1
|
Choudhury K, Kasimova MA, McComas S, Howard RJ, Delemotte L. An open state of a voltage-gated sodium channel involving a π-helix and conserved pore-facing asparagine. Biophys J 2022; 121:11-22. [PMID: 34890580 PMCID: PMC8758419 DOI: 10.1016/j.bpj.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Voltage-gated sodium (Nav) channels play critical roles in propagating action potentials and otherwise manipulating ionic gradients in excitable cells. These channels open in response to membrane depolarization, selectively permeating sodium ions until rapidly inactivating. Structural characterization of the gating cycle in this channel family has proved challenging, particularly due to the transient nature of the open state. A structure from the bacterium Magnetococcus marinus Nav (NavMs) was initially proposed to be open, based on its pore diameter and voltage-sensor conformation. However, the functional annotation of this model, and the structural details of the open state, remain disputed. In this work, we used molecular modeling and simulations to test possible open-state models of NavMs. The full-length experimental structure, termed here the α-model, was consistently dehydrated at the activation gate, indicating an inability to conduct ions. Based on a spontaneous transition observed in extended simulations, and sequence/structure comparison to other Nav channels, we built an alternative π-model featuring a helix transition and the rotation of a conserved asparagine residue into the activation gate. Pore hydration, ion permeation, and state-dependent drug binding in this model were consistent with an open functional state. This work thus offers both a functional annotation of the full-length NavMs structure and a detailed model for a stable Nav open state, with potential conservation in diverse ion-channel families.
Collapse
Affiliation(s)
- Koushik Choudhury
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Marina A. Kasimova
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Sarah McComas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rebecca J. Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden,Corresponding author
| |
Collapse
|
2
|
Structural Pharmacology of Voltage-Gated Sodium Channels. J Mol Biol 2021; 433:166967. [PMID: 33794261 DOI: 10.1016/j.jmb.2021.166967] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (NaV) channels initiate and propagate action potentials in excitable tissues to mediate key physiological processes including heart contraction and nervous system function. Accordingly, NaV channels are major targets for drugs, toxins and disease-causing mutations. Recent breakthroughs in cryo-electron microscopy have led to the visualization of human NaV1.1, NaV1.2, NaV1.4, NaV1.5 and NaV1.7 channel subtypes at high-resolution. These landmark studies have greatly advanced our structural understanding of channel architecture, ion selectivity, voltage-sensing, electromechanical coupling, fast inactivation, and the molecular basis underlying NaV channelopathies. NaV channel structures have also been increasingly determined in complex with toxin and small molecule modulators that target either the pore module or voltage sensor domains. These structural studies have provided new insights into the mechanisms of pharmacological action and opportunities for subtype-selective NaV channel drug design. This review will highlight the structural pharmacology of human NaV channels as well as the potential use of engineered and chimeric channels in future drug discovery efforts.
Collapse
|
3
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Abstract
Ion channels are essential for cellular signaling. Voltage-gated ion channels (VGICs) are the largest and most extensively studied superfamily of ion channels. They possess modular structural features such as voltage-sensing domains that encircle and form mechanical connections with the pore-forming domains. Such features are intimately related to their function in sensing and responding to changes in the membrane potential. In the present work, we discuss the thermodynamic mechanisms of the VGIC superfamily, including the two-state gating mechanism, sliding-rocking mechanism of the voltage sensor, subunit cooperation, lipid-infiltration mechanism of inactivation, and the relationship with their structural features.
Collapse
|
5
|
Boiteux C, Flood E, Allen TW. Comparison of permeation mechanisms in sodium-selective ion channels. Neurosci Lett 2018; 700:3-8. [PMID: 29807068 DOI: 10.1016/j.neulet.2018.05.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Abstract
Voltage-gated sodium channels are the molecular components of electrical signaling in the body, yet the molecular origins of Na+-selective transport remain obscured by diverse protein chemistries within this family of ion channels. In particular, bacterial and mammalian sodium channels are known to exhibit similar relative ion permeabilities for Na+ over K+ ions, despite their distinct signature EEEE and DEKA sequences. Atomic-level molecular dynamics simulations using high-resolution bacterial channel structures and mammalian channel models have begun to describe how these sequences lead to analogous high field strength ion binding sites that drive Na+ conduction. Similar complexes have also been identified in unrelated acid sensing ion channels involving glutamate and aspartate side chains that control their selectivity. These studies suggest the possibility of a common origin for Na+ selective binding and transport.
Collapse
Affiliation(s)
- Céline Boiteux
- School of Science, RMIT University, Melbourne, Australia
| | - Emelie Flood
- School of Science, RMIT University, Melbourne, Australia
| | - Toby W Allen
- School of Science, RMIT University, Melbourne, Australia.
| |
Collapse
|
6
|
Distinct modulation of inactivation by a residue in the pore domain of voltage-gated Na + channels: mechanistic insights from recent crystal structures. Sci Rep 2018; 8:631. [PMID: 29330525 PMCID: PMC5766632 DOI: 10.1038/s41598-017-18919-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022] Open
Abstract
Inactivation of voltage-gated Na+ channels (VGSC) is essential for the regulation of cellular excitability. The molecular rearrangement underlying inactivation is thought to involve the intracellular linker between domains III and IV serving as inactivation lid, the receptor for the lid (domain III S4-S5 linker) and the pore-lining S6 segements. To better understand the role of the domain IV S6 segment in inactivation we performed a cysteine scanning mutagenesis of this region in rNav 1.4 channels and screened the constructs for perturbations in the voltage-dependence of steady state inactivation. This screen was performed in the background of wild-type channels and in channels carrying the mutation K1237E, which profoundly alters both permeation and gating-properties. Of all tested constructs the mutation I1581C was unique in that the mutation-induced gating changes were strongly influenced by the mutational background. This suggests that I1581 is involved in specific short-range interactions during inactivation. In recently published crystal structures VGSCs the respective amino acids homologous to I1581 appear to control a bend of the S6 segment which is critical to the gating process. Furthermore, I1581 may be involved in the transmission of the movement of the DIII voltage-sensor to the domain IV S6 segment.
Collapse
|
7
|
Characterization of specific allosteric effects of the Na+ channel β1 subunit on the Nav1.4 isoform. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:485-494. [DOI: 10.1007/s00249-016-1193-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 11/26/2022]
|
8
|
Boiteux C, Allen TW. Understanding Sodium Channel Function and Modulation Using Atomistic Simulations of Bacterial Channel Structures. CURRENT TOPICS IN MEMBRANES 2016; 78:145-82. [PMID: 27586284 DOI: 10.1016/bs.ctm.2016.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sodium channels are chief proteins involved in electrical signaling in the nervous system, enabling critical functions like heartbeat and brain activity. New high-resolution X-ray structures for bacterial sodium channels have created an opportunity to see how these proteins operate at the molecular level. An important challenge to overcome is establishing relationships between the structures and functions of mammalian and bacterial channels. Bacterial sodium channels are known to exhibit the main structural features of their mammalian counterparts, as well as several key functional characteristics, including selective ion conduction, voltage-dependent gating, pore-based inactivation and modulation by local anesthetic, antiarrhythmic and antiepileptic drugs. Simulations have begun to shed light on each of these features in the past few years. Despite deviations in selectivity signatures for bacterial and mammalian channels, simulations have uncovered the nature of the multiion conduction mechanism associated with Na(+) binding to a high-field strength site established by charged glutamate side chains. Simulations demonstrated a surprising level of flexibility of the protein, showing that these side chains are active participants in the permeation process. They have also uncovered changes in protein structure, leading to asymmetrical collapses of the activation gate that have been proposed to correspond to inactivated structures. These observations offer the potential to examine the mechanisms of state-dependent drug activity, focusing on pore-blocking and pore-based slow inactivation in bacterial channels, without the complexities of inactivation on multiple timescales seen in eukaryotic channels. Simulations have provided molecular views of the interactions of drugs, consistent with sites predicted in mammalian channels, as well as a wealth of other sites as potential new drug targets. In this chapter, we survey the new insights into sodium channel function that have emerged from studies of simpler bacterial channels, which provide an excellent learning platform, and promising avenues for mechanistic discovery and pharmacological development.
Collapse
Affiliation(s)
- C Boiteux
- RMIT University, Melbourne, VIC, Australia
| | - T W Allen
- RMIT University, Melbourne, VIC, Australia; University of California Davis, Davis, CA, United States
| |
Collapse
|
9
|
Gawali V, Todt H. Mechanism of Inactivation in Voltage-Gated Na+ Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:409-50. [DOI: 10.1016/bs.ctm.2016.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Gawali VS, Lukacs P, Cervenka R, Koenig X, Rubi L, Hilber K, Sandtner W, Todt H. Mechanism of Modification, by Lidocaine, of Fast and Slow Recovery from Inactivation of Voltage-Gated Na⁺ Channels. Mol Pharmacol 2015; 88:866-79. [PMID: 26358763 DOI: 10.1124/mol.115.099580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022] Open
Abstract
The clinically important suppression of high-frequency discharges of excitable cells by local anesthetics (LA) is largely determined by drug-induced prolongation of the time course of repriming (recovery from inactivation) of voltage-gated Na(+) channels. This prolongation may result from periodic drug-binding to a high-affinity binding site during the action potentials and subsequent slow dissociation from the site between action potentials ("dissociation hypothesis"). For many drugs it has been suggested that the fast inactivated state represents the high-affinity binding state. Alternatively, LAs may bind with high affinity to a native slow-inactivated state, thereby accelerating the development of this state during action potentials ("stabilization hypothesis"). In this case, slow recovery between action potentials occurs from enhanced native slow inactivation. To test these two hypotheses we produced serial cysteine mutations of domain IV segment 6 in rNav1.4 that resulted in constructs with varying propensities to enter fast- and slow-inactivated states. We tested the effect of the LA lidocaine on the time course of recovery from short and long depolarizing prepulses, which, under drug-free conditions, recruited mainly fast- and slow-inactivated states, respectively. Among the tested constructs the mutation-induced changes in native slow recovery induced by long depolarizations were not correlated with the respective lidocaine-induced slow recovery after short depolarizations. On the other hand, for long depolarizations the mutation-induced alterations in native slow recovery were significantly correlated with the kinetics of lidocaine-induced slow recovery. These results favor the "dissociation hypothesis" for short depolarizations but the "stabilization hypothesis" for long depolarizations.
Collapse
Affiliation(s)
- Vaibhavkumar S Gawali
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology (V.S.G., P.L., R.C., X.K., L.R., K.H., H.T.) and Center for Physiology and Pharmacology (W.S.), Medical University of Vienna, Vienna, Austria
| | - Peter Lukacs
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology (V.S.G., P.L., R.C., X.K., L.R., K.H., H.T.) and Center for Physiology and Pharmacology (W.S.), Medical University of Vienna, Vienna, Austria
| | - Rene Cervenka
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology (V.S.G., P.L., R.C., X.K., L.R., K.H., H.T.) and Center for Physiology and Pharmacology (W.S.), Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology (V.S.G., P.L., R.C., X.K., L.R., K.H., H.T.) and Center for Physiology and Pharmacology (W.S.), Medical University of Vienna, Vienna, Austria
| | - Lena Rubi
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology (V.S.G., P.L., R.C., X.K., L.R., K.H., H.T.) and Center for Physiology and Pharmacology (W.S.), Medical University of Vienna, Vienna, Austria
| | - Karlheinz Hilber
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology (V.S.G., P.L., R.C., X.K., L.R., K.H., H.T.) and Center for Physiology and Pharmacology (W.S.), Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology (V.S.G., P.L., R.C., X.K., L.R., K.H., H.T.) and Center for Physiology and Pharmacology (W.S.), Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology (V.S.G., P.L., R.C., X.K., L.R., K.H., H.T.) and Center for Physiology and Pharmacology (W.S.), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Gudes S, Barkai O, Caspi Y, Katz B, Lev S, Binshtok AM. The role of slow and persistent TTX-resistant sodium currents in acute tumor necrosis factor-α-mediated increase in nociceptors excitability. J Neurophysiol 2015; 113:601-19. [PMID: 25355965 PMCID: PMC4297796 DOI: 10.1152/jn.00652.2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/26/2014] [Indexed: 12/12/2022] Open
Abstract
Tetrodotoxin-resistant (TTX-r) sodium channels are key players in determining the input-output properties of peripheral nociceptive neurons. Changes in gating kinetics or in expression levels of these channels by proinflammatory mediators are likely to cause the hyperexcitability of nociceptive neurons and pain hypersensitivity observed during inflammation. Proinflammatory mediator, tumor necrosis factor-α (TNF-α), is secreted during inflammation and is associated with the early onset, as well as long-lasting, inflammation-mediated increase in excitability of peripheral nociceptive neurons. Here we studied the underlying mechanisms of the rapid component of TNF-α-mediated nociceptive hyperexcitability and acute pain hypersensitivity. We showed that TNF-α leads to rapid onset, cyclooxygenase-independent pain hypersensitivity in adult rats. Furthermore, TNF-α rapidly and substantially increases nociceptive excitability in vitro, by decreasing action potential threshold, increasing neuronal gain and decreasing accommodation. We extended on previous studies entailing p38 MAPK-dependent increase in TTX-r sodium currents by showing that TNF-α via p38 MAPK leads to increased availability of TTX-r sodium channels by partial relief of voltage dependence of their slow inactivation, thereby contributing to increase in neuronal gain. Moreover, we showed that TNF-α also in a p38 MAPK-dependent manner increases persistent TTX-r current by shifting the voltage dependence of activation to a hyperpolarized direction, thus producing an increase in inward current at functionally critical subthreshold voltages. Our results suggest that rapid modulation of the gating of TTX-r sodium channels plays a major role in the mediated nociceptive hyperexcitability of TNF-α during acute inflammation and may lead to development of effective treatments for inflammatory pain, without modulating the inflammation-induced healing processes.
Collapse
Affiliation(s)
- Sagi Gudes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
12
|
Bagnéris C, Naylor CE, McCusker EC, Wallace BA. Structural model of the open-closed-inactivated cycle of prokaryotic voltage-gated sodium channels. ACTA ACUST UNITED AC 2014; 145:5-16. [PMID: 25512599 PMCID: PMC4278185 DOI: 10.1085/jgp.201411242] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In excitable cells, the initiation of the action potential results from the opening of voltage-gated sodium channels. These channels undergo a series of conformational changes between open, closed, and inactivated states. Many models have been proposed for the structural transitions that result in these different functional states. Here, we compare the crystal structures of prokaryotic sodium channels captured in the different conformational forms and use them as the basis for examining molecular models for the activation, slow inactivation, and recovery processes. We compare structural similarities and differences in the pore domains, specifically in the transmembrane helices, the constrictions within the pore cavity, the activation gate at the cytoplasmic end of the last transmembrane helix, the C-terminal domain, and the selectivity filter. We discuss the observed differences in the context of previous models for opening, closing, and inactivation, and present a new structure-based model for the functional transitions. Our proposed prokaryotic channel activation mechanism is then compared with the activation transition in eukaryotic sodium channels.
Collapse
Affiliation(s)
- Claire Bagnéris
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England, UK
| | - Claire E Naylor
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England, UK
| | - Emily C McCusker
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England, UK
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England, UK
| |
Collapse
|
13
|
Lukacs P, Gawali VS, Cervenka R, Ke S, Koenig X, Rubi L, Zarrabi T, Hilber K, Stary-Weinzinger A, Todt H. Exploring the structure of the voltage-gated Na+ channel by an engineered drug access pathway to the receptor site for local anesthetics. J Biol Chem 2014; 289:21770-81. [PMID: 24947510 DOI: 10.1074/jbc.m113.541763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of several crystal structures of bacterial voltage-gated Na(+) channels, the structure of eukaryotic Na(+) channels is still undefined. We used predictions from available homology models and crystal structures to modulate an external access pathway for the membrane-impermeant local anesthetic derivative QX-222 into the internal vestibule of the mammalian rNaV1.4 channel. Potassium channel-based homology models predict amino acid Ile-1575 in domain IV segment 6 to be in close proximity to Lys-1237 of the domain III pore-loop selectivity filter. The mutation K1237E has been shown previously to increase the diameter of the selectivity filter. We found that an access pathway for external QX-222 created by mutations of Ile-1575 was abolished by the additional mutation K1237E, supporting the notion of a close spatial relationship between sites 1237 and 1575. Crystal structures of bacterial voltage-gated Na(+) channels predict that the side chain of rNaV1.4 Trp-1531 of the domain IV pore-loop projects into the space between domain IV segment 6 and domain III pore-loop and, therefore, should obstruct the putative external access pathway. Indeed, mutations W1531A and W1531G allowed for exceptionally rapid access of QX-222. In addition, W1531G created a second non-selective ion-conducting pore, bypassing the outer vestibule but probably merging into the internal vestibule, allowing for control by the activation gate. These data suggest a strong structural similarity between bacterial and eukaryotic voltage-gated Na(+) channels.
Collapse
Affiliation(s)
- Peter Lukacs
- From the Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria and
| | - Vaibhavkumar S Gawali
- From the Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria and
| | - Rene Cervenka
- From the Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria and
| | - Song Ke
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, UZA 2, A-1090 Vienna, Austria
| | - Xaver Koenig
- From the Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria and
| | - Lena Rubi
- From the Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria and
| | - Touran Zarrabi
- From the Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria and
| | - Karlheinz Hilber
- From the Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria and
| | - Anna Stary-Weinzinger
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, UZA 2, A-1090 Vienna, Austria
| | - Hannes Todt
- From the Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria and
| |
Collapse
|
14
|
Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel. Proc Natl Acad Sci U S A 2014; 111:3454-9. [PMID: 24550503 DOI: 10.1073/pnas.1320907111] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Voltage-gated Na(+) channels play an essential role in electrical signaling in the nervous system and are key pharmacological targets for a range of disorders. The recent solution of X-ray structures for the bacterial channel NavAb has provided an opportunity to study functional mechanisms at the atomic level. This channel's selectivity filter exhibits an EEEE ring sequence, characteristic of mammalian Ca(2+), not Na(+), channels. This raises the fundamentally important question: just what makes a Na(+) channel conduct Na(+) ions? Here we explore ion permeation on multimicrosecond timescales using the purpose-built Anton supercomputer. We isolate the likely protonation states of the EEEE ring and observe a striking flexibility of the filter that demonstrates the necessity for extended simulations to study conduction in this channel. We construct free energy maps to reveal complex multi-ion conduction via knock-on and "pass-by" mechanisms, involving concerted ion and glutamate side chain movements. Simulations in mixed ionic solutions reveal relative energetics for Na(+), K(+), and Ca(2+) within the pore that are consistent with the modest selectivity seen experimentally. We have observed conformational changes in the pore domain leading to asymmetrical collapses of the activation gate, similar to proposed inactivated structures of NavAb, with helix bending involving conserved residues that are critical for slow inactivation. These structural changes are shown to regulate access to fenestrations suggested to be pathways for lipophilic drugs and provide deeper insight into the molecular mechanisms connecting drug activity and slow inactivation.
Collapse
|
15
|
Goldschen-Ohm MP, Chanda B. Probing gating mechanisms of sodium channels using pore blockers. Handb Exp Pharmacol 2014; 221:183-201. [PMID: 24737237 DOI: 10.1007/978-3-642-41588-3_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several classes of small molecules and peptides bind at the central pore of voltage-gated sodium channels either from the extracellular or intracellular side of the membrane and block ion conduction through the pore. Biophysical studies that shed light on the chemical nature, accessibility, and kinetics of binding of these naturally occurring and synthetic compounds reveal a wealth of information about how these channels gate. Here, we discuss insights into the structural underpinnings of gating of the channel pore and its coupling to the voltage sensors obtained from pore blockers including site 1 neurotoxins and local anesthetics.
Collapse
|
16
|
Scheuer T. Bacterial sodium channels: models for eukaryotic sodium and calcium channels. Handb Exp Pharmacol 2014; 221:269-91. [PMID: 24737241 DOI: 10.1007/978-3-642-41588-3_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Eukaryotic sodium and calcium channels are made up of four linked homologous but different transmembrane domains. Bacteria express sodium channels comprised of four identical subunits, each being analogous to a single homologous domain of their eukaryotic counterparts. Key elements of primary structure are conserved between bacterial and eukaryotic sodium and calcium channels. The simple protein structure of the bacterial channels has allowed extensive structure-function probes of key regions as well as allowing determination of several X-ray crystallographic structures of these channels. The structures have revealed novel features of sodium and calcium channel pores and elucidated the structural importance of many of the conserved features of primary sequence. The structural information has also formed the basis for computational studies probing the basis for sodium and calcium selectivity and gating.
Collapse
Affiliation(s)
- Todd Scheuer
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA,
| |
Collapse
|
17
|
Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J Neurosci 2013; 33:14087-97. [PMID: 23986244 DOI: 10.1523/jneurosci.2710-13.2013] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Idiopathic small-fiber neuropathy (I-SFN), clinically characterized by burning pain in distal extremities and autonomic dysfunction, is a disorder of small-caliber nerve fibers of unknown etiology with limited treatment options. Functional variants of voltage-gated sodium channel Nav1.7, encoded by SCN9A, have been identified in approximately one-third of I-SFN patients. These variants render dorsal root ganglion (DRG) neurons hyperexcitable. Sodium channel Nav1.8, encoded by SCN10A, is preferentially expressed in small-diameter DRG neurons, and produces most of the current underlying the upstroke of action potentials in these neurons. We previously demonstrated two functional variants of Nav1.8 that either enhance ramp current or shift activation in a hyperpolarizing direction, and render DRG neurons hyperexcitable, in I-SFN patients with no mutations of SCN9A. We have now evaluated additional I-SFN patients with no mutations in SCN9A, and report a novel I-SFN-related Nav1.8 mutation I1706V in a patient with painful I-SFN. Whole-cell voltage-clamp recordings in small DRG neurons demonstrate that the mutation hyperpolarizes activation and the response to slow ramp depolarizations. However, it decreases fractional channels resistant to fast inactivation and reduces persistent currents. Current-clamp studies reveal that mutant channels decrease current threshold and increase the firing frequency of evoked action potentials within small DRG neurons. These observations suggest that the effects of this mutation on activation and ramp current are dominant over the reduced persistent current, and show that these pro-excitatory gating changes confer hyperexcitability on peripheral sensory neurons, which may contribute to pain in this individual with I-SFN.
Collapse
|
18
|
Yang Y, Estacion M, Dib-Hajj SD, Waxman SG. Molecular architecture of a sodium channel S6 helix: radial tuning of the voltage-gated sodium channel 1.7 activation gate. J Biol Chem 2013; 288:13741-7. [PMID: 23536180 DOI: 10.1074/jbc.m113.462366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In-frame deletion mutation (Del-L955) in NaV1.7 sodium channel from a kindred with erythromelalgia hyperpolarizes activation. RESULTS Del-L955 twists the S6 helix, displacing the Phe960 activation gate. Replacement of Phe960 at the correct helical position depolarizes activation. CONCLUSION Radial tuning of the activation gate is critical to the activation of NaV1.7 channel. SIGNIFICANCE Structural modeling guided electrophysiology reveals the functional importance of radial tuning of the S6 segment. Voltage-gated sodium (NaV) channels are membrane proteins that consist of 24 transmembrane segments organized into four homologous domains and are essential for action potential generation and propagation. Although the S6 helices of NaV channels line the ion-conducting pore and participate in channel activation, their functional architecture is incompletely understood. Our recent studies show that a naturally occurring in-frame deletion mutation (Del-L955) of NaV1.7 channel, identified in individuals with a severe inherited pain syndrome (inherited erythromelalgia) causes a substantial hyperpolarizing shift of channel activation. Here we took advantage of this deletion mutation to understand the role of the S6 helix in the channel activation. Based on the recently published structure of a bacterial NaV channel (NaVAb), we modeled the WT and Del-L955 channel. Our structural model showed that Del-L955 twists the DII/S6 helix, shifting location and radial orientation of the activation gate residue (Phe(960)). Hypothesizing that these structural changes produce the shift of channel activation of Del-L955 channels, we restored a phenylalanine in wild-type orientation by mutating Ser(961) (Del-L955/S961F), correcting activation by ∼10 mV. Correction of the displaced Phe(960) (F960S) together with introduction of the rescuing activation gate residue (S961F) produced an additional ∼6-mV restoration of activation of the mutant channel. A simple point mutation in the absence of a twist (L955A) did not produce a radial shift and did not hyperpolarize activation. Our results demonstrate the functional importance of radial tuning of the sodium channel S6 helix for the channel activation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
19
|
Huang CJ, Schild L, Moczydlowski EG. Use-dependent block of the voltage-gated Na(+) channel by tetrodotoxin and saxitoxin: effect of pore mutations that change ionic selectivity. ACTA ACUST UNITED AC 2013; 140:435-54. [PMID: 23008436 PMCID: PMC3457692 DOI: 10.1085/jgp.201210853] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na(+) channels (NaV channels) are specifically blocked by guanidinium toxins such as tetrodotoxin (TTX) and saxitoxin (STX) with nanomolar to micromolar affinity depending on key amino acid substitutions in the outer vestibule of the channel that vary with NaV gene isoforms. All NaV channels that have been studied exhibit a use-dependent enhancement of TTX/STX affinity when the channel is stimulated with brief repetitive voltage depolarizations from a hyperpolarized starting voltage. Two models have been proposed to explain the mechanism of TTX/STX use dependence: a conformational mechanism and a trapped ion mechanism. In this study, we used selectivity filter mutations (K1237R, K1237A, and K1237H) of the rat muscle NaV1.4 channel that are known to alter ionic selectivity and Ca(2+) permeability to test the trapped ion mechanism, which attributes use-dependent enhancement of toxin affinity to electrostatic repulsion between the bound toxin and Ca(2+) or Na(+) ions trapped inside the channel vestibule in the closed state. Our results indicate that TTX/STX use dependence is not relieved by mutations that enhance Ca(2+) permeability, suggesting that ion-toxin repulsion is not the primary factor that determines use dependence. Evidence now favors the idea that TTX/STX use dependence arises from conformational coupling of the voltage sensor domain or domains with residues in the toxin-binding site that are also involved in slow inactivation.
Collapse
|
20
|
Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 2012; 486:135-9. [PMID: 22678296 PMCID: PMC3552482 DOI: 10.1038/nature11077] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/23/2012] [Indexed: 01/07/2023]
Abstract
In excitable cells, voltage-gated sodium (Na(V)) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance. Inactivation is a hallmark of Na(V) channel function and is critical for control of membrane excitability, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type Na(V)Ab channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2 Å resolution. Compared to previous structures of Na(V)Ab channels with cysteine mutations in the pore-lining S6 helices (ref. 4), the S6 helices and the intracellular activation gate have undergone significant rearrangements: one pair of S6 helices has collapsed towards the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type Na(V)Ab models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues that are analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains have also shifted around the perimeter of the pore module in wild-type Na(V)Ab, compared to the mutant channel, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in Na(V) channel gating and inactivation. These potential inactivated-state structures provide new insights into Na(V) channel gating and novel avenues to drug development and therapy for a range of debilitating Na(V) channelopathies.
Collapse
Affiliation(s)
- Jian Payandeh
- Department of Pharmacology, University of Washington, Seattle, WA
| | | | - Todd Scheuer
- Department of Pharmacology, University of Washington, Seattle, WA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA,Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | | |
Collapse
|