1
|
Canul‐Tec JC, Kumar A, Dhenin J, Assal R, Legrand P, Rey M, Chamot‐Rooke J, Reyes N. The ion-coupling mechanism of human excitatory amino acid transporters. EMBO J 2022; 41:e108341. [PMID: 34747040 PMCID: PMC8724772 DOI: 10.15252/embj.2021108341] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023] Open
Abstract
Excitatory amino acid transporters (EAATs) maintain glutamate gradients in the brain essential for neurotransmission and to prevent neuronal death. They use ionic gradients as energy source and co-transport transmitter into the cytoplasm with Na+ and H+ , while counter-transporting K+ to re-initiate the transport cycle. However, the molecular mechanisms underlying ion-coupled transport remain incompletely understood. Here, we present 3D X-ray crystallographic and cryo-EM structures, as well as thermodynamic analysis of human EAAT1 in different ion bound conformations, including elusive counter-transport ion bound states. Binding energies of Na+ and H+ , and unexpectedly Ca2+ , are coupled to neurotransmitter binding. Ca2+ competes for a conserved Na+ site, suggesting a regulatory role for Ca2+ in glutamate transport at the synapse, while H+ binds to a conserved glutamate residue stabilizing substrate occlusion. The counter-transported ion binding site overlaps with that of glutamate, revealing the K+ -based mechanism to exclude the transmitter during the transport cycle and to prevent its neurotoxic release on the extracellular side.
Collapse
Affiliation(s)
- Juan C Canul‐Tec
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| | - Anand Kumar
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| | - Jonathan Dhenin
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Reda Assal
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
| | - Pierre Legrand
- Synchrotron SOLEILL'Orme des MerisiersGif‐sur‐YvetteFrance
| | - Martial Rey
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Julia Chamot‐Rooke
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Nicolas Reyes
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| |
Collapse
|
2
|
Wang J, Zhang K, Goyal P, Grewer C. Mechanism and potential sites of potassium interaction with glutamate transporters. J Gen Physiol 2021; 152:152037. [PMID: 32835376 PMCID: PMC7537348 DOI: 10.1085/jgp.202012577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
In the mammalian glutamate transporters, countertransported intracellular K+ is essential for relocating the glutamate binding site to the extracellular side of the membrane. This K+-dependent process is believed to be rate limiting for the transport cycle. In contrast, extracellular K+ induces glutamate release upon transporter reversal. Here, we analyzed potential K+ binding sites using molecular dynamics (MD) simulations and site-directed mutagenesis. Two candidate sites were identified by spontaneous K+ binding in MD simulations, one site (K1 site) overlapping with the Na1 Na+ binding site and the K2 site being localized under hairpin loop 2 (HP2). Mutations to conserved amino acid residues in these sites resulted in several transporters that were defective in K+-induced reverse transport and which bound K+ with reduced apparent affinity compared with the wild-type transporter. However, external K+ interaction was abolished in only one mutant transporter EAAC1D454A in the K1 site. Our results, for the first time, directly demonstrate effects of K1-site mutations on K+ binding, in contrast to previous reports on K+ binding sites based on indirect evidence. We propose that K+ binding to the K1 site is responsible for catalyzing the relocation step, whereas binding to the K2 site may have an as-of-yet unidentified regulatory function.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry, Binghamton University, Binghamton, NY
| | - Kaiqi Zhang
- Department of Chemistry, Binghamton University, Binghamton, NY
| | - Puja Goyal
- Department of Chemistry, Binghamton University, Binghamton, NY
| | - Christof Grewer
- Department of Chemistry, Binghamton University, Binghamton, NY
| |
Collapse
|
3
|
Alleva C, Kovalev K, Astashkin R, Berndt MI, Baeken C, Balandin T, Gordeliy V, Fahlke C, Machtens JP. Na +-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters. SCIENCE ADVANCES 2020; 6:6/47/eaba9854. [PMID: 33208356 PMCID: PMC7673805 DOI: 10.1126/sciadv.aba9854] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/02/2020] [Indexed: 05/22/2023]
Abstract
Excitatory amino acid transporters (EAATs) harness [Na+], [K+], and [H+] gradients for fast and efficient glutamate removal from the synaptic cleft. Since each glutamate is cotransported with three Na+ ions, [Na+] gradients are the predominant driving force for glutamate uptake. We combined all-atom molecular dynamics simulations, fluorescence spectroscopy, and x-ray crystallography to study Na+:substrate coupling in the EAAT homolog GltPh A lipidic cubic phase x-ray crystal structure of wild-type, Na+-only bound GltPh at 2.5-Å resolution revealed the fully open, outward-facing state primed for subsequent substrate binding. Simulations and kinetic experiments established that only the binding of two Na+ ions to the Na1 and Na3 sites ensures complete HP2 gate opening via a conformational selection-like mechanism and enables high-affinity substrate binding via electrostatic attraction. The combination of Na+-stabilized gate opening and electrostatic coupling of aspartate to Na+ binding provides a constant Na+:substrate transport stoichiometry over a broad range of neurotransmitter concentrations.
Collapse
Affiliation(s)
- C Alleva
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - K Kovalev
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - R Astashkin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - M I Berndt
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - C Baeken
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - T Balandin
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - V Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ch Fahlke
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - J-P Machtens
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Setiadi J, Kuyucak S. Free-Energy Simulations Resolve the Low-Affinity Na +-High-Affinity Asp Binding Paradox in Glt Ph. Biophys J 2019; 117:780-789. [PMID: 31383357 DOI: 10.1016/j.bpj.2019.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Glutamate transporters clear up excess extracellular glutamate by cotransporting three Na+ and one H+ with the countertransport of one K+. The archaeal homologs are selective to aspartate and only cotransport three Na+. The crystal structures of GltPh from archaea have been used in computational studies to understand the transport mechanism. Although some progress has been made with regard to the ligand-binding sites, a consistent picture of transport still eludes us. A major concern is the discrepancy between the computed binding free energies, which predict high-affinity Na+-low-affinity aspartate binding, and the experimental results in which the opposite is observed. Here, we show that the binding of the first two Na+ ions involves an intermediate state near the Na1 site, where two Na+ ions coexist and couple to aspartate with similar strengths, boosting its affinity. Binding free energies for Na+ and aspartate obtained using this intermediate state are in good agreement with the experimental values. Thus, the paradox in binding affinities arises from the assumption that the ligands bind to the sites observed in the crystal structure following the order dictated by their binding free energies with no intermediate states. In fact, the presence of an intermediate state eliminates such a correlation between the binding free energies and the binding order. The intermediate state also facilitates transition of the first Na+ ion to its final binding site via a knock-on mechanism, which induces substantial conformational changes in the protein consistent with experimental observations.
Collapse
Affiliation(s)
- Jeffry Setiadi
- School of Physics, University of Sydney, New South Wales 2006, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
5
|
Cirri E, Brier S, Assal R, Canul-Tec JC, Chamot-Rooke J, Reyes N. Consensus designs and thermal stability determinants of a human glutamate transporter. eLife 2018; 7:40110. [PMID: 30334738 PMCID: PMC6209432 DOI: 10.7554/elife.40110] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/17/2018] [Indexed: 11/25/2022] Open
Abstract
Human excitatory amino acid transporters (EAATs) take up the neurotransmitter glutamate in the brain and are essential to maintain excitatory neurotransmission. Our understanding of the EAATs’ molecular mechanisms has been hampered by the lack of stability of purified protein samples for biophysical analyses. Here, we present approaches based on consensus mutagenesis to obtain thermostable EAAT1 variants that share up to ~95% amino acid identity with the wild type transporters, and remain natively folded and functional. Structural analyses of EAAT1 and the consensus designs using hydrogen-deuterium exchange linked to mass spectrometry show that small and highly cooperative unfolding events at the inter-subunit interface rate-limit their thermal denaturation, while the transport domain unfolds at a later stage in the unfolding pathway. Our findings provide structural insights into the kinetic stability of human glutamate transporters, and introduce general approaches to extend the lifetime of human membrane proteins for biophysical analyses.
Collapse
Affiliation(s)
- Erica Cirri
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Sébastien Brier
- Mass Spectrometry for Biology Unit, Institut Pasteur, Paris, France.,USR 2000, CNRS, Institut Pasteur, Paris, France
| | - Reda Assal
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Juan Carlos Canul-Tec
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Institut Pasteur, Paris, France.,USR 2000, CNRS, Institut Pasteur, Paris, France
| | - Nicolas Reyes
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Silverstein N, Sliman A, Stockner T, Kanner BI. Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity. J Biol Chem 2018; 293:14200-14209. [PMID: 30026234 DOI: 10.1074/jbc.ra118.003261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
In the brain, glutamate transporters terminate excitatory neurotransmission by removing this neurotransmitter from the synapse via cotransport with three sodium ions into the surrounding cells. Structural studies have identified the binding sites of the three sodium ions in glutamate transporters. The residue side-chains directly interact with the sodium ions at the Na1 and Na3 sites and are fully conserved from archaeal to eukaryotic glutamate transporters. The Na2 site is formed by three main-chain oxygens on the extracellular reentrant hairpin loop HP2 and one on transmembrane helix 7. A glycine residue on HP2 is located closely to the three main-chain oxygens in all glutamate transporters, except for the astroglial transporter GLT-1, which has a serine residue at that position. Unlike for WT GLT-1, substitution of the serine residue to glycine enables sustained glutamate transport also when sodium is replaced by lithium. Here, using functional and simulation studies, we studied the role of this serine/glycine switch on cation selectivity of substrate transport. Our results indicate that the side-chain oxygen of the serine residues can form a hydrogen bond with a main-chain oxygen on transmembrane helix 7. This leads to an expansion of the Na2 site such that water can participate in sodium coordination at Na2. Furthermore, we found other molecular determinants of cation selectivity on the nearby HP1 loop. We conclude that subtle changes in the composition of the two reentrant hairpin loops determine the cation specificity of acidic amino acid transport by glutamate transporters.
Collapse
Affiliation(s)
- Nechama Silverstein
- the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Alaa Sliman
- the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Thomas Stockner
- From the Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstr. 13A, 1090 Vienna, Austria and
| | - Baruch I Kanner
- the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
7
|
Arkhipova V, Guskov A, Slotboom DJ. Analysis of the quality of crystallographic data and the limitations of structural models. J Gen Physiol 2017; 149:1091-1103. [PMID: 29089418 PMCID: PMC5715909 DOI: 10.1085/jgp.201711852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022] Open
Abstract
Arkhipova et al. caution that the limitations of structural models be taken into account when interpreting crystallographic data. Crystal structures provide visual models of biological macromolecules, which are widely used to interpret data from functional studies and generate new mechanistic hypotheses. Because the quality of the collected x-ray diffraction data directly affects the reliability of the structural model, it is essential that the limitations of the models are carefully taken into account when making interpretations. Here we use the available crystal structures of members of the glutamate transporter family to illustrate the importance of inspecting the data that underlie the structural models. Crystal structures of glutamate transporters in multiple different conformations have been solved, but most structures were determined at relatively low resolution, with deposited models based on crystallographic data of moderate quality. We use these examples to demonstrate the extent to which mechanistic interpretations can be made safely.
Collapse
Affiliation(s)
- Valentina Arkhipova
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Albert Guskov
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Dirk-Jan Slotboom
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Mwau M, Bwana P, Kithinji L, Ogollah F, Ochieng S, Akinyi C, Adhiambo M, Ogumbo F, Sirengo M, Boeke C. Mother-to-child transmission of HIV in Kenya: A cross-sectional analysis of the national database over nine years. PLoS One 2017; 12:e0183860. [PMID: 28850581 PMCID: PMC5574578 DOI: 10.1371/journal.pone.0183860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022] Open
Abstract
Objective To describe factors associated with mother-to-child HIV transmission (MTCT) in Kenya and identify opportunities to increase testing/care coverage. Design Cross-sectional analysis of national early infant diagnosis (EID) database. Methods 365,841 Kenyan infants were tested for HIV from January 2007-July 2015 and results, demographics, and treatment information were entered into a national database. HIV risk factors were assessed using multivariable logistic regression. Results 11.1% of infants tested HIV positive in 2007–2010 and 6.9% in 2014–2015. Greater odds of infection were observed in females (OR: 1.08; 95% CI:1.05–1.11), older children (18–24 months vs. 6 weeks-2 months: 4.26; 95% CI:3.87–4.69), infants whose mothers received no PMTCT intervention (vs. HAART OR: 1.92; 95% CI:1.79–2.06), infants receiving no prophylaxis (vs. nevirapine for 6 weeks OR: 2.76; 95% CI:2.51–3.05), and infants mixed breastfed (vs. exclusive breastfeeding OR: 1.39; 95% CI:1.30–1.49). In 2014–2015, 9.1% of infants had mothers who were not on treatment during pregnancy, 9.8% were not on prophylaxis, and 7.0% were mixed breastfed. Infants exposed to all three risky practices had a seven-fold higher odds of HIV infection compared to those exposed to recommended practices. The highest yield of HIV-positive infants were found through targeted testing of symptomatic infants in pediatric/outpatient departments (>15%); still, most infected infants were identified through PMTCT programs. Conclusion Despite impressive gains in Kenya’s PMTCT program, some HIV-infected infants present late and are not benefitting from PMTCT best practices. Efforts to identify these early and enforce evidence-based practice for PMTCT should be scaled up. Infant testing should be expanded in pediatric/outpatient departments, given high yields in these portals.
Collapse
Affiliation(s)
- Matilu Mwau
- Centre for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
- * E-mail:
| | - Priska Bwana
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Lucy Kithinji
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Francis Ogollah
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Samuel Ochieng
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Catherine Akinyi
- Centre for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Maureen Adhiambo
- Centre for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Fred Ogumbo
- Centre for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Martin Sirengo
- National AIDS and STIs Control Program, Ministry of Health, Nairobi, Kenya
| | - Caroline Boeke
- Clinton Health Access Initiative, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Machtens JP, Briones R, Alleva C, de Groot BL, Fahlke C. Gating Charge Calculations by Computational Electrophysiology Simulations. Biophys J 2017; 112:1396-1405. [PMID: 28402882 DOI: 10.1016/j.bpj.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/03/2017] [Accepted: 02/16/2017] [Indexed: 11/15/2022] Open
Abstract
Electrical cell signaling requires adjustment of ion channel, receptor, or transporter function in response to changes in membrane potential. For the majority of such membrane proteins, the molecular details of voltage sensing remain insufficiently understood. Here, we present a molecular dynamics simulation-based method to determine the underlying charge movement across the membrane-the gating charge-by measuring electrical capacitor properties of membrane-embedded proteins. We illustrate the approach by calculating the charge transfer upon membrane insertion of the HIV gp41 fusion peptide, and validate the method on two prototypical voltage-dependent proteins, the Kv1.2 K+ channel and the voltage sensor of the Ciona intestinalis voltage-sensitive phosphatase, against experimental data. We then use the gating charge analysis to study how the T1 domain modifies voltage sensing in Kv1.2 channels and to investigate the voltage dependence of the initial binding of two Na+ ions in Na+-coupled glutamate transporters. Our simulation approach quantifies various mechanisms of voltage sensing, enables direct comparison with experiments, and supports mechanistic interpretation of voltage sensitivity by fractional amino acid contributions.
Collapse
Affiliation(s)
- Jan-Philipp Machtens
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
| | - Rodolfo Briones
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Claudia Alleva
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
10
|
Canul-Tec JC, Assal R, Cirri E, Legrand P, Brier S, Chamot-Rooke J, Reyes N. Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature 2017; 544:446-451. [PMID: 28424515 PMCID: PMC5410168 DOI: 10.1038/nature22064] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/10/2017] [Indexed: 12/24/2022]
Abstract
Human members of the solute carrier 1 (SLC1) family of transporters take up excitatory neurotransmitters in the brain and amino acids in peripheral organs. Dysregulation of the function of SLC1 transporters is associated with neurodegenerative disorders and cancer. Here we present crystal structures of a thermostabilized human SLC1 transporter, the excitatory amino acid transporter 1 (EAAT1), with and without allosteric and competitive inhibitors bound. The structures reveal architectural features of the human transporters, such as intra- and extracellular domains that have potential roles in transport function, regulation by lipids and post-translational modifications. The coordination of the allosteric inhibitor in the structures and the change in the transporter dynamics measured by hydrogen-deuterium exchange mass spectrometry reveal a mechanism of inhibition, in which the transporter is locked in the outward-facing states of the transport cycle. Our results provide insights into the molecular mechanisms underlying the function and pharmacology of human SLC1 transporters.
Collapse
Affiliation(s)
- Juan C Canul-Tec
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Reda Assal
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Erica Cirri
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Sébastien Brier
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Julia Chamot-Rooke
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Nicolas Reyes
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
11
|
Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue Glt Tk. Nat Commun 2016; 7:13420. [PMID: 27830699 PMCID: PMC5110648 DOI: 10.1038/ncomms13420] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022] Open
Abstract
Glutamate transporters catalyse the thermodynamically unfavourable transport of anionic amino acids across the cell membrane by coupling it to the downhill transport of cations. This coupling mechanism is still poorly understood, in part because the available crystal structures of these transporters are of relatively low resolution. Here we solve crystal structures of the archaeal transporter GltTk in the presence and absence of aspartate and use molecular dynamics simulations and binding assays to show how strict coupling between the binding of three sodium ions and aspartate takes place. In neurons and glia, glutamate transporters catalyse the reuptake of this neurotransmitter by coupling it with cation transport. Here the authors combine X-ray crystallography and molecular dynamics simulations of the archeal glutamate transporter GltTk to get insight into the coupled transport mechanism.
Collapse
|
12
|
Colas C, Ung PMU, Schlessinger A. SLC Transporters: Structure, Function, and Drug Discovery. MEDCHEMCOMM 2016; 7:1069-1081. [PMID: 27672436 PMCID: PMC5034948 DOI: 10.1039/c6md00005c] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human Solute Carrier (SLC) transporters are important targets for drug development. Structure-based drug discovery for SLC transporters requires the description of their structure, dynamics, and mechanism of interaction with small molecule ligands and ions. The recent determination of atomic structures of human SLC transporters and their homologs, combined with improved computational power and prediction methods have led to an increased applicability of structure-based drug design methods for human SLC members. In this review, we provide an overview of the SLC transporters' structures and transport mechanisms. We then describe computational techniques, such as homology modeling and virtual screening that are emerging as key tools to discover chemical probes for human SLC members. We illustrate the utility of these methods by presenting case studies in which rational integration of computation and experiment was used to characterize SLC members that transport key nutrients and metabolites, including the amino acid transporters LAT-1 and ASCT2, the SLC13 family of citric acid cycle intermediate transporters, and the glucose transporter GLUT1. We conclude with a brief discussion about future directions in structure-based drug discovery for the human SLC superfamily, one of the most structurally and functionally diverse protein families in human.
Collapse
Affiliation(s)
- Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter Man-Un Ung
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
13
|
LeVine MV, Cuendet MA, Khelashvili G, Weinstein H. Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters. Chem Rev 2016; 116:6552-87. [PMID: 26892914 DOI: 10.1021/acs.chemrev.5b00627] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Solute transport across cell membranes is ubiquitous in biology as an essential physiological process. Secondary active transporters couple the unfavorable process of solute transport against its concentration gradient to the energetically favorable transport of one or several ions. The study of such transporters over several decades indicates that their function involves complex allosteric mechanisms that are progressively being revealed in atomistic detail. We focus on two well-characterized sodium-coupled symporters: the bacterial amino acid transporter LeuT, which is the prototype for the "gated pore" mechanism in the mammalian synaptic monoamine transporters, and the archaeal GltPh, which is the prototype for the "elevator" mechanism in the mammalian excitatory amino acid transporters. We present the evidence for the role of allostery in the context of a quantitative formalism that can reconcile biochemical and biophysical data and thereby connects directly to recent insights into the molecular structure and dynamics of these proteins. We demonstrate that, while the structures and mechanisms of these transporters are very different, the available data suggest a common role of specific models of allostery in their functions. We argue that such allosteric mechanisms appear essential not only for sodium-coupled symport in general but also for the function of other types of molecular machines in the membrane.
Collapse
Affiliation(s)
- Michael V LeVine
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Michel A Cuendet
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| |
Collapse
|
14
|
Fahlke C, Kortzak D, Machtens JP. Molecular physiology of EAAT anion channels. Pflugers Arch 2015; 468:491-502. [PMID: 26687113 DOI: 10.1007/s00424-015-1768-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/25/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1-5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein.
Collapse
Affiliation(s)
- Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Daniel Kortzak
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jan-Philipp Machtens
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
15
|
Setiadi J, Heinzelmann G, Kuyucak S. Computational Studies of Glutamate Transporters. Biomolecules 2015; 5:3067-86. [PMID: 26569328 PMCID: PMC4693270 DOI: 10.3390/biom5043067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/29/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the human brain whose binding to receptors on neurons excites them while excess glutamate are removed from synapses via transporter proteins. Determination of the crystal structures of bacterial aspartate transporters has paved the way for computational investigation of their function and dynamics at the molecular level. Here, we review molecular dynamics and free energy calculation methods used in these computational studies and discuss the recent applications to glutamate transporters. The focus of the review is on the insights gained on the transport mechanism through computational methods, which otherwise is not directly accessible by experimental probes. Recent efforts to model the mammalian glutamate and other amino acid transporters, whose crystal structures have not been solved yet, are included in the review.
Collapse
Affiliation(s)
- Jeffry Setiadi
- School of Physics, University of Sydney, New South Wales, Sydney 2006, Australia.
| | - Germano Heinzelmann
- Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil.
| | - Serdar Kuyucak
- School of Physics, University of Sydney, New South Wales, Sydney 2006, Australia.
| |
Collapse
|
16
|
Venkatesan S, Saha K, Sohail A, Sandtner W, Freissmuth M, Ecker GF, Sitte HH, Stockner T. Refinement of the Central Steps of Substrate Transport by the Aspartate Transporter GltPh: Elucidating the Role of the Na2 Sodium Binding Site. PLoS Comput Biol 2015; 11:e1004551. [PMID: 26485255 PMCID: PMC4618328 DOI: 10.1371/journal.pcbi.1004551] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/12/2015] [Indexed: 01/15/2023] Open
Abstract
Glutamate homeostasis in the brain is maintained by glutamate transporter mediated accumulation. Impaired transport is associated with several neurological disorders, including stroke and amyotrophic lateral sclerosis. Crystal structures of the homolog transporter GltPh from Pyrococcus horikoshii revealed large structural changes. Substrate uptake at the atomic level and the mechanism of ion gradient conversion into directional transport remained enigmatic. We observed in repeated simulations that two local structural changes regulated transport. The first change led to formation of the transient Na2 sodium binding site, triggered by side chain rotation of T308. The second change destabilized cytoplasmic ionic interactions. We found that sodium binding to the transiently formed Na2 site energized substrate uptake through reshaping of the energy hypersurface. Uptake experiments in reconstituted proteoliposomes confirmed the proposed mechanism. We reproduced the results in the human glutamate transporter EAAT3 indicating a conserved mechanics from archaea to humans. We used the archaeal homolog GltPh of the human glutamate transporters to refine our understanding how large scale conformational changes are translated into substrate translocation. We identified the structural changes that accompany substrate transport and convert the energy stored in the ion gradient into a directional transport. Insights into the mechanics of these transporters are likely to increase our understanding of how they contribute to excitotoxicity and to develop drugs, which preclude the underlying accumulation of glutamate in the synaptic cleft.
Collapse
Affiliation(s)
- SanthoshKannan Venkatesan
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Kusumika Saha
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Azmat Sohail
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gerhard F. Ecker
- Division of Drug Design & Medicinal Chemistry, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Harald H. Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
17
|
Simonin A, Montalbetti N, Gyimesi G, Pujol-Giménez J, Hediger MA. The Hydroxyl Side Chain of a Highly Conserved Serine Residue Is Required for Cation Selectivity and Substrate Transport in the Glial Glutamate Transporter GLT-1/SLC1A2. J Biol Chem 2015; 290:30464-74. [PMID: 26483543 DOI: 10.1074/jbc.m115.689836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates L-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na(+) over Li(+). S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for L-aspartate over D-aspartate and L-glutamate, and lost their selectivity for Na(+) over Li(+). Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes.
Collapse
Affiliation(s)
- Alexandre Simonin
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Nicolas Montalbetti
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Gergely Gyimesi
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Jonai Pujol-Giménez
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Matthias A Hediger
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
18
|
Torres-Salazar D, Jiang J, Divito CB, Garcia-Olivares J, Amara SG. A Mutation in Transmembrane Domain 7 (TM7) of Excitatory Amino Acid Transporters Disrupts the Substrate-dependent Gating of the Intrinsic Anion Conductance and Drives the Channel into a Constitutively Open State. J Biol Chem 2015. [PMID: 26203187 DOI: 10.1074/jbc.m115.660860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the mammalian central nervous system, excitatory amino acid transporters (EAATs) are responsible for the clearance of glutamate after synaptic release. This energetically demanding activity is crucial for precise neuronal communication and for maintaining extracellular glutamate concentrations below neurotoxic levels. In addition to their ability to recapture glutamate from the extracellular space, EAATs exhibit a sodium- and glutamate-gated anion conductance. Here we show that substitution of a conserved positively charged residue (Arg-388, hEAAT1) in transmembrane domain 7 with a negatively charged amino acid eliminates the ability of glutamate to further activate the anion conductance. When expressed in oocytes, R388D or R388E mutants show large anion currents that display no further increase in amplitude after application of saturating concentrations of Na(+) and glutamate. They also show a substantially reduced transport activity. The mutant transporters appear to exist preferentially in a sodium- and glutamate-independent constitutive open channel state that rarely transitions to complete the transport cycle. In addition, the accessibility of cytoplasmic residues to membrane-permeant modifying reagents supports the idea that this substrate-independent open state correlates with an intermediate outward facing conformation of the transporter. Our data provide additional insights into the mechanism by which substrates gate the anion conductance in EAATs and suggest that in EAAT1, Arg-388 is a critical element for the structural coupling between the substrate translocation and the gating mechanisms of the EAAT-associated anion channel.
Collapse
Affiliation(s)
| | - Jie Jiang
- the Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Christopher B Divito
- the Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | | - Susan G Amara
- From the National Institute of Mental Health, Bethesda, Maryland 20892 and the Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
19
|
Hänelt I, Jensen S, Wunnicke D, Slotboom DJ. Low Affinity and Slow Na+ Binding Precedes High Affinity Aspartate Binding in the Secondary-active Transporter GltPh. J Biol Chem 2015; 290:15962-72. [PMID: 25922069 DOI: 10.1074/jbc.m115.656876] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 12/30/2022] Open
Abstract
GltPh from Pyrococcus horikoshii is a homotrimeric Na(+)-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters that take up the neurotransmitter glutamate. Each protomer in GltPh consists of a trimerization domain involved in subunit interactions and a transport domain containing the substrate binding site. Here, we have studied the dynamics of Na(+) and aspartate binding to GltPh. Tryptophan fluorescence measurements on the fully active single tryptophan mutant F273W revealed that Na(+) binds with low affinity to the apoprotein (Kd 120 mm), with a particularly low kon value (5.1 m(-1)s(-1)). At least two sodium ions bind before aspartate. The binding of Na(+) requires a very high activation energy (Ea 106.8 kJ mol(-1)) and consequently has a large Q10 value of 4.5, indicative of substantial conformational changes before or after the initial binding event. The apparent affinity for aspartate binding depended on the Na(+) concentration present. Binding of aspartate was not observed in the absence of Na(+), whereas in the presence of high Na(+) concentrations (above the Kd for Na(+)) the dissociation constants for aspartate were in the nanomolar range, and the aspartate binding was fast (kon of 1.4 × 10(5) m(-1)s(-1)), with low Ea and Q10 values (42.6 kJ mol(-1) and 1.8, respectively). We conclude that Na(+) binding is most likely the rate-limiting step for substrate binding.
Collapse
Affiliation(s)
- Inga Hänelt
- From the Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sonja Jensen
- From the Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dorith Wunnicke
- From the Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dirk Jan Slotboom
- From the Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
20
|
Heinzelmann G, Kuyucak S. Molecular dynamics simulations elucidate the mechanism of proton transport in the glutamate transporter EAAT3. Biophys J 2015; 106:2675-83. [PMID: 24940785 DOI: 10.1016/j.bpj.2014.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 11/25/2022] Open
Abstract
The uptake of glutamate in nerve synapses is carried out by the excitatory amino acid transporters (EAATs), involving the cotransport of a proton and three Na(+) ions and the countertransport of a K(+) ion. In this study, we use an EAAT3 homology model to calculate the pKa of several titratable residues around the glutamate binding site to locate the proton carrier site involved in the translocation of the substrate. After identifying E374 as the main candidate for carrying the proton, we calculate the protonation state of this residue in different conformations of EAAT3 and with different ligands bound. We find that E374 is protonated in the fully bound state, but removing the Na2 ion and the substrate reduces the pKa of this residue and favors the release of the proton to solution. Removing the remaining Na(+) ions again favors the protonation of E374 in both the outward- and inward-facing states, hence the proton is not released in the empty transporter. By calculating the pKa of E374 with a K(+) ion bound in three possible sites, we show that binding of the K(+) ion is necessary for the release of the proton in the inward-facing state. This suggests a mechanism in which a K(+) ion replaces one of the ligands bound to the transporter, which may explain the faster transport rates of the EAATs compared to its archaeal homologs.
Collapse
Affiliation(s)
| | - Serdar Kuyucak
- School of Physics, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
21
|
Verdon G, Oh S, Serio RN, Boudker O. Coupled ion binding and structural transitions along the transport cycle of glutamate transporters. eLife 2014; 3:e02283. [PMID: 24842876 PMCID: PMC4051121 DOI: 10.7554/elife.02283] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Membrane transporters that clear the neurotransmitter glutamate from synapses are driven by symport of sodium ions and counter-transport of a potassium ion. Previous crystal structures of a homologous archaeal sodium and aspartate symporter showed that a dedicated transport domain carries the substrate and ions across the membrane. Here, we report new crystal structures of this homologue in ligand-free and ions-only bound outward- and inward-facing conformations. We show that after ligand release, the apo transport domain adopts a compact and occluded conformation that can traverse the membrane, completing the transport cycle. Sodium binding primes the transport domain to accept its substrate and triggers extracellular gate opening, which prevents inward domain translocation until substrate binding takes place. Furthermore, we describe a new cation-binding site ideally suited to bind a counter-transported ion. We suggest that potassium binding at this site stabilizes the translocation-competent conformation of the unloaded transport domain in mammalian homologues. DOI:http://dx.doi.org/10.7554/eLife.02283.001 Molecules of glutamate can carry messages between cells in the brain, and these signals are essential for thought and memory. Glutamate molecules can also act as signals to build new connections between brain cells and to prune away unnecessary ones. However, too much glutamate outside of the cells kills the brain tissue and can lead to devastating brain diseases. In a healthy brain, special pumps called glutamate transporters move these molecules back into the brain cells, where they can be stored safely. However, when brain cells are damaged—by, for example, a stroke or an injury,—the glutamate stored inside spills out, killing the surrounding cells. This leads to a cascade of dying cells and leaking glutamate, which causes even more damage and slows the recovery. Glutamate transporters ensure that there are more glutamate molecules inside cells than outside. However, it requires energy to maintain this gradient in the concentration of glutamate molecules. The transporters get this energy by moving three sodium ions into the cell with each glutamate molecule, and moving one potassium ion out of the cell. However, it is not clear how these transporters ensure that they move the glutamate molecules and the sodium ions at the same time. Now, Verdon, Oh et al. have uncovered the 3D structure of a glutamate transporter homologue at each step of the transport process. These structures reveal that, on the outside of the cell membrane, sodium ions attach to the so-called ‘transporter domain’ and make it better able to bind glutamate. The transporter domain then carries the sodium ions and glutamate through the cell membrane and releases them into the cell. Verdon, Oh et al. suggest that a potassium ion then binds to the empty transport domain, stabilizing it into a more compact shape that easily makes the return trip to the outside of the cell. Most experiments on glutamate transporters, including the work of Verdon, Oh et al., are carried out on model proteins taken from bacteria. An important challenge for the future will be to obtain structural information on human glutamate transporters, as these could be therapeutic targets for the treatment of various neurological conditions. DOI:http://dx.doi.org/10.7554/eLife.02283.002
Collapse
Affiliation(s)
- Grégory Verdon
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
| | - SeCheol Oh
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
| | - Ryan N Serio
- Department of Pharmacology, Weill Cornell Medical College, New York, United States
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
| |
Collapse
|
22
|
Scopelliti AJ, Heinzelmann G, Kuyucak S, Ryan RM, Vandenberg RJ. Na+ interactions with the neutral amino acid transporter ASCT1. J Biol Chem 2014; 289:17468-79. [PMID: 24808181 DOI: 10.1074/jbc.m114.565242] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alanine, serine, cysteine transporters (ASCTs) belong to the solute carrier family 1A (SLC1A), which also includes the excitatory amino acid transporters (EAATs) and the prokaryotic aspartate transporter GltPh. Acidic amino acid transport by the EAATs is coupled to the co-transport of three Na(+) ions and one proton, and the counter-transport of one K(+) ion. In contrast, neutral amino acid exchange by the ASCTs does not require protons or the counter-transport of K(+) ions and the number of Na(+) ions required is not well established. One property common to SLC1A family members is a substrate-activated anion conductance. We have investigated the number and location of Na(+) ions required by ASCT1 by mutating residues in ASCT1 that correspond to residues in the EAATs and GltPh that are involved in Na(+) binding. Mutations to all three proposed Na(+) sites influence the binding of substrate and/or Na(+), or the rate of substrate exchange. A G422S mutation near the Na2 site reduced Na(+) affinity, without affecting the rate of exchange. D467T and D467A mutations in the Na1 site reduce Na(+) and substrate affinity and also the rate of substrate exchange. T124A and D380A mutations in the Na3 site selectively reduce the affinity for Na(+) and the rate of substrate exchange without affecting substrate affinity. In many of the mutants that reduce the rate of substrate transport the amplitudes of the substrate-activated anion conductances are not substantially affected indicating altered ion dependence for channel activation compared with substrate exchange.
Collapse
Affiliation(s)
- Amanda J Scopelliti
- From the Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| | - Germano Heinzelmann
- the School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Serdar Kuyucak
- the School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Renae M Ryan
- From the Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| | - Robert J Vandenberg
- From the Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| |
Collapse
|
23
|
Heinzelmann G, Kuyucak S. Molecular dynamics simulations of the mammalian glutamate transporter EAAT3. PLoS One 2014; 9:e92089. [PMID: 24643009 PMCID: PMC3958442 DOI: 10.1371/journal.pone.0092089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are membrane proteins that enable sodium-coupled uptake of glutamate and other amino acids into neurons. Crystal structures of the archaeal homolog GltPh have been recently determined both in the inward- and outward-facing conformations. Here we construct homology models for the mammalian glutamate transporter EAAT3 in both conformations and perform molecular dynamics simulations to investigate its similarities and differences from GltPh. In particular, we study the coordination of the different ligands, the gating mechanism and the location of the proton and potassium binding sites in EAAT3. We show that the protonation of the E374 residue is essential for binding of glutamate to EAAT3, otherwise glutamate becomes unstable in the binding site. The gating mechanism in the inward-facing state of EAAT3 is found to be different from that of GltPh, which is traced to the relocation of an arginine residue from the HP1 segment in GltPh to the TM8 segment in EAAT3. Finally, we perform free energy calculations to locate the potassium binding site in EAAT3, and find a high-affinity site that overlaps with the Na1 and Na3 sites in GltPh.
Collapse
Affiliation(s)
| | - Serdar Kuyucak
- School of Physics, University of Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
24
|
Neurotransmitter transporters: structure meets function. Structure 2014; 21:694-705. [PMID: 23664361 DOI: 10.1016/j.str.2013.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/15/2013] [Accepted: 03/06/2013] [Indexed: 12/22/2022]
Abstract
At synapses, sodium-coupled transporters remove released neurotransmitters, thereby recycling them and maintaining a low extracellular concentration of the neurotransmitter. The molecular mechanism underlying sodium-coupled neurotransmitter uptake is not completely understood. Several structures of homologs of human neurotransmitter transporters have been solved with X-ray crystallography. These crystal structures have spurred a plethora of computational and experimental work to elucidate the molecular mechanism underlying sodium-coupled transport. Here, we compare the structures of GltPh, a glutamate transporter homolog, and LeuT, a homolog of neurotransmitter transporters for the biogenic amines and inhibitory molecules GABA and glycine. We relate these structures to data obtained from experiments and computational simulations, to draw conclusions about the mechanism of uptake by sodium-coupled neurotransmitter transporters. Here, we propose how sodium and substrate binding is coupled and how binding of sodium and substrate opens and closes the gates in these transporters, thereby leading to an efficient coupled transport.
Collapse
|
25
|
Divito CB, Underhill SM. Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem Int 2014; 73:172-80. [PMID: 24418112 DOI: 10.1016/j.neuint.2013.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 01/04/2023]
Abstract
Excitatory amino acid transporters or EAATs are the major transport mechanism for extracellular glutamate in the nervous system. This family of five carriers not only displays an impressive ability to regulate ambient extracellular glu concentrations but also regulate the temporal and spatial profile of glu after vesicular release. This dynamic form of regulation mediates several characteristic of synaptic, perisynaptic, and spillover activation of ionotropic and metabotropic receptors. EAATs function through a secondary active, electrogenic process but also possess a thermodynamically uncoupled ligand gated anion channel activity, both of which have been demonstrated to play a role in regulation of cellular activity. This review will highlight the inception of EAATs as a focus of research, the transport and channel functionality of the carriers, and then describe how these properties are used to regulate glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Christopher B Divito
- Center for Neuroscience, Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Suzanne M Underhill
- Laboratory of Cellular and Molecular Neuroscience, National Institute of Mental Health, National Institute of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
26
|
Boudker O, Akyuz N. Dance Lessons for Proteins: The Dynamics and Thermodynamics of a Sodium/Aspartate Symporter. SPRINGER SERIES IN BIOPHYSICS 2014. [DOI: 10.1007/978-3-642-53839-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
27
|
Abstract
L-Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and plays important roles in a wide variety of brain functions, but it is also a key player in the pathogenesis of many neurological disorders. The control of glutamate concentrations is critical to the normal functioning of the central nervous system, and in this review we discuss how glutamate transporters regulate glutamate concentrations to maintain dynamic signaling mechanisms between neurons. In 2004, the crystal structure of a prokaryotic homolog of the mammalian glutamate transporter family of proteins was crystallized and its structure determined. This has paved the way for a better understanding of the structural basis for glutamate transporter function. In this review we provide a broad perspective of this field of research, but focus primarily on the more recent studies with a particular emphasis on how our understanding of the structure of glutamate transporters has generated new insights.
Collapse
|
28
|
Grewer C, Gameiro A, Rauen T. SLC1 glutamate transporters. Pflugers Arch 2013; 466:3-24. [PMID: 24240778 DOI: 10.1007/s00424-013-1397-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
The plasma membrane transporters for the neurotransmitter glutamate belong to the solute carrier 1 family. They are secondary active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the cotransport of Na(+) ions and the countertransport of one K(+) in a step independent of the glutamate translocation step. Due to eletrogenicity of transport, the transmembrane potential can also act as a driving force. Glutamate transporters are expressed in many tissues, but are of particular importance in the brain, where they contribute to the termination of excitatory neurotransmission. Glutamate transporters can also run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. This review summarizes recent literature on the functional and biophysical properties, structure-function relationships, regulation, physiological significance, and pharmacology of glutamate transporters. Particular emphasis is on the insight from rapid kinetic and electrophysiological studies, transcriptional regulation of transporter expression, and reverse transport and its importance for pathophysiological glutamate release under ischemic conditions.
Collapse
Affiliation(s)
- Christof Grewer
- Department of Chemistry, Binghamton University, PO Box 6000, Binghamton, 13902-6000, NY, USA,
| | | | | |
Collapse
|
29
|
Hotzy J, Schneider N, Kovermann P, Fahlke C. Mutating a conserved proline residue within the trimerization domain modifies Na+ binding to excitatory amino acid transporters and associated conformational changes. J Biol Chem 2013; 288:36492-501. [PMID: 24214974 DOI: 10.1074/jbc.m113.489385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are crucial for glutamate homeostasis in the mammalian central nervous system. They are not only secondary active glutamate transporters but also function as anion channels, and different EAATs vary considerably in glutamate transport rates and associated anion current amplitudes. A naturally occurring mutation, which was identified in a patient with episodic ataxia type 6 and that predicts the substitution of a highly conserved proline at position 290 by arginine (P290R), was recently shown to reduce glutamate uptake and to increase anion conduction by hEAAT1. We here used voltage clamp fluorometry to define how the homologous P259R mutation modifies the functional properties of hEAAT3. P259R inverts the voltage dependence, changes the sodium dependence, and alters the time dependence of hEAAT3 fluorescence signals. Kinetic analysis of fluorescence signals indicate that P259R decelerates a conformational change associated with sodium binding to the glutamate-free mutant transporters. This alteration in the glutamate uptake cycle accounts for the experimentally observed changes in glutamate transport and anion conduction by P259R hEAAT3.
Collapse
Affiliation(s)
- Jasmin Hotzy
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover Germany
| | | | | | | |
Collapse
|
30
|
Zander CB, Albers T, Grewer C. Voltage-dependent processes in the electroneutral amino acid exchanger ASCT2. ACTA ACUST UNITED AC 2013; 141:659-72. [PMID: 23669717 PMCID: PMC3664696 DOI: 10.1085/jgp.201210948] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neutral amino acid exchange by the alanine serine cysteine transporter (ASCT)2 was reported to be electroneutral and coupled to the cotransport of one Na+ ion. The cotransported sodium ion carries positive charge. Therefore, it is possible that amino acid exchange is voltage dependent. However, little information is available on the electrical properties of the ASCT2 amino acid transport process. Here, we have used a combination of experimental and computational approaches to determine the details of the amino acid exchange mechanism of ASCT2. The [Na+] dependence of ASCT2-associated currents indicates that the Na+/amino acid stoichiometry is at least 2:1, with at least one sodium ion binding to the amino acid–free apo form of the transporter. When the substrate and two Na+ ions are bound, the valence of the transport domain is +0.81. Consistently, voltage steps applied to ASCT2 in the fully loaded configuration elicit transient currents that decay on a millisecond time scale. Alanine concentration jumps at the extracellular side of the membrane are followed by inwardly directed transient currents, indicative of translocation of net positive charge during exchange. Molecular dynamics simulations are consistent with these results and point to a sequential binding process in which one or two modulatory Na+ ions bind with high affinity to the empty transporter, followed by binding of the amino acid substrate and the subsequent binding of a final Na+ ion. Overall, our results are consistent with voltage-dependent amino acid exchange occurring on a millisecond time scale, the kinetics of which we predict with simulations. Despite some differences, transport mechanism and interaction with Na+ appear to be highly conserved between ASCT2 and the other members of the solute carrier 1 family, which transport acidic amino acids.
Collapse
Affiliation(s)
- Catherine B Zander
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | | | | |
Collapse
|
31
|
Binding thermodynamics of a glutamate transporter homolog. Nat Struct Mol Biol 2013; 20:634-40. [PMID: 23563139 PMCID: PMC3711778 DOI: 10.1038/nsmb.2548] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 02/25/2013] [Indexed: 12/02/2022]
Abstract
Glutamate transporters catalyze concentrative uptake of the neurotransmitter into glial cells and neurons. Their transport cycle involves binding and release of the substrate on the extra- and intracellular sides of the plasma membranes, and translocation of the substrate-binding site across the lipid bilayers. The energy of the ionic gradients, mainly sodium, fuels the cycle. Here, we used a cross-linking approach to trap a glutamate transporter homologue from Pyrococcus horikoshii in key conformational states with substrate-binding site facing either the extracellular or intracellular sides of the membrane to study their binding thermodynamics. We show that the chemical potential of sodium ions in solution is exclusively coupled to substrate binding and release, and not to substrate translocation. Despite the structural symmetry, the binding mechanisms are distinct on the opposite sides of the membrane and more complex than the current models suggest.
Collapse
|
32
|
Scopelliti AJ, Ryan RM, Vandenberg RJ. Molecular determinants for functional differences between alanine-serine-cysteine transporter 1 and other glutamate transporter family members. J Biol Chem 2013; 288:8250-8257. [PMID: 23393130 DOI: 10.1074/jbc.m112.441022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ASCTs (alanine, serine, and cysteine transporters) belong to the solute carrier family 1 (SLC1), which also includes the human glutamate transporters (excitatory amino acid transporters, EAATs) and the prokaryotic aspartate transporter GltPh. Despite the high degree of amino acid sequence identity between family members, ASCTs function quite differently from the EAATs and GltPh. The aim of this study was to mutate ASCT1 to generate a transporter with functional properties of the EAATs and GltPh, to further our understanding of the structural basis for the different transport mechanisms of the SLC1 family. We have identified three key residues involved in determining differences between ASCT1, the EAATs and GltPh. ASCT1 transporters containing the mutations A382T, T459R, and Q386E were expressed in Xenopus laevis oocytes, and their transport and anion channel functions were investigated. A382T and T459R altered the substrate selectivity of ASCT1 to allow the transport of acidic amino acids, particularly l-aspartate. The combination of A382T and T459R within ASCT1 generates a transporter with a similar profile to that of GltPh, with preference for l-aspartate over l-glutamate. Interestingly, the amplitude of the anion conductance activated by the acidic amino acids does not correlate with rates of transport, highlighting the distinction between these two processes. Q386E impaired the ability of ASCT1 to bind acidic amino acids at pH 5.5; however, this was reversed by the additional mutation A382T. We propose that these residues differences in TM7 and TM8 combine to determine differences in substrate selectivity between members of the SLC1 family.
Collapse
Affiliation(s)
- Amanda J Scopelliti
- Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney New South Wales 2006, Australia
| | - Renae M Ryan
- Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney New South Wales 2006, Australia
| | - Robert J Vandenberg
- Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney New South Wales 2006, Australia.
| |
Collapse
|
33
|
Shaikh S, Li J, Enkavi G, Wen PC, Huang Z, Tajkhorshid E. Visualizing functional motions of membrane transporters with molecular dynamics simulations. Biochemistry 2013; 52:569-87. [PMID: 23298176 PMCID: PMC3560430 DOI: 10.1021/bi301086x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/21/2012] [Indexed: 01/08/2023]
Abstract
Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins.
Collapse
Affiliation(s)
- Saher
A. Shaikh
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jing Li
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Giray Enkavi
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zhijian Huang
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced
Science and Technology, and Center for Biophysics and Computational
Biology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Mwaura J, Tao Z, James H, Albers T, Schwartz A, Grewer C. Protonation state of a conserved acidic amino acid involved in Na(+) binding to the glutamate transporter EAAC1. ACS Chem Neurosci 2012; 3:1073-83. [PMID: 23259042 DOI: 10.1021/cn300163p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/19/2012] [Indexed: 01/08/2023] Open
Abstract
Substrate transport by glutamate transporters is coupled to the co-transport of 3 Na(+) ions and counter-transport of 1 K(+) ion. The highly conserved Asp454, which may be negatively charged, is of interest as its side chain may coordinate cations and/or contribute to charge compensation. Mutation to the nonionizable Asn resulted in a transporter that no longer catalyzed forward transport. However, Na(+)/glutamate exchange was still functional, as demonstrated by the presence of transient currents following rapid substrate application and voltage jumps. While the kinetics of Na(+)/glutamate exchange were slowed, the apparent valence (z) of the charge moved in EAAC1 D454N (0.71) was similar to that of EAAC1 WT (0.64). Valences calculated using the Poisson-Boltzmann equation were close to the experimental values for EAAC1 D454N (0.55), and with D454 protonated (0.45). In addition, pK(a) calculations performed for the bacterial homologue GltPh revealed a highly perturbed pK(a) (7.6 to >14) for D405 residue (analogous to D454), consistent with this site being protonated at physiological pH. In contrast to the D454N mutation, substitution to alanine resulted in a transporter that still bound glutamate, but could not translocate it. The results are consistent with molecular dynamics simulations, showing that the alanine but not the asparagine mutation resulted in defective Na(+) coordination. Our results raise the possibility that the protonated state of D454 supports transporter function.
Collapse
Affiliation(s)
- Juddy Mwaura
- Department of Chemistry, Binghamton University, Binghamton, New York 13902,
United States
| | - Zhen Tao
- Department of Chemistry, Binghamton University, Binghamton, New York 13902,
United States
| | - Herbert James
- Department of Chemistry, Binghamton University, Binghamton, New York 13902,
United States
| | - Thomas Albers
- Department of Chemistry, Binghamton University, Binghamton, New York 13902,
United States
| | - Alexander Schwartz
- Department of Chemistry, Binghamton University, Binghamton, New York 13902,
United States
| | - Christof Grewer
- Department of Chemistry, Binghamton University, Binghamton, New York 13902,
United States
| |
Collapse
|
35
|
Silverstein N, Crisman TJ, Forrest LR, Kanner BI. Cysteine scanning mutagenesis of transmembrane helix 3 of a brain glutamate transporter reveals two conformationally sensitive positions. J Biol Chem 2012. [PMID: 23188832 DOI: 10.1074/jbc.m112.403576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate transporters in the brain remove the neurotransmitter from the synapse by cotransport with three sodium ions into the surrounding cells. Recent structural work on an archaeal homolog suggests that, during substrate translocation, the transport domain, including the peripheral transmembrane helix 3 (TM3), moves relative to the trimerization domain in an elevator-like process. Moreover, two TM3 residues have been proposed to form part of a transient Na3' site, and another, Tyr-124, appears close to both Na3' and Na1. To obtain independent evidence for the role of TM3 in glutamate transport, each of its 31 amino acid residues from the glial GLT-1 transporter was individually mutated to cysteine. Except for six mutants, substantial transport activity was detected. Aqueous accessibility of the introduced cysteines was probed with membrane-permeant and membrane-impermeant sulfhydryl reagents under a variety of conditions. Transport of six single cysteine mutants, all located on the intracellular side of TM3, was affected by membrane-permeant sulfhydryl reagents. However, only at two positions could ligands modulate the reactivity. A120C reactivity was diminished under conditions expected to favor the outward-facing conformation of the transporter. Sulfhydryl modification of Y124C by 2-aminoethyl methanethiosulfonate, but not by N-ethylmaleimide, was fully protected in the presence of sodium. Our data are consistent with the idea that TM3 moves during transport. Moreover, computational modeling indicated that electrostatic repulsion between the positive charge introduced at position 124 and the sodium ions bound at Na3' and Na1 underlies the protection by sodium.
Collapse
Affiliation(s)
- Nechama Silverstein
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
36
|
Stolzenberg S, Khelashvili G, Weinstein H. Structural intermediates in a model of the substrate translocation path of the bacterial glutamate transporter homologue GltPh. J Phys Chem B 2012; 116:5372-83. [PMID: 22494242 PMCID: PMC3350225 DOI: 10.1021/jp301726s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/10/2012] [Indexed: 01/05/2023]
Abstract
Excitatory amino acid transporters (EAATs) are membrane proteins responsible for reuptake of glutamate from the synaptic cleft to terminate neurotransmission and help prevent neurotoxically high, extracellular glutamate concentrations. Important structural information about these proteins emerged from crystal structures of GltPh, a bacterial homologue of EAATs, in conformations facing outward and inward. These remarkably different conformations are considered to be end points of the substrate translocation path (STP), suggesting that the transport mechanism involves major conformational rearrangements that remain uncharted. To investigate possible steps in the structural transitions of the STP between the two end-point conformations, we applied a combination of computational modeling methods (motion planning, molecular dynamics simulations, and mixed elastic network models). We found that the conformational changes in the transition involve mainly the repositioning the "transport domain" and the "trimerization domain" identified previously in the crystal structures. The two domains move in opposite directions along the membrane normal, and the transport domain also tilts by ∼17° with respect to this axis. Moreover, the TM3-4 loop undergoes a flexible, "restraining bar"-like conformational change with respect to the transport domain. As a consequence of these conformational rearrangements along the transition path we calculated a significant decrease of nearly 20% in the area of the transport-to-trimerization domain interface (TTDI). Water penetrates parts of the TTDI in the modeled intermediates but very much less in the end-point conformations. We show that these characteristics of the modeled intermediate states agree with experimental results from residue-accessibility studies in individual monomers and identify specific residues that can be used to test the proposed STP. Moreover, MD simulations of complete GltPh trimers constructed from initially identical monomer intermediates suggest that asymmetry can appear in the trimer, consonant with available experimental data showing independent transport kinetics by individual monomers in the trimers.
Collapse
Affiliation(s)
- Sebastian Stolzenberg
- Department of Physiology and
Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, United States
- Department of Physics, Cornell University, 109 Clark Hall, Ithaca, New York
14853-2501, United States
| | - George Khelashvili
- Department of Physiology and
Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, United States
| | - Harel Weinstein
- Department of Physiology and
Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, United States
- HRH Prince Alwaleed Bin Talal
Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill
Cornell Medical College, Cornell University, New York, New York 10065, United States
| |
Collapse
|
37
|
Teichman S, Qu S, Kanner BI. Conserved asparagine residue located in binding pocket controls cation selectivity and substrate interactions in neuronal glutamate transporter. J Biol Chem 2012; 287:17198-17205. [PMID: 22493292 DOI: 10.1074/jbc.m112.355040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transporters of the major excitatory neurotransmitter glutamate play a crucial role in glutamatergic neurotransmission by removing their substrate from the synaptic cleft. The transport mechanism involves co-transport of glutamic acid with three Na(+) ions followed by countertransport of one K(+) ion. Structural work on the archeal homologue Glt(Ph) indicates a role of a conserved asparagine in substrate binding. According to a recent proposal, this residue may also participate in a novel Na(+) binding site. In this study, we characterize mutants of this residue from the neuronal transporter EAAC1, Asn-451. None of the mutants, except for N451S, were able to exhibit transport. However, the K(m) of this mutant for l-aspartate was increased ∼30-fold. Remarkably, the increase for d-aspartate and l-glutamate was 250- and 400-fold, respectively. Moreover, the cation specificity of N451S was altered because sodium but not lithium could support transport. A similar change in cation specificity was observed with a mutant of a conserved threonine residue, T370S, also implicated to participate in the novel Na(+) site together with the bound substrate. In further contrast to the wild type transporter, only l-aspartate was able to activate the uncoupled anion conductance by N451S, but with an almost 1000-fold reduction in apparent affinity. Our results not only provide experimental support for the Na(+) site but also suggest a distinct orientation of the substrate in the binding pocket during the activation of the anion conductance.
Collapse
Affiliation(s)
- Shlomit Teichman
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Shaogang Qu
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Baruch I Kanner
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
38
|
Bastug T, Heinzelmann G, Kuyucak S, Salim M, Vandenberg RJ, Ryan RM. Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1. PLoS One 2012; 7:e33058. [PMID: 22427946 PMCID: PMC3302783 DOI: 10.1371/journal.pone.0033058] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/06/2012] [Indexed: 12/21/2022] Open
Abstract
Glutamate transport via the human excitatory amino acid transporters is coupled to the co-transport of three Na(+) ions, one H(+) and the counter-transport of one K(+) ion. Transport by an archaeal homologue of the human glutamate transporters, Glt(Ph), whose three dimensional structure is known is also coupled to three Na(+) ions but only two Na(+) ion binding sites have been observed in the crystal structure of Glt(Ph). In order to fully utilize the Glt(Ph) structure in functional studies of the human glutamate transporters, it is essential to understand the transport mechanism of Glt(Ph) and accurately determine the number and location of Na(+) ions coupled to transport. Several sites have been proposed for the binding of a third Na(+) ion from electrostatic calculations and molecular dynamics simulations. In this study, we have performed detailed free energy simulations for Glt(Ph) and reveal a new site for the third Na(+) ion involving the side chains of Threonine 92, Serine 93, Asparagine 310, Aspartate 312, and the backbone of Tyrosine 89. We have also studied the transport properties of alanine mutants of the coordinating residues Threonine 92 and Serine 93 in Glt(Ph), and the corresponding residues in a human glutamate transporter, EAAT1. The mutant transporters have reduced affinity for Na(+) compared to their wild type counterparts. These results confirm that Threonine 92 and Serine 93 are involved in the coordination of the third Na(+) ion in Glt(Ph) and EAAT1.
Collapse
Affiliation(s)
- Turgut Bastug
- School of Physics, The University of Sydney, Sydney, Australia
- Faculty of Arts and Sciences, TOBB University of Economy and Technology, Ankara, Turkey
| | | | - Serdar Kuyucak
- School of Physics, The University of Sydney, Sydney, Australia
| | - Marietta Salim
- Transporter Biology Group, Discipline of Pharmacology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Robert J. Vandenberg
- Transporter Biology Group, Discipline of Pharmacology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Renae M. Ryan
- Transporter Biology Group, Discipline of Pharmacology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
| |
Collapse
|
39
|
Grazioso G, Limongelli V, Branduardi D, Novellino E, De Micheli C, Cavalli A, Parrinello M. Investigating the Mechanism of Substrate Uptake and Release in the Glutamate Transporter Homologue GltPh through Metadynamics Simulations. J Am Chem Soc 2011; 134:453-63. [DOI: 10.1021/ja208485w] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Vittorio Limongelli
- Department of Chemistry and Applied Biosciences, Eidgenössiche Technische Hochschule (ETH), Zurich, Switzerland
- Institute of Computational Science (ICS), Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, I-80131 Napoli, Italy
| | - Davide Branduardi
- Department of Drug Discovery and Development, Italian Institute of Technology, Via Morego 30, I-16163 Genoa, Italy
| | - Ettore Novellino
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano, 49, I-80131 Napoli, Italy
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Andrea Cavalli
- Department of Drug Discovery and Development, Italian Institute of Technology, Via Morego 30, I-16163 Genoa, Italy
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, Eidgenössiche Technische Hochschule (ETH), Zurich, Switzerland
- Institute of Computational Science (ICS), Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland
| |
Collapse
|
40
|
Heinzelmann G, Baştuğ T, Kuyucak S. Free energy simulations of ligand binding to the aspartate transporter Glt(Ph). Biophys J 2011; 101:2380-8. [PMID: 22098736 DOI: 10.1016/j.bpj.2011.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 11/25/2022] Open
Abstract
Glutamate/Aspartate transporters cotransport three Na(+) and one H(+) ions with the substrate and countertransport one K(+) ion. The binding sites for the substrate and two Na(+) ions have been observed in the crystal structure of the archeal homolog Glt(Ph), while the binding site for the third Na(+) ion has been proposed from computational studies and confirmed by experiments. Here we perform detailed free energy simulations of Glt(Ph), giving a comprehensive characterization of the substrate and ion binding sites, and calculating their binding free energies in various configurations. Our results show unequivocally that the substrate binds after the binding of two Na(+) ions. They also shed light into Asp/Glu selectivity of Glt(Ph), which is not observed in eukaryotic glutamate transporters.
Collapse
|
41
|
Rosental N, Gameiro A, Grewer C, Kanner BI. A conserved aspartate residue located at the extracellular end of the binding pocket controls cation interactions in brain glutamate transporters. J Biol Chem 2011; 286:41381-41390. [PMID: 21984827 DOI: 10.1074/jbc.m111.291021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the brain, transporters of the major excitatory neurotransmitter glutamate remove their substrate from the synaptic cleft to allow optimal glutamatergic neurotransmission. Their transport cycle consists of two sequential translocation steps, namely cotransport of glutamic acid with three Na(+) ions, followed by countertransport of K(+). Recent studies, based on several crystal structures of the archeal homologue Glt(Ph), indicate that glutamate translocation occurs by an elevator-like mechanism. The resolution of these structures was not sufficiently high to unambiguously identify the sites of Na(+) binding, but functional and computational studies suggest some candidate sites. In the Glt(Ph) structure, a conserved aspartate residue (Asp-390) is located adjacent to a conserved tyrosine residue, previously shown to be a molecular determinant of ion selectivity in the brain glutamate transporter GLT-1. In this study, we characterize mutants of Asp-440 of the neuronal transporter EAAC1, which is the counterpart of Asp-390 of Glt(Ph). Except for substitution by glutamate, this residue is functionally irreplaceable. Using biochemical and electrophysiological approaches, we conclude that although D440E is intrinsically capable of net flux, this mutant behaves as an exchanger under physiological conditions, due to increased and decreased apparent affinities for Na(+) and K(+), respectively. Our present and previous data are compatible with the idea that the conserved tyrosine and aspartate residues, located at the external end of the binding pocket, may serve as a transient or stable cation binding site in the glutamate transporters.
Collapse
Affiliation(s)
- Noa Rosental
- Department of Biochemistry and Molecular Biology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Armanda Gameiro
- Department of Chemistry, Binghamton University, Binghamton, New York 13902
| | - Christof Grewer
- Department of Chemistry, Binghamton University, Binghamton, New York 13902
| | - Baruch I Kanner
- Department of Biochemistry and Molecular Biology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
42
|
The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5. Biophys J 2011; 100:2623-32. [PMID: 21641307 DOI: 10.1016/j.bpj.2011.04.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 01/12/2023] Open
Abstract
Excitatory amino acid transporters (EAATs) control the glutamate concentration in the synaptic cleft by glial and neuronal glutamate uptake. Uphill glutamate transport is achieved by the co-/countertransport of Na(+) and other ions down their concentration gradients. Glutamate transporters also display an anion conductance that is activated by the binding of Na(+) and glutamate but is not thermodynamically coupled to the transport process. Of the five known glutamate transporter subtypes, the retina-specific subtype EAAT5 has the largest conductance relative to glutamate uptake activity. Our results suggest that EAAT5 behaves as a slow-gated anion channel with little glutamate transport activity. At steady state, EAAT5 was activated by glutamate, with a K(m)= 61 ± 11 μM. Binding of Na(+) to the empty transporter is associated with a K(m) = 229 ± 37 mM, and binding to the glutamate-bound form is associated with a K(m) = 76 ± 40 mM. Using laser-pulse photolysis of caged glutamate, we determined the pre-steady-state kinetics of the glutamate-induced anion current of EAAT5. This was characterized by two exponential components with time constants of 30 ± 1 ms and 200 ± 15 ms, which is an order of magnitude slower than those observed in other glutamate transporters. A voltage-jump analysis of the anion currents indicates that the slow activation behavior is caused by two slow, rate-limiting steps in the transport cycle, Na(+) binding to the empty transporter, and translocation of the fully loaded transporter. We propose a kinetic transport scheme that includes these two slow steps and can account for the experimentally observed data. Overall, our results suggest that EAAT5 may not act as a classical high-capacity glutamate transporter in the retina; rather, it may function as a slow-gated glutamate receptor and/or glutamate buffering system.
Collapse
|
43
|
Huang Z, Tajkhorshid E. Identification of the third Na+ site and the sequence of extracellular binding events in the glutamate transporter. Biophys J 2010; 99:1416-25. [PMID: 20816053 DOI: 10.1016/j.bpj.2010.06.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 12/30/2022] Open
Abstract
The transport cycle in the glutamate transporter (GlT) is catalyzed by the cotransport of three Na(+) ions. However, the positions of only two of these ions (Na1 and Na2 sites) along with the substrate have been captured in the crystal structures reported for both the outward-facing and the inward-facing states of Glt(ph). Characterizing the third ion binding site (Na3) is necessary for structure-function studies attempting to investigate the mechanism of transport in GlTs at an atomic level, particularly for the determination of the sequence of the binding events during the transport cycle. In this study, we report a series of molecular dynamics simulations performed on various bound states of Glt(ph) (the apo state, as well as in the presence of Na(+), the substrate, or both), which have been used to identify a putative Na3 site. The calculated trajectories have been used to determine the water accessibility of potential ion-binding residues in the protein, as a prerequisite for their ion binding. Combined with conformational analysis of the key regions in the protein in different bound states and several additional independent simulations in which a Na(+) ion was randomly introduced to the interior of the transporter, we have been able to characterize a putative Na3 site and propose a plausible binding sequence for the substrate and the three Na(+) ions to the transporter during the extracellular half of the transport cycle. The proposed Na3 site is formed by a set of highly conserved residues, namely, Asp(312), Thr(92), and Asn(310), along with a water molecule. Simulation of a fully bound state, including the substrate and the three Na(+) ions, reveals a stable structure--showing closer agreement to the crystal structure when compared to previous models lacking an ion in the putative Na3 site. The proposed sequence of binding events is in agreement with recent experimental models suggesting that two Na(+) ions bind before the substrate, and one after that. Our results, however, provide additional information about the sites involved in these binding events.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Biochemistry, College of Medicine, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | |
Collapse
|
44
|
Forrest LR, Krämer R, Ziegler C. The structural basis of secondary active transport mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:167-88. [PMID: 21029721 DOI: 10.1016/j.bbabio.2010.10.014] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 12/22/2022]
Abstract
Secondary active transporters couple the free energy of the electrochemical potential of one solute to the transmembrane movement of another. As a basic mechanistic explanation for their transport function the model of alternating access was put forward more than 40 years ago, and has been supported by numerous kinetic, biochemical and biophysical studies. According to this model, the transporter exposes its substrate binding site(s) to one side of the membrane or the other during transport catalysis, requiring a substantial conformational change of the carrier protein. In the light of recent structural data for a number of secondary transport proteins, we analyze the model of alternating access in more detail, and correlate it with specific structural and chemical properties of the transporters, such as their assignment to different functional states in the catalytic cycle of the respective transporter, the definition of substrate binding sites, the type of movement of the central part of the carrier harboring the substrate binding site, as well as the impact of symmetry on fold-specific conformational changes. Besides mediating the transmembrane movement of solutes, the mechanism of secondary carriers inherently involves a mechanistic coupling of substrate flux to the electrochemical potential of co-substrate ions or solutes. Mainly because of limitations in resolution of available transporter structures, this important aspect of secondary transport cannot yet be substantiated by structural data to the same extent as the conformational change aspect. We summarize the concepts of coupling in secondary transport and discuss them in the context of the available evidence for ion binding to specific sites and the impact of the ions on the conformational state of the carrier protein, which together lead to mechanistic models for coupling.
Collapse
Affiliation(s)
- Lucy R Forrest
- Structural Biology Department, Max Planck Institute for Biophysics, Frankfurt, Germany
| | | | | |
Collapse
|
45
|
New views of glutamate transporter structure and function: advances and challenges. Neuropharmacology 2010; 60:172-81. [PMID: 20708631 DOI: 10.1016/j.neuropharm.2010.07.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/14/2010] [Accepted: 07/25/2010] [Indexed: 12/18/2022]
Abstract
Neuronal and glial glutamate transporters limit the action of excitatory amino acids after their release during synaptic transmission. Recent structural and functional investigations have revealed much about the transport and conducting mechanisms of members of the sodium-coupled symporter family responsible for glutamate clearance in the nervous system. In this review we summarize emerging views on the general structure, binding sites for substrates and coupled ions, and transport mechanisms of mammalian glutamate transporters, integrating results from a large body of work on carrier structure-function relationships with several crystal structures obtained for the archaeal ortholog, Glt(Ph).
Collapse
|