1
|
Ascari A, Tran ENH, Eijkelkamp BA, Morona R. Detection of a disulphide bond and conformational changes in Shigella flexneri Wzy, and the role of cysteine residues in polymerase activity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183871. [PMID: 35090897 DOI: 10.1016/j.bbamem.2022.183871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
Shigella flexneri utilises the Wzy-dependent pathway for the production of a plethora of complex polysaccharides, including the lipopolysaccharide O-antigen (Oag) component. The inner membrane protein WzySF polymerises Oag repeat units, whilst two co-polymerase proteins, WzzSF and WzzpHS-2, together interact with WzySF to regulate production of short- (S-Oag) and very long- (VL-Oag) Oag modal lengths, respectively. The 2D arrangement of WzySF transmembrane and soluble regions has been previously deciphered, however, attaining information on the 3D structural and conformational arrangement of WzySF, or any homologue, has proven difficult. For the first time, the current study detected insights into the in situ WzySF arrangement. In vitro assays using thiol-reactive PEG-maleimide were used to probe WzySF conformation, which additionally detected novel, unique conformational changes in response to interaction with intrinsic factors, including WzzSF and WzzpHS-2, and extrinsic factors, such as temperature. Site-directed mutagenesis of WzySF cysteine residues revealed the presence of a putative intramolecular disulphide bond, between cysteine moieties 13 and 60. Subsequent analyses highlighted both the structural and functional importance of WzySF cysteines. Substitution of WzySF cysteine residues significantly decreased biosynthesis of the VL-Oag modal length, without disruption to S-Oag production. This phenotype was corroborated in the absence of co-polymerase competition for WzySF interaction. These data suggest WzySF cysteine substitutions directly impair the interaction between Wzy/WzzpHS-2, without altering the Wzy/WzzSF interplay, and in combination with structural data, we propose that the N- and C-termini of WzySF are arranged in close proximity, and together may form the unique WzzpHS-2 interaction site.
Collapse
Affiliation(s)
- Alice Ascari
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide 5005, Australia.
| | - Elizabeth Ngoc Hoa Tran
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide 5005, Australia.
| | - Bart A Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide 5042, South Australia, Australia.
| | - Renato Morona
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
2
|
Maczuga NT, Tran ENH, Morona R. Topology of the Shigella flexneri Enterobacterial Common Antigen polymerase WzyE. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35470793 DOI: 10.1099/mic.0.001183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterobacteriales have evolved a specialized outer membrane polysaccharide [Enterobacterial Common Antigen (ECA)] which allows them to persist in various environmental niches. Biosynthesis of ECA initiates on the cytoplasmic leaflet of the inner membrane (IM) where glycosyltransferases assemble ECA repeat units (RUs). Complete RUs are then translocated across the IM and assembled into polymers by ECA-specific homologues of the Wzy-dependent pathway. Consisting of the membrane proteins Wzx, Wzy and Wzz, the Wzy-dependent pathway is the most common polysaccharide biosynthetic pathway in Gram-negative bacteria where it is most notably involved in LPS O antigen (Oag) biosynthesis. As such, the majority of research directed towards these proteins has been orientated towards Oag biosynthetic homologues with little directed towards ECA homologues. Belonging to the Shape, Elongation, Division and Sporulation (SEDS) protein family, Wzy proteins are polymerases, and are characterized as possessing little or no peptide homology among homologues as well as being polytopic membrane proteins with functionally relevant residues within periplasmic loops, as defined by C-terminal reporter fusion topology mapping. Here, we present the first the first major study into the ECA polymerase WzyE. Multiple sequence alignments and topology mapping showed that WzyE is unlike WzyB proteins involved with Oag biosynthesis WzyE displays high peptide conservation across Enterobacteriales. In silico structures and reporter mapping allowed us to identify possible functionally conserved residues with WzyESF's periplasmic loops, which we showed were crucial for its function. This work provides novel insight into Wzy proteins and suggests that WzyE is an optimal model to investigate Wzy proteins and the Wzy-dependent pathway.
Collapse
Affiliation(s)
- Nicholas T Maczuga
- Department of Molecular and Biomedical Sciences, Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Elizabeth N H Tran
- Department of Molecular and Biomedical Sciences, Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Renato Morona
- Department of Molecular and Biomedical Sciences, Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Gautam J, Xu Z. Construction and Validation of a Genome-Scale Metabolic Network of Thermotoga sp. Strain RQ7. Appl Biochem Biotechnol 2020; 193:896-911. [PMID: 33200269 DOI: 10.1007/s12010-020-03470-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/09/2020] [Indexed: 11/30/2022]
Abstract
Thermotoga are anaerobic hyperthermophiles that have a deep lineage to the last universal ancestor and produce biological hydrogen gas accompanying cell growth. In recent years, systems-level approaches have been used to elucidate their metabolic capacities, by integrating mathematical modeling and experimental results. To assist biochemical engineering studies of T. sp. strain RQ7, this work aims at building a metabolic model of the bacterium that quantitatively simulates its metabolism at the genome scale. The constructed model, RQ7_iJG408, consists of 408 genes, 692 reactions, and 538 metabolites. Constraint-based flux balance analyses were used to simulate cell growth in both the complex and defined media. Quantitative comparison of the predicted and measured growth rates resulted in good agreements. This model serves as a foundation for an integrated biochemical description of T. sp. strain RQ7. It is a useful tool in designing growth media, identifying metabolic engineering strategies, and exploiting the physiological potentials of this biotechnologically significant organism.
Collapse
Affiliation(s)
- Jyotshana Gautam
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Zhaohui Xu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
4
|
Caffalette CA, Kuklewicz J, Spellmon N, Zimmer J. Biosynthesis and Export of Bacterial Glycolipids. Annu Rev Biochem 2020; 89:741-768. [DOI: 10.1146/annurev-biochem-011520-104707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.
Collapse
Affiliation(s)
- Christopher A. Caffalette
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jeremi Kuklewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Nicholas Spellmon
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
5
|
Dwibedi C, Larsson P, Ahlinder J, Lindgren P, Myrtennäs K, Granberg M, Larsson E, Öhrman C, Sjödin A, Stenberg P, Forsman M, Johansson A. Biological amplification of low frequency mutations unravels laboratory culture history of the bio-threat agent Francisella tularensis. Forensic Sci Int Genet 2020; 45:102230. [PMID: 31924594 DOI: 10.1016/j.fsigen.2019.102230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/22/2019] [Accepted: 12/18/2019] [Indexed: 01/15/2023]
Abstract
Challenges of investigating a suspected bio attack include establishing if microorganisms have been cultured to produce attack material and to identify their source. Addressing both issues, we have investigated genetic variations that emerge during laboratory culturing of the bacterial pathogen Francisella tularensis. Key aims were to identify genetic variations that are characteristic of laboratory culturing and explore the possibility of using biological amplification to identify genetic variation present at exceedingly low frequencies in a source sample. We used parallel serial passage experiments and high-throughput sequencing of F. tularensis to explore the genetic variation. We found that during early laboratory culture passages of F. tularensis, gene duplications emerged in the pathogen genome followed by single-nucleotide polymorphisms in genes for bacterial capsule synthesis. Based on a biological enrichment scheme and the use of high-throughput sequencing, we identified genetic variation that likely pre-existed in a source sample. The results support that capsule synthesis gene mutations are common during laboratory culture, and that a biological amplification strategy is useful for linking a F. tularensis sample to a specific laboratory variant among many highly similar variants.
Collapse
Affiliation(s)
- Chinmay Dwibedi
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden; Swedish Defense Research Agency, Umeå, Sweden.
| | - Pär Larsson
- Swedish Defense Research Agency, Umeå, Sweden
| | | | | | | | | | - Eva Larsson
- Swedish Defense Research Agency, Umeå, Sweden
| | | | | | - Per Stenberg
- Swedish Defense Research Agency, Umeå, Sweden; Department of Ecology and Environmental Science (EMG), Umeå University, Umeå, Sweden
| | | | - Anders Johansson
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden
| |
Collapse
|
6
|
Glycoconjugate vaccine using a genetically modified O antigen induces protective antibodies to Francisella tularensis. Proc Natl Acad Sci U S A 2019; 116:7062-7070. [PMID: 30872471 PMCID: PMC6452683 DOI: 10.1073/pnas.1900144116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Francisella tularensis is the causative agent of tularemia, a category A bioterrorism agent. The lipopolysaccharide (LPS) O antigen (OAg) of F. tularensis has been considered for use in a glycoconjugate vaccine, but conjugate vaccines tested so far have failed to confer protection necessary against aerosolized pulmonary bacterial challenge. When F. tularensis OAg was purified under standard conditions, the antigen had a small molecular size [25 kDa, low molecular weight (LMW)]. Using milder extraction conditions, we found the native OAg had a larger molecular size [80 kDa, high molecular weight (HMW)], and in a mouse model of tularemia, a glycoconjugate vaccine made with the HMW polysaccharide coupled to tetanus toxoid (HMW-TT) conferred better protection against intranasal challenge than a conjugate made with the LMW polysaccharide (LMW-TT). To further investigate the role of OAg size in protection, we created an F. tularensis live vaccine strain (LVS) mutant with a significantly increased OAg size [220 kDa, very high molecular weight (VHMW)] by expressing in F. tularensis a heterologous chain-length regulator gene (wzz) from the related species Francisella novicida Immunization with VHMW-TT provided markedly increased protection over that obtained with TT glycoconjugates made using smaller OAgs. We found that protective antibodies recognize a length-dependent epitope better expressed on HMW and VHMW antigens, which bind with higher affinity to the organism.
Collapse
|
7
|
Zuo J, Tu C, Wang Y, Qi K, Hu J, Wang Z, Mi R, Yan huang, Chen Z, Han X. The role of the wzy gene in lipopolysaccharide biosynthesis and pathogenesis of avian pathogenic Escherichia coli. Microb Pathog 2019; 127:296-303. [DOI: 10.1016/j.micpath.2018.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023]
|
8
|
Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Pectobacterium and Dickeya spp. Appl Environ Microbiol 2019; 85:AEM.02050-18. [PMID: 30413477 DOI: 10.1128/aem.02050-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
Soft-rot Enterobacteriaceae (SRE), typified by Pectobacterium and Dickeya genera, are phytopathogenic bacteria inflicting soft-rot disease in crops worldwide. By combining genomic information from 100 SRE with whole-transcriptome data sets, we identified novel genomic and transcriptional associations among key pathogenicity themes in this group. Comparative genomics revealed solid linkage between the type I secretion system (T1SS) and the carotovoricin bacteriophage (Ctv) conserved in 96.7% of Pectobacterium genomes. Moreover, their coactivation during infection indicates a novel functional association involving T1SS and Ctv. Another bacteriophage-borne genomic region, mostly confined to less than 10% of Pectobacterium strains, was found, presumably comprising a novel lineage-specific prophage in the genus. We also detected the transcriptional coregulation of a previously predicted toxin/immunity pair (WHH and SMI1_KNR4 families), along with the type VI secretion system (T6SS), which includes hcp and/or vgrG genes, suggesting a role in disease development as T6SS-dependent effectors. Further, we showed that another predicted T6SS-dependent endonuclease (AHH family) exhibited toxicity in ectopic expression assays, indicating antibacterial activity. Additionally, we report the striking conservation of the group 4 capsule (GFC) cluster in 100 SRE strains which consistently features adjacently conserved serotype-specific gene arrays comprising a previously unknown organization in GFC clusters. Also, extensive sequence variations found in gfcA orthologs suggest a serotype-specific role in the GfcABCD machinery.IMPORTANCE Despite the considerable loss inflicted on important crops yearly by Pectobacterium and Dickeya diseases, investigations on key virulence and interbacterial competition assets relying on extensive comparative genomics are still surprisingly lacking for these genera. Such approaches become more powerful over time, underpinned by the growing amount of genomic information in public databases. In particular, our findings point to new functional associations among well-known genomic themes enabling alternative means of neutralizing SRE diseases through disruption of pivotal virulence programs. By elucidating novel transcriptional and genomic associations, this study adds valuable information on virulence candidates that could be decisive in molecular applications in the near future. The utilization of 100 genomes of Pectobacterium and Dickeya strains in this study is unprecedented for comparative analyses in these taxa, and it provides novel insights on the biology of economically important plant pathogens.
Collapse
|
9
|
Pavkova I, Kopeckova M, Klimentova J, Schmidt M, Sheshko V, Sobol M, Zakova J, Hozak P, Stulik J. The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the Francisella tularensis dsbA Deletion Mutant. Front Cell Infect Microbiol 2017; 7:503. [PMID: 29322032 PMCID: PMC5732180 DOI: 10.3389/fcimb.2017.00503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
The DsbA homolog of Francisella tularensis was previously demonstrated to be required for intracellular replication and animal death. Disruption of the dsbA gene leads to a pleiotropic phenotype that could indirectly affect a number of different cellular pathways. To reveal the broad effects of DsbA, we compared fractions enriched in membrane proteins of the wild-type FSC200 strain with the dsbA deletion strain using a SILAC-based quantitative proteomic analysis. This analysis enabled identification of 63 proteins with significantly altered amounts in the dsbA mutant strain compared to the wild-type strain. These proteins comprise a quite heterogeneous group including hypothetical proteins, proteins associated with membrane structures, and potential secreted proteins. Many of them are known to be associated with F. tularensis virulence. Several proteins were selected for further studies focused on their potential role in tularemia's pathogenesis. Of them, only the gene encoding glyceraldehyde-3-phosphate dehydrogenase, an enzyme of glycolytic pathway, was found to be important for full virulence manifestations both in vivo and in vitro. We next created a viable mutant strain with deleted gapA gene and analyzed its phenotype. The gapA mutant is characterized by reduced virulence in mice, defective replication inside macrophages, and its ability to induce a protective immune response against systemic challenge with parental wild-type strain. We also demonstrate the multiple localization sites of this protein: In addition to within the cytosol, it was found on the cell surface, outside the cells, and in the culture medium. Recombinant GapA was successfully obtained, and it was shown that it binds host extracellular serum proteins like plasminogen, fibrinogen, and fibronectin.
Collapse
Affiliation(s)
- Ivona Pavkova
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Monika Kopeckova
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Jana Klimentova
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Monika Schmidt
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Valeria Sheshko
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Margarita Sobol
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Prague, Czechia
| | - Jitka Zakova
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Prague, Czechia.,Microscopy Centre-LM & EM, Institute of Molecular Genetics ASCR v.v.i., Prague, Czechia.,Division BIOCEV, Laboratory of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Vestec, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
10
|
Merino S, Gonzalez V, Tomás JM. The first sugar of the repeat units is essential for the Wzy polymerase activity and elongation of the O-antigen lipopolysaccharide. Future Microbiol 2016; 11:903-18. [PMID: 27357519 DOI: 10.2217/fmb-2015-0028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the Wzx/Wzy-dependent assembled pathway, the assembled O-antigen repeat units are translocated from the cytosolic to the periplasmic face of the inner membrane by a Wzx translocase and then polymerized by the integral membrane protein Wzy to form a glycan chain. We demonstrate that the activity of the Escherichia coli O-antigen polymerase (Wzy) is dependent on the first sugar of the O-antigen repeat unit to produce the O-antigen polymerization and therefore, there is a need for a concerted action with the enzyme transferring the initial HexNAc to undecaprenyl phosphate (UDP-HexNAc: polyprenol-P HexNAc-1-P transferase). Furthermore, in the case of Aeromonas hydrophila Wzy-O34 polymerization activity, the enzyme is permissive with the sugar at the nonreducing end of the O-antigen repeat unit.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| | - Victor Gonzalez
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| |
Collapse
|
11
|
Li L, Woodward RL, Han W, Qu J, Song J, Ma C, Wang PG. Chemoenzymatic synthesis of the bacterial polysaccharide repeating unit undecaprenyl pyrophosphate and its analogs. Nat Protoc 2016; 11:1280-98. [PMID: 27336706 DOI: 10.1038/nprot.2016.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polysaccharides are essential and immunologically relevant components of bacterial cell walls. These biomolecules can be found covalently attached to lipids (e.g., O-polysaccharide (PS) contains undecaprenyl and lipopolysaccharide (LPS) contains lipid A) or noncovalently associated with cell wells (e.g., capsular PS (CPS)). Although extensive genetic studies have indicated that the Wzy-dependent biosynthetic pathway is primarily responsible for producing such polysaccharides, in vitro biochemical studies are needed to determine, for example, which gene product is responsible for catalyzing each step in the pathway, and to reveal molecular details about the Wzx translocase, Wzy polymerase and O-PS chain-length determinant. Many of these biochemical studies require access to a structurally well-defined PS repeating unit undecaprenyl pyrophosphate (RU-PP-Und), the key building block in this pathway. We describe herein the chemoenzymatic synthesis of Escherichia coli (serotype O157) RU-PP-Und. This involves (i) chemical synthesis of precursor N-acetyl-D-galactosamine (GalNAc)-PP-Und (2 weeks) and (ii) enzymatic extension of the precursor to produce RU-PP-Und (2 weeks). Undecaprenyl phosphate and peracetylated GalNAc-1-phosphate are prepared from commercially available undecaprenol and peracetylated GalNAc. The chemical coupling of these two products, followed by structural confirmation (mass spectrometry and NMR) and deprotection, generates GalNAc-PP-Und. This compound is then sequentially modified by enzymes in the E. coli serotype O157 (E. coli O157) O-PS biosynthetic pathway. Three glycosyltransferases (GTs) are involved (WbdN, WbdO and WbdP) and they transfer glucose (Glc), L-fucose (L-Fuc) and N-acetylperosamine (PerNAc) onto GalNAc-PP-Und to form the intact RU-PP-Und in a stepwise manner. Final compounds and intermediates are confirmed by mass spectrometry. The procedure can be adapted to the synthesis of analogs with different PS or lipid moieties.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry and Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Robert L Woodward
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio, USA
| | - Weiqing Han
- Department of Chemistry and Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jingyao Qu
- Department of Chemistry and Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jing Song
- Department of Chemistry and Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Cheng Ma
- Department of Chemistry and Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Peng G Wang
- Department of Chemistry and Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Taylor VL, Hoage JFJ, Thrane SW, Huszczynski SM, Jelsbak L, Lam JS. A Bacteriophage-Acquired O-Antigen Polymerase (Wzyβ) from P. aeruginosa Serotype O16 Performs a Varied Mechanism Compared to Its Cognate Wzyα. Front Microbiol 2016; 7:393. [PMID: 27065964 PMCID: PMC4815439 DOI: 10.3389/fmicb.2016.00393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/14/2016] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that produces highly varied lipopolysaccharide (LPS) structures. The O antigen (O-Ag) in the LPS is synthesized through the Wzx/Wzy-dependent pathway where lipid-linked O-Ag repeats are polymerized by Wzy. Horizontal-gene transfer has been associated with O-Ag diversity. The O-Ag present on the surface of serotypes O5 and O16, differ in the intra-molecular bonds, α and β, respectively; the latter arose from the action of three genes in a serotype converting unit acquired from bacteriophage D3, including a β-polymerase (Wzyβ). To further our understanding of O-polymerases, the inner membrane (IM) topology of Wzyβ was determined using a dual phoA-lacZα reporter system wherein random 3′ gene truncations were localized to specific loci with respect to the IM by normalized reporter activities as determined through the ratio of alkaline phosphatase activity to β-galactosidase activity. The topology of Wzyβ developed through this approach was shown to contain two predominant periplasmic loops, PL3 (containing an RX10G motif) and PL4 (having an O-Ag ligase superfamily motif), associated with inverting glycosyltransferase reaction. Through site-directed mutagenesis and complementation assays, residues Arg254, Arg270, Arg272, and His300 were found to be essential for Wzyβ function. Additionally, like-charge substitutions, R254K and R270K, could not complement the wzyβ knockout, highlighting the essential guanidium side group of Arg residues. The O-Ag ligase domain is conserved among heterologous Wzy proteins that produce β-linked O-Ag repeat units. Taking advantage of the recently obtained whole-genome sequence of serotype O16 a candidate promoter was identified. Wzyβ under its native promoter was integrated in the PAO1 genome, which resulted in simultaneous production of α- and β-linked O-Ag. These observations established that members of Wzy-like family consistently exhibit a dual-periplasmic loops topology, and identifies motifs that are plausible to be involved in enzymatic activities. Based on these results, the phage-derived Wzyβ utilizes a different reaction mechanism in the P. aeruginosa host to avoid self-inhibition during serotype conversion.
Collapse
Affiliation(s)
- Véronique L Taylor
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Jesse F J Hoage
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | | | - Steven M Huszczynski
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark Kongens Lyngby, Denmark
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| |
Collapse
|
13
|
Rasmussen JA, Fletcher JR, Long ME, Allen LAH, Jones BD. Characterization of Francisella tularensis Schu S4 mutants identified from a transposon library screened for O-antigen and capsule deficiencies. Front Microbiol 2015; 6:338. [PMID: 25999917 PMCID: PMC4419852 DOI: 10.3389/fmicb.2015.00338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/06/2015] [Indexed: 02/02/2023] Open
Abstract
The lipopolysaccharide (LPS) and O-antigen polysaccharide capsule structures of Francisella tularensis play significant roles in helping these highly virulent bacteria avoid detection within a host. We previously created pools of F. tularensis mutants that we screened to identify strains that were not reactive to a monoclonal antibody to the O-antigen capsule. To follow up previously published work, we characterize further seven of the F. tularensis Schu S4 mutant strains identified by our screen. These F. tularensis strains carry the following transposon mutations: FTT0846::Tn5, hemH::Tn5, wbtA::Tn5, wzy::Tn5, FTT0673p/prsA::Tn5, manB::Tn5, or dnaJ::Tn5. Each of these strains displayed sensitivity to human serum, to varying degrees, when compared to wild-type F. tularensis Schu S4. By Western blot, only FTT0846::Tn5, wbtA::Tn5, wzy::Tn5, and manB::Tn5 strains did not react to the capsule and LPS O-antigen antibody 11B7, although the wzy::Tn5 strain did have a single O-antigen reactive band that was detected by the FB11 monoclonal antibody. Of these strains, manB::Tn5 and FTT0846 appear to have LPS core truncations, whereas wbtA::Tn5 and wzy::Tn5 had LPS core structures that are similar to the parent F. tularensis Schu S4. These strains were also shown to have poor growth within human monocyte derived macrophages (MDMs) and bone marrow derived macrophages (BMDMs). We examined the virulence of these strains in mice, following intranasal challenge, and found that each was attenuated compared to wild type Schu S4. Our results provide additional strong evidence that LPS and/or capsule are F. tularensis virulence factors that most likely function by providing a stealth shield that prevents the host immune system from detecting this potent pathogen.
Collapse
Affiliation(s)
- Jed A Rasmussen
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Joshua R Fletcher
- Genetics Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Matthew E Long
- Molecular and Cellular Biology Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Lee-Ann H Allen
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Molecular and Cellular Biology Program, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Department of Internal Medicine, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Bradley D Jones
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Genetics Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
14
|
Schmid J, Sieber V. Enzymatic Transformations Involved in the Biosynthesis of Microbial Exo-polysaccharides Based on the Assembly of Repeat Units. Chembiochem 2015; 16:1141-7. [DOI: 10.1002/cbic.201500035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Indexed: 12/12/2022]
|
15
|
Islam ST, Lam JS. Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can J Microbiol 2014; 60:697-716. [DOI: 10.1139/cjm-2014-0595] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The surfaces of bacteria mediate a multitude of functions in the environment and in an infected host, including adhesion to both biotic and abiotic substrata, motility, immune system interaction and (or) activation, biofilm formation, and cell–cell communication, with many of these features directly influenced by cell-surface glycans. In both Gram-negative and Gram-positive bacteria, the majority of cell-surface polysaccharides are produced via the Wzx/Wzy-dependent assembly pathway; these glycans include heteropolymeric O-antigen, enterobacterial common antigen, exopolysaccharide, spore coat, and capsule in diverse bacteria. The key components of this assembly pathway are the integral inner membrane Wzx flippase, Wzy polymerase, and Wzz chain-length regulator proteins, which until recently have resisted detailed structural and functional characterization. In this review, we have provided a comprehensive synthesis of the latest structural and mechanistic data for each protein, as well as an examination of substrate specificity for each assembly step and complex formation between the constituent proteins. To complement the unprecedented explosion of genomic-sequencing data for bacteria, we have also highlighted both classical and state-of-the-art methods by which encoded Wzx, Wzy, and Wzz proteins can be reliably identified and annotated, using the model Gram-negative bacterium Pseudomonas aeruginosa as an example data set. Lastly, we outline future avenues of research, with the aim of stimulating researchers to take the next steps in investigating the function of, and interplay between, the constituents of this widespread assembly scheme.
Collapse
Affiliation(s)
- Salim T. Islam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joseph S. Lam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
16
|
Mutational analysis of the Shigella flexneri O-antigen polymerase Wzy: identification of Wzz-dependent Wzy mutants. J Bacteriol 2014; 197:108-19. [PMID: 25313393 DOI: 10.1128/jb.01885-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The O-antigen (Oag) component of lipopolysaccharide (LPS) is a major virulence determinant of Shigella flexneri and is synthesized by the O-antigen polymerase, WzySf. Oag chain length is regulated by chromosomally encoded WzzSf and pHS-2 plasmid-encoded WzzpHS2. To identify functionally important amino acid residues in WzySf, random mutagenesis was performed on the wzySf gene in a pWaldo-TEV-GFP plasmid, followed by screening with colicin E2. Analysis of the LPS conferred by mutated WzySf proteins in the wzySf-deficient (Δwzy) strain identified 4 different mutant classes, with mutations found in periplasmic loop 1 (PL1), PL2, PL3, and PL6, transmembrane region 2 (TM2), TM4, TM5, TM7, TM8, and TM9, and cytoplasmic loop 1 (CL1) and CL5. The association of WzySf and WzzSf was investigated by transforming these mutated wzySf plasmids into a wzySf- and wzzSf-deficient (Δwzy Δwzz) strain. Comparison of the LPS profiles in the Δwzy and Δwzy Δwzz backgrounds identified WzySf mutants whose polymerization activities were WzzSf dependent. Colicin E2 and bacteriophage Sf6c sensitivities were consistent with the LPS profiles. Analysis of the expression levels of the WzySf-GFP mutants in the Δwzy and Δwzy Δwzz backgrounds identified a role for WzzSf in WzySf stability. Hence, in addition to its role in regulating Oag modal chain length, WzzSf also affects WzySf activity and stability.
Collapse
|
17
|
Kingry LC, Petersen JM. Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 2014; 4:35. [PMID: 24660164 PMCID: PMC3952080 DOI: 10.3389/fcimb.2014.00035] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/22/2014] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is the causative agent of the acute disease tularemia. Due to its extreme infectivity and ability to cause disease upon inhalation, F. tularensis has been classified as a biothreat agent. Two subspecies of F. tularensis, tularensis and holarctica, are responsible for tularemia in humans. In comparison, the closely related species F. novicida very rarely causes human illness and cases that do occur are associated with patients who are immune compromised or have other underlying health problems. Virulence between F. tularensis and F. novicida also differs in laboratory animals. Despite this varying capacity to cause disease, the two species share ~97% nucleotide identity, with F. novicida commonly used as a laboratory surrogate for F. tularensis. As the F. novicida U112 strain is exempt from U.S. select agent regulations, research studies can be carried out in non-registered laboratories lacking specialized containment facilities required for work with virulent F. tularensis strains. This review is designed to highlight phenotypic (clinical, ecological, virulence, and pathogenic) and genomic differences between F. tularensis and F. novicida that warrant maintaining F. novicida and F. tularensis as separate species. Standardized nomenclature for F. novicida is critical for accurate interpretation of experimental results, limiting clinical confusion between F. novicida and F. tularensis and ensuring treatment efficacy studies utilize virulent F. tularensis strains.
Collapse
Affiliation(s)
- Luke C Kingry
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention Fort Collins, CO, USA
| | - Jeannine M Petersen
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention Fort Collins, CO, USA
| |
Collapse
|
18
|
Zhao G, Wu B, Li L, Wang PG. O-antigen polymerase adopts a distributive mechanism for lipopolysaccharide biosynthesis. Appl Microbiol Biotechnol 2014; 98:4075-81. [PMID: 24557568 DOI: 10.1007/s00253-014-5552-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/09/2013] [Accepted: 01/18/2014] [Indexed: 01/08/2023]
Abstract
Bacterial lipopolysaccharide (LPS) is an essential cell envelope component for gram-negative bacteria. As the most variable region of LPS, O antigens serve as important virulence determinants for many bacteria and represent a promising carbohydrate source for glycoconjugate vaccines. In the Wzy-dependent O-antigen biosynthetic pathway, the integral membrane protein Wzy was shown to be the sole enzyme responsible for polymerization of O-repeat unit. Its catalytic mechanism, however, remains elusive. Herein, Wzy was successfully overexpressed in Escherichia coli with an N-terminal His10-tag. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed that the Wzy protein exists in its native confirmation as a dimer. Subsequently, we chemo-enzymatically synthesized the substrates of Wzy, the lipid-PP-linked repeat units. Together with an optimized O-antigen visualization method, we monitored the production of reaction intermediates at varying times. We present here our result as the first biochemical evidence that Wzy functions in a distributive manner.
Collapse
Affiliation(s)
- Guohui Zhao
- Center for Diagnostics and Therapeutics and Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | | | | | | |
Collapse
|
19
|
Francisella tularensis Schu S4 lipopolysaccharide core sugar and O-antigen mutants are attenuated in a mouse model of tularemia. Infect Immun 2014; 82:1523-39. [PMID: 24452684 DOI: 10.1128/iai.01640-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The virulence factors mediating Francisella pathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms. Francisella tularensis produces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using an F. tularensis Schu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236 and FTT1238c) revealed similarity to those for waa (rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD50) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to the F. tularensis mutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type A F. tularensis challenge.
Collapse
|
20
|
Loquasto JR, Barrangou R, Dudley EG, Stahl B, Chen C, Roberts RF. Bifidobacterium animalis subsp. lactis ATCC 27673 is a genomically unique strain within its conserved subspecies. Appl Environ Microbiol 2013; 79:6903-10. [PMID: 23995933 PMCID: PMC3811525 DOI: 10.1128/aem.01777-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/27/2013] [Indexed: 01/08/2023] Open
Abstract
Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains.
Collapse
Affiliation(s)
- Joseph R. Loquasto
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rodolphe Barrangou
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- DuPont Nutrition and Health, Madison, Wisconsin, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Buffy Stahl
- DuPont Nutrition and Health, Madison, Wisconsin, USA
| | - Chun Chen
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Robert F. Roberts
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
21
|
Haemophilus parainfluenzae expresses diverse lipopolysaccharide O-antigens using ABC transporter and Wzy polymerase-dependent mechanisms. Int J Med Microbiol 2013; 303:603-17. [PMID: 24035104 PMCID: PMC3989065 DOI: 10.1016/j.ijmm.2013.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/09/2013] [Accepted: 08/18/2013] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide O-antigens are the basis of serotyping schemes for Gram negative bacteria and help to determine the nature of host–bacterial interactions. Haemophilus parainfluenzae is a normal commensal of humans but is also an occasional pathogen. The prevalence, diversity and biosynthesis of O-antigens were investigated in this species for the first time. 18/18 commensal H. parainfluenzae isolates contain a O-antigen biosynthesis gene cluster flanked by glnA and pepB, the same position as the hmg locus for tetrasaccharide biosynthesis in Haemophilus influenzae. The O-antigen loci show diverse restriction digest patterns but fall into two main groups: (1) those encoding enzymes for the synthesis and transfer of FucNAc4N in addition to the Wzy-dependent mechanism of O-antigen synthesis and transport and (2) those encoding galactofuranose synthesis/transfer enzymes and an ABC transporter. The other glycosyltransferase genes differ between isolates. Three H. parainfluenzae isolates fell outside these groups and are predicted to synthesise O-antigens containing ribitol phosphate or deoxytalose. Isolates using the ABC transporter system encode a putative O-antigen ligase, required for the synthesis of O-antigen-containing LPS glycoforms, at a separate genomic location. The presence of an O-antigen contributes significantly to H. parainfluenzae resistance to the killing effect of human serum in vitro. The discovery of O-antigens in H. parainfluenzae is striking, as its close relative H. influenzae lacks this cell surface component.
Collapse
|
22
|
Okan NA, Kasper DL. The atypical lipopolysaccharide of Francisella. Carbohydr Res 2013; 378:79-83. [PMID: 23916469 DOI: 10.1016/j.carres.2013.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/15/2013] [Accepted: 06/20/2013] [Indexed: 01/17/2023]
Abstract
Bacterial lipopolysaccharides (LPSs) are ubiquitous molecules that are prominent components of the outer membranes of most gram-negative bacteria. Genetic and structural characterizations of Francisella LPS have revealed substantial differences when compared to more commonly studied LPSs of the Enterobacteriaceae. This review discusses both the general characteristics and the unusual features of Francisella LPS.
Collapse
Affiliation(s)
- Nihal A Okan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | | |
Collapse
|
23
|
Kdo hydrolase is required for Francisella tularensis virulence and evasion of TLR2-mediated innate immunity. mBio 2013; 4:e00638-12. [PMID: 23404403 PMCID: PMC3573668 DOI: 10.1128/mbio.00638-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The highly virulent Francisella tularensis subsp. tularensis has been classified as a category A bioterrorism agent. A live vaccine strain (LVS) has been developed but remains unlicensed in the United States because of an incomplete understanding of its attenuation. Lipopolysaccharide (LPS) modification is a common strategy employed by bacterial pathogens to avoid innate immunity. A novel modification enzyme has recently been identified in F. tularensis and Helicobacter pylori. This enzyme, a two-component Kdo (3-deoxy-d-manno-octulosonic acid) hydrolase, catalyzes the removal of a side chain Kdo sugar from LPS precursors. The biological significance of this modification has not yet been studied. To address the role of the two-component Kdo hydrolase KdhAB in F. tularensis pathogenesis, a ΔkdhAB deletion mutant was constructed from the LVS strain. In intranasal infection of mice, the ΔkdhAB mutant strain had a 50% lethal dose (LD(50)) 2 log(10) units higher than that of the parental LVS strain. The levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid were significantly higher (2-fold) in mice infected with the ΔkdhAB mutant than in mice infected with LVS. In vitro stimulation of bone marrow-derived macrophages with the ΔkdhAB mutant induced higher levels of TNF-α and IL-1β in a TLR2-dependent manner. In addition, TLR2(-/-) mice were more susceptible than wild-type mice to ΔkdhAB bacterial infection. Finally, immunization of mice with ΔkdhAB bacteria elicited a high level of protection against the highly virulent F. tularensis subsp. tularensis strain Schu S4. These findings suggest an important role for the Francisella Kdo hydrolase system in virulence and offer a novel mutant as a candidate vaccine. IMPORTANCE The first line of defense against a bacterial pathogen is innate immunity, which slows the progress of infection and allows time for adaptive immunity to develop. Some bacterial pathogens, such as Francisella tularensis, suppress the early innate immune response, killing the host before adaptive immunity can mature. To avoid an innate immune response, F. tularensis enzymatically modifies its lipopolysaccharide (LPS). A novel LPS modification-Kdo (3-deoxy-d-manno-octulosonic acid) saccharide removal--has recently been reported in F. tularensis. We found that the kdhAB mutant was significantly attenuated in mice. Additionally, the mutant strain induced an early innate immune response in mice both in vitro and in vivo. Immunization of mice with this mutant provided protection against the highly virulent F. tularensis strain Schu S4. Thus, our study has identified a novel LPS modification important for microbial virulence. A mutant lacking this modification may be used as a live attenuated vaccine against tularemia.
Collapse
|
24
|
Kalynych S, Valvano MA, Cygler M. Polysaccharide co-polymerases: the enigmatic conductors of the O-antigen assembly orchestra. Protein Eng Des Sel 2012; 25:797-802. [PMID: 23100544 DOI: 10.1093/protein/gzs075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The O-antigen lipopolysaccharides on bacterial surface contain variable number of oligosaccharide repeat units with their length having a modal distribution specific to the bacterial strain. The polysaccharide length distribution is controlled by the proteins called polysaccharide co-polymerases (PCPs), which are embedded in the inner membrane in Gram-negative bacteria and form homo oligomers. The 3D structures of periplasmic domains of several PCPs have been determined and provided the first insights into the possible mechanism of polysaccharide length determination mechanism. Here we review the current knowledge of structure and function of these polysaccharide length regulators.
Collapse
Affiliation(s)
- Sergei Kalynych
- Department of Biochemistry, McGill University, Montreal, Quebec H3G0B1, Canada
| | | | | |
Collapse
|
25
|
Vonkavaara M, Pavel STI, Hölzl K, Nordfelth R, Sjöstedt A, Stöven S. Francisella is sensitive to insect antimicrobial peptides. J Innate Immun 2012; 5:50-9. [PMID: 23037919 DOI: 10.1159/000342468] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/01/2012] [Indexed: 12/24/2022] Open
Abstract
Francisella tularensis causes the zoonotic disease tularemia. Arthropod vectors are important transmission routes for the disease, although it is not known how Francisella survives the efficient arthropod immune response. Here, we used Drosophila melanogaster as a model host for Francisella infections and investigated whether the bacteria are resistant to insect humoral immune responses, in particular to the antimicrobial peptides (AMPs) secreted into the insect hemolymph. Moreover, we asked to what extent such resistance might depend on lipopolysaccharide (LPS) structure and surface characteristics of the bacteria. We analyzed Francisella novicida mutant strains in genes, directly or indirectly involved in specific steps of LPS biosynthesis, for virulence in wild-type and Relish(E20) immune-deficient flies, and tested selected mutants for sensitivity to AMPs in vitro. We demonstrate that Francisella is sensitive to specific fly AMPs, i.e. Attacin, Cecropin, Drosocin and Drosomycin. Furthermore, six bacterial genes, kpsF, manB, lpxF, slt, tolA and pal, were found to be required for resistance to Relish-dependent immune responses, illustrating the importance of structural details of Francisella lipid A and Kdo core for interactions with AMPs. Interestingly, a more negative surface charge and lack of O-antigen did not render mutant bacteria more sensitive to cationic AMPs and did not attenuate virulence in flies.
Collapse
Affiliation(s)
- Malin Vonkavaara
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Twine SM, Vinogradov E, Lindgren H, Sjostedt A, Conlan JW. Roles for wbtC, wbtI, and kdtA Genes in Lipopolysaccharide Biosynthesis, Protein Glycosylation, Virulence, and Immunogenicity in Francisella tularensis2 Strain SCHU S4. Pathogens 2012; 1:12-29. [PMID: 25152813 PMCID: PMC4141488 DOI: 10.3390/pathogens1010012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using a strategy of gene deletion mutagenesis, we have examined the roles of genes putatively involved in lipopolysaccharide biosynthesis in the virulent facultative intracellular bacterial pathogen, Francisella tularensis subspecies tularensis, strain SCHU S4 in LPS biosynthesis, protein glycosylation, virulence and immunogenicity. One mutant, ΔwbtI, did not elaborate a long chain O-polysaccharide (OPS), was completely avirulent for mice, and failed to induce a protective immune response against challenge with wild type bacteria. Another mutant, ΔwbtC, produced a long chain OPS with altered chemical and electrophoretic characteristics. This mutant showed markedly reduced glycosylation of several known glycoproteins. Additionally this mutant was highly attenuated, and elicited a protective immune response against systemic, but not respiratory challenge with wild type SCHU S4. A third mutant, ΔkdtA, produced an unconjugated long chain OPS, lacking a detectable core structure, and which was not obviously expressed at the surface. It was avirulent and elicited partial protection against systemic challenge only.
Collapse
Affiliation(s)
- Susan. M. Twine
- National Research Council Canada, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, ON K1A 1L1, Canada; E-Mails: (E.V.); (J.W.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-613-993-8829; Fax: +1-613-952-9092
| | - Evguenii Vinogradov
- National Research Council Canada, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, ON K1A 1L1, Canada; E-Mails: (E.V.); (J.W.C.)
| | - Helena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå SE-90185, Sweden; E-Mails: (H.L.); (A.S.)
| | - Anders Sjostedt
- Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå SE-90185, Sweden; E-Mails: (H.L.); (A.S.)
| | - J. Wayne Conlan
- National Research Council Canada, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, ON K1A 1L1, Canada; E-Mails: (E.V.); (J.W.C.)
| |
Collapse
|
27
|
Kim TH, Pinkham JT, Heninger SJ, Chalabaev S, Kasper DL. Genetic modification of the O-polysaccharide of Francisella tularensis results in an avirulent live attenuated vaccine. J Infect Dis 2011; 205:1056-65. [PMID: 21969334 DOI: 10.1093/infdis/jir620] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Francisella tularensis, the causative agent of tularemia, is a highly virulent microbe. One significant virulence factor of F. tularensis is the O-polysaccharide (O-PS) portion of the organism's lipopolysaccharide. METHODS A wzy (O-antigen polymerase) deletion mutant of Ft. live attenuated vaccine strain (Ft.LVS), designated Ft.LVS::Δwzy, was created and evaluated as a live attenuated vaccine. Specifically, the mutant's virulence potential and its protective efficacy against type A and type B strains were investigated by challenge of immunized mice. RESULTS F. tularensis LVS::Δwzy expressed only 1 repeating unit of O-PS and yet, upon immunization, induced O-PS-specific antibodies. Compared with Ft.LVS, the mutant was highly sensitive to complement-mediated lysis, significantly attenuated in virulence, and was recovered in much lower numbers from the organs of infected mice. Intranasal immunization with Ft.LVS::Δwzy provided protection against subsequent intranasal infection with the highly virulent type A strain SchuS4 and with Ft.LVS. Immunization with Ft.LVS::Δwzy elicited both humoral and cell-mediated immunity. CONCLUSIONS Ft.LVS::Δwzy was avirulent in mice and, despite expressing only 1 repeating unit of the O-PS, induced antibodies to the full-length O-PS. Vaccination with Ft.LVS::Δwzy protected mice against intranasal challenge with both type A and type B strains of F. tularensis and induced functional immunity through both humoral and cellular mechanisms.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Microbiology and Molecular Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
28
|
Zarrella TM, Singh A, Bitsaktsis C, Rahman T, Sahay B, Feustel PJ, Gosselin EJ, Sellati TJ, Hazlett KRO. Host-adaptation of Francisella tularensis alters the bacterium's surface-carbohydrates to hinder effectors of innate and adaptive immunity. PLoS One 2011; 6:e22335. [PMID: 21799828 PMCID: PMC3142145 DOI: 10.1371/journal.pone.0022335] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/27/2011] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase. METHODS/FINDINGS SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg) and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice. CONCLUSION F. tularensis undergoes host-adaptation which includes production of multiple capsular materials. These capsules impede recognition of bacterial outer membrane constituents by antibody, complement, and Toll-Like Receptor 2. These changes in the host-pathogen interface have profound implications for pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Tiffany M. Zarrella
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Anju Singh
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Constantine Bitsaktsis
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Tabassum Rahman
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Bikash Sahay
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Paul J. Feustel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | - Edmund J. Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Timothy J. Sellati
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Karsten R. O. Hazlett
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
29
|
Structure-guided investigation of lipopolysaccharide O-antigen chain length regulators reveals regions critical for modal length control. J Bacteriol 2011; 193:3710-21. [PMID: 21642455 DOI: 10.1128/jb.00059-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The O-antigen component of the lipopolysaccharide (LPS) represents a population of polysaccharide molecules with nonrandom (modal) chain length distribution. The number of the repeat O units in each individual O-antigen polymer depends on the Wzz chain length regulator, an inner membrane protein belonging to the polysaccharide copolymerase (PCP) family. Different Wzz proteins confer vastly different ranges of modal lengths (4 to >100 repeat units), despite having remarkably conserved structural folds. The molecular mechanism responsible for the selective preference for a certain number of O units is unknown. Guided by the three-dimensional structures of PCPs, we constructed a panel of chimeric molecules containing parts of two closely related Wzz proteins from Salmonella enterica and Shigella flexneri which confer different O-antigen chain length distributions. Analysis of the O-antigen length distribution imparted by each chimera revealed the region spanning amino acids 67 to 95 (region 67 to 95), region 200 to 255, and region 269 to 274 as primarily affecting the length distribution. We also showed that there is no synergy between these regions. In particular, region 269 to 274 also influenced chain length distribution mediated by two distantly related PCPs, WzzB and FepE. Furthermore, from the 3 regions uncovered in this study, region 269 to 274 appeared to be critical for the stability of the oligomeric form of Wzz, as determined by cross-linking experiments. Together, our data suggest that chain length determination depends on regions that likely contribute to stabilize a supramolecular complex.
Collapse
|
30
|
Islam ST, Gold AC, Taylor VL, Anderson EM, Ford RC, Lam JS. Dual conserved periplasmic loops possess essential charge characteristics that support a catch-and-release mechanism of O-antigen polymerization by Wzy in Pseudomonas aeruginosa PAO1. J Biol Chem 2011; 286:20600-5. [PMID: 21498511 PMCID: PMC3121466 DOI: 10.1074/jbc.c110.204651] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heteropolymeric B-band lipopolysaccharide in Pseudomonas aeruginosa PAO1 is synthesized via the so-called Wzy-dependent pathway, requiring a functional Wzy for polymerization of O-antigen repeat units in the periplasm. Wzy is an integral inner membrane protein for which the detailed topology has been mapped in a recent investigation (Islam, S. T., Taylor, V. L., Qi, M., and Lam, J. S. (2010) mBio 1, e00189-10), revealing two principal periplasmic loops (PL), PL3 and PL5, each containing an RX10G motif. Despite considerable sequence conservation between the two loops, the isoelectric point for each peptide displayed marked differences, with PL3 exhibiting a net-positive charge and PL5 showing a net-negative charge. Data from site-directed mutagenesis of amino acids in each PL have led to the identification of several key Arg residues within the two RX10G motifs that are important for Wzy function, of which Arg176, Arg290, and Arg291 could not be functionally substituted with Lys. These observations support the proposed role of each PL in a catch-and-release mechanism for Wzy-mediated O-antigen polymerization.
Collapse
Affiliation(s)
- Salim T Islam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Francisella tularensis Schu S4 O-antigen and capsule biosynthesis gene mutants induce early cell death in human macrophages. Infect Immun 2010; 79:581-94. [PMID: 21078861 DOI: 10.1128/iai.00863-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Francisella tularensis is capable of rampant intracellular growth and causes a potentially fatal disease in humans. Whereas many mutational studies have been performed with avirulent strains of Francisella, relatively little has been done with strains that cause human disease. We generated a near-saturating transposon library in the virulent strain Schu S4, which was subjected to high-throughput screening by transposon site hybridization through primary human macrophages, negatively selecting 202 genes. Of special note were genes in a locus of the Francisella chromosome, FTT1236, FTT1237, and FTT1238. Mutants with mutations in these genes demonstrated significant sensitivity to complement-mediated lysis compared with wild-type Schu S4 and exhibited marked defects in O-antigen and capsular polysaccharide biosynthesis. In the absence of complement, these mutants were phagocytosed more efficiently by macrophages than wild-type Schu S4 and were capable of phagosomal escape but exhibited reduced intracellular growth. Microscopic and quantitative analyses of macrophages infected with mutant bacteria revealed that these macrophages exhibited signs of cell death much earlier than those infected with Schu S4. These data suggest that FTT1236, FTT1237, and FTT1238 are important for polysaccharide biosynthesis and that the Francisella O antigen, capsule, or both are important for avoiding the early induction of macrophage death and the destruction of the replicative niche.
Collapse
|
32
|
Chalabaev S, Kim TH, Ross R, Derian A, Kasper DL. 3-Deoxy-D-manno-octulosonic acid (Kdo) hydrolase identified in Francisella tularensis, Helicobacter pylori, and Legionella pneumophila. J Biol Chem 2010; 285:34330-6. [PMID: 20801884 PMCID: PMC2966046 DOI: 10.1074/jbc.m110.166314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/19/2010] [Indexed: 11/06/2022] Open
Abstract
3-Deoxy-D-manno-octulosonic acid (Kdo) is an eight-carbon sugar ubiquitous in Gram-negative bacterial lipopolysaccharides (LPS). Although its biosynthesis is well described, no protein has yet been identified as a Kdo hydrolase. However, Kdo hydrolase enzymatic activity has been detected in membranes of Helicobacter pylori and Francisella tularensis and may be responsible for the removal of side-chain Kdo from the LPS core saccharides. We now report the identification of genes encoding a Kdo hydrolase in F. tularensis Schu S4 and live vaccine strain strains, in H. pylori 26695 strain and in Legionella pneumophila Philadelphia 1 strain. We have renamed the genes kdhA for keto-deoxyoctulosonate hydrolase A. Deletion of kdhA abolished Kdo hydrolase activity in membranes of F. tularensis live vaccine strain. The F. tularensis kdhA mutant synthesized a core oligosaccharide containing a Kdo disaccharide with one of the Kdo residues being a terminal side chain. This side-chain Kdo monosaccharide was absent in the wild-type core oligosaccharide. Expression in Escherichia coli of recombinant KdhA from F. tularensis, H. pylori, and L. pneumophila resulted in a reduction of membrane-associated side-chain Kdo. The identification of this previously faceless enzyme will accelerate study of the biosynthetic basis and biologic impact for postbiosynthetic LPS structural modification.
Collapse
Affiliation(s)
- Sabina Chalabaev
- From the Department of Microbiology and Molecular Genetics and
- the Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Tae-Hyun Kim
- From the Department of Microbiology and Molecular Genetics and
- the Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Robin Ross
- From the Department of Microbiology and Molecular Genetics and
- the Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Alec Derian
- From the Department of Microbiology and Molecular Genetics and
| | - Dennis L. Kasper
- From the Department of Microbiology and Molecular Genetics and
- the Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|