1
|
Vila-Farré M, Rozanski A, Ivanković M, Cleland J, Brand JN, Thalen F, Grohme MA, von Kannen S, Grosbusch AL, Vu HTK, Prieto CE, Carbayo F, Egger B, Bleidorn C, Rasko JEJ, Rink JC. Evolutionary dynamics of whole-body regeneration across planarian flatworms. Nat Ecol Evol 2023; 7:2108-2124. [PMID: 37857891 PMCID: PMC10697840 DOI: 10.1038/s41559-023-02221-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Regenerative abilities vary dramatically across animals. Even amongst planarian flatworms, well-known for complete regeneration from tiny body fragments, some species have restricted regeneration abilities while others are almost entirely regeneration incompetent. Here, we assemble a diverse live collection of 40 planarian species to probe the evolution of head regeneration in the group. Combining quantification of species-specific head-regeneration abilities with a comprehensive transcriptome-based phylogeny reconstruction, we show multiple independent transitions between robust whole-body regeneration and restricted regeneration in freshwater species. RNA-mediated genetic interference inhibition of canonical Wnt signalling in RNA-mediated genetic interference-sensitive species bypassed all head-regeneration defects, suggesting that the Wnt pathway is linked to the emergence of planarian regeneration defects. Our finding that Wnt signalling has multiple roles in the reproductive system of the model species Schmidtea mediterranea raises the possibility that a trade-off between egg-laying, asexual reproduction by fission/regeneration and Wnt signalling drives regenerative trait evolution. Although quantitative comparisons of Wnt signalling levels, yolk content and reproductive strategy across our species collection remained inconclusive, they revealed divergent Wnt signalling roles in the reproductive system of planarians. Altogether, our study establishes planarians as a model taxon for comparative regeneration research and presents a framework for the mechanistic evolution of regenerative abilities.
Collapse
Affiliation(s)
- Miquel Vila-Farré
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Andrei Rozanski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mario Ivanković
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - James Cleland
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jeremias N Brand
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Felix Thalen
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen, Germany
- Cardio-CARE, Medizincampus Davos, Davos, Switzerland
| | - Markus A Grohme
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Hanh T-K Vu
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlos E Prieto
- Department of Zoology & Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando Carbayo
- Laboratório de Ecologia e Evolução. Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
| | - Bernhard Egger
- Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Christoph Bleidorn
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen, Germany
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
2
|
Hu YD, Wu K, Liu YJ, Zhang Q, Shen H, Ji J, Fang D, Xi SY. LY6/PLAUR domain containing 3 (LYPD3) maintains melanoma cell stemness and mediates an immunosuppressive microenvironment. Biol Direct 2023; 18:72. [PMID: 37924160 PMCID: PMC10623712 DOI: 10.1186/s13062-023-00424-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Malignant melanoma is a highly heterogeneous skin cancer with the highest mortality rate among dermatological cancers. Catenins form functional networks in the nucleus to regulate gene expression and determine cell fate. Dysregulation of catenin expression correlates with the malignant characteristics of the tumor. We aimed to investigate the regulatory mechanisms of catenins in melanoma and to further define the function of catenin-related molecular signaling in the tumor microenvironment. METHODS In this study, a bioinformatics approach combined with experimental validation was used to explore the potential tumor biology mechanisms of catenin-related signaling. RESULTS Melanoma patients can be divided into two catenin clusters. Patients defined by high Junction Plakoglobin (JUP), Plakophilin 1 (PKP1), Plakophilin 3 (PKP3) levels (C2) had shorter survival time than other patients (C1). We demonstrated that JUP regulates Anterior Gradient 2 (AGR2)/LY6/PLAUR Domain Containing 3 (LYPD3) to maintain melanoma stemness and promotes glycolysis. We also found that LYPD3 was co-expressed with S100A9 and associated with immunosuppressive tumor microenvironment (TME). CONCLUSION The JUP/AGR2/LYPD3 signaling axis plays an important role in the malignant features of melanoma. Targeting the JUP/AGR2/LYPD3 signaling axis can help develop promising drugs.
Collapse
Affiliation(s)
- Yi-Dou Hu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China
| | - Ke Wu
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Yuan-Jie Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
- Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qian Zhang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
- Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Hui Shen
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China
| | - Jin Ji
- Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Dong Fang
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| | - Song-Yang Xi
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| |
Collapse
|
3
|
Wang S, Sun Y, Liu X, Guo Y, Huang Y, Zhang S, Tian Q. Meis1 Controls the Differentiation of Eye Progenitor Cells and the Formation of Posterior Poles during Planarian Regeneration. Int J Mol Sci 2023; 24:ijms24043505. [PMID: 36834910 PMCID: PMC9961902 DOI: 10.3390/ijms24043505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
As a member of TALE family, Meis1 has been proven to regulate cell proliferation and differentiation during cell fate commitment; however, the mechanism is still not fully understood. The planarian, which has an abundance of stem cells (neoblasts) responsible for regenerating any organ after injury, is an ideal model for studying the mechanisms of tissue identity determination. Here, we characterized a planarian homolog of Meis1 from the planarian Dugesia japonica. Importantly, we found that knockdown of DjMeis1 inhibits the differentiation of neoblasts into eye progenitor cells and results in an eyeless phenotype with normal central nervous system. Furthermore, we observed that DjMeis1 is required for the activation of Wnt signaling pathway by promoting the Djwnt1 expression during posterior regeneration. The silencing of DjMeis1 suppresses the expression of Djwnt1 and results in the inability to reconstruct posterior poles. In general, our findings indicated that DjMeis1 acts as a trigger for the activation of eye and tail regeneration by regulating the differentiation of eye progenitor cells and the formation of posterior poles, respectively.
Collapse
Affiliation(s)
- Shaocong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yujia Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yajun Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongding Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China
- Correspondence: (S.Z.); (Q.T.)
| | - Qingnan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (S.Z.); (Q.T.)
| |
Collapse
|
4
|
Wnt/β-catenin signalling is required for pole-specific chromatin remodeling during planarian regeneration. Nat Commun 2023; 14:298. [PMID: 36653403 PMCID: PMC9849279 DOI: 10.1038/s41467-023-35937-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
For successful regeneration, the identity of the missing tissue must be specified according to the pre-existing tissue. Planarians are ideal for the study of the mechanisms underlying this process; the same field of cells can regrow a head or a tail according to the missing body part. After amputation, the differential activation of the Wnt/β-catenin signal specifies anterior versus posterior identity. Initially, both wnt1 and notum (Wnt inhibitor) are expressed in all wounds, but 48 hours later they are restricted to posterior or anterior facing wounds, respectively, by an unknown mechanism. Here we show that 12 hours after amputation, the chromatin accessibility of cells in the wound region changes according to the polarity of the pre-existing tissue in a Wnt/β-catenin-dependent manner. Genomic analyses suggest that homeobox transcription factors and chromatin-remodeling proteins are direct Wnt/β-catenin targets, which trigger the expression of posterior effectors. Finally, we identify FoxG as a wnt1 up-stream regulator, probably via binding to its first intron enhancer region.
Collapse
|
5
|
Petersen CP. Wnt signaling in whole-body regeneration. Curr Top Dev Biol 2023; 153:347-380. [PMID: 36967200 DOI: 10.1016/bs.ctdb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Regeneration abilities are widespread among animals and select species can restore any body parts removed by wounds that sever the major body axes. This capability of whole-body regeneration as exemplified in flatworm planarians, Acoels, and Cnidarians involves initial responses to injury, the assessment of wound site polarization, determination of missing tissue and programming of blastema fate, and patterned outgrowth to restore axis content and proportionality. Wnt signaling drives many shared and conserved aspects of the biology of whole-body regeneration in the planarian species Schmidtea mediterranea and Dugesia japonica, in the Acoel Hofstenia miamia, and in Cnidarians Hydra and Nematostella. These overlapping mechanisms suggest whole-body regeneration might be an ancestral property across diverse animal taxa.
Collapse
Affiliation(s)
- Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
6
|
Font-Martín D, Pascual-Carreras E, Saló E. Combining Fluorescent In Situ Hybridization with Immunofluorescence and Lectin Staining in Planarians. Methods Mol Biol 2023; 2680:67-79. [PMID: 37428371 DOI: 10.1007/978-1-0716-3275-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The capability to simultaneously apply different molecular tools to visualize a wide variety of changes in genetic expression and tissue composition in Schmidtea mediterranea has always been of great interest. The most commonly used techniques are fluorescent in situ hybridization (FISH) and immunofluorescence (IF) detection. Here, we describe a novel way to perform both protocols together adding the possibility to combine them with fluorescent-conjugated lectin staining to further broaden the detection of tissues. We also present a novel lectin fixation protocol to enhance the signal, which could be useful when single-cell resolution is required.
Collapse
Affiliation(s)
- Daniel Font-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Eudald Pascual-Carreras
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalunya, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain.
| |
Collapse
|
7
|
Coronel-Córdoba P, Molina MD, Cardona G, Fraguas S, Pascual-Carreras E, Saló E, Cebrià F, Adell T. FoxK1 is Required for Ectodermal Cell Differentiation During Planarian Regeneration. Front Cell Dev Biol 2022; 10:808045. [PMID: 35273960 PMCID: PMC8901602 DOI: 10.3389/fcell.2022.808045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Forkhead box (Fox) genes belong to the “winged helix” transcription factor superfamily. The function of some Fox genes is well known, such as the role of foxO in controlling metabolism and longevity and foxA in controlling differentiation of endodermal tissues. However, the role of some Fox factors is not yet well characterized. Such is the case of FoxK genes, which are mainly studied in mammals and have been implicated in diverse processes including cell proliferation, tissue differentiation and carcinogenesis. Planarians are free-living flatworms, whose importance in biomedical research lies in their regeneration capacity. Planarians possess a wide population of pluripotent adult stem cells, called neoblasts, which allow them to regenerate any body part after injury. In a recent study, we identified three foxK paralogs in the genome of Schmidtea mediterranea. In this study, we demonstrate that foxK1 inhibition prevents regeneration of the ectodermal tissues, including the nervous system and the epidermis. These results correlate with foxK1 expression in neoblasts and in neural progenitors. Although the triggering of wound genes expression, polarity reestablishment and proliferation was not affected after foxK1 silencing, the apoptotic response was decreased. Altogether, these results suggest that foxK1 would be required for differentiation and maintenance of ectodermal tissues.
Collapse
Affiliation(s)
- Pablo Coronel-Córdoba
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - M Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Gemma Cardona
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Eudald Pascual-Carreras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
8
|
Wouters A, Ploem JP, Langie SAS, Artois T, Aboobaker A, Smeets K. Regenerative responses following DNA damage - β-catenin mediates head regrowth in the planarian Schmidtea mediterranea. J Cell Sci 2020; 133:jcs237545. [PMID: 32107291 DOI: 10.1242/jcs.237545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells hold great potential for regenerative medicine. Increased replication and division, such is the case during regeneration, concomitantly increases the risk of adverse outcomes through the acquisition of mutations. Seeking for driving mechanisms of such outcomes, we challenged a pluripotent stem cell system during the tightly controlled regeneration process in the planarian Schmidtea mediterranea Exposure to the genotoxic compound methyl methanesulfonate (MMS) revealed that despite a similar DNA-damaging effect along the anteroposterior axis of intact animals, responses differed between anterior and posterior fragments after amputation. Stem cell proliferation and differentiation proceeded successfully in the amputated heads, leading to regeneration of missing tissues. Stem cells in the amputated tails showed decreased proliferation and differentiation capacity. As a result, tails could not regenerate. Interference with the body-axis-associated component β-catenin-1 increased regenerative success in tail fragments by stimulating proliferation at an early time point. Our results suggest that differences in the Wnt signalling gradient along the body axis modulate stem cell responses to MMS.
Collapse
Affiliation(s)
- Annelies Wouters
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jan-Pieter Ploem
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Sabine A S Langie
- Vito Health, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Tom Artois
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Karen Smeets
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
9
|
Divergent Axin and GSK-3 paralogs in the beta-catenin destruction complexes of tapeworms. Dev Genes Evol 2019; 229:89-102. [PMID: 31041506 DOI: 10.1007/s00427-019-00632-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/16/2019] [Indexed: 01/06/2023]
Abstract
The Wnt/beta-catenin pathway has many key roles in the development of animals, including a conserved and central role in the specification of the primary (antero-posterior) body axis. The posterior expression of Wnt ligands and the anterior expression of secreted Wnt inhibitors are known to be conserved during the larval metamorphosis of tapeworms. However, their downstream signaling components for Wnt/beta-catenin signaling have not been characterized. In this work, we have studied the core components of the beta-catenin destruction complex of the human pathogen Echinococcus multilocularis, the causative agent of alveolar echinococcosis. We focused on two Axin paralogs that are conserved in tapeworms and other flatworm parasites. Despite their divergent sequences, both Axins could robustly interact with one E. multilocularis beta-catenin paralog and limited its accumulation in a heterologous mammalian expression system. Similarly to what has been described in planarians (free-living flatworms), other beta-catenin paralogs showed limited or no interaction with either Axin and are unlikely to function as effectors in Wnt signaling. Additionally, both Axins interacted with three divergent GSK-3 paralogs that are conserved in free-living and parasitic flatworms. Axin paralogs have highly segregated expression patterns along the antero-posterior axis in the tapeworms E. multilocularis and Hymenolepis microstoma, indicating that different beta-catenin destruction complexes may operate in different regions during their larval metamorphosis.
Collapse
|
10
|
Pietak A, Bischof J, LaPalme J, Morokuma J, Levin M. Neural control of body-plan axis in regenerating planaria. PLoS Comput Biol 2019; 15:e1006904. [PMID: 30990801 PMCID: PMC6485777 DOI: 10.1371/journal.pcbi.1006904] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/26/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
Control of axial polarity during regeneration is a crucial open question. We developed a quantitative model of regenerating planaria, which elucidates self-assembly mechanisms of morphogen gradients required for robust body-plan control. The computational model has been developed to predict the fraction of heteromorphoses expected in a population of regenerating planaria fragments subjected to different treatments, and for fragments originating from different regions along the anterior-posterior and medio-lateral axis. This allows for a direct comparison between computational and experimental regeneration outcomes. Vector transport of morphogens was identified as a fundamental requirement to account for virtually scale-free self-assembly of the morphogen gradients observed in planarian homeostasis and regeneration. The model correctly describes altered body-plans following many known experimental manipulations, and accurately predicts outcomes of novel cutting scenarios, which we tested. We show that the vector transport field coincides with the alignment of nerve axons distributed throughout the planarian tissue, and demonstrate that the head-tail axis is controlled by the net polarity of neurons in a regenerating fragment. This model provides a comprehensive framework for mechanistically understanding fundamental aspects of body-plan regulation, and sheds new light on the role of the nervous system in directing growth and form.
Collapse
Affiliation(s)
- Alexis Pietak
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
| | - Johanna Bischof
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Joshua LaPalme
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Junji Morokuma
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
11
|
Up-regulation of microRNA-340 promotes osteosarcoma cell apoptosis while suppressing proliferation, migration, and invasion by inactivating the CTNNB1-mediated Notch signaling pathway. Biosci Rep 2018; 38:BSR20171615. [PMID: 29769415 PMCID: PMC6117618 DOI: 10.1042/bsr20171615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common histological form of primary bone cancer. It is most prevalent in teenagers and young adults. The present study aims at exploring the regulatory effect of microRNA-340 (miR-340) on OS cell proliferation, invasion, migration, and apoptosis via regulating the Notch signaling pathway by targeting β-catenin (cadherin-associated protein) 1 (CTNNB1). OS tissues belonging to 45 patients and normal femoral head tissues of 45 amputees were selected. Cells were allocated to different groups. In situ hybridization was performed to determine the positive rate of miR-340 expression while immunohistochemistry was used to determine that of CTNNB1 and B-cell lymphoma 2 (Bcl-2). We used a series of experiments to measure the expressions of related factors and assess rates of cell proliferation, migration, invasion, cycle, and apoptosis respectively. Our results show that miR-340 was expressed a higher level in normal tissue than OS tissue. Expression of Notch, CTNNB1, hairy and enhancer of split 1 (Hes1), Bcl-2, Runt-related transcription factor 2 (Runx2), and osteocalcin increased and that of miR-340, Bcl-2 interacting mediator of cell death (BIM), and Bcl-2 associated protein X (Bax) decreased in OS tissues. U-2OS cell line had the highest miR-340 expression. We also found that the up-regulation of miR-340 had increased expression of miR-340, BIM, and Bax but decreased expression of Notch, CTNNB1, Hes1, Bcl-2, Runx2, and osteocalcin. Up-regulation of miR-340p lead to increased cell apoptosis, suppressed cell proliferation, migration, and invasion. Our study demonstrates that overexpression of miR-340 could suppress OS cell proliferation, migration, and invasion as well as promoting OS cell apoptosis by inactivating the Notch signaling pathway via down-regulating CTNNB1. Functional miR-340 overexpression might be a future therapeutic strategy for OS.
Collapse
|
12
|
de Sousa N, Rodríguez-Esteban G, Rojo-Laguna JI, Saló E, Adell T. Hippo signaling controls cell cycle and restricts cell plasticity in planarians. PLoS Biol 2018; 16:e2002399. [PMID: 29357350 PMCID: PMC5794332 DOI: 10.1371/journal.pbio.2002399] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 02/01/2018] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
The Hippo pathway plays a key role in regulating cell turnover in adult tissues, and abnormalities in this pathway are consistently associated with human cancers. Hippo was initially implicated in the control of cell proliferation and death, and its inhibition is linked to the expansion of stem cells and progenitors, leading to larger organ size and tumor formation. To understand the mechanism by which Hippo directs cell renewal and promotes stemness, we studied its function in planarians. These stem cell-based organisms are ideal models for the analysis of the complex cellular events underlying tissue renewal in the whole organism. hippo RNA interference (RNAi) in planarians decreased apoptotic cell death, induced cell cycle arrest, and could promote the dedifferentiation of postmitotic cells. hippo RNAi resulted in extensive undifferentiated areas and overgrowths, with no effect on body size or cell number. We propose an essential role for hippo in controlling cell cycle, restricting cell plasticity, and thereby preventing tumoral transformation.
Collapse
Affiliation(s)
- Nídia de Sousa
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Gustavo Rodríguez-Esteban
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalunya, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalunya, Spain
| | - Jose Ignacio Rojo-Laguna
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| |
Collapse
|
13
|
Rink JC. Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale. Methods Mol Biol 2018; 1774:57-172. [PMID: 29916155 DOI: 10.1007/978-1-4939-7802-1_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The establishment of size and shape remains a fundamental challenge in biological research that planarian flatworms uniquely epitomize. Planarians can regenerate complete and perfectly proportioned animals from tiny and arbitrarily shaped tissue pieces; they continuously renew all organismal cell types from abundant pluripotent stem cells, yet maintain shape and anatomy in the face of constant turnover; they grow when feeding and literally degrow when starving, while scaling form and function over as much as a 40-fold range in body length or an 800-fold change in total cell numbers. This review provides a broad overview of the current understanding of the planarian stem cell system, the mechanisms that pattern the planarian body plan and how the interplay between patterning signals and cell fate choices orchestrates regeneration. What emerges is a conceptual framework for the maintenance and regeneration of the planarian body plan on basis of the interplay between pluripotent stem cells and self-organizing patterns and further, the general utility of planarians as model system for the mechanistic basis of size and shape.
Collapse
Affiliation(s)
- Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
14
|
Adell T, Barberán S, Sureda-Gómez M, Almuedo-Castillo M, de Sousa N, Cebrià F. Immunohistochemistry on Paraffin-Embedded Planarian Tissue Sections. Methods Mol Biol 2018; 1774:367-378. [PMID: 29916164 DOI: 10.1007/978-1-4939-7802-1_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Planarians are flatworms with almost unlimited regenerative abilities, which make them an excellent model for stem cell-based regeneration. To study the process of regeneration at the cellular level, immunohistochemical staining methods are an important tool, and the availability of such protocols is one of the prerequisites for mechanistic experiments in any animal model. Here, we detail protocols for paraffin embedding and immunostaining of paraffin sections of the model species Schmidtea mediterranea. This protocol yields robust results with a variety of commercially available antibodies. Further, the procedures provide a useful starting point for customizing staining procedures for new antibodies and/or different planarian species.
Collapse
Affiliation(s)
- Teresa Adell
- Department of Genetics, Microbiology, and Statistics, Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Sara Barberán
- Department of Genetics, Microbiology, and Statistics, Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Miquel Sureda-Gómez
- Department of Genetics, Microbiology, and Statistics, Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - María Almuedo-Castillo
- Department of Genetics, Microbiology, and Statistics, Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Nidia de Sousa
- Department of Genetics, Microbiology, and Statistics, Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology, and Statistics, Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Su H, Sureda-Gomez M, Rabaneda-Lombarte N, Gelabert M, Xie J, Wu W, Adell T. A C-terminally truncated form of β-catenin acts as a novel regulator of Wnt/β-catenin signaling in planarians. PLoS Genet 2017; 13:e1007030. [PMID: 28976975 PMCID: PMC5643146 DOI: 10.1371/journal.pgen.1007030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/16/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022] Open
Abstract
β-Catenin, the core element of the Wnt/β-catenin pathway, is a multifunctional and evolutionarily conserved protein which performs essential roles in a variety of developmental and homeostatic processes. Despite its crucial roles, the mechanisms that control its context-specific functions in time and space remain largely unknown. The Wnt/β-catenin pathway has been extensively studied in planarians, flatworms with the ability to regenerate and remodel the whole body, providing a ‘whole animal’ developmental framework to approach this question. Here we identify a C-terminally truncated β-catenin (β-catenin4), generated by gene duplication, that is required for planarian photoreceptor cell specification. Our results indicate that the role of β-catenin4 is to modulate the activity of β-catenin1, the planarian β-catenin involved in Wnt signal transduction in the nucleus, mediated by the transcription factor TCF-2. This inhibitory form of β-catenin, expressed in specific cell types, would provide a novel mechanism to modulate nuclear β-catenin signaling levels. Genomic searches and in vitro analysis suggest that the existence of a C-terminally truncated form of β-catenin could be an evolutionarily conserved mechanism to achieve a fine-tuned regulation of Wnt/β-catenin signaling in specific cellular contexts. The Wnt signaling pathway is essential for proper intercellular communication in every developmental process since it controls basic cellular events as cell fate or proliferation. The key element of the Wnt signaling is β-catenin, which controls the transcription of multiple genes in the Wnt receiving cell. A main level of regulation of the Wnt/β-catenin signaling occurs in the cytoplasm, where β-catenin protein levels depend on the activity of the β-catenin destruction complex. However, once it reaches the nucleus, β-catenin transcriptional activity requires a fine-tuned regulation to enable the multiple context-specific responses that it performs. These nuclear mechanisms that regulate the Wnt/β-catenin signaling remain poorly understood. Here we report the existence of C-terminal truncated forms of β-catenin in planarians (β-cat3 and 4), which, in vitro, do not show transactivation activity and compete with the canonical planarian β-catenin (β-cat1), thus acting as competitor inhibitors. Functional analyses in planarians indicate that β-cat4 acts as a negative regulator of β-cat1 during planarian eye photoreceptor specification. We provide evidence to suggest that this novel mechanism for the regulation of nuclear β-catenin activity could be conserved across animal evolution.
Collapse
Affiliation(s)
- Hanxia Su
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Miquel Sureda-Gomez
- Departament de Genètica, Microbiologia i Estadística,Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Neus Rabaneda-Lombarte
- Departament de Genètica, Microbiologia i Estadística,Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Maria Gelabert
- Departament de Genètica, Microbiologia i Estadística,Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Jianlei Xie
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Wu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Teresa Adell
- Departament de Genètica, Microbiologia i Estadística,Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
- * E-mail:
| |
Collapse
|
16
|
Stückemann T, Cleland JP, Werner S, Thi-Kim Vu H, Bayersdorf R, Liu SY, Friedrich B, Jülicher F, Rink JC. Antagonistic Self-Organizing Patterning Systems Control Maintenance and Regeneration of the Anteroposterior Axis in Planarians. Dev Cell 2017; 40:248-263.e4. [PMID: 28171748 DOI: 10.1016/j.devcel.2016.12.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 11/05/2016] [Accepted: 12/30/2016] [Indexed: 11/27/2022]
Abstract
Planarian flatworms maintain their body plan in the face of constant internal turnover and can regenerate from arbitrary tissue fragments. Both phenomena require self-maintaining and self-organizing patterning mechanisms, the molecular mechanisms of which remain poorly understood. We show that a morphogenic gradient of canonical Wnt signaling patterns gene expression along the planarian anteroposterior (A/P) axis. Our results demonstrate that gradient formation likely occurs autonomously in the tail and that an autoregulatory module of Wnt-mediated Wnt expression both shapes the gradient at steady state and governs its re-establishment during regeneration. Functional antagonism between the tail Wnt gradient and an unknown head patterning system further determines the spatial proportions of the planarian A/P axis and mediates mutually exclusive molecular fate choices during regeneration. Overall, our results suggest that the planarian A/P axis is patterned by self-organizing patterning systems deployed from either end that are functionally coupled by mutual antagonism.
Collapse
Affiliation(s)
- Tom Stückemann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - James Patrick Cleland
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Steffen Werner
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany; Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Hanh Thi-Kim Vu
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Robert Bayersdorf
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Shang-Yun Liu
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Benjamin Friedrich
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany; Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Jochen Christian Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
17
|
Sureda-Gómez M, Martín-Durán JM, Adell T. Localization of planarian β-CATENIN-1 reveals multiple roles during anterior-posterior regeneration and organogenesis. Development 2016; 143:4149-4160. [PMID: 27737903 DOI: 10.1242/dev.135152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023]
Abstract
The β-catenin-dependent Wnt pathway exerts multiple context-dependent roles in embryonic and adult tissues. In planarians, β-catenin-1 is thought to specify posterior identities through the generation of an anteroposterior gradient. However, the existence of such a gradient has not been directly demonstrated. Here, we use a specific polyclonal antibody to demonstrate that nuclear β-CATENIN-1 exists as an anteroposterior gradient from the pre-pharyngeal region to the tail of the planarian Schmidtea polychroa High levels in the posterior region steadily decrease towards the pre-pharyngeal region but then increase again in the head region. During regeneration, β-CATENIN-1 is nuclearized in both anterior and posterior blastemas, but the canonical WNT1 ligand only influences posterior nuclearization. Additionally, β-catenin-1 is required for proper anterior morphogenesis, consistent with the high levels of nuclear β-CATENIN-1 observed in this region. We further demonstrate that β-CATENIN-1 is abundant in developing and differentiated organs, and is particularly required for the specification of the germline. Altogether, our findings provide the first direct evidence of an anteroposterior nuclear β-CATENIN-1 gradient in adult planarians and uncover novel, context-dependent roles for β-catenin-1 during anterior regeneration and organogenesis.
Collapse
Affiliation(s)
- Miquel Sureda-Gómez
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia E-08028, Spain
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thørmohlensgate 55, Bergen 5008, Norway
| | - Teresa Adell
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona, Catalonia E-08028, Spain
| |
Collapse
|
18
|
Sureda-Gómez M, Pascual-Carreras E, Adell T. Posterior Wnts Have Distinct Roles in Specification and Patterning of the Planarian Posterior Region. Int J Mol Sci 2015; 16:26543-54. [PMID: 26556349 PMCID: PMC4661829 DOI: 10.3390/ijms161125970] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
The wnt signaling pathway is an intercellular communication mechanism essential in cell-fate specification, tissue patterning and regional-identity specification. A βcatenin-dependent signal specifies the AP (Anteroposterior) axis of planarians, both during regeneration of new tissues and during normal homeostasis. Accordingly, four wnts (posterior wnts) are expressed in a nested manner in central and posterior regions of planarians. We have analyzed the specific role of each posterior wnt and the possible cooperation between them in specifying and patterning planarian central and posterior regions. We show that each posterior wnt exerts a distinct role during re-specification and maintenance of the central and posterior planarian regions, and that the integration of the different wnt signals (βcatenin dependent and independent) underlies the patterning of the AP axis from the central region to the tip of the tail. Based on these findings and data from the literature, we propose a model for patterning the planarian AP axis.
Collapse
Affiliation(s)
- Miquel Sureda-Gómez
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona E-08028, Catalonia, Spain.
| | - Eudald Pascual-Carreras
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona E-08028, Catalonia, Spain.
| | - Teresa Adell
- Department of Genetics and Institute of Biomedicine, University of Barcelona, Barcelona E-08028, Catalonia, Spain.
| |
Collapse
|
19
|
Β-catenin-dependent control of positional information along the AP body axis in planarians involves a teashirt family member. Cell Rep 2014; 10:253-65. [PMID: 25558068 DOI: 10.1016/j.celrep.2014.12.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/07/2014] [Accepted: 12/09/2014] [Indexed: 11/21/2022] Open
Abstract
Wnt/β-catenin signaling regulates tissue homeostasis and regeneration in metazoans. In planarians-flatworms with high regenerative potential-Wnt ligands are thought to control tissue polarity by shaping a β-catenin activity gradient along the anterior-posterior axis, yet the downstream mechanisms are poorly understood. We performed an RNA sequencing (RNA-seq)-based screen and identified hundreds of β-catenin-dependent transcripts, of which several were expressed in muscle tissue and stem cells in a graded fashion. In particular, a teashirt (tsh) ortholog was induced in a β-catenin-dependent manner during regeneration in planarians and zebrafish, and RNAi resulted in two-headed planarians. Strikingly, intact planarians depleted of tsh induced anterior markers and slowly transformed their tail into a head, reminiscent of β-catenin RNAi phenotypes. Given that β-catenin RNAi enhanced the formation of muscle cells expressing anterior determinants in tail regions, our study suggests that this pathway controls tissue polarity through regulating the identity of differentiating cells during homeostasis and regeneration.
Collapse
|
20
|
β-Catenin-related protein WRM-1 is a multifunctional regulatory subunit of the LIT-1 MAPK complex. Proc Natl Acad Sci U S A 2014; 112:E137-46. [PMID: 25548171 DOI: 10.1073/pnas.1416339112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vertebrate β-catenin has two functions, as a structural component of the adherens junction in cell adhesion and as the T-cell factor (TCF) transcriptional coactivator in canonical Wnt (wingless-related integration site) signaling. These two functions are split between three of the four β-catenin-related proteins present in the round worm Caenorhabditis elegans. The fourth β-catenin-related protein, WRM-1, exhibits neither of these functions. Instead, WRM-1 binds the MAPK loss of intestine 1 (LIT-1), and these two proteins have been shown to be essential for the transcription of Wnt target genes by phosphorylating and regulating the nuclear level of the sole worm TCF protein. We showed previously that WRM-1 binds to worm TCF and functions as the substrate-binding subunit for LIT-1. In this study, we show that phosphorylation of T220 in the activation loop is essential for LIT-1 kinase activity in vivo and in vitro. T220 can be phosphorylated either through LIT-1 autophosphorylation or directly by the upstream MAP3K MOM-4. Our data support a model in which WRM-1, which can undergo homotypic interaction, binds LIT-1 and thereby generates a kinase complex in which LIT-1 molecules are situated in a conformation enabling autophosphorylation as well as promoting phosphorylation of the T220 residue by MOM-4. In addition, we show that WRM-1 is essential for the translocation of the LIT-1 kinase complex to the nucleus, the site of its TCF substrate. To our knowledge, this is the first report of a MAP3K directly activating a MAPK by phosphorylation within the activation loop. This study should help uncover novel and as yet underappreciated functions of vertebrate β-catenin.
Collapse
|
21
|
Forsthoefel DJ, Waters FA, Newmark PA. Generation of cell type-specific monoclonal antibodies for the planarian and optimization of sample processing for immunolabeling. BMC DEVELOPMENTAL BIOLOGY 2014; 14:45. [PMID: 25528559 PMCID: PMC4299570 DOI: 10.1186/s12861-014-0045-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/10/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Efforts to elucidate the cellular and molecular mechanisms of regeneration have required the application of methods to detect specific cell types and tissues in a growing cohort of experimental animal models. For example, in the planarian Schmidtea mediterranea, substantial improvements to nucleic acid hybridization and electron microscopy protocols have facilitated the visualization of regenerative events at the cellular level. By contrast, immunological resources have been slower to emerge. Specifically, the repertoire of antibodies recognizing planarian antigens remains limited, and a more systematic approach is needed to evaluate the effects of processing steps required during sample preparation for immunolabeling. RESULTS To address these issues and to facilitate studies of planarian digestive system regeneration, we conducted a monoclonal antibody (mAb) screen using phagocytic intestinal cells purified from the digestive tracts of living planarians as immunogens. This approach yielded ten antibodies that recognized intestinal epitopes, as well as markers for the central nervous system, musculature, secretory cells, and epidermis. In order to improve signal intensity and reduce non-specific background for a subset of mAbs, we evaluated the effects of fixation and other steps during sample processing. We found that fixative choice, treatments to remove mucus and bleach pigment, as well as methods for tissue permeabilization and antigen retrieval profoundly influenced labeling by individual antibodies. These experiments led to the development of a step-by-step workflow for determining optimal specimen preparation for labeling whole planarians as well as unbleached histological sections. CONCLUSIONS We generated a collection of monoclonal antibodies recognizing the planarian intestine and other tissues; these antibodies will facilitate studies of planarian tissue morphogenesis. We also developed a protocol for optimizing specimen processing that will accelerate future efforts to generate planarian-specific antibodies, and to extend functional genetic studies of regeneration to post-transcriptional aspects of gene expression, such as protein localization or modification. Our efforts demonstrate the importance of systematically testing multiple approaches to species-specific idiosyncracies, such as mucus removal and pigment bleaching, and may serve as a template for the development of immunological resources in other emerging model organisms.
Collapse
Affiliation(s)
- David J Forsthoefel
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, B107 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL, 61801, USA.
| | - Forrest A Waters
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, B107 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL, 61801, USA.
| | - Phillip A Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, B107 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
22
|
Robertson SM, Lin R. Our evolving view of Wnt signaling in C. elegans: If two's company and three's a crowd, is four really necessary? WORM 2013; 1:82-9. [PMID: 24058829 PMCID: PMC3670178 DOI: 10.4161/worm.19156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this commentary, we discuss how our recent paper by Yang et al. contributes a new wrinkle to the already somewhat curious Wnt signaling pathway in C. elegans. We begin with a historical perspective on the Wnt pathway in the worm, followed by a summary of the key salient point from Yang et al., 2011, namely demonstration of mutually inhibitory binding of a β-catenin SYS-1 to the N-terminus and another β-catenin WRM-1 to the C-terminus of the TCF protein POP-1, and a plausible structural explanation for these differential binding specificities. The mutually inhibitory binding creates one population of POP-1 that is bound by WRM-1, phosphorylated by the NLK kinase and exported from the nucleus, and another bound by coactivator SYS-1 that remains in the nucleus. We speculate on the evolutionary history of the four β-catenins in C. elegans and suggest a possible link between multiple β-catenin gene duplications and the requirement to reduce nuclear POP-1 levels to activate Wnt target genes.
Collapse
Affiliation(s)
- Scott M Robertson
- Department of Molecular Biology; University of Texas Southwestern Medical Center at Dallas; Dallas, TX USA
| | | |
Collapse
|
23
|
Vij S, Rink JC, Ho HK, Babu D, Eitel M, Narasimhan V, Tiku V, Westbrook J, Schierwater B, Roy S. Evolutionarily ancient association of the FoxJ1 transcription factor with the motile ciliogenic program. PLoS Genet 2012; 8:e1003019. [PMID: 23144623 PMCID: PMC3493443 DOI: 10.1371/journal.pgen.1003019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 08/22/2012] [Indexed: 01/03/2023] Open
Abstract
It is generally believed that the last eukaryotic common ancestor (LECA) was a unicellular organism with motile cilia. In the vertebrates, the winged-helix transcription factor FoxJ1 functions as the master regulator of motile cilia biogenesis. Despite the antiquity of cilia, their highly conserved structure, and their mechanism of motility, the evolution of the transcriptional program controlling ciliogenesis has remained incompletely understood. In particular, it is presently not known how the generation of motile cilia is programmed outside of the vertebrates, and whether and to what extent the FoxJ1-dependent regulation is conserved. We have performed a survey of numerous eukaryotic genomes and discovered that genes homologous to foxJ1 are restricted only to organisms belonging to the unikont lineage. Using a mis-expression assay, we then obtained evidence of a conserved ability of FoxJ1 proteins from a number of diverse phyletic groups to activate the expression of a host of motile ciliary genes in zebrafish embryos. Conversely, we found that inactivation of a foxJ1 gene in Schmidtea mediterranea, a platyhelminth (flatworm) that utilizes motile cilia for locomotion, led to a profound disruption in the differentiation of motile cilia. Together, all of these findings provide the first evolutionary perspective into the transcriptional control of motile ciliogenesis and allow us to propose a conserved FoxJ1-regulated mechanism for motile cilia biogenesis back to the origin of the metazoans. Cilia are microtubule-based, hair-like organelles that project from the surfaces of eukaryotic cells. Protists use motile cilia for locomotion as well as for sensory perception. In metazoans, motile cilia also function in fluid transport over epithelia, such as in the mammalian lungs. Most vertebrate and some invertebrate cell-types differentiate non-motile primary cilia, which function exclusively in sensory transduction. It is believed that primary cilia arose from motile cilia through the loss of the motility apparatus. Cilia are complex organelles: a large number of proteins are involved in their assembly and maintenance. FoxJ1, a forkhead-domain transcription factor, is the master regulator of motile ciliogenesis in vertebrates. It is not known to what extent this transcriptional control is conserved and how it may have evolved. Here, we document the existence of FoxJ1 orthologs in several eukaryotic groups besides the vertebrates. FoxJ1 proteins from three representative phyla—Placozoa, Platyhelminthes, and Echinodermata—were able to activate the expression of ciliary genes when mis-expressed in zebrafish embryos. Moreover, inactivation of FoxJ1 in planaria (Platyhelminthes) abolished motile cilia differentiation. These results provide new insights into the transcriptional regulation of motile cilia biogenesis outside the vertebrates and demonstrate a remarkable conservation of the activity of FoxJ1.
Collapse
Affiliation(s)
- Shubha Vij
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Jochen C. Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hao Kee Ho
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Deepak Babu
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Michael Eitel
- ITZ Division of Ecology and Evolution, Stiftung Tierärztliche Hochschule, Hannover, Germany
| | | | - Varnesh Tiku
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jody Westbrook
- Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California Berkeley, Berkeley, California, United States of America
| | - Bernd Schierwater
- ITZ Division of Ecology and Evolution, Stiftung Tierärztliche Hochschule, Hannover, Germany
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
24
|
Wilson RA. The cell biology of schistosomes: a window on the evolution of the early metazoa. PROTOPLASMA 2012; 249:503-518. [PMID: 21976269 DOI: 10.1007/s00709-011-0326-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
This review of schistosome cell biology has a dual purpose; its intent is to alert two separate research communities to the activities of the other. Schistosomes are by far and away the best-characterised platyhelminths, due to their medical and economic importance, but seem to be almost totally ignored by researchers on the free-living lower metazoans. Equally, in their enthusiasm for the parasitic way of life, schistosome researchers seldom pay attention to the work on free-living animals that could inform their molecular investigations. The publication of transcriptomes and/or genomes for Schistosoma mansoni and Schistosoma japonicum, the sponge Archimedon, the cnidarians Nematostella and Hydra and the planarian Schmidtea provide the raw material for comparisons. Apart from interrogation of the databases for molecular similarities, there have been differences in technical approach to these lower metazoans; widespread application of whole mount in situ hybridisation to Schmidtea contrasts with the application of targeted proteomics to schistosomes. Using schistosome cell biology as the template, the key topics of cell adhesion, development, signalling pathways, nerve and muscle, and epithelia, are reviewed, where possible interspersing comparisons with the sponge, cnidarian and planarian data. The biggest jump in the evolution of cellular capabilities appears to be in the transition from a diploblast to triploblast level of organisation associated with development of a mobile and plastic body form.
Collapse
Affiliation(s)
- R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
25
|
González-Estévez C, Felix DA, Smith MD, Paps J, Morley SJ, James V, Sharp TV, Aboobaker AA. SMG-1 and mTORC1 act antagonistically to regulate response to injury and growth in planarians. PLoS Genet 2012; 8:e1002619. [PMID: 22479207 PMCID: PMC3315482 DOI: 10.1371/journal.pgen.1002619] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 02/08/2012] [Indexed: 12/31/2022] Open
Abstract
Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling. Planarian flatworms have a remarkable ability to regenerate that has driven the curiosity of scientists for more than a century. They are also able to continuously grow or degrow their bodies, depending on food availability. Around 25% of the cells in the planarian body are adult stem cells, which are responsible for this incredible plasticity. The initial response of planarians to injury is characterised by a rapid increase in stem cell division. Subsequently planarians form a specialised new tissue called the regenerative blastema to replace missing tissues. Currently, very little is known about the molecular signals controlling the response to injury or the tight regulation of growth. Here we discovered that a gene called Smg-1 and the conserved mTOR signalling pathway, a central regulator of animal growth, are both regulators of this process. SMG-1 is required to limit and act as a brake on the initial response to injury and ensure that it does not run out of control, while in contrast mTOR signalling is required to drive this process forward. Loss of SMG-1 leads to hyperactive responses to injury and subsequent growth that continues out of control. Eventually, these animals form outgrowths, which display several hallmarks of human cancers. These opposing roles suggested that Smg-1 phenotype would require mTOR signalling, and by reducing mTOR signalling and SMG-1 activity at the same time we found that this was the case. We conclude that Smg-1 is a novel regulator of regeneration and animal growth with an antagonistic role to mTOR signalling in planarians.
Collapse
Affiliation(s)
- Cristina González-Estévez
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
- * E-mail: (AAA); (CG-E)
| | - Daniel A. Felix
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Matthew D. Smith
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Jordi Paps
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Simon J. Morley
- Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Victoria James
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Tyson V. Sharp
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
- * E-mail: (AAA); (CG-E)
| |
Collapse
|
26
|
Early planarian brain regeneration is independent of blastema polarity mediated by the Wnt/β-catenin pathway. Dev Biol 2011; 358:68-78. [PMID: 21806978 DOI: 10.1016/j.ydbio.2011.07.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 06/09/2011] [Accepted: 07/08/2011] [Indexed: 11/22/2022]
Abstract
Analysis of anteroposterior (AP) axis specification in regenerating planarian flatworms has shown that Wnt/β-catenin signaling is required for posterior specification and that the FGF-like receptor molecule nou-darake (ndk) may be involved in restricting brain regeneration to anterior regions. The relationship between re-establishment of AP identity and correct morphogenesis of the brain is, however, still poorly understood. Here we report the characterization of two axin paralogs in the planarian Schmidtea mediterranea. Although Axins are well known negative regulators of Wnt/β-catenin signaling, no role in AP specification has previously been reported for axin genes in planarians. We show that silencing of Smed-axin genes by RNA interference (RNAi) results in two-tailed planarians, a phenotype previously reported after silencing of Smed-APC-1, another β-catenin inhibitor. More strikingly, we show for the first time that while early brain formation at anterior wounds remains unaffected, subsequent development of the brain is blocked in the two-tailed planarians generated after silencing of Smed-axin genes and Smed-APC-1. These findings suggest that the mechanisms underlying early brain formation can be uncoupled from the specification of AP identity by the Wnt/β-catenin pathway. Finally, the posterior expansion of the brain observed following Smed-ndk RNAi is enhanced by silencing Smed-APC-1, revealing an indirect relationship between the FGFR/Ndk and Wnt/β-catenin signaling systems in establishing the posterior limits of brain differentiation.
Collapse
|
27
|
Fraguas S, Barberán S, Cebrià F. EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Dev Biol 2011; 354:87-101. [PMID: 21458439 DOI: 10.1016/j.ydbio.2011.03.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/14/2011] [Accepted: 03/23/2011] [Indexed: 02/08/2023]
Abstract
Similarly to development, the process of regeneration requires that cells accurately sense and respond to their external environment. Thus, intrinsic cues must be integrated with signals from the surrounding environment to ensure appropriate temporal and spatial regulation of tissue regeneration. Identifying the signaling pathways that control these events will not only provide insights into a fascinating biological phenomenon but may also yield new molecular targets for use in regenerative medicine. Among classical models to study regeneration, freshwater planarians represent an attractive system in which to investigate the signals that regulate cell proliferation and differentiation, as well as the proper patterning of the structures being regenerated. Recent studies in planarians have begun to define the role of conserved signaling pathways during regeneration. Here, we extend these analyses to the epidermal growth factor (EGF) receptor pathway. We report the characterization of three epidermal growth factor (EGF) receptors in the planarian Schmidtea mediterranea. Silencing of these genes by RNA interference (RNAi) yielded multiple defects in intact and regenerating planarians. Smed-egfr-1(RNAi) resulted in decreased differentiation of eye pigment cells, abnormal pharynx regeneration and maintenance, and the development of dorsal outgrowths. In contrast, Smed-egfr-3(RNAi) animals produced smaller blastemas associated with abnormal differentiation of certain cell types. Our results suggest important roles for the EGFR signaling in controlling cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis.
Collapse
Affiliation(s)
- Susanna Fraguas
- Department of Genetics, Faculty of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona (IBUB), Av. Diagonal 645, Barcelona, Catalunya, Spain
| | | | | |
Collapse
|
28
|
Dishevelled is essential for neural connectivity and planar cell polarity in planarians. Proc Natl Acad Sci U S A 2011; 108:2813-8. [PMID: 21282632 DOI: 10.1073/pnas.1012090108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Wingless/Integrated (Wnt) signaling pathway controls multiple events during development and homeostasis. It comprises multiple branches, mainly classified according to their dependence on β-catenin activation. The Wnt/β-catenin branch is essential for the establishment of the embryonic anteroposterior (AP) body axis throughout the phylogenetic tree. It is also required for AP axis establishment during planarian regeneration. Wnt/β-catenin-independent signaling encompasses several different pathways, of which the most extensively studied is the planar cell polarity (PCP) pathway, which is responsible for planar polarization of cell structures within an epithelial sheet. Dishevelled (Dvl) is the hub of Wnt signaling because it regulates and channels the Wnt signal into every branch. Here, we analyze the role of Schmidtea mediterranea Dvl homologs (Smed-dvl-1 and Smed-dvl-2) using gene silencing. We demonstrate that in addition to a role in AP axis specification, planarian Dvls are involved in at least two different β-catenin-independent processes. First, they are essential for neural connectivity through Smed-wnt5 signaling. Second, Smed-dvl-2, together with the S. mediterranea homologs of Van-Gogh (Vang) and Diversin (Div), is required for apical positioning of the basal bodies of epithelial cells. These data represent evidence not only of the function of the PCP network in lophotrocozoans but of the involvement of the PCP core elements Vang and Div in apical positioning of the cilia.
Collapse
|
29
|
Ma C, Gao Y, Chai G, Su H, Wang N, Yang Y, Li C, Miao D, Wu W. Djrho2 is involved in regeneration of visual nerves in Dugesia japonica. J Genet Genomics 2010; 37:713-23. [DOI: 10.1016/s1673-8527(09)60089-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 06/27/2010] [Accepted: 07/02/2010] [Indexed: 01/03/2023]
|