1
|
Wofford W, Kim J, Kim D, Janneh AH, Lee HG, Atilgan FC, Oleinik N, Kassir MF, Saatci O, Chakraborty P, Tokat UM, Gencer S, Howley B, Howe P, Mehrotra S, Sahin O, Ogretmen B. Alterations of ceramide synthesis induce PD-L1 internalization and signaling to regulate tumor metastasis and immunotherapy response. Cell Rep 2024; 43:114532. [PMID: 39046874 PMCID: PMC11404065 DOI: 10.1016/j.celrep.2024.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Programmed death ligand 1, PD-L1 (CD274), facilitates immune evasion and exerts pro-survival functions in cancer cells. Here, we report a mechanism whereby internalization of PD-L1 in response to alterations of bioactive lipid/ceramide metabolism by ceramide synthase 4 (CerS4) induces sonic hedgehog (Shh) and transforming growth factor β receptor signaling to enhance tumor metastasis in triple-negative breast cancers (TNBCs), exhibiting immunotherapy resistance. Mechanistically, data showed that internalized PD-L1 interacts with an RNA-binding protein, caprin-1, to stabilize Shh/TGFBR1/Wnt mRNAs to induce β-catenin signaling and TNBC growth/metastasis, consistent with increased infiltration of FoxP3+ regulatory T cells and resistance to immunotherapy. While mammary tumors developed in MMTV-PyMT/CerS4-/- were highly metastatic, targeting the Shh/PD-L1 axis using sonidegib and anti-PD-L1 antibody vastly decreased tumor growth and metastasis, consistent with the inhibition of PD-L1 internalization and Shh/Wnt signaling, restoring anti-tumor immune response. These data, validated in clinical samples and databases, provide a mechanism-based therapeutic strategy to improve immunotherapy responses in metastatic TNBCs.
Collapse
Affiliation(s)
- Wyatt Wofford
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Jisun Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Dosung Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Alhaji H Janneh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Han Gyul Lee
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - F Cansu Atilgan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Unal Metin Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Salih Gencer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Istanbul Medipol University, Health Science and Technologies Research Institute (SABİTA), Cancer Research Center, Istanbul, Turkey
| | - Breege Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Philip Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
3
|
Zhu Q, Wang Y, Liu Y, Yang X, Shuai Z. Prostate transmembrane androgen inducible protein 1 (PMEPA1): regulation and clinical implications. Front Oncol 2023; 13:1298660. [PMID: 38173834 PMCID: PMC10761476 DOI: 10.3389/fonc.2023.1298660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Prostate transmembrane androgen inducible protein 1 (PMEPA1) can promote or inhibit prostate cancer cell growth based on the cancer cell response to the androgen receptor (AR). Further, it can be upregulated by transforming growth factor (TGF), which downregulates transforming growth factor-β (TGF-β) signaling by interfering with R-Smad phosphorylation to facilitate TGF-β receptor degradation. Studies have indicated the increased expression of PMEPA1 in some solid tumors and its functioning as a regulator of multiple signaling pathways. This review highlights the multiple potential signaling pathways associated with PMEPA1 and the role of the PMEPA1 gene in regulating prognosis, including transcriptional regulation and epithelial mesenchymal transition (EMT). Moreover, the relevant implications in and outside tumors, for example, as a biomarker and its potential functions in lysosomes have also been discussed.
Collapse
Affiliation(s)
- Qicui Zhu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yaqian Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| |
Collapse
|
4
|
Wang Y, Sun Z, He Q, Li J, Ni M, Yang M. Self-supervised graph representation learning integrates multiple molecular networks and decodes gene-disease relationships. PATTERNS (NEW YORK, N.Y.) 2022; 4:100651. [PMID: 36699743 PMCID: PMC9868676 DOI: 10.1016/j.patter.2022.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/19/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Leveraging molecular networks to discover disease-relevant modules is a long-standing challenge. With the accumulation of interactomes, there is a pressing need for powerful computational approaches to handle the inevitable noise and context-specific nature of biological networks. Here, we introduce Graphene, a two-step self-supervised representation learning framework tailored to concisely integrate multiple molecular networks and adapted to gene functional analysis via downstream re-training. In practice, we first leverage GNN (graph neural network) pre-training techniques to obtain initial node embeddings followed by re-training Graphene using a graph attention architecture, achieving superior performance over competing methods for pathway gene recovery, disease gene reprioritization, and comorbidity prediction. Graphene successfully recapitulates tissue-specific gene expression across disease spectrum and demonstrates shared heritability of common mental disorders. Graphene can be updated with new interactomes or other omics features. Graphene holds promise to decipher gene function under network context and refine GWAS (genome-wide association study) hits and offers mechanistic insights via decoding diseases from genome to networks to phenotypes.
Collapse
Affiliation(s)
- Yi Wang
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Zijun Sun
- Computer Center, Peking University, Beijing, China
| | | | - Jiwei Li
- Department of Computer Science, Zhejiang University, Hangzhou, China
| | - Ming Ni
- MGI, BGI-Shenzhen, Shenzhen, China
- MGI-QingDao, BGI-Shenzhen, Qingdao, China
| | - Meng Yang
- MGI, BGI-Shenzhen, Shenzhen, China
- Corresponding author
| |
Collapse
|
5
|
Qiu D, Hu J, Hu J, Yu A, Othmane B, He T, Ding J, Cheng X, Ren W, Tan X, Yu Q, Chen J, Zu X. PMEPA1 Is a Prognostic Biomarker That Correlates With Cell Malignancy and the Tumor Microenvironment in Bladder Cancer. Front Immunol 2021; 12:705086. [PMID: 34777336 PMCID: PMC8582246 DOI: 10.3389/fimmu.2021.705086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate transmembrane protein androgen induced 1 (PMEPA1) has been reported to promote cancer progression, but the potential role of PMEPA1 in bladder cancer (BLCA) remains elusive. We assess the role of PMEPA1 in BLCA, via a publicly available database and in vitro study. PMEPA1 was identified from 107 differentially expressed genes (DEGs) to have prognostic value. GO, KEGG, and GSEA analysis indicated that PMEPA1 was involved in cancer progression and the tumor microenvironment (TME). Then bioinformatical analysis in TCGA, GEO, TIMER, and TISIDB show a positive correlation with the inflammation and infiltration levels of three tumor-infiltrating immune cells (TAMs, CAFs, and MDSCs) and immune/stromal scores in TME. Moreover, in vitro study revealed that PMEPA1 promotes bladder cancer cell malignancy. Immunohistochemistry and survival analysis shed light on PMEPA1 potential to be a novel biomarker in predicting tumor progression and prognosis. At last, we also analyzed the role of PMEPA1 in predicting the molecular subtype and the response to several treatment options in BLCA. We found that PMEPA1 may be a novel potential biomarker to predict the progression, prognosis, and molecular subtype of BLCA.
Collapse
Affiliation(s)
- Dongxu Qiu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Anze Yu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX, United States
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Tongchen He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ding
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xu Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Institute for Infection Prevention and Hospital Epidemiology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Wenbiao Ren
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,George Whipple Lab for Cancer Research, Departments of Pathology and Urology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Xiyan Tan
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoyan Yu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
PMEPA1/TMEPAI Is a Unique Tumorigenic Activator of AKT Promoting Proteasomal Degradation of PHLPP1 in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13194934. [PMID: 34638419 PMCID: PMC8508116 DOI: 10.3390/cancers13194934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Transmembrane prostate androgen-induced protein (TMEPAI), also known as PMEPA1, is highly expressed in many types of cancer and promotes oncogenic abilities. However, the mechanisms whereby TMEPAI facilitates tumorigenesis are not fully understood. We previously established TMEPAI-knockout (KO) cells from human triple-negative breast cancer (TNBC) cell lines and found that TMEPAI-KO cells showed reduced tumorigenic abilities. Here, we report that TMEPAI-KO cells upregulated the expression of pleckstrin homology (PH) domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) and suppressed AKT Ser473 phosphorylation, which was consistent with TCGA dataset analysis. Additionally, the knockdown (KD) of PHLPP1 in TMEPAI-KO cells partially but significantly rescued AKT Ser473 phosphorylation, as well as in vitro and in vivo tumorigenic activities, thus showing that TMEPAI functions as an oncogenic protein through the regulation of PHLPP1 subsequent to AKT activation. Furthermore, we demonstrated that TMEPAI PPxY (PY) motifs are essential for binding to NEDD4-2, an E3 ubiquitin ligase, and PHLPP1-downregulatory ability. Moreover, TMEPAI enhanced the complex formation of PHLPP1 with NEDD4-2 and PHLPP1 polyubiquitination, which leads to its proteasomal degradation. These findings indicate that the PY motifs of TMEPAI suppress the amount of PHLPP1 and maintain AKT Ser473 phosphorylation at high levels to enhance the tumorigenic potentiality of TNBC.
Collapse
|
7
|
Lin C, Xin S, Huang X, Zhang F. PTPRA facilitates cancer growth and migration via the TNF-α-mediated PTPRA-NF-κB pathway in MCF-7 breast cancer cells. Oncol Lett 2020; 20:131. [PMID: 32934700 PMCID: PMC7471670 DOI: 10.3892/ol.2020.11992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/20/2020] [Indexed: 02/05/2023] Open
Abstract
Protein tyrosine phosphatase receptor type A (PTPRA), one of the classic protein tyrosine phosphatases, is crucial for modulating tumorigenesis and metastasis in breast cancer; however, its functional mechanism has not fully elucidated. The present study assessed PTPRA expression and estimated its clinical impact on survival using the Gene Expression Profiling Interactive Analysis database (GEPIA). Growth curves, colony formations and Transwell assays were utilized to examine cell proliferation and migration. Additionally, luciferase reporter assays were used to examine the potential tumor signaling pathways targeted by PTPRA in HEK293T cells. Furthermore, quantitative PCR (qPCR) was utilized to confirm the transcriptional regulation of PTPRA expression. Bioinformatic analyses of data from GEPIA identified PTPRA overexpression in patients with breast cancer. The growth curve, colony formation and transwell experiments demonstrated that PTPRA upregulation significantly promoted the cell proliferation and migration of MCF-7 breast cancer cells. In contrast, PTPRA knockdown significantly attenuated cell proliferation and migration. Mechanistic experiments revealed that the transcriptional activity of NF-κB was higher compared with other classic tumor pathways when they were activated by PTPRA in HEK293T cells. Furthermore, the transcriptional activity of NF-κB was altered in a PTPRA-dose-dependent manner. Additionally, following exposure to TNF-α, PTPRA-deficient MCF-7 cells exhibited lower NF-κB transcriptional activity compared with normal control cells. The results of the present study demonstrate that PTPRA overexpression accelerates inflammatory tumor phenotypes in breast cancer and that the TNF-α-mediated PTPRA-NF-κB pathway may offer novel insight into early diagnosis and optimum treatment for breast cancer.
Collapse
Affiliation(s)
- Canfeng Lin
- Department of Oncology, Shantou Central Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shubo Xin
- Department of Pharmacy, Shantou Central Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xiaoguang Huang
- Department of Oncology, Shantou Central Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Feiran Zhang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Feiran Zhang, Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
8
|
Karve K, Netherton S, Deng L, Bonni A, Bonni S. Regulation of epithelial-mesenchymal transition and organoid morphogenesis by a novel TGFβ-TCF7L2 isoform-specific signaling pathway. Cell Death Dis 2020; 11:704. [PMID: 32843642 PMCID: PMC7447769 DOI: 10.1038/s41419-020-02905-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022]
Abstract
Alternative splicing contributes to diversification of gene function, yet consequences of splicing on functions of specific gene products is poorly understood. The major transcription factor TCF7L2 undergoes alternative splicing but the biological significance of TCF7L2 isoforms has remained largely to be elucidated. Here, we find that the TCF7L2 E-isoforms maintain, whereas the M and S isoforms disrupt morphogenesis of 3D-epithelial cell-derived organoids via regulation of epithelial-mesenchymal transition (EMT). Remarkably, TCF7L2E2 antagonizes, whereas TCF7L2M2/S2 promotes EMT-like effects in epithelial cells induced by transforming growth factor beta (TGFβ) signaling. In addition, we find TGFβ signaling reduces the proportion of TCF7L2E to TCF7L2M/S protein in cells undergoing EMT. We also find that TCF7L2 operates via TGFβ-Smad3 signaling to regulate EMT. Collectively, our findings unveil novel isoform-specific functions for the major transcription factor TCF7L2 and provide novel links between TCF7L2 and TGFβ signaling in the control of EMT-like responses and epithelial tissue morphogenesis.
Collapse
Affiliation(s)
- Kunal Karve
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stuart Netherton
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lili Deng
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Sharad S, Dobi A, Srivastava S, Srinivasan A, Li H. PMEPA1 Gene Isoforms: A Potential Biomarker and Therapeutic Target in Prostate Cancer. Biomolecules 2020; 10:biom10091221. [PMID: 32842649 PMCID: PMC7565192 DOI: 10.3390/biom10091221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
The identification of prostate transmembrane protein androgen induced 1 (PMEPA1), an androgen responsive gene, came initially from the studies of androgen regulatory gene networks in prostate cancer. It was soon followed by the documentation of the expression and functional analysis of transmembrane prostate androgen-induced protein (TMEPAI)/PMEPA1 in other solid tumors including renal, colon, breast, lung, and ovarian cancers. Further elucidation of PMEPA1 gene expression and sequence analysis revealed the presence of five isoforms with distinct extracellular domains (isoforms a, b, c, d, and e). Notably, the predicted amino acid sequences of PMEPA1 isoforms show differences at the N-termini, a conserved membrane spanning and cytoplasmic domains. PMEPA1 serves as an essential regulator of multiple signaling pathways including androgen and TGF-β signaling in solid tumors. Structure-function studies indicate that specific motifs present in the cytoplasmic domain (PY, SIM, SH3, and WW binding domains) are utilized to mediate isoform-specific functions through interactions with other proteins. The understanding of the “division of labor” paradigm exhibited by PMEPA1 isoforms further expands our knowledge of gene’s multiple functions in tumorigenesis. In this review, we aim to summarize the most recent advances in understanding of PMEPA1 isoform-specific functions and their associations with prostate cancer progression, highlighting the potentials as biomarker and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| | - Albert Dobi
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Hua Li
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| |
Collapse
|
10
|
Nakano N, Sakata N, Katsu Y, Nochise D, Sato E, Takahashi Y, Yamaguchi S, Haga Y, Ikeno S, Motizuki M, Sano K, Yamasaki K, Miyazawa K, Itoh S. Dissociation of the AhR/ARNT complex by TGF-β/Smad signaling represses CYP1A1 gene expression and inhibits benze[a]pyrene-mediated cytotoxicity. J Biol Chem 2020; 295:9033-9051. [PMID: 32409577 PMCID: PMC7335805 DOI: 10.1074/jbc.ra120.013596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 1A1 (CYP1A1) catalyzes the metabolic activation of polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P) and is transcriptionally regulated by the aryl hydrocarbon receptor (AhR)/AhR nuclear translocator (ARNT) complex upon exposure to PAHs. Accordingly, inhibition of CYP1A1 expression reduces production of carcinogens from PAHs. Although transcription of the CYP1A1 gene is known to be repressed by transforming growth factor-β (TGF-β), how TGF-β signaling is involved in the suppression of CYP1A1 gene expression has yet to be clarified. In this study, using mammalian cell lines, along with shRNA-mediated gene silencing, CRISPR/Cas9-based genome editing, and reporter gene and quantitative RT-PCR assays, we found that TGF-β signaling dissociates the B[a]P-mediated AhR/ARNT heteromeric complex. Among the examined Smads, Smad family member 3 (Smad3) strongly interacted with both AhR and ARNT via its MH2 domain. Moreover, hypoxia-inducible factor 1α (HIF-1α), which is stabilized upon TGF-β stimulation, also inhibited AhR/ARNT complex formation in the presence of B[a]P. Thus, TGF-β signaling negatively regulated the transcription of the CYP1A1 gene in at least two different ways. Of note, TGF-β abrogated DNA damage in B[a]P-exposed cells. We therefore conclude that TGF-β may protect cells against carcinogenesis because it inhibits CYP1A1-mediated metabolic activation of PAHs as part of its anti-tumorigenic activities.
Collapse
Affiliation(s)
- Naoko Nakano
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Nobuo Sakata
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Yuki Katsu
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Daiki Nochise
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Erika Sato
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Yuta Takahashi
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Saori Yamaguchi
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Yoko Haga
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Souichi Ikeno
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Mitsuyoshi Motizuki
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keigo Sano
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Kohei Yamasaki
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan.
| |
Collapse
|
11
|
Puteri MU, Watanabe Y, Wardhani BWK, Amalia R, Abdelaziz M, Kato M. PMEPA1/TMEPAI isoforms function via its PY and Smad-interaction motifs for tumorigenic activities of breast cancer cells. Genes Cells 2020; 25:375-390. [PMID: 32181976 DOI: 10.1111/gtc.12766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
PMEPA1 (prostate transmembrane protein, androgen-induced 1)/TMEPAI (transmembrane prostate androgen-induced protein) is highly expressed in diverse cancers, including breast, lung and prostate cancers. It consists of four isoforms with distinct extracellular regions (isoforms a-d). The expression and function of these isoforms are still poorly understood. Hence, we aimed to identify the preferentially expressed isoforms in breast cancer cells and analyze possible differences in tumorigenic functions. In this study, we used 5' Rapid Amplification of cDNA Ends (RACE) and Western blot analyses to identify the mRNA variants and protein isoforms of TMEPAI and found that TMEPAI isoform d as the major isoform expressed by TGF-β stimulation in breast cancer cells. We then generated CRISPR/Cas9-mediated TMEPAI knockout (KO) breast cancer cell lines and used a lentiviral expression system to complement each isoform individually. Although there were no clear functional differences between isoforms, double PPxY (PY) motifs and a Smad-interaction motif (SIM) of TMEPAI were both essential for colony and sphere formation. Collectively, our results provide a novel insight into TMEPAI isoforms in breast cancer cells and showed that coordination between double PY motifs and a SIM of TMEPAI are essential for colony and sphere formation but not for monolayer cell proliferation.
Collapse
Affiliation(s)
- Meidi U Puteri
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Bantari W K Wardhani
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctoral Program in Biomedicine, Faculty of Medicine, Universitas Indonesia, Jakarta Pusat, Indonesia
| | - Riezki Amalia
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Jawa Barat, Indonesia
| | - Mohammed Abdelaziz
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Pathology, Faculty of Medicine, Sohag University, Nasr City, Egypt
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
12
|
Sharad S, Dillman AA, Sztupinszki ZM, Szallasi Z, Rosner I, Cullen J, Srivastava S, Srinivasan A, Li H. Characterization of unique PMEPA1 gene splice variants (isoforms d and e) from RNA Seq profiling provides novel insights into prognostic evaluation of prostate cancer. Oncotarget 2020; 11:362-377. [PMID: 32064040 PMCID: PMC6996919 DOI: 10.18632/oncotarget.27406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer is a disease with heterogeneity of multiple gene transcriptomes and biological signaling pathways involved in tumor development. The prostate transmembrane protein, androgen induced 1 (PMEPA1), a multifunctional protein played critical roles in prostate tumorigenesis. The pleiotropic nature of PMEPA1 in modulating androgen and TGF-β signaling as well as splice variants mechanisms for functional regulations of cancer-associated genes prompted us to investigate the biological roles of PMEPA1 isoforms in prostate cancer. In addition to 4 reported PMEPA1 isoforms (a, b, c and d), one novel isoform PMEPA1-e was identified with RNA Seq analysis of hormone responsive VCaP, LNCaP cells and human prostate cancer samples from The Cancer Genome Atlas (TCGA) dataset. We analyzed the structures, expressions, biological functions and clinical relevance of PMEPA1-e isoform and less characterized isoforms c and d in the context of prostate cancer and AR/TGF-β signaling. The expression of PMEPA1-e was induced by androgen and AR. In contrast, PMEPA1-d was responsive to TGF-β and inhibited TGF-β signaling. Both PMEPA1-d and PMPEA1-e promoted the growth of androgen independent prostate cancer cells. Although PMEPA1-c was responsive to TGF-β, it was found to have no impacts on cell growth and androgen/TGF-β signaling. The TCGA data analysis from 499 patients showed higher expression ratios of PMEAP1-b versus -d or -e strongly associated with enhanced Gleason score. Taken together, our findings first time defined the prostate tumorigenesis mediated by PMEPA1-d and -e isoforms, providing novel insights into the new strategies for prognostic evaluation and therapeutics of prostate tumor.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA.,These authors contributed equally to this work
| | - Allissa Amanda Dillman
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA
| | | | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark.,Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.,SE-NAP Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, Budapest, 1085, Hungary
| | - Inger Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Urology Service, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,These authors contributed equally to this work
| |
Collapse
|
13
|
Contreras O, Soliman H, Theret M, Rossi FMV, Brandan E. TGF-β-driven downregulation of the Wnt/β-Catenin transcription factor TCF7L2/TCF4 in PDGFRα+ fibroblasts. J Cell Sci 2020; 133:jcs.242297. [DOI: 10.1242/jcs.242297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent progenitors essential for organogenesis, tissue homeostasis, regeneration, and scar formation. Tissue injury upregulates TGF-β signaling, which modulates myofibroblast fate, extracellular matrix remodeling, and fibrosis. However, the molecular determinants of MSCs differentiation and survival remain poorly understood. The canonical Wnt Tcf/Lef transcription factors regulate development and stemness, but the mechanisms by which injury-induced cues modulate their expression remain underexplored. Here, we studied the cell-specific gene expression of Tcf/Lef and, more specifically, we investigated whether damage-induced TGF-β impairs the expression and function of TCF7L2, using several models of MSCs, including skeletal muscle fibro-adipogenic progenitors. We show that Tcf/Lefs are differentially expressed and that TGF-β reduces the expression of TCF7L2 in MSCs but not in myoblasts. We also found that the ubiquitin-proteasome system regulates TCF7L2 proteostasis and participates in TGF-β-mediated TCF7L2 protein downregulation. Finally, we show that TGF-β requires HDACs activity to repress the expression of TCF7L2. Thus, our work found a novel interplay between TGF-β and Wnt canonical signaling cascades in PDGFRα+ fibroblasts and suggests that this mechanism could be targeted in tissue repair and regeneration.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
- Present address: Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Hesham Soliman
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
- Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Marine Theret
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
- Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
14
|
Jiménez-Segovia A, Mota A, Rojo-Sebastián A, Barrocal B, Rynne-Vidal A, García-Bermejo ML, Gómez-Bris R, Hawinkels LJAC, Sandoval P, Garcia-Escudero R, López-Cabrera M, Moreno-Bueno G, Fresno M, Stamatakis K. Prostaglandin F 2α-induced Prostate Transmembrane Protein, Androgen Induced 1 mediates ovarian cancer progression increasing epithelial plasticity. Neoplasia 2019; 21:1073-1084. [PMID: 31734628 PMCID: PMC6888713 DOI: 10.1016/j.neo.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 10/29/2022] Open
Abstract
The role of prostaglandin (PG) F2α has been scarcely studied in cancer. We have identified a new function for PGF2α in ovarian cancer, stimulating the production of Prostate Transmembrane Protein, Androgen Induced 1 (PMEPA1). We show that this induction increases cell plasticity and proliferation, enhancing tumor growth through PMEPA1. Thus, PMEPA1 overexpression in ovarian carcinoma cells, significantly increased cell proliferation rates, whereas PMEPA1 silencing decreased proliferation. In addition, PMEPA1 overexpression buffered TGFβ signaling, via reduction of SMAD-dependent signaling. PMEPA1 overexpressing cells acquired an epithelial morphology, associated with higher E-cadherin expression levels while β-catenin nuclear translocation was inhibited. Notwithstanding, high PMEPA1 levels also correlated with epithelial to mesenchymal transition markers, such as vimentin and ZEB1, allowing the cells to take advantage of both epithelial and mesenchymal characteristics, gaining in cell plasticity and adaptability. Interestingly, in mouse xenografts, PMEPA1 overexpressing ovarian cells had a clear survival and proliferative advantage, resulting in higher metastatic capacity, while PMEPA1 silencing had the opposite effect. Furthermore, high PMEPA1 expression in a cohort of advanced ovarian cancer patients was observed, correlating with E-cadherin expression. Most importantly, high PMEPA1 mRNA levels were associated with lower patient survival.
Collapse
Affiliation(s)
- Alba Jiménez-Segovia
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Alba Mota
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, Madrid, Spain; MD Anderson Cancer Center Madrid & Fundación MD Anderson Internacional, Madrid, Spain
| | - Alejandro Rojo-Sebastián
- MD Anderson Cancer Center Madrid & Fundación MD Anderson Internacional, Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Beatriz Barrocal
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Angela Rynne-Vidal
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - María-Laura García-Bermejo
- Biomarkers and Therapeutic Targets Lab, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Raquel Gómez-Bris
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Pilar Sandoval
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ramon Garcia-Escudero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Molecular Oncology Unit, CIEMAT, Madrid, Spain; Biomedical Research Institute I+12, University Hospital 12 de Octubre, Madrid 28041, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, Madrid, Spain; MD Anderson Cancer Center Madrid & Fundación MD Anderson Internacional, Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Manuel Fresno
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain; Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IIS-P), Madrid, Spain.
| | - Konstantinos Stamatakis
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), c/ Nicolás Cabrera, 1, Campus Cantoblanco, Universidad Autónoma de Madrid, Madrid 28049, Spain; Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IIS-P), Madrid, Spain.
| |
Collapse
|
15
|
Itoh Y, Koinuma D, Omata C, Ogami T, Motizuki M, Yaguchi SI, Itoh T, Miyake K, Tsutsumi S, Aburatani H, Saitoh M, Miyazono K, Miyazawa K. A comparative analysis of Smad-responsive motifs identifies multiple regulatory inputs for TGF-β transcriptional activation. J Biol Chem 2019; 294:15466-15479. [PMID: 31481467 DOI: 10.1074/jbc.ra119.009877] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Smad proteins are transcriptional regulators activated by TGF-β. They are known to bind to two distinct Smad-responsive motifs, namely the Smad-binding element (SBE) (5'-GTCTAGAC-3') and CAGA motifs (5'-AGCCAGACA-3' or 5'-TGTCTGGCT-3'). However, the mechanisms by which these motifs promote Smad activity are not fully elucidated. In this study, we performed DNA CASTing, binding assays, ChIP sequencing, and quantitative RT-PCR to dissect the details of Smad binding and function of the SBE and CAGA motifs. We observed a preference for Smad3 to bind CAGA motifs and Smad4 to bind SBE, and that either one SBE or a triple-CAGA motif forms a cis-acting functional half-unit for Smad-dependent transcription activation; combining two half-units allows efficient activation. Unexpectedly, the extent of Smad binding did not directly correlate with the abilities of Smad-binding sequences to induce gene expression. We found that Smad proteins are more tolerant of single bp mutations in the context of the CAGA motifs, with any mutation in the SBE disrupting function. CAGA and CAGA-like motifs but not SBE are widely distributed among stimulus-dependent Smad2/3-binding sites in normal murine mammary gland epithelial cells, and the number of CAGA and CAGA-like motifs correlates with fold-induction of target gene expression by TGF-β. These data, demonstrating Smad responsiveness can be tuned by both sequence and number of repeats, provide a compelling explanation for why CAGA motifs are predominantly used for Smad-dependent transcription activation in vivo.
Collapse
Affiliation(s)
- Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Chiho Omata
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Tomohiro Ogami
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mitsuyoshi Motizuki
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - So-Ichi Yaguchi
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Takuma Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan.,Research Training Program for Undergraduates, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kunio Miyake
- Department of Social Medicine, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Masao Saitoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan.,Center for Medical Education and Science, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
16
|
Abdelaziz M, Watanabe Y, Kato M. PMEPA1/TMEPAI knockout impairs tumour growth and lung metastasis in MDA-MB-231 cells without changing monolayer culture cell growth. J Biochem 2019; 165:411-414. [PMID: 30873542 DOI: 10.1093/jb/mvz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/13/2019] [Indexed: 11/14/2022] Open
Abstract
Prostate transmembrane protein androgen-induced 1 (PMEPA1)/transmembrane prostate androgen-induced protein (TMEPAI), a direct target and a negative regulator of transforming growth factor beta signalling, has an oncogenic role in many cancers. We observed that knockout (KO) of PMEPA1 in human breast cancer cell line MDA-MB-231 using a CRISPR-Cas9 system resulted in reduction of in vivo tumour growth and lung metastasis but not of in vitro monolayer growth capacity of these KO cell lines. This phenomenon was associated with PMEPA1 KO-mediated downregulation of the key proangiogenic factors vascular endothelial growth factor alpha (VEGFA) and interleukin-8 (IL8) that are essential for in vivo but not in vitro growing cells and are also substantial for initiation of lung metastasis.
Collapse
Affiliation(s)
- Mohammed Abdelaziz
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.,Department of Pathology, Faculty of Medicine, Sohag University, Nasr City, Eastern Avenue, Sohag, Egypt
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
17
|
Bastías-Candia S, Martínez M, Zolezzi JM, Inestrosa NC. Wnt Signaling Upregulates Teneurin-3 Expression via Canonical and Non-canonical Wnt Pathway Crosstalk. Front Neurosci 2019; 13:505. [PMID: 31156379 PMCID: PMC6534050 DOI: 10.3389/fnins.2019.00505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/02/2019] [Indexed: 01/09/2023] Open
Abstract
Teneurins (Tens) are a highly conserved family of proteins necessary for cell-cell adhesion. Tens can be cleaved, and some of their proteolytic products, such as the teneurin c-terminal associated-peptide (TCAP) and the intracellular domain (ICD), have been demonstrated to be biologically active. Although Tens are considered critical for central nervous system development, they have also been demonstrated to play important roles in adult tissues, suggesting a potential link between their deregulation and various pathological processes, including neurodegeneration and cancer. However, knowledge regarding how Ten expression is modulated is almost absent. Relevantly, the functions of Tens resemble several of the effects of canonical and non-canonical Wnt pathway activation, including the effects of the Wnt pathways on neuronal development and function as well as their pivotal roles during carcinogenesis. Accordingly, in this initial study, we decided to evaluate whether Wnt signaling can modulate the expression of Tens. Remarkably, in the present work, we used a specific inhibitor of porcupine, the key enzyme for Wnt ligand secretion, to not only demonstrate the involvement of Wnt signaling in regulating Ten-3 expression for the first time but also reveal that Wnt3a, a canonical Wnt ligand, increases the expression of Ten-3 through a mechanism dependent on the secretion and activity of the non-canonical ligand Wnt5a. Although our work raises several new questions, our findings seem to demonstrate the upregulation of Ten-3 by Wnt signaling and also suggest that Ten-3 modulation is possible because of crosstalk between the canonical and non-canonical Wnt pathways.
Collapse
Affiliation(s)
- Sussy Bastías-Candia
- Basal Center for Aging and Regeneration, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center of Excellence of Biomedicine of Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Milka Martínez
- Basal Center for Aging and Regeneration, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Basal Center for Aging and Regeneration, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center of Excellence of Biomedicine of Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Basal Center for Aging and Regeneration, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center of Excellence of Biomedicine of Magallanes, Universidad de Magallanes, Punta Arenas, Chile.,School of Psychiatry, Centre for Healthy Brain Ageing, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Amalia R, Abdelaziz M, Puteri MU, Hwang J, Anwar F, Watanabe Y, Kato M. TMEPAI/PMEPA1 inhibits Wnt signaling by regulating β-catenin stability and nuclear accumulation in triple negative breast cancer cells. Cell Signal 2019; 59:24-33. [PMID: 30890370 DOI: 10.1016/j.cellsig.2019.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 11/17/2022]
Abstract
Transmembrane prostate androgen-induced protein (TMEPAI) is a type I transmembrane protein induced by several intracellular signaling pathways such as androgen, TGF-β, EGF, and Wnt signaling. It has been reported that TMEPAI functions to suppress TGF-β and androgen signaling but here, we report a novel function of TMEPAI in Wnt signaling suppression. First, we show that TMEPAI significantly inhibits TCF/LEF transcriptional activity stimulated by Wnt3A, LiCl, and β-catenin. Mechanistically, TMEPAI overexpression prevented β-catenin accumulation in the nucleus and TMEPAI knockout in triple negative breast cancer cell lines promoted β-catenin stability and nuclear accumulation together with increased mRNA levels of Wnt target genes AXIN2 and c-MYC. The presence of TGF-β type I receptor kinase inhibitor did not affect the enhanced mRNA expression of AXIN2 in TMEPAI knockout cells. These data suggest that TMEPAI suppresses Wnt signaling by interfering with β-catenin stability and nuclear translocation in a TGF-β signaling-independent manner.
Collapse
Affiliation(s)
- Riezki Amalia
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM. 21, Jatinangor, Jawa Barat 45-363, Indonesia
| | - Mohammed Abdelaziz
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Pathology, Faculty of Medicine, Sohag University, Nasr City, Eastern Avenue, Sohag 82749, Egypt
| | - Meidi Utami Puteri
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Jongchan Hwang
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Femmi Anwar
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM. 21, Jatinangor, Jawa Barat 45-363, Indonesia
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
19
|
Ikeno S, Nakano N, Sano K, Minowa T, Sato W, Akatsu R, Sakata N, Hanagata N, Fujii M, Itoh F, Itoh S. PDZK1-interacting protein 1 (PDZK1IP1) traps Smad4 protein and suppresses transforming growth factor-β (TGF-β) signaling. J Biol Chem 2019; 294:4966-4980. [PMID: 30718277 DOI: 10.1074/jbc.ra118.004153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/27/2018] [Indexed: 01/10/2023] Open
Abstract
Transforming growth factor (TGF)-β signaling in humans is stringently regulated to prevent excessive TGF-β signaling. In tumors, TGF-β signaling can both negatively and positively regulate tumorigenesis dependent on tumor type, but the reason for these opposite effects is unclear. TGF-β signaling is mainly mediated via the Smad-dependent pathway, and herein we found that PDZK1-interacting protein 1 (PDZK1IP1) interacts with Smad4. PDZK1IP1 inhibited both the TGF-β and the bone morphogenetic protein (BMP) pathways without affecting receptor-regulated Smad (R-Smad) phosphorylation. Rather than targeting R-Smad phosphorylation, PDZK1IP1 could interfere with TGF-β- and BMP-induced R-Smad/Smad4 complex formation. Of note, PDZK1IP1 retained Smad4 in the cytoplasm of TGF-β-stimulated cells. To pinpoint PDZK1IP1's functional domain, we created several PDZK1IP1 variants and found that its middle region, from Phe40 to Ala49, plays a key role in its Smad4-regulating activity. PDZK1IP1 knockdown enhanced the expression of the TGF-β target genes Smad7 and prostate transmembrane protein androgen-induced (TMEPAI) upon TGF-β stimulation. In contrast, PDZK1IP1 overexpression suppressed TGF-β-induced reporter activities, cell migration, and cell growth inhibition. In a xenograft tumor model in which TGF-β was previously shown to elicit tumor-promoting effects, PDZK1IP1 gain of function decreased tumor size and increased survival rates. Taken together, these findings indicate that PDZK1IP1 interacts with Smad4 and thereby suppresses the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Souichi Ikeno
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Naoko Nakano
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Keigo Sano
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Takashi Minowa
- Nanotechnology Innovation Station, National Institute of Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Wataru Sato
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Ryosuke Akatsu
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Nobuo Sakata
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute of Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Makiko Fujii
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8553, Japan, and
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Susumu Itoh
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan,
| |
Collapse
|
20
|
Min E, Schwartz MA. Translocating transcription factors in fluid shear stress-mediated vascular remodeling and disease. Exp Cell Res 2019; 376:92-97. [PMID: 30633880 DOI: 10.1016/j.yexcr.2019.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Endothelial cells are exposed to fluid shear stress profiles that vary in magnitude, pulsatility, and directionality due to regional variations in blood vessel structure. Laminar flow at physiological levels is atheroprotective; multidirectional or reversing low (disturbed) flow promotes inflammation and disease; and high or low laminar flow promote outward or inward remodeling, respectively. However, our understanding of how endothelial cells discern these different flow profiles and regulate gene expression accordingly is limited. This article reviews recent studies that identify the TGFβ/Smad, Notch, Yap/Taz, and Wnt/β-catenin pathways as important mediators of flow profile- and magnitude-dependent signaling.
Collapse
Affiliation(s)
- Elizabeth Min
- Department of Cell Biology, Yale School of Medicine, United States; Yale Cardiovascular Research Center, United States
| | - Martin A Schwartz
- Department of Cell Biology, Yale School of Medicine, United States; Yale Cardiovascular Research Center, United States; Department of Medicine (Cardiology), United States; Department of Biomedical Engineering, United States.
| |
Collapse
|
21
|
de Kroon LMG, van den Akker GGH, Brachvogel B, Narcisi R, Belluoccio D, Jenner F, Bateman JF, Little CB, Brama PAJ, Blaney Davidson EN, van der Kraan PM, van Osch GJVM. Identification of TGFβ-related genes regulated in murine osteoarthritis and chondrocyte hypertrophy by comparison of multiple microarray datasets. Bone 2018; 116:67-77. [PMID: 30010080 DOI: 10.1016/j.bone.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a joint disease characterized by progressive degeneration of articular cartilage. Some features of OA, including chondrocyte hypertrophy and focal calcification of articular cartilage, resemble the endochondral ossification processes. Alterations in transforming growth factor β (TGFβ) signaling have been associated with OA as well as with chondrocyte hypertrophy. Our aim was to identify novel candidate genes implicated in chondrocyte hypertrophy during OA pathogenesis by determining which TGFβ-related genes are regulated during murine OA and endochondral ossification. METHODS A list of 580 TGFβ-related genes, including TGFβ signaling pathway components and TGFβ-target genes, was generated. Regulation of these TGFβ-related genes was assessed in a microarray of murine OA cartilage: 1, 2 and 6 weeks after destabilization of the medial meniscus (DMM). Subsequently, genes regulated in the DMM model were studied in two independent murine microarray datasets on endochondral ossification: the growth plate and transient embryonic cartilage (joint development). RESULTS A total of 106 TGFβ-related genes were differentially expressed in articular cartilage of DMM-operated mice compared to sham-control. From these genes, 43 were similarly regulated during chondrocyte hypertrophy in the growth plate or embryonic joint development. Among these 43 genes, 18 genes have already been associated with OA. The remaining 25 genes were considered as novel candidate genes involved in OA pathogenesis and endochondral ossification. In supplementary data of published human OA microarrays we found indications that 15 of the 25 novel genes are indeed regulated in articular cartilage of human OA patients. CONCLUSION By focusing on TGFβ-related genes during OA and chondrocyte hypertrophy in mice, we identified 18 known and 25 new candidate genes potentially implicated in phenotypical changes in chondrocytes leading to OA. We propose that 15 of these candidates warrant further investigation as therapeutic target for OA as they are also regulated in articular cartilage of OA patients.
Collapse
Affiliation(s)
- Laurie M G de Kroon
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Guus G H van den Akker
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Bent Brachvogel
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne, Germany.
| | - Roberto Narcisi
- Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Daniele Belluoccio
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Florien Jenner
- Equine University Hospital, University of Veterinary Medicine, Vienna, Austria.
| | - John F Bateman
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales, Australia.
| | - Pieter A J Brama
- Veterinary Clinical Sciences, School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | - Esmeralda N Blaney Davidson
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Peter M van der Kraan
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Gerjo J V M van Osch
- Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
22
|
Itoh S, Itoh F. TMEPAI family: involvement in regulation of multiple signalling pathways. J Biochem 2018; 164:195-204. [DOI: 10.1093/jb/mvy059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/25/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| |
Collapse
|
23
|
Probing seco-steroid inhibition of the hedgehog signaling pathway. Mol Cell Biochem 2018; 450:75-85. [PMID: 29876765 DOI: 10.1007/s11010-018-3374-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/23/2018] [Indexed: 01/20/2023]
Abstract
Calcitriol, vitamin D3 (VD3), and structurally related VD3 analogues are inhibitors of Hh signaling in multiple contexts and are promising anti-cancer agents in Hh-dependent forms of cancer; however, the cellular mechanisms through which these compounds regulate Hh signal transmission are not clearly defined. Previous studies in this area have implicated both Smoothened, a key mediator of Hh signaling, and the vitamin D receptor (VDR) as potential mediators of Hh inhibition for this class of seco-steroids. We have performed a series of in vitro studies to more fully probe the cellular mechanisms that govern seco-steroid-mediated inhibition of Hh signaling. Our results support a role for both the Hh and VDR pathways in this process, as well as the possibility that other, as yet unidentified proteins, are also central to seco-steroid-mediated inhibition of Hh signaling.
Collapse
|
24
|
Yan X, Xiong X, Chen YG. Feedback regulation of TGF-β signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:37-50. [PMID: 29228156 DOI: 10.1093/abbs/gmx129] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs.
Collapse
Affiliation(s)
- Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Liu Z, Huo X, Zhao S, Yang J, Shi W, Jing L, Li W, Li Y, Ma L, Gao Y, Diao A. Low density lipoprotein receptor class A domain containing 4 (LDLRAD4) promotes tumorigenesis of hepatic cancer cells. Exp Cell Res 2017; 360:189-198. [PMID: 28888937 DOI: 10.1016/j.yexcr.2017.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/03/2017] [Accepted: 09/02/2017] [Indexed: 02/08/2023]
Abstract
LDLRAD4 was previously identified and shown to be connected with psychiatric disorders. The structure of LDLRAD4 protein is similar to that of TMEPAI protein, which is overexpressed in many tumors. However, it is still unknown whether LDLRAD4 is involved in tumorigenesis. In this study, the potential role of LDLRAD4 in tumorigenesis was investigated. LDLRAD4 is elevated in hepatic cancer cells and tumor tissues, and expression of LDLRAD4 promotes hepatic cancer cell HepG2 and SMMC-7721 proliferation and migration. LDLRAD4 interacts Nedd4 to promote cell proliferation and migration and negatively regulates the TGF-β signaling. Furthermore, immunofluorescence microscopy analysis indicates that LDLRAD4 is localized to the lysosome and association with Nedd4 is necessary for its intracellular transport to the lysosome. In addition, depletion of LDLRAD4 in HepG2 liver cancer cells inhibited tumorigenesis in nude mice. These results reveal an oncogenic role of LDLRAD4 in tumorigenesis through its association with Nedd4.
Collapse
Affiliation(s)
- Zhenxing Liu
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, No. 29, 13th Avenue, TEDA District, Tianjin 300457, China
| | - Xin Huo
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, No. 29, 13th Avenue, TEDA District, Tianjin 300457, China
| | - Shuang Zhao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, No. 29, 13th Avenue, TEDA District, Tianjin 300457, China
| | - Jingjing Yang
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, No. 29, 13th Avenue, TEDA District, Tianjin 300457, China
| | - Wenxia Shi
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Hospital of Tianjin, No. 83, Jintang Road, Hedong District, Tianjin 300170, China
| | - Lei Jing
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, No. 29, 13th Avenue, TEDA District, Tianjin 300457, China
| | - Wei Li
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, No. 29, 13th Avenue, TEDA District, Tianjin 300457, China
| | - Yuyin Li
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, No. 29, 13th Avenue, TEDA District, Tianjin 300457, China
| | - Long Ma
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, No. 29, 13th Avenue, TEDA District, Tianjin 300457, China
| | - Yingtang Gao
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Hospital of Tianjin, No. 83, Jintang Road, Hedong District, Tianjin 300170, China.
| | - Aipo Diao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, No. 29, 13th Avenue, TEDA District, Tianjin 300457, China.
| |
Collapse
|
26
|
Funakubo N, Xu X, Kukita T, Nakamura S, Miyamoto H, Kukita A. Pmepa1 induced by RANKL-p38 MAPK pathway has a novel role in osteoclastogenesis. J Cell Physiol 2017; 233:3105-3118. [DOI: 10.1002/jcp.26147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/10/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Noboru Funakubo
- Faculty of Medicine; Department of Pathology and Microbiology; Saga University; Saga Japan
- Faculty of Dentistry; Department of Molecular Cell Biology & Oral Anatomy; Kyushu University; Maidashi Fukuoka Japan
- Faculty of Dentistry; Oral & Maxillofacial Oncology; Kyushu University; Maidashi Fukuoka Japan
| | - Xianghe Xu
- Faculty of Medicine; Department of Pathology and Microbiology; Saga University; Saga Japan
- Faculty of Dentistry; Department of Molecular Cell Biology & Oral Anatomy; Kyushu University; Maidashi Fukuoka Japan
| | - Toshio Kukita
- Faculty of Dentistry; Department of Molecular Cell Biology & Oral Anatomy; Kyushu University; Maidashi Fukuoka Japan
| | - Seiji Nakamura
- Faculty of Dentistry; Oral & Maxillofacial Oncology; Kyushu University; Maidashi Fukuoka Japan
| | - Hiroshi Miyamoto
- Faculty of Medicine; Department of Pathology and Microbiology; Saga University; Saga Japan
| | - Akiko Kukita
- Faculty of Medicine; Department of Pathology and Microbiology; Saga University; Saga Japan
| |
Collapse
|
27
|
Koido M, Sakurai J, Tsukahara S, Tani Y, Tomida A. PMEPA1, a TGF-β- and hypoxia-inducible gene that participates in hypoxic gene expression networks in solid tumors. Biochem Biophys Res Commun 2016; 479:615-621. [DOI: 10.1016/j.bbrc.2016.09.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
|
28
|
Li Y, Guo A, Feng Y, Zhang Y, Wang J, Jing L, Yan Y, Jing L, Liu Z, Ma L, Diao A. Sp1 transcription factor promotes TMEPAI gene expression and contributes to cell proliferation. Cell Prolif 2016; 49:710-719. [PMID: 27625141 DOI: 10.1111/cpr.12292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/11/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES TMEPAI (transmembrane prostate androgen-induced protein) has been reported to be overexpressed during tumour progression; however, little is known concerning transcriptional mechanisms regulating TMEPAI gene expression. MATERIALS AND METHODS In this study, the TMEPAI gene promoter has been identified and characterized, and the effects of Sp1 on TMEPAI-induced viability of A549 cells were evaluated, using MTT and colony formation assays. RESULTS We found that the sequence between -298 and +24 consists of basal promoter activity for TMEPAI. Further analysis indicated that two Sp1-binding sites are crucial for maintaining basal transcriptional activity of the TMEPAI promoter, and chromatin immunoprecipitation assays confirmed direct binding of Sp1 to the TMEPAI promoter. In addition, Sp1 up-regulated TMEPAI protein expression, as well as Sp1 promoting TMEPAI-induced cell proliferation. CONCLUSIONS These results indicate that the sequence between -298 and +24 consists of the basal promoter activity for TMEPAI. Sp1 promotes TMEPAI expression and contributes to cell proliferation.
Collapse
Affiliation(s)
- Yuyin Li
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ailong Guo
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yajuan Feng
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yueying Zhang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jianjun Wang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lifang Jing
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yali Yan
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lei Jing
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhenxing Liu
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Long Ma
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Aipo Diao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
29
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Ravindranath AJ, Cadigan KM. The Role of the C-Clamp in Wnt-Related Colorectal Cancers. Cancers (Basel) 2016; 8:cancers8080074. [PMID: 27527215 PMCID: PMC4999783 DOI: 10.3390/cancers8080074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/25/2022] Open
Abstract
T-cell Factor/Lymphoid Enhancer Factor (TCF/LEF) transcription factors are major regulators of Wnt targets, and the products of the TCF7 and TCF7L2 genes have both been implicated in the progression of colorectal cancer in animal models and humans. TCFs recognize specific DNA sequences through their high mobility group (HMG) domains, but invertebrate TCFs and some isoforms of vertebrate TCF7 and TCF7L2 contain a second DNA binding domain known as the C-clamp. This review will cover the basic properties of C-clamps and their importance in Wnt signaling, using data from Drosophila, C. elegans, and mammalian cell culture. The connection between C-clamp containing TCFs and colorectal cancer will also be discussed.
Collapse
Affiliation(s)
- Aditi J Ravindranath
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Hamamura K, Matsunaga N, Ikeda E, Kondo H, Ikeyama H, Tokushige K, Itcho K, Furuichi Y, Yoshida Y, Matsuda M, Yasuda K, Doi A, Yokota Y, Amamoto T, Aramaki H, Irino Y, Koyanagi S, Ohdo S. Alterations of Hepatic Metabolism in Chronic Kidney Disease via D-box-binding Protein Aggravate the Renal Dysfunction. J Biol Chem 2016; 291:4913-27. [PMID: 26728457 DOI: 10.1074/jbc.m115.696930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 11/06/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with an increase in serum retinol; however, the underlying mechanisms of this disorder are poorly characterized. Here, we found that the alteration of hepatic metabolism induced the accumulation of serum retinol in 5/6 nephrectomy (5/6Nx) mice. The liver is the major organ responsible for retinol metabolism; accordingly, microarray analysis revealed that the hepatic expression of most CYP genes was changed in 5/6Nx mice. In addition, D-box-binding protein (DBP), which controls the expression of several CYP genes, was significantly decreased in these mice. Cyp3a11 and Cyp26a1, encoding key proteins in retinol metabolism, showed the greatest decrease in expression in 5/6Nx mice, a process mediated by the decreased expression of DBP. Furthermore, an increase of plasma transforming growth factor-β1 (TGF-β1) in 5/6Nx mice led to the decreased expression of the Dbp gene. Consistent with these findings, the alterations of retinol metabolism and renal dysfunction in 5/6Nx mice were ameliorated by administration of an anti-TGF-β1 antibody. We also show that the accumulation of serum retinol induced renal apoptosis in 5/6Nx mice fed a normal diet, whereas renal dysfunction was reduced in mice fed a retinol-free diet. These findings indicate that constitutive Dbp expression plays an important role in mediating hepatic dysfunction under CKD. Thus, the aggravation of renal dysfunction in patients with CKD might be prevented by a recovery of hepatic function, potentially through therapies targeting DBP and retinol.
Collapse
Affiliation(s)
- Kengo Hamamura
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan, the Drug Innovation Research Center, Daiichi University of Pharmacy, Minami-ku, Fukuoka 815-8511, Japan
| | - Naoya Matsunaga
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Eriko Ikeda
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan, the Drug Innovation Research Center, Daiichi University of Pharmacy, Minami-ku, Fukuoka 815-8511, Japan
| | - Hideaki Kondo
- the Center for Sleep Medicine, Saiseikai Nagasaki Hospital, Katafuchi, Nagasaki 850-0003, Japan
| | - Hisako Ikeyama
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Kazutaka Tokushige
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Kazufumi Itcho
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Yoko Furuichi
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Yuya Yoshida
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Masaki Matsuda
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Kaori Yasuda
- Cell-Innovator Inc., EC Building, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Atsushi Doi
- Cell-Innovator Inc., EC Building, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Yoshifumi Yokota
- the Department of Molecular Genetics, School of Medicine, Fukui University, Matsuoka, Fukui 910-1193, Japan
| | - Toshiaki Amamoto
- Neues Corporation, Tenyamachi-cho, Hakata-ku, Fukuoka 812-0025, Japan, and
| | - Hironori Aramaki
- the Drug Innovation Research Center, Daiichi University of Pharmacy, Minami-ku, Fukuoka 815-8511, Japan, the Department of Molecular Biology, Daiichi University of Pharmacy, Minami-ku, Fukuoka 815-8511, Japan
| | - Yasuhiro Irino
- the Integrated Center for Mass Spectrometry, Division of Membrane Biology, and Department of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Satoru Koyanagi
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Shigehiro Ohdo
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan,
| |
Collapse
|
32
|
Nakano N, Kato M, Itoh S. Regulation of the TMEPAI promoter by TCF7L2: the C-terminal tail of TCF7L2 is essential to activate the TMEPAI gene. J Biochem 2015; 159:27-30. [PMID: 26590303 DOI: 10.1093/jb/mvv117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/15/2015] [Indexed: 11/14/2022] Open
Abstract
We previously found that TCF7L2 could activate the TMEPAI gene efficiently, whereas LEF1 could not nearly augment its transcription. When we comprehended the functional difference(s) between TCF7L2 and LEF1 with respect to the activation of the TMEPAI gene, the C-terminal tail of TCF7L2 was needed to reveal its transcriptional activity as well as its interaction with Smad3. Consistently, both TCF7/TCF7L2 and LEF1/TCF7L2 chimeric proteins exhibited an activity similar to TCF7L2 in transcription and Smad3 binding in contrast with LEF1 and TCF7. Our data elaborated on the diverse activity among TCF/LEF family members with respect to the transcriptional regulation of the TMEPAI gene.
Collapse
Affiliation(s)
- Naoko Nakano
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan; Laboratory of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Mitsuyasu Kato
- Laboratory of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan;
| |
Collapse
|
33
|
Link AS, Kurinna S, Havlicek S, Lehnert S, Reichel M, Kornhuber J, Winner B, Huth T, Zheng F, Werner S, Alzheimer C. Kdm6b and Pmepa1 as Targets of Bioelectrically and Behaviorally Induced Activin A Signaling. Mol Neurobiol 2015. [PMID: 26215835 DOI: 10.1007/s12035-015-9363-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The transforming growth factor-β (TGF-β) family member activin A exerts multiple neurotrophic and protective effects in the brain. Activin also modulates cognitive functions and affective behavior and is a presumed target of antidepressant therapy. Despite its important role in the injured and intact brain, the mechanisms underlying activin effects in the CNS are still largely unknown. Our goal was to identify the first target genes of activin signaling in the hippocampus in vivo. Electroconvulsive seizures, a rodent model of electroconvulsive therapy in humans, were applied to C57BL/6J mice to elicit a strong increase in activin A signaling. Chromatin immunoprecipitation experiments with hippocampal lysates subsequently revealed that binding of SMAD2/3, the intracellular effectors of activin signaling, was significantly enriched at the Pmepa1 gene, which encodes a negative feedback regulator of TGF-β signaling in cancer cells, and at the Kdm6b gene, which encodes an epigenetic regulator promoting transcriptional plasticity. Underlining the significance of these findings, activin treatment also induced PMEPA1 and KDM6B expression in human forebrain neurons generated from embryonic stem cells suggesting interspecies conservation of activin effects in mammalian neurons. Importantly, physiological stimuli such as provided by environmental enrichment proved already sufficient to engender a rapid and significant induction of activin signaling concomitant with an upregulation of Pmepa1 and Kdm6b expression. Taken together, our study identified the first target genes of activin signaling in the brain. With the induction of Kdm6b expression, activin is likely to gain impact on a presumed epigenetic regulator of activity-dependent neuronal plasticity.
Collapse
Affiliation(s)
- Andrea S Link
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Svitlana Kurinna
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Steven Havlicek
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054, Erlangen, Germany
- Present address: Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, 138672, Singapore, Singapore
| | - Sandra Lehnert
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Beate Winner
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054, Erlangen, Germany
| | - Tobias Huth
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany.
| |
Collapse
|
34
|
Azami S, Vo Nguyen TT, Watanabe Y, Kato M. Cooperative induction of transmembrane prostate androgen induced protein TMEPAI/PMEPA1 by transforming growth factor-β and epidermal growth factor signaling. Biochem Biophys Res Commun 2015; 456:580-5. [DOI: 10.1016/j.bbrc.2014.11.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
|
35
|
Cutting the brakes and flooring the gas: how TMEPAI turns TGF-β into a tumor promoter. Genes Cancer 2014; 5:303-5. [PMID: 25352947 PMCID: PMC4209605 DOI: 10.18632/genesandcancer.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 11/28/2022] Open
Abstract
In normal or nonmalignant cells, TGF-β inhibits cellular proliferation through activation of the SMAD-dependent canonical signaling pathway. Recent findings demonstrate that the protein TMEPAI1 can block the cytostatic effects of the canonical TGF-β signaling pathway, while activating cellular proliferation through the noncanonical, SMAD-independent TGF-β signaling pathway. As TMEPAI1 shows increased expression in the poor prognosis basal and HER2 intrinsic subtypes of breast cancer, these findings point to a new avenue of targeted therapy with considerable therapeutic potential.
Collapse
|
36
|
TMEPAI inhibits TGF-β signaling by promoting lysosome degradation of TGF-β receptor and contributes to lung cancer development. Cell Signal 2014; 26:2030-9. [DOI: 10.1016/j.cellsig.2014.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/31/2014] [Accepted: 06/06/2014] [Indexed: 01/01/2023]
|
37
|
TGF- β Signaling Cooperates with AT Motif-Binding Factor-1 for Repression of the α -Fetoprotein Promoter. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:970346. [PMID: 25105025 PMCID: PMC4106063 DOI: 10.1155/2014/970346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022]
Abstract
α-Fetoprotein (AFP) is known to be highly produced in fetal liver despite its barely detectable level in normal adult liver. On the other hand, hepatocellular carcinoma often shows high expression of AFP. Thus, AFP seems to be an oncogenic marker. In our present study, we investigated how TGF-β signaling cooperates with AT motif-binding factor-1 (ATBF1) to inhibit AFP transcription. Indeed, the expression of AFP mRNA in HuH-7 cells was negatively regulated by TGF-β signaling. To further understand how TGF-β suppresses the transcription of the AFP gene, we analyzed the activity of the AFP promoter in the presence of TGF-β. We found that the TGF-β signaling and ATBF1 suppressed AFP transcription through two ATBF1 binding elements (AT-motifs). Using a heterologous reporter system, both AT-motifs were required for transcriptional repression upon TGF-β stimulation. Furthermore, Smads were found to interact with ATBF1 at both its N-terminal and C-terminal regions. Since the N-terminal (ATBF1N) and C-terminal regions of ATBF1 (ATBF1C) lack the ability of DNA binding, both truncated mutants rescued the cooperative inhibitory action by the TGF-β signaling and ATBF1 in a dose-dependent manner. Taken together, these findings indicate that TGF-β signaling can act in concert with ATBF1 to suppress the activity of the AFP promoter through direct interaction of ATBF1 with Smads.
Collapse
|
38
|
Nakano N, Maeyama K, Sakata N, Itoh F, Akatsu R, Nakata M, Katsu Y, Ikeno S, Togawa Y, Vo Nguyen TT, Watanabe Y, Kato M, Itoh S. C18 ORF1, a novel negative regulator of transforming growth factor-β signaling. J Biol Chem 2014; 289:12680-92. [PMID: 24627487 DOI: 10.1074/jbc.m114.558981] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor (TGF)-β signaling is deliberately regulated at multiple steps in its pathway from the extracellular microenvironment to the nucleus. However, how TGF-β signaling is activated or attenuated is not fully understood. We recently identified transmembrane prostate androgen-induced RNA (TMEPAI), which is involved in a negative feedback loop of TGF-β signaling. When we searched for a family molecule(s) for TMEPAI, we found C18ORF1, which, like TMEPAI, possesses two PY motifs and one Smad-interacting motif (SIM) domain. As expected, C18ORF1 could block TGF-β signaling but not bone morphogenetic protein signaling. C18ORF1 bound to Smad2/3 via its SIM and competed with the Smad anchor for receptor activation for Smad2/3 binding to attenuate recruitment of Smad2/3 to the TGF-β type I receptor (also termed activin receptor-like kinase 5 (ALK5)), in a similar fashion to TMEPAI. Knockdown of C18ORF1 prolonged duration of TGF-β-induced Smad2 phosphorylation and concomitantly potentiated the expression of JunB, p21, and TMEPAI mRNAs induced by TGF-β. Consistently, TGF-β-induced cell migration was enhanced by the knockdown of C18ORF1. These results indicate that the inhibitory function of C18ORF1 on TGF-β signaling is similar to that of TMEPAI. However, in contrast to TMEPAI, C18ORF1 was not induced upon TGF-β signaling. Thus, we defined C18ORF1 as a surveillant of steady state TGF-β signaling, whereas TMEPAI might help C18ORF1 to inhibit TGF-β signaling in a coordinated manner when cells are stimulated with high levels of TGF-β.
Collapse
Affiliation(s)
- Naoko Nakano
- From the Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vo Nguyen TT, Watanabe Y, Shiba A, Noguchi M, Itoh S, Kato M. TMEPAI/PMEPA1 enhances tumorigenic activities in lung cancer cells. Cancer Sci 2014; 105:334-41. [PMID: 24438557 PMCID: PMC4317935 DOI: 10.1111/cas.12355] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 12/23/2022] Open
Abstract
TMEPAI/PMEPA1 is a transmembrane protein that was originally identified as a prostatic RNA, the synthesis of which is induced by testosterone or its derivatives. We have recently identified TMEPAI as a direct target gene of transforming growth factor-β (TGF-β)/Smad signaling that participates in negative feedback control of the duration and intensity of TGF-β/Smad signaling. TMEPAI is constitutively and highly expressed in many types of cancer and is associated with poor prognosis. Here, we report that TMEPAI is highly expressed in the lung adenocarcinoma cell lines Calu3, NCI-H23, and RERF-LC-KJ. Expression of TMEPAI in these cancer cells was significantly suppressed by a TGF-β receptor kinase antagonist, SB208, and by TGF-β neutralizing antibodies. These results suggest that constitutive expression of TMEPAI in these cancer cells depends on autocrine TGF-β stimulation. Knockdown of TMEPAI in Calu3 and NCI-H23 cells enhanced levels of Smad2 phosphorylation and significantly suppressed cell proliferation in the presence of TGF-β, indicating that highly expressed TMEPAI suppresses levels of Smad phosphorylation in these cancer cells and reduces the growth inhibitory effects of TGF-β/Smad signaling. Furthermore, knockdown of TMEPAI in Calu3 and NCI-H23 cells suppressed sphere formation in vitro and tumor formation in s.c. tissues and in lungs after tail vein injection in NOD-SCID mice in vivo. Together, these experiments indicate that TMEPAI promotes tumorigenic activities in lung cancer cells.
Collapse
Affiliation(s)
- Thanh Thao Vo Nguyen
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The basic elements of the transforming growth factor-β (TGFβ) pathway were revealed more than a decade ago. Since then, the concept of how the TGFβ signal travels from the membrane to the nucleus has been enriched with additional findings, and its multifunctional nature and medical relevance have relentlessly come to light. However, an old mystery has endured: how does the context determine the cellular response to TGFβ? Solving this question is key to understanding TGFβ biology and its many malfunctions. Recent progress is pointing at answers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| |
Collapse
|
41
|
The many faces and functions of β-catenin. EMBO J 2012; 31:2714-36. [PMID: 22617422 DOI: 10.1038/emboj.2012.150] [Citation(s) in RCA: 1213] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/30/2012] [Indexed: 02/07/2023] Open
Abstract
β-Catenin (Armadillo in Drosophila) is a multitasking and evolutionary conserved molecule that in metazoans exerts a crucial role in a multitude of developmental and homeostatic processes. More specifically, β-catenin is an integral structural component of cadherin-based adherens junctions, and the key nuclear effector of canonical Wnt signalling in the nucleus. Imbalance in the structural and signalling properties of β-catenin often results in disease and deregulated growth connected to cancer and metastasis. Intense research into the life of β-catenin has revealed a complex picture. Here, we try to capture the state of the art: we try to summarize and make some sense of the processes that regulate β-catenin, as well as the plethora of β-catenin binding partners. One focus will be the interaction of β-catenin with different transcription factors and the potential implications of these interactions for direct cross-talk between β-catenin and non-Wnt signalling pathways.
Collapse
|
42
|
Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway. Acta Physiol (Oxf) 2012; 204:74-109. [PMID: 21624092 DOI: 10.1111/j.1748-1716.2011.02293.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wnt/β-catenin signalling is known to play many roles in metazoan development and tissue homeostasis. Misregulation of the pathway has also been linked to many human diseases. In this review, specific aspects of the pathway's involvement in these processes are discussed, with an emphasis on how Wnt/β-catenin signalling regulates gene expression in a cell and temporally specific manner. The T-cell factor (TCF) family of transcription factors, which mediate a large portion of Wnt/β-catenin signalling, will be discussed in detail. Invertebrates contain a single TCF gene that contains two DNA-binding domains, the high mobility group (HMG) domain and the C-clamp, which increases the specificity of DNA binding. In vertebrates, the situation is more complex, with four TCF genes producing many isoforms that contain the HMG domain, but only some of which possess a C-clamp. Vertebrate TCFs have been reported to act in concert with many other transcription factors, which may explain how they obtain sufficient specificity for specific DNA sequences, as well as how they achieve a wide diversity of transcriptional outputs in different cells.
Collapse
Affiliation(s)
- H C Archbold
- Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Transforming growth factor-β (TGF-β) family signaling regulates cell growth and differentiation of many different cell types and is widely involved in the regulation of homeostasis during both embryogenesis and adult life. Therefore, aberrant TGF-β family signal transduction is linked to congenital disorders, tumorigenicity, and fibrosis, which can be life-threatening. A specific receptor-ligand complex initiates transduction of TGF-β family signaling to the nucleus via intracellular signal molecules, mainly Smads, whereby a number of bioactivities such as wound healing, immunomodulation, apoptosis, and angiogenesis are controlled. To avoid an excess of TGF-β family signaling in cells, the duration and intensity of the TGF-β family signal appear to be subject to elaborate regulation. In this paper, we describe recent advances in the understanding of how TGF-β family signals are perturbed and terminated to maintain homeostasis in cells.
Collapse
Affiliation(s)
- Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | | |
Collapse
|