1
|
Schütz S, Bergsdorf C, Hänni-Holzinger S, Lingel A, Renatus M, Gossert AD, Jahnke W. Intrinsically Disordered Regions in the Transcription Factor MYC:MAX Modulate DNA Binding via Intramolecular Interactions. Biochemistry 2024. [PMID: 38264995 DOI: 10.1021/acs.biochem.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor (TF) MYC is in large part an intrinsically disordered oncoprotein. In complex with its obligate heterodimerization partner MAX, MYC preferentially binds E-Box DNA sequences (CANNTG). At promoters containing these sequence motifs, MYC controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. A vast network of proteins in turn regulates MYC function via intermolecular interactions. In this work, we establish another layer of MYC regulation by intramolecular interactions. We used nuclear magnetic resonance (NMR) spectroscopy to identify and map multiple binding sites for the C-terminal MYC:MAX DNA-binding domain (DBD) on the intrinsically disordered regions (IDRs) in the MYC N-terminus. We find that these binding events in trans are driven by electrostatic attraction, that they have distinct affinities, and that they are competitive with DNA binding. Thereby, we observe the strongest effects for the N-terminal MYC box 0 (Mb0), a conserved motif involved in MYC transactivation and target gene induction. We prepared recombinant full-length MYC:MAX complex and demonstrate that the interactions identified in this work are also relevant in cis, i.e., as intramolecular interactions. These findings are supported by surface plasmon resonance (SPR) experiments, which revealed that intramolecular IDR:DBD interactions in MYC decelerate the association of MYC:MAX complexes to DNA. Our work offers new insights into how bHLH-LZ TFs are regulated by intramolecular interactions, which open up new possibilities for drug discovery.
Collapse
Affiliation(s)
- Stefan Schütz
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Christian Bergsdorf
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Sandra Hänni-Holzinger
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
2
|
Kim S, Chen J, Jo S, Ou F, Ferris ST, Liu TT, Ohara RA, Anderson DA, Wu R, Chen MY, Gillanders WE, Gillanders WE, Murphy TL, Murphy KM. IL-6 selectively suppresses cDC1 specification via C/EBPβ. J Exp Med 2023; 220:e20221757. [PMID: 37432392 PMCID: PMC10336151 DOI: 10.1084/jem.20221757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Cytokines produced in association with tumors can impair antitumor immune responses by reducing the abundance of type 1 conventional dendritic cells (cDC1), but the mechanism remains unclear. Here, we show that tumor-derived IL-6 generally reduces cDC development but selectively impairs cDC1 development in both murine and human systems through the induction of C/EBPβ in the common dendritic cell progenitor (CDP). C/EBPβ and NFIL3 compete for binding to sites in the Zeb2 -165 kb enhancer and support or repress Zeb2 expression, respectively. At homeostasis, pre-cDC1 specification occurs upon Nfil3 induction and consequent Zeb2 suppression. However, IL-6 strongly induces C/EBPβ expression in CDPs. Importantly, the ability of IL-6 to impair cDC development is dependent on the presence of C/EBPβ binding sites in the Zeb2 -165 kb enhancer, as this effect is lost in Δ1+2+3 mutant mice in which these binding sites are mutated. These results explain how tumor-associated IL-6 suppresses cDC1 development and suggest therapeutic approaches preventing abnormal C/EBPβ induction in CDPs may help reestablish cDC1 development to enhance antitumor immunity.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jing Chen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Suin Jo
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Stephen T. Ferris
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ray A. Ohara
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - David A. Anderson
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Renee Wu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Michael Y. Chen
- Department of Surgery, Washington University and Siteman Cancer Center in St. Louis, St. Louis, MO, USA
| | - William E. Gillanders
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - William E. Gillanders
- Department of Surgery, Washington University and Siteman Cancer Center in St. Louis, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Wang X, Bigman LS, Greenblatt HM, Yu B, Levy Y, Iwahara J. Negatively charged, intrinsically disordered regions can accelerate target search by DNA-binding proteins. Nucleic Acids Res 2023; 51:4701-4712. [PMID: 36774964 PMCID: PMC10250230 DOI: 10.1093/nar/gkad045] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/14/2023] Open
Abstract
In eukaryotes, many DNA/RNA-binding proteins possess intrinsically disordered regions (IDRs) with large negative charge, some of which involve a consecutive sequence of aspartate (D) or glutamate (E) residues. We refer to them as D/E repeats. The functional role of D/E repeats is not well understood, though some of them are known to cause autoinhibition through intramolecular electrostatic interaction with functional domains. In this work, we investigated the impacts of D/E repeats on the target DNA search kinetics for the high-mobility group box 1 (HMGB1) protein and the artificial protein constructs of the Antp homeodomain fused with D/E repeats of varied lengths. Our experimental data showed that D/E repeats of particular lengths can accelerate the target association in the overwhelming presence of non-functional high-affinity ligands ('decoys'). Our coarse-grained molecular dynamics (CGMD) simulations showed that the autoinhibited proteins can bind to DNA and transition into the uninhibited complex with DNA through an electrostatically driven induced-fit process. In conjunction with the CGMD simulations, our kinetic model can explain how D/E repeats can accelerate the target association process in the presence of decoys. This study illuminates an unprecedented role of the negatively charged IDRs in the target search process.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Lavi S Bigman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harry M Greenblatt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| |
Collapse
|
4
|
Schütz S, Bergsdorf C, Goretzki B, Lingel A, Renatus M, Gossert AD, Jahnke W. The disordered MAX N-terminus modulates DNA binding of the transcription factor MYC:MAX. J Mol Biol 2022; 434:167833. [PMID: 36174765 DOI: 10.1016/j.jmb.2022.167833] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/15/2022]
Abstract
The intrinsically disordered protein MYC belongs to the family of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors (TFs). In complex with its cognate binding partner MAX, MYC preferentially binds to E-Box promotor sequences where it controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. Intramolecular regulation of MYC:MAX has not yet been investigated in detail. In this work, we use Nuclear Magnetic Resonance (NMR) spectroscopy to identify and map interactions between the disordered MAX N-terminus and the MYC:MAX DNA binding domain (DBD). We find that this binding event is mainly driven by electrostatic interactions and that it is competitive with DNA binding. Using Nuclear Magnetic resonance (NMR) spectroscopy and Surface Plasmon Resonance (SPR), we demonstrate that the MAX N-terminus serves to accelerate DNA binding kinetics of MYC:MAX and MAX:MAX dimers, while it simultaneously provides specificity for E-Box DNA. We also establish that these effects are further enhanced by Casein Kinase 2-mediated phosphorylation of two serine residues in the MAX N-terminus. Our work provides new insights how bHLH-LZ TFs are regulated by intramolecular interactions between disordered regions and the folded DNA binding domain.
Collapse
Affiliation(s)
- Stefan Schütz
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Christian Bergsdorf
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Benedikt Goretzki
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Alvar D Gossert
- Department of Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.
| |
Collapse
|
5
|
Spreitzer E, Alderson TR, Bourgeois B, Eggenreich L, Habacher H, Brahmersdorfer G, Pritišanac I, Sánchez-Murcia PA, Madl T. FOXO transcription factors differ in their dynamics and intra/intermolecular interactions. Curr Res Struct Biol 2022; 4:118-133. [PMID: 35573459 PMCID: PMC9097636 DOI: 10.1016/j.crstbi.2022.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - T. Reid Alderson
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Loretta Eggenreich
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Hermann Habacher
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Greta Brahmersdorfer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Iva Pritišanac
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Pedro A. Sánchez-Murcia
- Division of Physiological Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Corresponding author. Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
6
|
Wang X, Greenblatt HM, Bigman LS, Yu B, Pletka CC, Levy Y, Iwahara J. Dynamic Autoinhibition of the HMGB1 Protein via Electrostatic Fuzzy Interactions of Intrinsically Disordered Regions. J Mol Biol 2021; 433:167122. [PMID: 34181980 DOI: 10.1016/j.jmb.2021.167122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Highly negatively charged segments containing only aspartate or glutamate residues ("D/E repeats") are found in many eukaryotic proteins. For example, the C-terminal 30 residues of the HMGB1 protein are entirely D/E repeats. Using nuclear magnetic resonance (NMR), fluorescence, and computational approaches, we investigated how the D/E repeats causes the autoinhibition of HMGB1 against its specific binding to cisplatin-modified DNA. By varying ionic strength in a wide range (40-900 mM), we were able to shift the conformational equilibrium between the autoinhibited and uninhibited states toward either of them to the full extent. This allowed us to determine the macroscopic and microscopic equilibrium constants for the HMGB1 autoinhibition at various ionic strengths. At a macroscopic level, a model involving the autoinhibited and uninhibited states can explain the salt concentration-dependent binding affinity data. Our data at a microscopic level show that the D/E repeats and other parts of HMGB1 undergo electrostatic fuzzy interactions, each of which is weaker than expected from the macroscopic autoinhibitory effect. This discrepancy suggests that the multivalent nature of the fuzzy interactions enables strong autoinhibition at a macroscopic level despite the relatively weak intramolecular interaction at each site. Both experimental and computational data suggest that the D/E repeats interact preferentially with other intrinsically disordered regions (IDRs) of HMGB1. We also found that mutations mimicking post-translational modifications relevant to nuclear export of HMGB1 can moderately modulate DNA-binding affinity, possibly by impacting the autoinhibition. This study illuminates a functional role of the fuzzy interactions of D/E repeats.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Harry M Greenblatt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lavi S Bigman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Channing C Pletka
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA.
| |
Collapse
|
7
|
Salotti J, Johnson PF. Regulation of senescence and the SASP by the transcription factor C/EBPβ. Exp Gerontol 2019; 128:110752. [PMID: 31648009 DOI: 10.1016/j.exger.2019.110752] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Oncogene-induced senescence (OIS) serves as an important barrier to tumor progression in cells that have acquired activating mutations in RAS and other oncogenes. Senescent cells also produce a secretome known as the senescence-associated secretory phenotype (SASP) that includes pro-inflammatory cytokines and chemokines. SASP factors reinforce and propagate the senescence program and identify senescent cells to the immune system for clearance. The OIS program is executed by several transcriptional effectors that include p53, RB, NF-κB and C/EBPβ. In this review, we summarize the critical role of C/EBPβ in regulating OIS and the SASP. Post-translational modifications induced by oncogenic RAS signaling control C/EBPβ activity and dimerization, and these alterations switch C/EBPβ to a pro-senescence form during OIS. In addition, C/EBPβ is regulated by a unique 3'UTR-mediated mechanism that restrains its activity in tumor cells to facilitate senescence bypass and suppression of the SASP.
Collapse
Affiliation(s)
- Jacqueline Salotti
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
8
|
Sin TK, Zhu JZ, Zhang G, Li YP. p300 Mediates Muscle Wasting in Lewis Lung Carcinoma. Cancer Res 2019; 79:1331-1342. [PMID: 30705122 PMCID: PMC6445764 DOI: 10.1158/0008-5472.can-18-1653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
C/EBPβ is a key mediator of cancer-induced skeletal muscle wasting. However, the signaling mechanisms that activate C/EBPβ in the cancer milieu are poorly defined. Here, we report cancer-induced muscle wasting requires the transcriptional cofactor p300, which is critical for the activation of C/EBPβ. Conditioned media from diverse types of tumor cells as well as recombinant HSP70 and HSP90 provoked rapid acetylation of C/EBPβ in myotubes, particularly at its Lys39 residue. Overexpression of C/EBPβ with mutated Lys39 impaired Lewis lung carcinoma (LLC)-induced activation of the C/EBPβ-dependent catabolic response, which included upregulation of E3 ligases UBR2 and atrogin1/MAFbx, increased LC3-II, and loss of muscle proteins both in myotubes and mouse muscle. Silencing p300 in myotubes or overexpressing a dominant negative p300 mutant lacking acetyltransferase activity in mouse muscle attenuated LLC tumor-induced muscle catabolism. Administration of pharmacologic p300 inhibitor C646, but not PCAF/GCN5 inhibitor CPTH6, spared LLC tumor-bearing mice from muscle wasting. Furthermore, mice with muscle-specific p300 knockout were resistant to LLC tumor-induced muscle wasting. These data suggest that p300 is a key mediator of LLC tumor-induced muscle wasting whose acetyltransferase activity may be targeted for therapeutic benefit in this disease. SIGNIFICANCE: These findings demonstrate that tumor-induced muscle wasting in mice is abrogated by knockout, mutation of Lys39 or Asp1399, and pharmacologic inhibition of p300.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/7/1331/F1.large.jpg.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - James Z Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
9
|
Dittmar G, Hernandez DP, Kowenz-Leutz E, Kirchner M, Kahlert G, Wesolowski R, Baum K, Knoblich M, Hofstätter M, Muller A, Wolf J, Reimer U, Leutz A. PRISMA: Protein Interaction Screen on Peptide Matrix Reveals Interaction Footprints and Modifications- Dependent Interactome of Intrinsically Disordered C/EBPβ. iScience 2019; 13:351-370. [PMID: 30884312 PMCID: PMC6424098 DOI: 10.1016/j.isci.2019.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/20/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022] Open
Abstract
CCAAT enhancer-binding protein beta (C/EBPβ) is a pioneer transcription factor that specifies cell differentiation. C/EBPβ is intrinsically unstructured, a molecular feature common to many proteins involved in signal processing and epigenetics. The structure of C/EBPβ differs depending on alternative translation initiation and multiple post-translational modifications (PTM). Mutation of distinct PTM sites in C/EBPβ alters protein interactions and cell differentiation, suggesting that a C/EBPβ PTM indexing code determines epigenetic outcomes. Herein, we systematically explored the interactome of C/EBPβ using an array technique based on spot-synthesized C/EBPβ-derived linear tiling peptides with and without PTM, combined with mass spectrometric proteomic analysis of protein interactions. We identified interaction footprints of ∼1,300 proteins in nuclear extracts, many with chromatin modifying, chromatin remodeling, and RNA processing functions. The results suggest that C/EBPβ acts as a multi-tasking molecular switchboard, integrating signal-dependent modifications and structural plasticity to orchestrate interactions with numerous protein complexes directing cell fate and function.
Collapse
Affiliation(s)
- Gunnar Dittmar
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany; BIH Core Facility Proteomics, Robert-Roessle Strasse 10, 10125 Berlin, Germany.
| | - Daniel Perez Hernandez
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany; BIH Core Facility Proteomics, Robert-Roessle Strasse 10, 10125 Berlin, Germany
| | - Elisabeth Kowenz-Leutz
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany; BIH Core Facility Proteomics, Robert-Roessle Strasse 10, 10125 Berlin, Germany
| | - Günther Kahlert
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Radoslaw Wesolowski
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Katharina Baum
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Maria Knoblich
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Maria Hofstätter
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Arnaud Muller
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Jana Wolf
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Volmerstrasse 5, 12489 Berlin, Germany
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany; Humboldt-University of Berlin, Institute of Biology, 10115 Berlin, Germany.
| |
Collapse
|
10
|
Bégay V, Baumeier C, Zimmermann K, Heuser A, Leutz A. The C/EBPβ LIP isoform rescues loss of C/EBPβ function in the mouse. Sci Rep 2018; 8:8417. [PMID: 29849099 PMCID: PMC5976626 DOI: 10.1038/s41598-018-26579-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
The transcription factor C/EBPβ regulates hematopoiesis, bone, liver, fat, and skin homeostasis, and female reproduction. C/EBPβ protein expression from its single transcript occurs by alternative in-frame translation initiation at consecutive start sites to generate three isoforms, two long (LAP*, LAP) and one truncated (LIP), with the same C-terminal bZip dimerization domain. The long C/EBPβ isoforms are considered gene activators, whereas the LIP isoform reportedly acts as a dominant-negative repressor. Here, we tested the putative repressor functions of the C/EBPβ LIP isoform in mice by comparing monoallelic WT or LIP knockin mice with Cebpb knockout mice, in combination with monoallelic Cebpa mice. The C/EBPβ LIP isoform was sufficient to function in coordination with C/EBPα in murine development, adipose tissue and sebocyte differentiation, and female fertility. Thus, the C/EBPβ LIP isoform likely has more physiological functions than its currently known role as a dominant-negative inhibitor, which are more complex than anticipated.
Collapse
Affiliation(s)
- Valérie Bégay
- Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany. .,Molecular Physiology of Somatic Sensation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany.
| | - Christian Baumeier
- Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany.,Department of experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DifE), 14558, Nuthetal, Germany, German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karin Zimmermann
- Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany
| | - Arnd Heuser
- Pathophysiology Group, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany
| | - Achim Leutz
- Tumorigenesis and Cell Differentiation, Max Delbrueck Center for Molecular Medicine, Berlin, 13125, Berlin, Germany. .,Humboldt-University, Berlin, Institute of Biology, 10115, Berlin, Germany.
| |
Collapse
|
11
|
Basu SK, Lee S, Salotti J, Basu S, Sakchaisri K, Xiao Z, Walia V, Westlake CJ, Morrison DK, Johnson PF. Oncogenic RAS-Induced Perinuclear Signaling Complexes Requiring KSR1 Regulate Signal Transmission to Downstream Targets. Cancer Res 2017; 78:891-908. [PMID: 29259016 DOI: 10.1158/0008-5472.can-17-2353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/27/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022]
Abstract
The precise characteristics that distinguish normal and oncogenic RAS signaling remain obscure. Here, we show that oncogenic RAS and BRAF induce perinuclear relocalization of several RAS pathway proteins, including the kinases CK2 and p-ERK1/2 and the signaling scaffold KSR1. This spatial reorganization requires endocytosis, the kinase activities of MEK-ERK and CK2, and the presence of KSR1. CK2α colocalizes with KSR1 and Rab11, a marker of recycling endosomes, whereas p-ERK associates predominantly with a distinct KSR1-positive endosomal population. Notably, these perinuclear signaling complexes (PSC) are present in tumor cell lines, mouse lung tumors, and mouse embryonic fibroblasts undergoing RAS-induced senescence. PSCs are also transiently induced by growth factors (GF) in nontransformed cells with delayed kinetics (4-6 hours), establishing a novel late phase of GF signaling that appears to be constitutively activated in tumor cells. PSCs provide an essential platform for RAS-induced phosphorylation and activation of the prosenescence transcription factor C/EBPβ in primary MEFs undergoing senescence. Conversely, in tumor cells, C/EBPβ activation is suppressed by 3'UTR-mediated localization of Cebpb transcripts to a peripheral cytoplasmic domain distinct from the PSC region. Collectively, our findings indicate that sustained PSC formation is a critical feature of oncogenic RAS/BRAF signaling in cancer cells that controls signal transmission to downstream targets by regulating selective access of effector kinases to substrates such as C/EBPβ.Significance: In addressing the long-standing question of the difference between normal and oncogenic RAS pathway signaling, this study shows that oncogenic RAS specifically triggers constitutive endocytosis-dependent movement of effector kinases to a perinuclear region, thereby creating connections to unique downstream targets such as the core prosenescence and the inflammatory regulatory transcription factor C/EBPβ. Cancer Res; 78(4); 891-908. ©2017 AACR.
Collapse
Affiliation(s)
- Sandip K Basu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Sook Lee
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Jacqueline Salotti
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Srikanta Basu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Krisada Sakchaisri
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Zhen Xiao
- Laboratory of Proteomics and Analytical Technologies, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Vijay Walia
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland.
| |
Collapse
|
12
|
Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochem J 2017; 474:2509-2532. [DOI: 10.1042/bcj20160631] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022]
Abstract
Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains targeting specific cis-acting elements in genes, and by the significant lack of fixed tertiary structure in their extensive intrinsically disordered regions. Recent research in protein intrinsic disorder (ID) has changed our understanding of transcriptional activation domains from ‘negative noodles’ to ID regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions. It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms and structural analysis of ID in the context of full-length TFs and suggests future directions for research in TF ID.
Collapse
|
13
|
JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells. J Virol 2016; 91:JVI.01925-16. [PMID: 27795443 DOI: 10.1128/jvi.01925-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023] Open
Abstract
The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells. IMPORTANCE Transformation by the v-Src oncoprotein causes extensive changes in gene expression in primary cells such as chicken embryo fibroblasts. These changes, determining the properties of transformed cells, are controlled in part at the transcriptional level. Much attention has been devoted to transcription factors such as AP-1 and NF-κB and the control of genes associated with a more aggressive phenotype. In this report, we describe a novel mechanism of action determined by the JunD component of AP-1, a factor enhancing cell survival in v-Src-transformed cells. We show that the loss of JunD results in the aberrant activation of a genetic program leading to cell death. This program requires the activation of the tumor suppressor death-associated protein kinase 1 (DAPK1). Since DAPK1 is phosphorylated and inhibited by v-Src, these results highlight the importance of this kinase and the multiple mechanisms controlled by v-Src to antagonize the tumor suppressor function of DAPK1.
Collapse
|
14
|
Kowenz-Leutz E, Schuetz A, Liu Q, Knoblich M, Heinemann U, Leutz A. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:841-7. [PMID: 27131901 DOI: 10.1016/j.bbagrm.2016.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 11/28/2022]
Abstract
The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα.
Collapse
Affiliation(s)
- Elisabeth Kowenz-Leutz
- Tumorigenesis and Cell Differentiation, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anja Schuetz
- Protein Sample Production Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Qingbin Liu
- Tumorigenesis and Cell Differentiation, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Maria Knoblich
- Tumorigenesis and Cell Differentiation, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Udo Heinemann
- Protein Sample Production Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Chemistry and Biochemistry Institute, Freie Universität Berlin, Berlin, Germany
| | - Achim Leutz
- Tumorigenesis and Cell Differentiation, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Institute of Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Histone deacetylase HDAC1 downregulates transcription of the serotonin transporter (5-HTT) gene in tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:909-18. [DOI: 10.1016/j.bbagrm.2015.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/01/2015] [Accepted: 05/23/2015] [Indexed: 12/27/2022]
|
16
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
17
|
Bhaumik P, Davis J, Tropea JE, Cherry S, Johnson PF, Miller M. Structural insights into interactions of C/EBP transcriptional activators with the Taz2 domain of p300. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1914-21. [PMID: 25004968 PMCID: PMC4089485 DOI: 10.1107/s1399004714009262] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/24/2014] [Indexed: 11/10/2022]
Abstract
Members of the C/EBP family of transcription factors bind to the Taz2 domain of p300/CBP and mediate its phosphorylation through the recruitment of specific kinases. Short sequence motifs termed homology boxes A and B, which comprise their minimal transactivation domains (TADs), are conserved between C/EBP activators and are necessary for specific p300/CBP binding. A possible mode of interaction between C/EBP TADs and the p300 Taz2 domain was implied by the crystal structure of a chimeric protein composed of residues 1723-1818 of p300 Taz2 and residues 37-61 of C/EBPℇ. The segment corresponding to the C/EBPℇ TAD forms two orthogonally disposed helices connected by a short linker and interacts with the core structure of Taz2 from a symmetry-related molecule. It is proposed that other members of the C/EBP family interact with the Taz2 domain in the same manner. The position of the C/EBPℇ peptide on the Taz2 protein interaction surface suggests that the N-termini of C/EBP proteins are unbound in the C/EBP-p300 Taz2 complex. This observation is in agreement with the known location of the docking site of protein kinase HIPK2 in the C/EBPβ N-terminus, which associates with the C/EBPβ-p300 complex.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jamaine Davis
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Joseph E. Tropea
- Protein Purification Core, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Scott Cherry
- Protein Purification Core, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Peter F. Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Maria Miller
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
18
|
Zhang YL, Xia Y, Yu C, Richards JS, Liu J, Fan HY. CBP-CITED4 is required for luteinizing hormone-triggered target gene expression during ovulation. Mol Hum Reprod 2014; 20:850-60. [PMID: 24878634 DOI: 10.1093/molehr/gau040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pituitary-secreted luteinizing hormone (LH) induces ovulation by activating an extracellular regulated kinase 1/2 (ERK1/2) cascade. However, little is known regarding the ERK1/2 downstream effectors that are involved in regulating rapid, transient expression of LH-target gene in ovulatory follicles. By comparing the gene expression profiles of LH-stimulated wild type with ERK1/2-deleted ovarian granulosa cells (GCs), we identified Cited4 as a previously unknown LH target gene during ovulation. LH induced Cited4 expression in pre-ovulatory follicles in an ERK1/2-dependent manner. CITED4 formed an endogenous protein complex and docked on the promoters of LH and ERK1/2 target genes. Both CITED4 expression and CBP acetyltransferase activity leading to histone acetylation were indispensable for LH-induced ovulation-related events. LH induced dynamic histone acetylation changes in pre-ovulatory GCs, including the acetylation of histone H2B (Lys5) and H3 (Lys9). This was essential for the rapid responses and dramatic increases of LH target gene expressions by the ordered activation of ERK1/2 and CITED4-CBP. In addition, histone deacetylases (HDACs) antagonized CITED4-CBP to turn off expression of these genes after exposure to LH. Thus, we determined that CITED4 was a novel LH and ERK1/2 target for triggering ovulation. These results support the proposition that LH induces rapid, significant gene expression in pre-ovulatory follicles by modulating histone acetylation status.
Collapse
Affiliation(s)
- Yin-Li Zhang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Yan Xia
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Chao Yu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - JoAnne S Richards
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, China
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Zhang J, Li Y, Shan K, Wang L, Qiu W, Lu Y, Zhao D, Zhu G, He F, Wang Y. Sublytic C5b-9 induces IL-6 and TGF-β1 production by glomerular mesangial cells in rat Thy-1 nephritis through p300-mediated C/EBPβ acetylation. FASEB J 2013; 28:1511-25. [PMID: 24344329 DOI: 10.1096/fj.13-242693] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CCAAT/enhancer-binding protein (C/EBPβ)-enhanced IL-6 and TGF-β1 promoter activity and p300-mediated C/EBPβ acetylation were involved in up-regulation of IL-6 and TGF-β1 expression in GMCs attacked by sublytic C5b-9. In detail, the elements of C/EBPβ binding to rat IL-6 and TGF-β1 promoter and 3 acetylated sites of rat C/EBPβ protein were first revealed. Furthermore, silencing the p300 or C/EBPβ gene in rat kidney significantly reduced the production of IL-6 and TGF-β1 and renal lesions in Thy-1N rats. Together, these data indicate that the mechanism of IL-6 and TGF-β1 production in renal tissue of Thy-1N rats is associated with sublytic C5b-9 up-regulated p300 and p300-mediated C/EBPβ acetylation as well as C/EBPβ-activated IL-6 and TGF-β1 genes.
Collapse
Affiliation(s)
- Jing Zhang
- 1Department of Microbiology and Immunology, Nanjing Medical University, Hanzhong Rd. 140, Nanjing, Jiangsu 210029, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sheldon KE, Shandilya H, Kepka-Lenhart D, Poljakovic M, Ghosh A, Morris SM. Shaping the murine macrophage phenotype: IL-4 and cyclic AMP synergistically activate the arginase I promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2290-8. [PMID: 23913966 PMCID: PMC3829606 DOI: 10.4049/jimmunol.1202102] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Arginase I is a marker of murine M2 macrophages and is highly expressed in many inflammatory diseases. The basis for high arginase I expression in macrophages in vivo is incompletely understood but likely reflects integrated responses to combinations of stimuli. Our objective was to elucidate mechanisms involved in modulating arginase I induction by IL-4, the prototypical activator of M2 macrophages. IL-4 and 8-bromo-cAMP individually induce arginase I, but together they rapidly and synergistically induce arginase I mRNA, protein, and promoter activity in murine macrophage cells. Arginase I induction by IL-4 requires binding of the transcription factors STAT6 and C/EBPβ to the IL-4 response element of the arginase I gene. Chromatin immunoprecipitation showed that the synergistic response involves binding of both transcription factors to the IL-4 response element at levels significantly greater than in response to IL-4 alone. The results suggest that C/EBPβ is a limiting factor for the level of STAT6 bound to the IL-4 response element. The enhanced binding in the synergistic response was not due to increased expression of either STAT6 or C/EBPβ but was correlated primarily with increased nuclear abundance of C/EBPβ. Our findings also suggest that induction of arginase I expression is stochastic; that is, differences in induction reflect differences in probability of transcriptional activation and not simply differences in rate of transcription. Results of the present study also may be useful for understanding mechanisms underlying regulated expression of other genes in macrophages and other myeloid-derived cells in health and disease.
Collapse
Affiliation(s)
- Kathryn E. Sheldon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Harish Shandilya
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Diane Kepka-Lenhart
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Mirjana Poljakovic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Arundhati Ghosh
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | - Sidney M. Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| |
Collapse
|
21
|
C/EBPγ suppresses senescence and inflammatory gene expression by heterodimerizing with C/EBPβ. Mol Cell Biol 2013; 33:3242-58. [PMID: 23775115 DOI: 10.1128/mcb.01674-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
C/EBPβ is an important regulator of oncogene-induced senescence (OIS). Here, we show that C/EBPγ, a heterodimeric partner of C/EBPβ whose biological functions are not well understood, inhibits cellular senescence. Cebpg(-/-) mouse embryonic fibroblasts (MEFs) proliferated poorly, entered senescence prematurely, and expressed a proinflammatory gene signature, including elevated levels of senescence-associated secretory phenotype (SASP) genes whose induction by oncogenic stress requires C/EBPβ. The senescence-suppressing activity of C/EBPγ required its ability to heterodimerize with C/EBPβ. Covalently linked C/EBPβ homodimers (β∼β) inhibited the proliferation and tumorigenicity of Ras(V12)-transformed NIH 3T3 cells, activated SASP gene expression, and recruited the CBP coactivator in a Ras-dependent manner, whereas γ∼β heterodimers lacked these capabilities and efficiently rescued proliferation of Cebpg(-/-) MEFs. C/EBPβ depletion partially restored growth of C/EBPγ-deficient cells, indicating that the increased levels of C/EBPβ homodimers in Cebpg(-/-) MEFs inhibit proliferation. The proliferative functions of C/EBPγ are not restricted to fibroblasts, as hematopoietic progenitors from Cebpg(-/-) bone marrow also displayed impaired growth. Furthermore, high CEBPG expression correlated with poorer clinical prognoses in several human cancers, and C/EBPγ depletion decreased proliferation and induced senescence in lung tumor cells. Our findings demonstrate that C/EBPγ neutralizes the cytostatic activity of C/EBPβ through heterodimerization, which prevents senescence and suppresses basal transcription of SASP genes.
Collapse
|
22
|
Stoilova B, Kowenz-Leutz E, Scheller M, Leutz A. Lymphoid to myeloid cell trans-differentiation is determined by C/EBPβ structure and post-translational modifications. PLoS One 2013; 8:e65169. [PMID: 23755188 PMCID: PMC3674013 DOI: 10.1371/journal.pone.0065169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/17/2013] [Indexed: 02/02/2023] Open
Abstract
The transcription factor C/EBPβ controls differentiation, proliferation, and functionality of many cell types, including innate immune cells. A detailed molecular understanding of how C/EBPβ directs alternative cell fates remains largely elusive. A multitude of signal-dependent post-translational modifications (PTMs) differentially affect the protean C/EBPβ functions. In this study we apply an assay that converts primary mouse B lymphoid progenitors into myeloid cells in order to answer the question how C/EBPβ regulates (trans-) differentiation and determines myeloid cell fate. We found that structural alterations and various C/EBPβ PTMs determine the outcome of trans-differentiation of lymphoid into myeloid cells, including different types of monocytes/macrophages, dendritic cells, and granulocytes. The ability of C/EBPβ to recruit chromatin remodeling complexes is required for the granulocytic trans-differentiation outcome. These novel findings reveal that PTMs and structural plasticity of C/EBPβ are adaptable modular properties that integrate and rewire epigenetic functions to direct differentiation to diverse innate immune system cells, which are crucial for the organism survival.
Collapse
Affiliation(s)
- Bilyana Stoilova
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | | | - Marina Scheller
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Achim Leutz
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
- Humboldt-University of Berlin, Institute of Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
23
|
Abdou HS, Atlas E, Haché RJG. A positive regulatory domain in CCAAT/enhancer binding protein β (C/EBPΒ) is required for the glucocorticoid-mediated displacement of histone deacetylase 1 (HDAC1) from the C/ebpα promoter and maximum adipogenesis. Endocrinology 2013; 154:1454-64. [PMID: 23456364 DOI: 10.1210/en.2012-2061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoids promote adipogenesis and contribute to the metabolic syndrome through a number of mechanisms. One of the effectors of glucocorticoid action is the CCAAT/enhancer binding protein β (C/EBPβ). C/EBPβ is a basic leucine-zipper transcription factor involved in diverse processes including differentiation, cellular proliferation, and inflammation. C/EBPβ transcriptional activity is regulated, in part, by its acetylation profile resulting from its dynamic interaction with either acetylases general control nonrepressed protein 5/p300/CBP associated factor (GCN5/PCAF) or deacetylase complexes (mSin3A/histone deacetylase 1 [HDAC1]). Glucocorticoid treatment of preadipocytes promotes C/EBPβ acetylation, leading to mSin3A/HDAC1 dissociation from C/EBPβ and resulting in C/ebpα promoter activation at the onset of adipogenesis, thus increasing the differentiation rate. We recently showed that the regulatory domain 1 (RD1) of C/EBPβ contains four residues (153-156) required for its interaction with HDAC1, therefore supporting RD1 proposed inhibitory role. In an attempt to further elucidate the intrinsic regulatory property of RD1, we sought to characterize the regulatory potential of the N terminus region of RD1 (residues 141-149). In this study, we show that C/EBPβΔ141-149 transcriptional activity was compromised on the C/ebpα, but not on the Pparγ, promoter. Additionally, the ability of C/EBPβΔ141-149 to induce adipogenesis in NIH 3T3 cells was compromised when compared with C/EBPβwt owing to a delayed expression of C/ebpα at the onset of differentiation. Furthermore, the data suggest that the reduced expression of C/ebpα in cells expressing C/EBPβΔ141-149 was due to a persistent recruitment of HDAC1 to the C/ebpα promoter after glucocorticoid treatment. Together, these results suggest that amino acids 141-149 of C/EBPβ act as a positive regulatory domain required for maximum transcriptional activity.
Collapse
Affiliation(s)
- Houssein-Salem Abdou
- Reproduction, Mother and Youth Health, CHUQ Research Centre, Quebec City, Quebec, Canada
| | | | | |
Collapse
|
24
|
Dalvai M, Bellucci L, Fleury L, Lavigne AC, Moutahir F, Bystricky K. H2A.Z-dependent crosstalk between enhancer and promoter regulates cyclin D1 expression. Oncogene 2012; 32:4243-51. [PMID: 23108396 DOI: 10.1038/onc.2012.442] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 02/08/2023]
Abstract
H2A.Z association with specific genomic loci is thought to contribute to a chromatin structure that promotes transcription activation. Acetylation of H2A.Z at promoters of oncogenes has been linked to tumorigenesis. The mechanism is unknown. Here, we show that in triple negative breast cancer cells, H2A.Z bound to the promoter of the constitutively, weakly expressed cyclin D1 oncogene (CCND1), a key regulator of cellular proliferation. Depleting the pool of H2A.Z stimulated transcription of CCND1 in the absence of its cognate transcription factor, the estrogen receptor (ER). During activation of CCND1, H2A.Z was released from the transcription start site (TSS) and downstream enhancer (enh2) sequences. Concurrently, acetylation of H2A.Z, H3 and H4 at the TSS was increased but only H2A.Z was acetylated at enh2. Acetylation of H2A.Z required the Tip60 acetyltransferase to be associated with the activated CCND1 on both TSS and enh2 sites. Depletion of Tip60 prevented CCND1 activation. Chromosome conformation capture experiments (3C) revealed specific contacts between the TSS and enh2 chromatin regions. These results suggest that release of a histone H2A.Z-mediated repression loop activates CCND1 for transcription. Our findings open new avenues for controlling and understanding aberrant gene expression associated with tumorigenesis.
Collapse
Affiliation(s)
- M Dalvai
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), University of Toulouse, Toulouse, France
| | | | | | | | | | | |
Collapse
|
25
|
Zhang G, Li YP. p38β MAPK upregulates atrogin1/MAFbx by specific phosphorylation of C/EBPβ. Skelet Muscle 2012; 2:20. [PMID: 23046544 PMCID: PMC3534568 DOI: 10.1186/2044-5040-2-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/21/2012] [Indexed: 11/30/2022] Open
Abstract
Background The p38 mitogen-activated protein kinases (MAPK) family plays pivotal roles in skeletal muscle metabolism. Recent evidence revealed that p38α and p38β exert paradoxical effects on muscle protein homeostasis. However, it is unknown why p38β, but not p38α, is capable of mediating muscle catabolism via selective activation of the C/EBPβ that upregulates atrogin1/MAFbx. Methods Tryptic phosphopeptide mapping was carried out to identify p38α- and p38β-mediated phosphorylation sites in C/EBPβ. Chromosome immunoprecipitation (ChIP) assay was used to evaluate p38α and p38β effect on C/EBPβ binding to the atrogin1/MAFbx promoter. Overexpression or siRNA-mediated gene knockdown of p38α and p38β, and site-directed mutagenesis or knockout of C/EBPβ, were used to analyze the roles of these kinases in muscle catabolism in C2C12 myotubes and mice. Results Cellular expression of constitutively active p38α or p38β resulted in phosphorylation of C/EBPβ at multiple serine and threonine residues; however, only p38β phosphorylated Thr-188, which had been known to be critical to the DNA-binding activity of C/EBPβ. Only p38β, but not p38α, activated C/EBPβ-binding to the atrogin1/MAFbx promoter. A C/EBPβ mutant in which Thr-188 was replaced by alanine acted as a dominant-negative inhibitor of atrogin1/MAFbx upregulation induced by either p38β or Lewis lung carcinoma (LLC) cell-conditioned medium (LCM). In addition, knockdown of p38β specifically inhibited C/EBPβ activation and atrogin1/MAFbx upregulation induced by LCM. Finally, expression of active p38β in mouse tibialis anterior specifically induced C/EBPβ phosphorylation at Thr-188, atrogin1/MAFbx upregulation and muscle mass loss, which were blocked in C/EBPβ-null mice. Conclusions The α and β isoforms of p38 MAPK are capable of recognizing distinct phosphorylation sites in a substrate. The unique capacity of p38β in mediating muscle catabolism is due to its capability in phosphorylating Thr-188 of C/EBPβ.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| | | |
Collapse
|
26
|
Leutz A, Pless O, Lappe M, Dittmar G, Kowenz-Leutz E. Crosstalk between phosphorylation and multi-site arginine/lysine methylation in C/EBPs. Transcription 2012; 2:3-8. [PMID: 21326902 DOI: 10.4161/trns.2.1.13510] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 12/24/2022] Open
Abstract
C/EBPs are implied in an amazing number of cellular functions: C/EBPs regulate tissue and cell type specific gene expression, proliferation, and differentiation control. C/EBPs assist in energy metabolism, female reproduction, innate immunity, inflammation, senescence, and the development of neoplasms. How can C/EBPs fulfill so many functions? Here we discuss that C/EBPs are extensively modified by methylation of arginine and lysine side chains and that regulated methylation profoundly affects the activity of C/EBPs.
Collapse
Affiliation(s)
- Achim Leutz
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | |
Collapse
|
27
|
Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids. Nat Med 2012; 18:235-43. [PMID: 22245780 DOI: 10.1038/nm.2614] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 11/30/2011] [Indexed: 12/25/2022]
Abstract
Adequate lipid secretion by mammary glands during lactation is essential for the survival of mammalian offspring. However, the mechanism governing this process is poorly understood. Here we show that Cidea is expressed at high levels in lactating mammary glands and its deficiency leads to premature pup death as a result of severely reduced milk lipids. Furthermore, the expression of xanthine oxidoreductase (XOR), an essential factor for milk lipid secretion, is markedly lower in Cidea-deficient mammary glands. Conversely, ectopic Cidea expression induces the expression of XOR and enhances lipid secretion in vivo. Unexpectedly, as Cidea has heretofore been thought of as a cytoplasmic protein, we detected it in the nucleus and found it to physically interact with transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) in mammary epithelial cells. We also observed that Cidea induces XOR expression by promoting the association of C/EBPβ onto, and the dissociation of HDAC1 from, the promoter of the Xdh gene encoding XOR. Finally, we found that Fsp27, another CIDE family protein, is detected in the nucleus and interacts with C/EBPβ to regulate expression of a subset of C/EBPβ downstream genes in adipocytes. Thus, Cidea acts as a previously unknown transcriptional coactivator of C/EBPβ in mammary glands to control lipid secretion and pup survival.
Collapse
|
28
|
Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB. Nature 2011; 480:383-6. [PMID: 22080951 DOI: 10.1038/nature10595] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 09/28/2011] [Indexed: 12/22/2022]
Abstract
There is an emerging consensus that gene regulation evolves through changes in cis-regulatory elements and transcription factors. Although it is clear how nucleotide substitutions in cis-regulatory elements affect gene expression, it is not clear how amino-acid substitutions in transcription factors influence gene regulation. Here we show that amino-acid changes in the transcription factor CCAAT/enhancer binding protein-β (CEBPB, also known as C/EBP-β) in the stem-lineage of placental mammals changed the way it responds to cyclic AMP/protein kinase A (cAMP/PKA) signalling. By functionally analysing resurrected ancestral proteins, we identify three amino-acid substitutions in an internal regulatory domain of CEBPB that are responsible for the novel function. These amino-acid substitutions reorganize the location of key phosphorylation sites, introducing a new site and removing two ancestral sites, reversing the response of CEBPB to GSK-3β-mediated phosphorylation from repression to activation. We conclude that changing the response of transcription factors to signalling pathways can be an important mechanism of gene regulatory evolution.
Collapse
|
29
|
|
30
|
3'UTR elements inhibit Ras-induced C/EBPβ post-translational activation and senescence in tumour cells. EMBO J 2011; 30:3714-28. [PMID: 21804532 DOI: 10.1038/emboj.2011.250] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/27/2011] [Indexed: 12/21/2022] Open
Abstract
C/EBPβ is an auto-repressed protein that becomes post-translationally activated by Ras-MEK-ERK signalling. C/EBPβ is required for oncogene-induced senescence (OIS) of primary fibroblasts, but also displays pro-oncogenic functions in many tumour cells. Here, we show that C/EBPβ activation by H-Ras(V12) is suppressed in immortalized/transformed cells, but not in primary cells, by its 3' untranslated region (3'UTR). 3'UTR sequences inhibited Ras-induced cytostatic activity of C/EBPβ, DNA binding, transactivation, phosphorylation, and homodimerization, without significantly affecting protein expression. The 3'UTR suppressed induction of senescence-associated C/EBPβ target genes, while promoting expression of genes linked to cancers and TGFβ signalling. An AU-rich element (ARE) and its cognate RNA-binding protein, HuR, were required for 3'UTR inhibition. These components also excluded the Cebpb mRNA from a perinuclear cytoplasmic region that contains activated ERK1/2, indicating that the site of C/EBPβ translation controls de-repression by Ras signalling. Notably, 3'UTR inhibition and Cebpb mRNA compartmentalization were absent in primary fibroblasts, allowing Ras-induced C/EBPβ activation and OIS to proceed. Our findings reveal a novel mechanism whereby non-coding mRNA sequences selectively regulate C/EBPβ activity and suppress its anti-oncogenic functions.
Collapse
|
31
|
Hong S, Skaist AM, Wheelan SJ, Friedman AD. AP-1 protein induction during monopoiesis favors C/EBP: AP-1 heterodimers over C/EBP homodimerization and stimulates FosB transcription. J Leukoc Biol 2011; 90:643-51. [PMID: 21543584 DOI: 10.1189/jlb.0111043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
AP-1 proteins heterodimerize via their LZ domains to bind TGACGTCA or TGACTCA, whereas C/EBPs dimerize to bind ATTGCGCAAT. We demonstrate that intact C/EBPα also heterodimerizes with c-Jun or c-Fos to bind a hybrid DNA element, TGACGCAA, or more weakly to TGATGCAA. A 2:1 ratio of c-Jun:C/EBPα or c-Fos:C/EBPα was sufficient for preferential binding. Semiquantitative Western blot analysis indicates that the summation of c-Jun, JunB, and c-Fos levels in differentiating myeloid cells is similar to or exceeds the entirety of C/EBPα and C/EBPβ, indicating the feasibility of heterodimer formation. Induction of AP-1 proteins during monocytic differentiation favored formation of C/EBP:AP-1 heterodimers, with C/EBPα homodimers more evident during granulopoiesis. Approximately 350 human and 300 murine genes contain the TGACGCAA motif between -2 kb and +1 kb of their transcription start sites. We focused on the murine Fosb promoter, which contains a C/EBP:AP-1 cis element at -56 and -253, with the hFOSB gene containing an identical site at -253 and a 1-bp mismatch at -56. C/EBPα:AP-1 heterodimers bound either site preferentially in a gel-shift assay, C/EBPα:c-Fos ER fusion proteins induced endogenous Fosb mRNA but not in the presence of CHX, C/EBP and AP-1 proteins bound the endogenous Fosb promoter, mutation of the -56 cis element reduced reporter activity fivefold, and endogenous FosB protein was expressed preferentially during monopoiesis versus granulopoiesis. Increased expression of Jun/Fos proteins elevates C/EBP:AP-1 heterodimer formation to potentially activate novel sets of genes during monopoiesis and potentially during other biologic processes.
Collapse
Affiliation(s)
- SunHwa Hong
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
32
|
Abdou HS, Atlas E, Haché RJG. Liver-enriched inhibitory protein (LIP) actively inhibits preadipocyte differentiation through histone deacetylase 1 (HDAC1). J Biol Chem 2011; 286:21488-99. [PMID: 21521687 DOI: 10.1074/jbc.m110.211540] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCAAT/enhancer-binding protein β (C/EBPβ) is expressed as three isoforms (LAP*, liver-enriched activating protein (LAP), and liver-enriched inhibitory protein (LIP)) that differentially regulate gene expression. The interplay between LAP*, LAP, and LIP in regulating cellular processes is largely unknown, and LIP has been largely regarded to repress transcription through a passive heterodimerization-dependent mechanism. Recently, we have shown that p300/GCN5 and mSin3A/HDAC1 differentially regulate the ability of C/EBPβ to stimulate preadipocyte differentiation through activation of C/ebpα transcription. Here, we have mapped requirements for binding of mSin3A/HDAC1 to LAP/LAP* and LIP to a 4-amino acid motif in the central region of LAP/LAP* (residues 153-156) and the N terminus of LIP. Reducing mSin3A/HDAC1 binding to LAP/LAP* and LIP through deletion of this motif reduced the recruitment of HDAC1 to the C/ebpα promoter and increased preadipocyte differentiation stimulated by insulin and 1-methyl-3-isobutylxanthine. Additional studies showed that the interaction of HDAC1 with LIP provides for active repression of C/ebpα transcription and is largely responsible for the ability of LIP and HDAC1 to repress preadipocyte differentiation. Thus, although mSin3A/HDAC1 interacted readily with LAP/LAP* in addition to LIP and that expression of LAP/LAP* was sufficient to recruit HDAC1 to the C/ebpα promoter, mutations in C/ebpβ that abrogated HDAC1 association to LAP/LAP* in the absence of LIP provided no additional stimulation of differentiation or transcription beyond the deletion of LIP alone. The implication of these results for the interaction between p300/GCN5 and mSin3A/HDAC1 in regulating C/EBPα transcription and preadipocyte differentiation are discussed.
Collapse
Affiliation(s)
- Houssein-Salem Abdou
- Graduate Program in Biochemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | | |
Collapse
|
33
|
Abstract
Conserved upstream open reading frames (uORFs) are found within many eukaryotic transcripts and are known to regulate protein translation. Evidence from genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of human diseases. A genetic mouse model has recently provided proof-of-principle support for the physiological relevance of uORF-mediated translational control in mammals. The targeted disruption of the uORF initiation codon within the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) gene resulted in deregulated C/EBPβ protein isoform expression, associated with defective liver regeneration and impaired osteoclast differentiation. The high prevalence of uORFs in the human transcriptome suggests that intensified search for mutations within 5' RNA leader regions may reveal a multitude of alterations affecting uORFs, causing pathogenic deregulation of protein expression.
Collapse
Affiliation(s)
- Klaus Wethmar
- Max Delbrueck Center for Molecular MedicineBerlin, Germany
- Charité, University Medicine BerlinGermany
| | - Jeske J Smink
- Max Delbrueck Center for Molecular MedicineBerlin, Germany
| | - Achim Leutz
- Max Delbrueck Center for Molecular MedicineBerlin, Germany
| |
Collapse
|