.m113.500975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
T-type CaV3 channels are important mediators of Ca(2+) entry near the resting membrane potential. Little is known about the molecular mechanisms responsible for channel activation. Homology models based upon the high-resolution structure of bacterial NaV channels predict interaction between the S4-S5 helix of Domain II (IIS4-S5) and the distal S6 pore region of Domain II (IIS6) and Domain III (IIIS6). Functional intra- and inter-domain interactions were investigated with a double mutant cycle analysis. Activation gating and channel kinetics were measured for 47 single mutants and 20 pairs of mutants. Significant coupling energies (ΔΔG(interact) ≥ 1.5 kcal mol(-1)) were measured for 4 specific pairs of mutants introduced between IIS4-S5 and IIS6 and between IIS4-S5 and IIIS6. In agreement with the computer based models, Thr-911 in IIS4-S5 was functionally coupled with Ile-1013 in IIS6 during channel activation. The interaction energy was, however, found to be stronger between Val-907 in IIS4-S5 and Ile-1013 in IIS6. In addition Val-907 was significantly coupled with Asn-1548 in IIIS6 but not with Asn-1853 in IVS6. Altogether, our results demonstrate that the S4-S5 and S6 helices from adjacent domains are energetically coupled during the activation of a low voltage-gated T-type CaV3 channel.
Collapse
Affiliation(s)
- Pierre-Olivier Demers-Giroux
- From the Département de Physiologie, Membrane Protein Research Group, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Benoîte Bourdin
- From the Département de Physiologie, Membrane Protein Research Group, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Rémy Sauvé
- From the Département de Physiologie, Membrane Protein Research Group, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Lucie Parent
- From the Département de Physiologie, Membrane Protein Research Group, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
22
|
Shakeri B, Bourdin B, Demers-Giroux PO, Sauvé R, Parent L. A quartet of leucine residues in the guanylate kinase domain of CaVβ determines the plasma membrane density of the CaV2.3 channel. J Biol Chem 2012; 287:32835-47. [PMID: 22846999 DOI: 10.1074/jbc.m112.387233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ca(V)β subunits are formed by a Src homology 3 domain and a guanylate kinase-like (GK) domain connected through a variable HOOK domain. Complete deletion of the Src homology 3 domain (75 residues) as well as deletion of the HOOK domain (47 residues) did not alter plasma membrane density of Ca(V)2.3 nor its typical activation gating. In contrast, six-residue deletions in the GK domain disrupted cell surface trafficking and functional expression of Ca(V)2.3. Mutations of residues known to carry nanomolar affinity binding in the GK domain of Ca(V)β (P175A, P179A, M195A, M196A, K198A, S295A, R302G, R307A, E339G, N340G, and A345G) did not significantly alter cell surface targeting or gating modulation of Ca(V)2.3. Nonetheless, mutations of a quartet of leucine residues (either single or multiple mutants) in the α3, α6, β10, and α9 regions of the GK domain were found to significantly impair cell surface density of Ca(V)2.3 channels. Furthermore, the normalized protein density of Ca(V)2.3 was nearly abolished with the quadruple Ca(V)β3 Leu mutant L200G/L303G/L337G/L342G. Altogether, our observations suggest that the four leucine residues in Ca(V)β3 form a hydrophobic pocket surrounding key residues in the α-interacting domain of Ca(V)2.3. This interaction appears to play an essential role in conferring Ca(V)β-induced modulation of the protein density of Ca(V)α1 subunits in Ca(V)2 channels.
Collapse
Affiliation(s)
- Behzad Shakeri
- Département de Physiologie and the Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
23
|
Kamp MA, Shakeri B, Tevoufouet EE, Krieger A, Henry M, Behnke K, Herzig S, Hescheler J, Radhakrishnan K, Parent L, Schneider T. The C-terminus of human Ca(v)2.3 voltage-gated calcium channel interacts with alternatively spliced calmodulin-2 expressed in two human cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1045-57. [PMID: 22633975 DOI: 10.1016/j.bbapap.2012.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/27/2012] [Accepted: 05/16/2012] [Indexed: 01/20/2023]
Abstract
Ca(v)2.3 containing voltage-activated Ca(2+) channels are expressed in excitable cells and trigger neurotransmitter and peptide-hormone release. Their expression remote from the fast release sites leads to the accumulation of presynaptic Ca(2+) which can both, facilitate and inhibit the influx of Ca(2+) ions through Ca(v)2.3. The facilitated Ca(2+) influx was recently related to hippocampal postsynaptic facilitation and long term potentiation. To analyze Ca(2+) mediated modulation of cellular processes more in detail, protein partners of the carboxy terminal tail of Ca(v)2.3 were identified by yeast-2-hybrid screening, leading in two human cell lines to the detection of a novel, extended and rarely occurring splice variant of calmodulin-2 (CaM-2), called CaM-2-extended (CaM-2-ext). CaM-2-ext interacts biochemically with the C-terminus of Ca(v)2.3 similar to the classical CaM-2 as shown by co-immunoprecipitation. Functionally, only CaM-2-ext reduces whole cell inward currents significantly. The insertion of the novel 46 nts long exon and the consecutive expression of CaM-2-ext must be dependent on a new upstream translation initiation site which is only rarely used in the tested human cell lines. The structure of the N-terminal extension is predicted to be more hydrophobic than the remaining CaM-2-ext protein, suggesting that it may help to dock it to the lipophilic membrane surrounding.
Collapse
Affiliation(s)
- Marcel A Kamp
- Institute for Neurophysiology, University of Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Simms BA, Zamponi GW. Trafficking and stability of voltage-gated calcium channels. Cell Mol Life Sci 2012; 69:843-56. [PMID: 21964928 PMCID: PMC11115007 DOI: 10.1007/s00018-011-0843-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium channels are important mediators of calcium influx into electrically excitable cells. The amount of calcium entering through this family of channel proteins is not only determined by the functional properties of channels embedded in the plasma membrane but also by the numbers of channels that are expressed at the cell surface. The trafficking of channels is controlled by numerous processes, including co-assembly with ancillary calcium channel subunits, ubiquitin ligases, and interactions with other membrane proteins such as G protein coupled receptors. Here we provide an overview about the current state of knowledge of calcium channel trafficking to the cell membrane, and of the mechanisms regulating the stability and internalization of this important ion channel family.
Collapse
Affiliation(s)
- Brett A. Simms
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1 Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1 Canada
| |
Collapse
|
25
|
Fang K, Colecraft HM. Mechanism of auxiliary β-subunit-mediated membrane targeting of L-type (Ca(V)1.2) channels. J Physiol 2011; 589:4437-55. [PMID: 21746784 DOI: 10.1113/jphysiol.2011.214247] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ca(2+) influx via Ca(V)1/Ca(V)2 channels drives processes ranging from neurotransmission to muscle contraction. Association of a pore-forming α(1) and cytosolic β is necessary for trafficking Ca(V)1/Ca(V)2 channels to the cell surface through poorly understood mechanisms. A prevalent idea suggests β binds the α(1) intracellular I-II loop, masking an endoplasmic reticulum (ER) retention signal as the dominant mechanism for Ca(V)1/Ca(V)2 channel membrane trafficking. There are hints that other α(1) subunit cytoplasmic domains may play a significant role, but the nature of their potential contribution is unclear. We assessed the roles of all intracellular domains of Ca(V)1.2-α(1C) by generating chimeras featuring substitutions of all possible permutations of intracellular loops/termini of α(1C) into the β-independent Ca(V)3.1-α(1G) channel. Surprisingly, functional analyses demonstrated α(1C) I-II loop strongly increases channel surface density while other cytoplasmic domains had a competing opposing effect. Alanine-scanning mutagenesis identified an acidic-residue putative ER export motif responsible for the I-II loop-mediated increase in channel surface density. β-dependent increase in current arose as an emergent property requiring four α(1C) intracellular domains, with the I-II loop and C-terminus being essential. The results suggest β binding to the α(1C) I-II loop causes a C-terminus-dependent rearrangement of intracellular domains, shifting a balance of power between export signals on the I-II loop and retention signals elsewhere.
Collapse
Affiliation(s)
- Kun Fang
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
26
|
Minor DL, Findeisen F. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 2011; 4:459-74. [PMID: 21139419 DOI: 10.4161/chan.4.6.12867] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.
Collapse
Affiliation(s)
- Daniel L Minor
- Cardiovascular Research Institute, University of California-San Francisco, CA, USA.
| | | |
Collapse
|