1
|
Hitzler SUJ, Fernández-Fernández C, Montaño DE, Dietschmann A, Gresnigt MS. Microbial adaptive pathogenicity strategies to the host inflammatory environment. FEMS Microbiol Rev 2025; 49:fuae032. [PMID: 39732621 PMCID: PMC11737513 DOI: 10.1093/femsre/fuae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 12/30/2024] Open
Abstract
Pathogenic microorganisms can infect a variety of niches in the human body. During infection, these microbes can only persist if they adapt adequately to the dynamic host environment and the stresses imposed by the immune system. While viruses entirely rely on host cells to replicate, bacteria and fungi use their pathogenicity mechanisms for the acquisition of essential nutrients that lie under host restriction. An inappropriate deployment of pathogenicity mechanisms will alert host defence mechanisms that aim to eradicate the pathogen. Thus, these adaptations require tight regulation to guarantee nutritional access without eliciting strong immune activation. To work efficiently, the immune system relies on a complex signalling network, involving a myriad of immune mediators, some of which are quite directly associated with imminent danger for the pathogen. To manipulate the host immune system, viruses have evolved cytokine receptors and viral cytokines. However, among bacteria and fungi, selected pathogens have evolved the capacity to use these inflammatory response-specific signals to regulate their pathogenicity. In this review, we explore how bacterial and fungal pathogens can sense the immune system and use adaptive pathogenicity strategies to evade and escape host defence to ensure their persistence in the host.
Collapse
Affiliation(s)
- Sophia U J Hitzler
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Candela Fernández-Fernández
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Dolly E Montaño
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| |
Collapse
|
2
|
Pikoulas A, Morianos I, Nidris VN, Hamdy R, López-López A, Moran-Garrido M, Muthu V, Halabalaki M, Papadovasilaki M, Irene K, Gu Y, Aerts R, Mercier T, Vanbiervliet Y, Cho SY, Spallone A, Samonakis D, Kastritis E, Drakos E, Tzardi M, Eliopoulos A, Georgila K, Carvalho A, Kurzai O, Rudramurthy S, Lanternier F, Petratos K, Maertens J, Bruno V, Kontoyiannis D, Barbas C, Soliman S, Ibrahim A, Chamilos G. Albumin orchestrates a natural host defense mechanism against mucormycosis. RESEARCH SQUARE 2024:rs.3.rs-5441197. [PMID: 39678331 PMCID: PMC11643317 DOI: 10.21203/rs.3.rs-5441197/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Mucormycosis is an emerging, life-threatening human infection caused by fungi of the order Mucorales. Metabolic disorders uniquely predispose an ever-expanding group of patients to mucormycosis via poorly understood mechanisms. Therefore, it is highly likely that uncharacterized host metabolic effectors confer protective immunity against mucormycosis. Here, we uncover a master regulatory role of albumin in host defense against Mucorales through the modulation of the fungal pathogenicity program. Our initial studies identified severe hypoalbuminemia as a prominent metabolic abnormality and a biomarker of poor outcome in independent cohorts of mucormycosis patients. Strikingly, we found that purified albumin selectively inhibits Mucorales growth among a range of human pathogens, and albumin-deficient mice display susceptibility specifically to mucormycosis. The antifungal activity of albumin is mediated by the release of bound free fatty acids (FFAs). Importantly, albumin prevents FFA oxidation, which results in loss of their antifungal properties. A high degree of FFA oxidation is found in the sera of patients with mucormycosis. Physiologically, albumin-bound FFAs blocks the expression of the mycotoxin mucoricin and renders Mucorales avirulent in vivo. Overall, we discovered a novel host defense mechanism that directs the pathogen to suppress its growth and the expression of virulence factors in response to unfavorable metabolic cues regulated by albumin. These findings have major implications for the pathogenesis and management of mucormycosis.
Collapse
Affiliation(s)
| | - Ioannis Morianos
- IMBB, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete GREECE
| | | | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Angeles López-López
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Ma
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Ma
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Maria Halabalaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Yiyou Gu
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center
| | - Robina Aerts
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Toine Mercier
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Yuri Vanbiervliet
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Sung-Yeon Cho
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amy Spallone
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Efstathios Kastritis
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Tzardi
- School of Medicine, University of Crete and University Hospital
| | - Aristides Eliopoulos
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Georgila
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, 97080, Würzburg, Germany
| | - Shivaprakash Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cite, France
| | | | - Johan Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Universidad San Pablo-CEU
| | | | - Ashraf Ibrahim
- The Lundquist Institute at Harbor-University of California Los Angeles Medical Center
| | | |
Collapse
|
3
|
Garry B, Samdavid Thanapaul RJR, Werner LM, Pavlovic R, Rios KE, Antonic V, Bobrov AG. Antibacterial Activity of Ag+ on ESKAPEE Pathogens In Vitro and in Blood. Mil Med 2024; 189:493-500. [PMID: 39160817 DOI: 10.1093/milmed/usae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Bloodstream infections are a significant threat to soldiers wounded in combat and contribute to preventable deaths. Novel and combination therapies that can be delivered on the battlefield or in lower roles of care are urgently needed to address the threat of bloodstream infection among military personnel. In this manuscript, we tested the antibacterial capability of silver ions (Ag+), with long-appreciated antibacterial properties, against ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species, and Escherichia coli) pathogens. MATERIALS AND METHODS We used the GENESYS (RAIN LLC) device to deliver Ag+ to Gram-positive and Gram-negative ESKAPEE organisms grown in broth, human blood, and serum. Following the Ag+ treatment, we quantified the antibacterial effects by quantifying colony-forming units. RESULTS We found that Ag+ was bactericidal against 5 Gram-negative organisms, K pneumoniae, A baumannii, P aeruginosa, E cloacae, and E coli, and bacteriostatic against 2 Gram-positive organisms, E faecium and S aureus. The whole blood and serum inhibited the bactericidal activity of Ag+ against a common agent of bloodstream infection, P aeruginosa. Finally, when Ag+ was added in conjunction with antibiotic in the presence of whole blood, there was no significant effect of Ag+ over antibiotic alone. CONCLUSIONS Our results confirmed that Ag+ has broad-spectrum antibacterial properties. However, the therapeutic value of Ag+ may not extend to the treatment of bloodstream infections because of the inhibition of Ag+ activity in blood and serum.
Collapse
Affiliation(s)
- Brittany Garry
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rex J R Samdavid Thanapaul
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- NRC Research Associateship Programs, National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA
| | - Lacie M Werner
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Radmila Pavlovic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kariana E Rios
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
4
|
Walsh D, Parmenter C, Bakker SE, Lithgow T, Traven A, Harrison F. A new model of endotracheal tube biofilm identifies combinations of matrix-degrading enzymes and antimicrobials able to eradicate biofilms of pathogens that cause ventilator-associated pneumonia. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001480. [PMID: 39088248 PMCID: PMC11541551 DOI: 10.1099/mic.0.001480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024]
Abstract
Ventilator-associated pneumonia is defined as pneumonia that develops in a patient who has been on mechanical ventilation for more than 48 hours through an endotracheal tube. It is caused by biofilm formation on the indwelling tube, which introduces pathogenic microbes such as Pseudomonas aeruginosa, Klebsiella pneumoniae and Candida albicans into the patient's lower airways. Currently, there is a lack of accurate in vitro models of ventilator-associated pneumonia development. This greatly limits our understanding of how the in-host environment alters pathogen physiology and the efficacy of ventilator-associated pneumonia prevention or treatment strategies. Here, we showcase a reproducible model that simulates the biofilm formation of these pathogens in a host-mimicking environment and demonstrate that the biofilm matrix produced differs from that observed in standard laboratory growth medium. In our model, pathogens are grown on endotracheal tube segments in the presence of a novel synthetic ventilated airway mucus medium that simulates the in-host environment. Matrix-degrading enzymes and cryo-scanning electron microscopy were employed to characterize the system in terms of biofilm matrix composition and structure, as compared to standard laboratory growth medium. As seen in patients, the biofilms of ventilator-associated pneumonia pathogens in our model either required very high concentrations of antimicrobials for eradication or could not be eradicated. However, combining matrix-degrading enzymes with antimicrobials greatly improved the biofilm eradication of all pathogens. Our in vitro endotracheal tube model informs on fundamental microbiology in the ventilator-associated pneumonia context and has broad applicability as a screening platform for antibiofilm measures including the use of matrix-degrading enzymes as antimicrobial adjuvants.
Collapse
Affiliation(s)
- Dean Walsh
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Chris Parmenter
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | | | - Trevor Lithgow
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Center To Impact AMR, Monash University, Clayton 3800, Victoria, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Center To Impact AMR, Monash University, Clayton 3800, Victoria, Australia
| | - Freya Harrison
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
5
|
Walsh D, Bevan J, Harrison F. How Does Airway Surface Liquid Composition Vary in Different Pulmonary Diseases, and How Can We Use This Knowledge to Model Microbial Infections? Microorganisms 2024; 12:732. [PMID: 38674677 PMCID: PMC11052052 DOI: 10.3390/microorganisms12040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Growth environment greatly alters many facets of pathogen physiology, including pathogenesis and antimicrobial tolerance. The importance of host-mimicking environments for attaining an accurate picture of pathogen behaviour is widely recognised. Whilst this recognition has translated into the extensive development of artificial cystic fibrosis (CF) sputum medium, attempts to mimic the growth environment in other respiratory disease states have been completely neglected. The composition of the airway surface liquid (ASL) in different pulmonary diseases is far less well characterised than CF sputum, making it very difficult for researchers to model these infection environments. In this review, we discuss the components of human ASL, how different lung pathologies affect ASL composition, and how different pathogens interact with these components. This will provide researchers interested in mimicking different respiratory environments with the information necessary to design a host-mimicking medium, allowing for better understanding of how to treat pathogens causing infection in these environments.
Collapse
Affiliation(s)
- Dean Walsh
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK (F.H.)
| | | | | |
Collapse
|
6
|
Solar Venero EC, Galeano MB, Luqman A, Ricardi MM, Serral F, Fernandez Do Porto D, Robaldi SA, Ashari BAZ, Munif TH, Egoburo DE, Nemirovsky S, Escalante J, Nishimura B, Ramirez MS, Götz F, Tribelli PM. Fever-like temperature impacts on Staphylococcus aureus and Pseudomonas aeruginosa interaction, physiology, and virulence both in vitro and in vivo. BMC Biol 2024; 22:27. [PMID: 38317219 PMCID: PMC10845740 DOI: 10.1186/s12915-024-01830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) cause a wide variety of bacterial infections and coinfections, showing a complex interaction that involves the production of different metabolites and metabolic changes. Temperature is a key factor for bacterial survival and virulence and within the host, bacteria could be exposed to an increment in temperature during fever development. We analyzed the previously unexplored effect of fever-like temperatures (39 °C) on S. aureus USA300 and P. aeruginosa PAO1 microaerobic mono- and co-cultures compared with 37 °C, by using RNAseq and physiological assays including in vivo experiments. RESULTS In general terms both temperature and co-culturing had a strong impact on both PA and SA with the exception of the temperature response of monocultured PA. We studied metabolic and virulence changes in both species. Altered metabolic features at 39 °C included arginine biosynthesis and the periplasmic glucose oxidation in S. aureus and P. aeruginosa monocultures respectively. When PA co-cultures were exposed at 39 °C, they upregulated ethanol oxidation-related genes along with an increment in organic acid accumulation. Regarding virulence factors, monocultured SA showed an increase in the mRNA expression of the agr operon and hld, pmsα, and pmsβ genes at 39 °C. Supported by mRNA data, we performed physiological experiments and detected and increment in hemolysis, staphyloxantin production, and a decrease in biofilm formation at 39 °C. On the side of PA monocultures, we observed an increase in extracellular lipase and protease and biofilm formation at 39 °C along with a decrease in the motility in correlation with changes observed at mRNA abundance. Additionally, we assessed host-pathogen interaction both in vitro and in vivo. S. aureus monocultured at 39οC showed a decrease in cellular invasion and an increase in IL-8-but not in IL-6-production by A549 cell line. PA also decreased its cellular invasion when monocultured at 39 °C and did not induce any change in IL-8 or IL-6 production. PA strongly increased cellular invasion when co-cultured at 37 and 39 °C. Finally, we observed increased lethality in mice intranasally inoculated with S. aureus monocultures pre-incubated at 39 °C and even higher levels when inoculated with co-cultures. The bacterial burden for P. aeruginosa was higher in liver when the mice were infected with co-cultures previously incubated at 39 °C comparing with 37 °C. CONCLUSIONS Our results highlight a relevant change in the virulence of bacterial opportunistic pathogens exposed to fever-like temperatures in presence of competitors, opening new questions related to bacteria-bacteria and host-pathogen interactions and coevolution.
Collapse
Affiliation(s)
- E C Solar Venero
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina
- Present addressDepartment of BiochemistrySchool of Medicine, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols (Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - M B Galeano
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina
| | - A Luqman
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - M M Ricardi
- IFIBYNE (UBA-CONICET), FBMC, FCEyN-UBA, Buenos Aires, Argentina
| | - F Serral
- Instituto del Calculo-UBA-CONICET, Buenos Aires, Argentina
| | | | - S A Robaldi
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina
| | - B A Z Ashari
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - T H Munif
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - D E Egoburo
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina
| | - S Nemirovsky
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina
| | - J Escalante
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - B Nishimura
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - M S Ramirez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - F Götz
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - P M Tribelli
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina.
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Jolly A, Barnech ML, Duarte JJ, Suhevic J, Jar AM, Mundo SL. Evidence of Mycobacterium avium subsp. paratuberculosis binding to albumin: technical and biological implications. Vet Res Commun 2024; 48:271-278. [PMID: 37656341 DOI: 10.1007/s11259-023-10192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Albumin binding ability is a well-characterized feature of many bacteria. To the best of our knowledge, there are no previous reports about this ability among mycobacteria, even when bovine serum albumin (BSA) is a common component of supplements used for the enrichment of synthetic media for mycobacterial growth in vitro and also of buffers used in laboratory techniques. In this work we explored the albumin binding ability of Mycobacterium avium subsp. paratuberculosis (MAP), a pathogenic bacterium causing a known and relevant ruminant disease worldwide, by immunizing rabbits with MAP (grown in media containing or not BSA) or BSA and conducting ELISA and immunoblot experiments with the obtained sera. As a result, we found that MAP can bind BSA when cultured in a conventional BSA-containing medium and when incubated for a short time in the presence of the protein. We also evaluated the host specificity of MAP interaction with albumin and found a preference for the protein of bovine origin when compared with its horse and rabbit homologs. Considerations about its technical and biological implications are discussed.
Collapse
Affiliation(s)
- Ana Jolly
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Cátedra de Inmunología, (0054) 11-5287-2155, Av. Chorroarín 280, Ciudad Autónoma de Buenos Aires C1427CWO, Buenos Aires, Argentina.
| | - María Laura Barnech
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Cátedra de Inmunología, (0054) 11-5287-2155, Av. Chorroarín 280, Ciudad Autónoma de Buenos Aires C1427CWO, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan José Duarte
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Cátedra de Inmunología, (0054) 11-5287-2155, Av. Chorroarín 280, Ciudad Autónoma de Buenos Aires C1427CWO, Buenos Aires, Argentina
| | - Jorge Suhevic
- Escuela de Educación Técnico Profesional de nivel medio en Producción Agropecuaria y Agroalimentaria, Universidad de Buenos Aires, Av. Chorroarín 280, Ciudad Autónoma de Buenos Aires C1427CWO, Buenos Aires, Argentina
| | - Ana María Jar
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Cátedra de Inmunología, (0054) 11-5287-2155, Av. Chorroarín 280, Ciudad Autónoma de Buenos Aires C1427CWO, Buenos Aires, Argentina
| | - Silvia Leonor Mundo
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Cátedra de Inmunología, (0054) 11-5287-2155, Av. Chorroarín 280, Ciudad Autónoma de Buenos Aires C1427CWO, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280, Ciudad Autónoma de Buenos Aires C1427CWO, Buenos Aires, Argentina
| |
Collapse
|
8
|
Solar Venero EC, Galeano MB, Luqman A, Ricardi MM, Serral F, Fernandez Do Porto D, Robaldi SA, Ashari B, Munif TH, Egoburo DE, Nemirovsky S, Escalante J, Nishimura B, Ramirez MS, Götz F, Tribelli PM. Fever-like temperature impacts on Staphylococcus aureus and Pseudomonas aeruginosa interaction, physiology, and virulence both in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.529514. [PMID: 36993402 PMCID: PMC10055263 DOI: 10.1101/2023.03.21.529514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Background Staphylococcus aureus and Pseudomonas aeruginosa cause a wide variety of bacterial infections and coinfections, showing a complex interaction that involves the production of different metabolites and metabolic changes. Temperature is a key factor for bacterial survival and virulence and within the host, bacteria could be exposed to an increment in temperature during fever development. We analyzed the previously unexplored effect of fever-like temperatures (39°C) on S. aureus USA300 and P. aeruginosa PAO1 microaerobic mono- and co-cultures compared with 37°C, by using RNAseq and physiological assays including in-vivo experiments. Results In general terms both temperature and co-culturing had a strong impact on both PA and SA with the exception of the temperature response of monocultured PA. We studied metabolic and virulence changes on both species. Altered metabolic features at 39°C included arginine biosynthesis and the periplasmic glucose oxidation in S. aureus and P. aeruginosa monocultures respectively. When PA co-cultures were exposed at 39°C they upregulated ethanol oxidation related genes along with an increment in organic acid accumulation. Regarding virulence factors, monocultured SA showed an increase in the mRNA expression of the agr operon and hld, pmsα and pmsβ genes at 39°C. Supported by mRNA data, we performed physiological experiments and detected and increment in hemolysis, staphylxantin production and a decrease in biofilm formation at 39°C. On the side of PA monocultures, we observed increase in extracellular lipase and protease and biofilm formation at 39°C along with a decrease in motility in correlation with changes observed at mRNA abundance. Additionally, we assessed host-pathogen interaction both in-vitro and in-vivo . S. aureus monocultured at 39°C showed a decrease in cellular invasion and an increase in IL-8 -but not in IL-6- production by A549 cell line. PA also decreased its cellular invasion when monocultured at 39°C and did not induce any change in IL-8 or IL-6 production. PA strongly increased cellular invasion when co-cultured at 37°C and 39°C. Finally, we observed increased lethality in mice intranasally inoculated with S. aureus monocultures pre-incubated at 39°C and even higher levels when inoculated with co-cultures. The bacterial burden for P. aeruginosa was higher in liver when the mice were infected with co-cultures previously incubated at 39°C comparing with 37°C. Conclusion Our results highlight a relevant change in the virulence of bacterial opportunistic pathogens exposed to fever-like temperatures in presence of competitors, opening new questions related to bacteria-bacteria and host-pathogen interactions and coevolution.
Collapse
|
9
|
Ávila-Nieto C, Pedreño-López N, Mitjà O, Clotet B, Blanco J, Carrillo J. Syphilis vaccine: challenges, controversies and opportunities. Front Immunol 2023; 14:1126170. [PMID: 37090699 PMCID: PMC10118025 DOI: 10.3389/fimmu.2023.1126170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Syphilis is a sexually or vertically (mother to fetus) transmitted disease caused by the infection of Treponema pallidum subspecie pallidum (TPA). The incidence of syphilis has increased over the past years despite the fact that this bacterium is an obligate human pathogen, the infection route is well known, and the disease can be successfully treated with penicillin. As complementary measures to preventive campaigns and early treatment of infected individuals, development of a syphilis vaccine may be crucial for controlling disease spread and/or severity, particularly in countries where the effectiveness of the aforementioned measures is limited. In the last century, several vaccine prototypes have been tested in preclinical studies, mainly in rabbits. While none of them provided protection against infection, some prototypes prevented bacteria from disseminating to distal organs, attenuated lesion development, and accelerated their healing. In spite of these promising results, there is still some controversy regarding the identification of vaccine candidates and the characteristics of a syphilis-protective immune response. In this review, we describe what is known about TPA immune response, and the main mechanisms used by this pathogen to evade it. Moreover, we emphasize the importance of integrating this knowledge, in conjunction with the characterization of outer membrane proteins (OMPs), to expedite the development of a syphilis vaccine that can protect against TPA infection.
Collapse
Affiliation(s)
- Carlos Ávila-Nieto
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | | | - Oriol Mitjà
- Skin Neglected Tropical Diseases and Sexually Transmitted Infections Department, Germans Trias i Pujol Hospital, Badalona, Spain
- Fight Infections Foundation, Germans Trias i Pujol Hospital, Badalona, Catalonia, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Catalonia, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Fight Infections Foundation, Germans Trias i Pujol Hospital, Badalona, Catalonia, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Catalonia, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBERINFEC, Instituto de Salut Carlos III (ISCIII), Madrid, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Catalonia, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBERINFEC, Instituto de Salut Carlos III (ISCIII), Madrid, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBERINFEC, Instituto de Salut Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Escalante J, Nishimura B, Tuttobene MR, Subils T, Mezcord V, Actis LA, Tolmasky ME, Bonomo RA, Ramirez MS. The Iron Content of Human Serum Albumin Modulates the Susceptibility of Acinetobacter baumannii to Cefiderocol. Biomedicines 2023; 11:639. [PMID: 36831178 PMCID: PMC9953112 DOI: 10.3390/biomedicines11020639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
The mortality rates of patients infected with Acinetobacter baumannii who were treated with cefiderocol (CFDC) were not as favorable as those receiving the best available treatment for pulmonary and bloodstream infections. Previous studies showed that the presence of human serum albumin (HSA) or HSA-containing fluids, such as human serum (HS) or human pleural fluid (HPF), in the growth medium is correlated with a decrease in the expression of genes associated with high-affinity siderophore-mediated iron uptake systems. These observations may explain the complexities of the observed clinical performance of CFDC in pulmonary and bloodstream infections, because ferric siderophore transporters enhance the penetration of CFDC into the bacterial cell. The removal of HSA from HS or HPF resulted in a reduction in the minimal inhibitory concentration (MIC) of CFDC. Concomitant with these results, an enhancement in the expression of TonB-dependent transporters known to play a crucial role in transporting iron was observed. In addition to inducing modifications in iron-uptake gene expression, the removal of HSA also decreased the expression of β-lactamases genes. Taken together, these observations suggest that environmental HSA has a role in the expression levels of select A. baumannii genes. Furthermore, the removal of iron from HSA had the same effect as the removal of HSA upon the expression of genes associated with iron uptake systems, also suggesting that at least one of the mechanisms by which HSA regulates the expression of certain genes is through acting as an iron source.
Collapse
Affiliation(s)
- Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| | - Marisel R. Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario S2000, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario S2000, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario S2000, Argentina
| | - Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| | - Robert A. Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service and GRECC, Cleveland, OH 44106, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - María Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| |
Collapse
|
11
|
Ruhluel D, O'Brien S, Fothergill JL, Neill DR. Development of liquid culture media mimicking the conditions of sinuses and lungs in cystic fibrosis and health. F1000Res 2022; 11:1007. [PMID: 36519007 PMCID: PMC9718992 DOI: 10.12688/f1000research.125074.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/25/2023] Open
Abstract
The respiratory tract is a compartmentalised and heterogenous environment. The nasopharynx and sinuses of the upper airways have distinct properties from the lungs and these differences may shape bacterial adaptation and evolution. Upper airway niches act as early colonisation sites for respiratory bacterial pathogens, including those, such as Pseudomonas aeruginosa, that can go on to establish chronic infection of the lungs in people with cystic fibrosis (CF). Despite the importance of upper airway environments in facilitating early adaptation to host environments, currently available in vitro models for study of respiratory infection in CF focus exclusively on the lungs. Furthermore, animal models, widely used to bridge the gap between in vitro systems and the clinical scenario, do not allow the upper and lower airways to be studied in isolation. We have developed a suite of culture media reproducing key features of the upper and lower airways, for the study of bacterial adaptation and evolution in different respiratory environments. For both upper and lower airway-mimicking media, we have developed formulations that reflect airway conditions in health and those that reflect the altered environment of the CF respiratory tract. Here, we describe the development and validation of these media and their use for study of genetic and phenotypic adaptations in P. aeruginosa during growth under upper or lower airway conditions in health and in CF.
Collapse
Affiliation(s)
- Dilem Ruhluel
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| | - Siobhan O'Brien
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, 2, Ireland
| | - Joanne L Fothergill
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| | - Daniel R Neill
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| |
Collapse
|
12
|
Ruhluel D, O'Brien S, Fothergill JL, Neill DR. Development of liquid culture media mimicking the conditions of sinuses and lungs in cystic fibrosis and health. F1000Res 2022; 11:1007. [PMID: 36519007 PMCID: PMC9718992 DOI: 10.12688/f1000research.125074.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
The respiratory tract is a compartmentalised and heterogenous environment. The nasopharynx and sinuses of the upper airways have distinct properties from the lungs and these differences may shape bacterial adaptation and evolution. Upper airway niches act as early colonisation sites for respiratory bacterial pathogens, including those, such as Pseudomonas aeruginosa, that can go on to establish chronic infection of the lungs in people with cystic fibrosis (CF). Despite the importance of upper airway environments in facilitating early adaptation to host environments, currently available in vitro models for study of respiratory infection in CF focus exclusively on the lungs. Furthermore, animal models, widely used to bridge the gap between in vitro systems and the clinical scenario, do not allow the upper and lower airways to be studied in isolation. We have developed a suite of culture media reproducing key features of the upper and lower airways, for the study of bacterial adaptation and evolution in different respiratory environments. For both upper and lower airway-mimicking media, we have developed formulations that reflect airway conditions in health and those that reflect the altered environment of the CF respiratory tract. Here, we describe the development and validation of these media and their use for study of genetic and phenotypic adaptations in P. aeruginosa during growth under upper or lower airway conditions in health and in CF.
Collapse
Affiliation(s)
- Dilem Ruhluel
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| | - Siobhan O'Brien
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, 2, Ireland
| | - Joanne L Fothergill
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| | - Daniel R Neill
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| |
Collapse
|
13
|
Liang X, Niu Z, Galli V, Howe N, Zhao Y, Wiklander OPB, Zheng W, Wiklander RJ, Corso G, Davies C, Hean J, Kyriakopoulou E, Mamand DR, Amin R, Nordin JZ, Gupta D, Andaloussi SEL. Extracellular vesicles engineered to bind albumin demonstrate extended circulation time and lymph node accumulation in mouse models. J Extracell Vesicles 2022; 11:e12248. [PMID: 35879268 PMCID: PMC9314316 DOI: 10.1002/jev2.12248] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Extracellular vesicles (EVs) have shown promise as potential therapeutics for the treatment of various diseases. However, their rapid clearance after administration could be a limitation in certain therapeutic settings. To solve this, an engineering strategy is employed to decorate albumin onto the surface of the EVs through surface display of albumin binding domains (ABDs). ABDs were either included in the extracellular loops of select EV-enriched tetraspanins (CD63, CD9 and CD81) or directly fused to the extracellular terminal of single transmembrane EV-sorting domains, such as Lamp2B. These engineered EVs exert robust binding capacity to human serum albumins (HSA) in vitro and mouse serum albumins (MSA) after injection in mice. By binding to MSA, circulating time of EVs dramatically increases after different routes of injection in different strains of mice. Moreover, these engineered EVs show considerable lymph node (LN) and solid tumour accumulation, which can be utilized when using EVs for immunomodulation, cancer- and/or immunotherapy. The increased circulation time of EVs may also be important when combined with tissue-specific targeting ligands and could provide significant benefit for their therapeutic use in a variety of disease indications.
Collapse
Affiliation(s)
- Xiuming Liang
- Biomolecular MedicineClinical Research CenterDepartment of Laboratory Medicine Karolinska InstitutetStockholmSweden
- Cancer Research LaboratoryShandong University‐Karolinska Institutet collaborative LaboratorySchool of Basic Medical ScienceShandong UniversityJinanShandongPR China
| | - Zheyu Niu
- Biomolecular MedicineClinical Research CenterDepartment of Laboratory Medicine Karolinska InstitutetStockholmSweden
- Department of Hepatobiliary SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | | | | | - Ying Zhao
- Experimental Cancer MedicineClinical Research CenterDepartment of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Oscar P. B. Wiklander
- Biomolecular MedicineClinical Research CenterDepartment of Laboratory Medicine Karolinska InstitutetStockholmSweden
| | - Wenyi Zheng
- Biomolecular MedicineClinical Research CenterDepartment of Laboratory Medicine Karolinska InstitutetStockholmSweden
| | - Rim Jawad Wiklander
- Biomolecular MedicineClinical Research CenterDepartment of Laboratory Medicine Karolinska InstitutetStockholmSweden
| | - Giulia Corso
- Biomolecular MedicineClinical Research CenterDepartment of Laboratory Medicine Karolinska InstitutetStockholmSweden
| | | | | | | | - Doste R. Mamand
- Biomolecular MedicineClinical Research CenterDepartment of Laboratory Medicine Karolinska InstitutetStockholmSweden
| | - Risul Amin
- Biomolecular MedicineClinical Research CenterDepartment of Laboratory Medicine Karolinska InstitutetStockholmSweden
| | - Joel Z. Nordin
- Biomolecular MedicineClinical Research CenterDepartment of Laboratory Medicine Karolinska InstitutetStockholmSweden
| | - Dhanu Gupta
- Biomolecular MedicineClinical Research CenterDepartment of Laboratory Medicine Karolinska InstitutetStockholmSweden
| | - Samir EL Andaloussi
- Biomolecular MedicineClinical Research CenterDepartment of Laboratory Medicine Karolinska InstitutetStockholmSweden
- Evox Therapeutics LimitedOxfordUK
| |
Collapse
|
14
|
Pekmezovic M, Kaune AK, Austermeier S, Hitzler SUJ, Mogavero S, Hovhannisyan H, Gabaldón T, Gresnigt MS, Hube B. Human albumin enhances the pathogenic potential of Candida glabrata on vaginal epithelial cells. PLoS Pathog 2021; 17:e1010037. [PMID: 34710198 PMCID: PMC8577789 DOI: 10.1371/journal.ppat.1010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/09/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
The opportunistic pathogen Candida glabrata is the second most frequent causative agent of vulvovaginal candidiasis (VVC), a disease that affects 70–75% of women at least once during their life. However, C. glabrata is almost avirulent in mice and normally incapable of inflicting damage to vaginal epithelial cells in vitro. We thus proposed that host factors present in vivo may influence C. glabrata pathogenicity. We, therefore, analyzed the impact of albumin, one of the most abundant proteins of the vaginal fluid. The presence of human, but not murine, albumin dramatically increased the potential of C. glabrata to damage vaginal epithelial cells. This effect depended on macropinocytosis-mediated epithelial uptake of albumin and subsequent proteolytic processing. The enhanced pathogenicity of C. glabrata can be explained by a combination of beneficial effects for the fungus, which includes an increased access to iron, accelerated growth, and increased adhesion. Screening of C. glabrata deletion mutants revealed that Hap5, a key regulator of iron homeostasis, is essential for the albumin-augmented damage potential. The albumin-augmented pathogenicity was reversed by the addition of iron chelators and a similar increase in pathogenicity was shown by increasing the iron availability, confirming a key role of iron. Accelerated growth not only led to higher cell numbers, but also to increased fungal metabolic activity and oxidative stress resistance. Finally, the albumin-driven enhanced damage potential was associated with the expression of distinct C. glabrata virulence genes. Transcriptional responses of the epithelial cells suggested an unfolded protein response (UPR) and ER-stress responses combined with glucose starvation induced by fast growing C. glabrata cells as potential mechanisms by which cytotoxicity is mediated.Collectively, we demonstrate that albumin augments the pathogenic potential of C. glabrata during interaction with vaginal epithelial cells. This suggests a role for albumin as a key player in the pathogenesis of VVC. Candida glabrata is the overall second causative species of candidiasis in humans, but little is known about the pathogenicity mechanisms of this yeast. C. glabrata is capable of causing lethal systemic candidiasis mostly in elderly immunocompromised patients, but is also a frequent cause of vulvovaginal candidiasis. These clinical insights suggest that C. glabrata has a high virulence potential, yet little pathogenicity is observed in both in vitro and in vivo infection models. The finding that human albumin, the most abundant protein in the human body, is boosting C. glabrata pathogenicity in vitro provides novel insights into C. glabrata pathogenicity mechanisms and shows that the presence of distinct human factors can have a significant influence on the virulence potential of a pathogenic microbe.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Ann-Kristin Kaune
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sophia U. J. Hitzler
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Hrant Hovhannisyan
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- * E-mail: (MSG); (BH)
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- * E-mail: (MSG); (BH)
| |
Collapse
|
15
|
Abstract
Albumin is abundant in serum but is also excreted at mucosal surfaces and enters tissues when inflammation increases vascular permeability. Host-associated opportunistic pathogens encounter albumin during commensalism and when causing infections. Considering the ubiquitous presence of albumin, we investigated its role in the pathogenesis of infections with the model human fungal pathogen, Candida albicans. Albumin was introduced in various in vitro models that mimic different stages of systemic or mucosal candidiasis, where it reduced the ability of C. albicans to damage host cells. The amphipathic toxin candidalysin mediates necrotic host cell damage induced by C. albicans. Using cellular and biophysical assays, we determined that albumin functions by neutralizing candidalysin through hydrophobic interactions. We discovered that albumin, similarly, can neutralize a variety of fungal (α-amanitin), bacterial (streptolysin O and staurosporin), and insect (melittin) hydrophobic toxins. These data suggest albumin as a defense mechanism against toxins, which can play a role in the pathogenesis of microbial infections. IMPORTANCE Albumin is the most abundant serum protein in humans. During inflammation, serum albumin levels decrease drastically, and low albumin levels are associated with poor patient outcome. Thus, albumin may have specific functions during infection. Here, we describe the ability of albumin to neutralize hydrophobic microbial toxins. We show that albumin can protect against damage induced by the pathogenic yeast C. albicans by neutralizing its cytolytic toxin candidalysin. These findings suggest that albumin is a toxin-neutralizing protein that may play a role during infections with toxin-producing microorganisms.
Collapse
|
16
|
Ahmadi MKB, Mohammadi SA, Makvandi M, Mamouei M, Rahmati M, Dehghani H, Wood DW. Recent Advances in the Scaffold Engineering of Protein Binders. Curr Pharm Biotechnol 2021; 22:878-891. [PMID: 32838715 DOI: 10.2174/1389201021999200824101035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
In recent years, extensive attention has been given to the generation of new classes of ligand- specific binding proteins to supplement monoclonal antibodies. A combination of protein engineering and display technologies has been used to manipulate non-human antibodies for humanization and stabilization purposes or even the generation of new binding proteins. Engineered protein scaffolds can now be directed against therapeutic targets to treat cancer and immunological disorders. Although very few of these scaffolds have successfully passed clinical trials, their remarkable properties such as robust folding, high solubility, and small size motivate their employment as a tool for biology and applied science studies. Here, we have focused on the generation of new non-Ig binding proteins and single domain antibody manipulation, with a glimpse of their applications.
Collapse
Affiliation(s)
- Mohammad K B Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed A Mohammadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manoochehr Makvandi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Mamouei
- Department of Animal Science, Ramin Agricultural and Natural Resources University, Ahvaz, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hesam Dehghani
- Stem Cells Regenerative Research Group, Ressearch Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH 43210, United States
| |
Collapse
|
17
|
Martinez J, Razo-Gutierrez C, Le C, Courville R, Pimentel C, Liu C, Fung SE, Tuttobene MR, Phan K, Vila AJ, Shahrestani P, Jimenez V, Tolmasky ME, Becka SA, Papp-Wallace KM, Bonomo RA, Soler-Bistue A, Sieira R, Ramirez MS. Cerebrospinal fluid (CSF) augments metabolism and virulence expression factors in Acinetobacter baumannii. Sci Rep 2021; 11:4737. [PMID: 33637791 PMCID: PMC7910304 DOI: 10.1038/s41598-021-81714-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
In a recent report by the Centers for Disease Control and Prevention (CDC), multidrug resistant (MDR) Acinetobacter baumannii is a pathogen described as an "urgent threat." Infection with this bacterium manifests as different diseases such as community and nosocomial pneumonia, bloodstream infections, endocarditis, infections of the urinary tract, wound infections, burn infections, skin and soft tissue infections, and meningitis. In particular, nosocomial meningitis, an unwelcome complication of neurosurgery caused by extensively-drug resistant (XDR) A. baumannii, is extremely challenging to manage. Therefore, understanding how A. baumannii adapts to different host environments, such as cerebrospinal fluid (CSF) that may trigger changes in expression of virulence factors that are associated with the successful establishment and progress of this infection is necessary. The present in-vitro work describes, the genetic changes that occur during A. baumannii infiltration into CSF and displays A. baumannii's expansive versatility to persist in a nutrient limited environment while enhancing several virulence factors to survive and persist. While a hypervirulent A. baumannii strain did not show changes in its transcriptome when incubated in the presence of CSF, a low-virulence isolate showed significant differences in gene expression and phenotypic traits. Exposure to 4% CSF caused increased expression of virulence factors such as fimbriae, pilins, and iron chelators, and other virulence determinants that was confirmed in various model systems. Furthermore, although CSF's presence did not enhance bacterial growth, an increase of expression of genes encoding transcription, translation, and the ATP synthesis machinery was observed. This work also explores A. baumannii's response to an essential component, human serum albumin (HSA), within CSF to trigger the differential expression of genes associated with its pathoadaptibility in this environment.
Collapse
Affiliation(s)
- Jasmine Martinez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Chelsea Razo-Gutierrez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Robert Courville
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Christine Liu
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Sammie E Fung
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Marisel R Tuttobene
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Kimberly Phan
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular Y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Parvin Shahrestani
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Veronica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Scott A Becka
- Research Service and GRECC, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, OH, USA
| | - Krisztina M Papp-Wallace
- Research Service and GRECC, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Robert A Bonomo
- Research Service and GRECC, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Alfonso Soler-Bistue
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas Y Técnicas, San Martín, Buenos Aires, Argentina
| | - Rodrigo Sieira
- Fundación Instituto Leloir - IIBBA CONICET, Buenos Aires, Argentina
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
18
|
Taniguchi T, Ohki M, Urata A, Ohshiro S, Tarigan E, Kiatsomphob S, Vetchapitak T, Sato H, Misawa N. Detection and identification of adhesins involved in adhesion of Campylobacter jejuni to chicken skin. Int J Food Microbiol 2020; 337:108929. [PMID: 33157488 DOI: 10.1016/j.ijfoodmicro.2020.108929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/10/2020] [Accepted: 10/13/2020] [Indexed: 02/03/2023]
Abstract
Campylobacter jejuni is the leading cause of bacterial food poisoning worldwide. Chickens are considered to be one of the major reservoirs of Campylobacter infection in humans due to colonization of their intestinal tract. When the chickens are slaughtered and processed, the entire skin of the carcass becomes contaminated with campylobacters. We observed that the number of C. jejuni attached to chicken skin was reduced significantly after treatment of the skin with sodium hydroxide followed by washing with PBS, implying that adhesion factors involved in binding to C. jejuni may exist on skin. Such potential binding-related proteins present in alkaline extracts of the skin surface were detected by a two-dimensional overlay assay and identified by liquid chromatography mass spectrometry (LC-MS). Chicken serum albumin (CSA) was identified as a major protein in these alkaline extracts and confirmed by ELISA to bind specifically to C. jejuni. Moreover, using the same approach, flagellar hook protein E (FlgE) and major outer membrane protein (MOMP) in C. jejuni were identified as bacterial adhesins that bound to the CSA. The ability to bind CSA was also confirmed using recombinant FlgE and MOMP of C. jejuni expressed in Escherichia coli. The present findings suggest that adhesins expressed on C. jejuni cells may bind specifically via proteins present on the skin, as well as by physical attachment.
Collapse
Affiliation(s)
- Takako Taniguchi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Mayuko Ohki
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Ayaka Urata
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Shoutaro Ohshiro
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Elpita Tarigan
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Savek Kiatsomphob
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Torrung Vetchapitak
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Hiroyuki Sato
- Laboratory of Veterinary Clinical radiology, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Naoaki Misawa
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.
| |
Collapse
|
19
|
Sankar S, Yamaguchi M, Kawabata S, Ponnuraj K. Streptococcus pneumoniae Surface Adhesin PfbA Exhibits Host Specificity by Binding to Human Serum Albumin but Not Bovine, Rabbit and Porcine Serum Albumins. Protein J 2019; 39:1-9. [DOI: 10.1007/s10930-019-09875-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
The Antistaphylococcal Lysin, CF-301, Activates Key Host Factors in Human Blood To Potentiate Methicillin-Resistant Staphylococcus aureus Bacteriolysis. Antimicrob Agents Chemother 2019; 63:AAC.02291-18. [PMID: 30670427 DOI: 10.1128/aac.02291-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Bacteriophage-derived lysins are cell-wall-hydrolytic enzymes that represent a potential new class of antibacterial therapeutics in development to address burgeoning antimicrobial resistance. CF-301, the lead compound in this class, is in clinical development as an adjunctive treatment to potentially improve clinical cure rates of Staphylococcus aureus bacteremia and infective endocarditis (IE) when used in addition to antibiotics. In order to profile the activity of CF-301 in a clinically relevant milieu, we assessed its in vitro activity in human blood versus in a conventional testing medium (cation-adjusted Mueller-Hinton broth [caMHB]). CF-301 exhibited substantially greater potency (32 to ≥100-fold) in human blood versus caMHB in three standard microbiologic testing formats (e.g., broth dilution MICs, checkerboard synergy, and time-kill assays). We demonstrated that CF-301 acted synergistically with two key human blood factors, human serum lysozyme (HuLYZ) and human serum albumin (HSA), which normally have no nascent antistaphylococcal activity, against a prototypic methicillin-resistant S. aureus (MRSA) strain (MW2). Similar in vitro enhancement of CF-301 activity was also observed in rabbit, horse, and dog (but not rat or mouse) blood. Two well-established MRSA IE models in rabbit and rat were used to validate these findings in vivo by demonstrating comparable synergistic efficacy with standard-of-care anti-MRSA antibiotics at >100-fold lower lysin doses in the rabbit than in the rat model. The unique properties of CF-301 that enable bactericidal potentiation of antimicrobial activity via activation of "latent" host factors in human blood may have important therapeutic implications for durable improvements in clinical outcomes of serious antibiotic-resistant staphylococcal infections.
Collapse
|
21
|
Tao C, Chuah YJ, Xu C, Wang DA. Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. J Mater Chem B 2018; 7:357-367. [PMID: 32254722 DOI: 10.1039/c8tb02477d] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the most abundant plasma protein, serum albumin has been extensively studied and employed for therapeutic applications. Despite its direct clinical use for the maintenance of blood homeostasis in various medical conditions, this review exclusively summarizes and discusses albumin-based bio-conjugates and assemblies as versatile bio-functional additives and carriers in biomedical applications. As one of the smallest-sized proteins in the human body, albumin is physiochemically stable and biochemically inert. Moreover, albumin is also endowed with abundant specific binding sites for numerous therapeutic compounds, which also endow it with superior bioactivities. Firstly, due to its small size and binding specificity, albumin alone or its derived assemblies can be utilized as competent drug carriers, which can deliver drugs through the enhanced permeability and retention (EPR) effect or actively target lesion sites through binding with gp60 and secreted protein acidic and rich in cysteine (SPARC) in tumor sites. Furthermore, its biochemical stability and inertness make it a safe and biocompatible coating material for use in biomedical applications. Albumin-based surface modifying additives can be used to functionalize both macro substrates (e.g. surfaces of medical devices or implants) and nanoparticle surfaces (e.g. drug carriers and imaging contrast agents). In this review, we elaborate on the synthesis and applications of albumin-based bio-functional coatings and drug carriers, respectively.
Collapse
Affiliation(s)
- Chao Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore, Singapore.
| | | | | | | |
Collapse
|
22
|
Quinn B, Rodman N, Jara E, Fernandez JS, Martinez J, Traglia GM, Montaña S, Cantera V, Place K, Bonomo RA, Iriarte A, Ramírez MS. Human serum albumin alters specific genes that can play a role in survival and persistence in Acinetobacter baumannii. Sci Rep 2018; 8:14741. [PMID: 30282985 PMCID: PMC6170387 DOI: 10.1038/s41598-018-33072-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/21/2018] [Indexed: 01/13/2023] Open
Abstract
In the past few decades Acinetobacter baumannii has emerged as a notorious nosocomial pathogen because of its ability to acquire genetic material and persist in extreme environments. Recently, human serum albumin (HSA) was shown to significantly increase natural transformation frequency in A. baumannii. This observation led us to perform transcriptomic analysis of strain A118 under HSA induction to identify genes that are altered by HSA. Our results revealed the statistically significant differential expression of 296 protein-coding genes, including those associated with motility, biofilm formation, metabolism, efflux pumps, capsule synthesis, and transcriptional regulation. Phenotypic analysis of these traits showed an increase in surface-associated motility, a decrease in biofilm formation, reduced activity of a citric acid cycle associated enzyme, and increased survival associated with zinc availability. Furthermore, the expression of genes known to play a role in pathogenicity and antibiotic resistance were altered. These genes included those associated with RND-type efflux pumps, the type VI secretion system, iron acquisition/metabolism, and ß-lactam resistance. Together, these results illustrate how human products, in particular HSA, may play a significant role in both survival and persistence of A. baumannii.
Collapse
Affiliation(s)
- Brettni Quinn
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Nyah Rodman
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Eugenio Jara
- Área Genética, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Jennifer S Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Jasmine Martinez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - German M Traglia
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Sabrina Montaña
- Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos, Aires, Argentina
| | - Virginia Cantera
- Laboratorio de Biología Computacional, Dpto. de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - Kori Place
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Robert A Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA.,Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Andres Iriarte
- Laboratorio de Biología Computacional, Dpto. de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA.
| |
Collapse
|
23
|
Persson C. Airways exudation of plasma macromolecules: Innate defense, epithelial regeneration, and asthma. J Allergy Clin Immunol 2018; 143:1271-1286. [PMID: 30170125 PMCID: PMC7112321 DOI: 10.1016/j.jaci.2018.07.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/30/2018] [Accepted: 07/13/2018] [Indexed: 01/09/2023]
Abstract
This review discusses in vivo airway aspects of plasma exudation in relation to current views on epithelial permeability and epithelial regeneration in health and disease. Microvascular-epithelial exudation of bulk plasma proteins characteristically occurs in asthmatic patients, being especially pronounced in those with severe and exacerbating asthma. Healthy human and guinea pig airways challenged by noninjurious histamine-leukotriene–type autacoids also respond through prompt mucosal exudation of nonsieved plasma macromolecules. Contrary to current beliefs, epithelial permeability in the opposite direction (ie, absorption of inhaled molecules) has not been increased in patients with asthma and allergic rhinitis or in acutely exuding healthy airways. A slightly increased subepithelial hydrostatic pressure produces such unidirectional outward perviousness to macromolecules. Lack of increased absorption permeability in asthmatic patients can further be reconciled with occurrence of epithelial shedding, leaving small patches of denuded basement membrane. Counteracting escalating barrier breaks, plasma exudation promptly covers the denuded patches. Here it creates and sustains a biologically active barrier involving a neutrophil-rich, fibrin-fibronectin net. Furthermore, in the plasma-derived milieu, all epithelial cell types bordering the denuded patch dedifferentiate and migrate from all sides to cover the denuded basement membrane. However, this speedy epithelial regeneration can come at a cost. Guinea pig in vivo studies demonstrate that patches of epithelial denudation regeneration are exudation hot spots evoking asthma-like features, including recruitment/activation of granulocytes, proliferation of fibrocytes/smooth muscle cells, and basement membrane thickening. In conclusion, nonsieved plasma macromolecules can operate on the intact airway mucosa as potent components of first-line innate immunity responses. Exuded plasma also takes center stage in epithelial regeneration. When exaggerated, epithelial regeneration can contribute to the inception and development of asthma.
Collapse
Affiliation(s)
- Carl Persson
- Department of Laboratory Medicine, University Hospital of Lund, Lund, Sweden.
| |
Collapse
|
24
|
Wang X, Liu X, Xiao Y, Hao H, Zhang Y, Tang R. Biomineralization State of Viruses and Their Biological Potential. Chemistry 2018; 24:11518-11529. [PMID: 29377301 DOI: 10.1002/chem.201705936] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 11/06/2022]
Abstract
In nature, viruses can realize self-mineralization under metal-ion-abundant conditions. Interestingly, the mineralized state is a transition state of the virus when the host is not available. Mammalian viruses that share the similar chemical properties also stand a chance of transformation into a mineralized state. In this review, we focus on the possibility of mammalian viruses to undergo mineralization under a physiological environment and the development of biomineralized-based virus engineering. We will introduce the effect of biomineralization on the physiochemical or biological properties of viruses and we will discuss the relationship between mineral composition and biological potentials. The new biological prospects of mineralized-state viruses, including bypassing biological barriers, protection, and virus-host recognition, will provide new insight for the biosecurity and prevention of viral infection. With respect to vaccines, the mineralized state can modulate the immune recognition, change the immunization route, and elevate the vaccine efficacy. Together, these findings of the mineralized state of the virus may lead to a new understanding of virus biology, application, and prevention.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Xueyao Liu
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Yun Xiao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Haibin Hao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Ying Zhang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China.,Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, No.38 Zheda Road, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
25
|
Abstract
This review summarizes evidence that the impact of protein binding of the activity of antibiotics is multifaceted and more complex than indicated by the numerical value of protein binding alone. A plethora of studies has proven that protein binding of antibiotics matters, as the free fraction only is antibacterially active and governs pharmacokinetics. Several studies have indicated that independent from protein binding of immunoglobulin G, albumin, α1-acid-glycoprotein, and pulmonary surfactant acted synergistically with antibacterial agents, thus suggesting that some intrinsic properties of serum proteins may have mediated serum-antibiotic synergisms. It has been demonstrated that IgG and albumin permeabilized Gram-negative and Gram-positive bacteria and facilitated the uptake of poorly penetrating antibiotics. Alpha-1-acid-glycoprotein and pulmonary surfactant also exerted a permeabilizing activity, but proof that this property results in a sensitizing effect is missing. The permeabilizing effect of serum proteins may explain why serum-antibiotic synergisms do not represent a general phenomenon but are limited to specific drug-bug associations only. Although evidence has been generated to support the hypothesis that native serum proteins interact synergistically with antibiotics, systematic and well-controlled studies have to be performed to substantiate this phenomenon. The interactions between serum proteins and bacterial surfaces are driven by physicochemical forces. However, preparative techniques, storage conditions, and incubation methods have a significant impact on the intrinsic activities of these serum proteins affecting serum-antibiotic synergisms, so these techniques have to be standardized; otherwise, contradictory data or even artifacts will be generated.
Collapse
Affiliation(s)
- Axel Dalhoff
- Christian-Albrechts-University of Kiel, Institute for Infection Medicine, Kiel, Germany
| |
Collapse
|
26
|
Wang X, Deng YQ, Yang D, Xiao Y, Zhao H, Nian QG, Xu X, Li XF, Tang R, Qin CF. Biomimetic inorganic camouflage circumvents antibody-dependent enhancement of infection. Chem Sci 2017; 8:8240-8246. [PMID: 29568472 PMCID: PMC5857936 DOI: 10.1039/c7sc03868b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Pre-existing antibodies can aggravate disease during subsequent infection or vaccination via the mechanism of antibody-dependent enhancement (ADE) of infection. Herein, using dengue virus (DENV) as a model, we present a versatile surface-camouflage strategy to obtain a virus core-calcium phosphate shell hybrid by self-templated biomineralization. The shelled DENV stealthily avoids recognition by pre-existing antibodies under extracellular conditions, resulting in the efficient abrogation of the ADE of infection both in vitro and in vivo. Moreover, the nanoshell can spontaneously degrade under intracellular conditions to restore the virus activity and immunogenicity due to its pH-sensitive behaviour. This work demonstrates that the biomimetic material shell can significantly improve the administration safety and potency of the DENV vaccine, which provides the promising prospect of chemically designed virus-material hybrids for immune evasion.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Qiushi Academy for Advanced Studies , Zhejiang University , Hangzhou , Zhejiang 310027 , China .
| | - Yong-Qiang Deng
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Dong Yang
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Yun Xiao
- Qiushi Academy for Advanced Studies , Zhejiang University , Hangzhou , Zhejiang 310027 , China .
| | - Hui Zhao
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Qing-Gong Nian
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Xurong Xu
- Qiushi Academy for Advanced Studies , Zhejiang University , Hangzhou , Zhejiang 310027 , China .
| | - Xiao-Feng Li
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies , Zhejiang University , Hangzhou , Zhejiang 310027 , China .
- Centre for Biomaterials and Biopathways , Department of Chemistry , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Cheng-Feng Qin
- Department of Virology , State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , 100071 , China .
| |
Collapse
|
27
|
Albumin, in the Presence of Calcium, Elicits a Massive Increase in Extracellular Bordetella Adenylate Cyclase Toxin. Infect Immun 2017; 85:IAI.00198-17. [PMID: 28396321 DOI: 10.1128/iai.00198-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/02/2017] [Indexed: 12/14/2022] Open
Abstract
Pertussis (whooping cough), caused by Bordetella pertussis, is resurging in the United States and worldwide. Adenylate cyclase toxin (ACT) is a critical factor in establishing infection with B. pertussis and acts by specifically inhibiting the response of myeloid leukocytes to the pathogen. We report here that serum components, as discovered during growth in fetal bovine serum (FBS), elicit a robust increase in the amount of ACT, and ≥90% of this ACT is localized to the supernatant, unlike growth without FBS, in which ≥90% is associated with the bacterium. We have found that albumin, in the presence of physiological concentrations of calcium, acts specifically to enhance the amount of ACT and its localization to the supernatant. Respiratory secretions, which contain albumin, promote an increase in amount and localization of active ACT that is comparable to that elicited by serum and albumin. The response to albumin is not mediated through regulation of ACT at the transcriptional level or activation of the Bvg two-component system. As further illustration of the specificity of this phenomenon, serum collected from mice that lack albumin does not stimulate an increase in ACT. These data, demonstrating that albumin and calcium act synergistically in the host environment to increase production and release of ACT, strongly suggest that this phenomenon reflects a novel host-pathogen interaction that is central to infection with B. pertussis and other Bordetella species.
Collapse
|
28
|
Bergmann S, Eichhorn I, Kohler TP, Hammerschmidt S, Goldmann O, Rohde M, Fulde M. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G. Front Cell Infect Microbiol 2017; 7:80. [PMID: 28401063 PMCID: PMC5368172 DOI: 10.3389/fcimb.2017.00080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/28/2017] [Indexed: 11/13/2022] Open
Abstract
The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.
Collapse
Affiliation(s)
- Simone Bergmann
- Department of Medical Microbiology, Helmholtz Center for Infection Research Braunschweig, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
| | - Thomas P Kohler
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald Greifswald, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald Greifswald, Germany
| | - Oliver Goldmann
- Department of Infection Immunology, Helmholtz Center for Infection Research Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research Braunschweig, Germany
| | - Marcus Fulde
- Department of Medical Microbiology, Helmholtz Center for Infection ResearchBraunschweig, Germany; Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
29
|
Pitek AS, Jameson SA, Veliz FA, Shukla S, Steinmetz NF. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials 2016; 89:89-97. [PMID: 26950168 PMCID: PMC5127400 DOI: 10.1016/j.biomaterials.2016.02.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
Plant virus-based nanoparticles (VNPs) are a novel class of nanocarriers with unique potential for biomedical applications. VNPs have many advantageous properties such as ease of manufacture and high degree of quality control. Their biocompatibility and biodegradability make them an attractive alternative to synthetic nanoparticles (NPs). Nevertheless, as with synthetic NPs, to be successful in drug delivery or imaging, the carriers need to overcome several biological barriers including innate immune recognition. Plasma opsonization can tag (V)NPs for clearance by the mononuclear phagocyte system (MPS), resulting in shortened circulation half lives and non-specific sequestration in non-targeted organs. PEG coatings have been traditionally used to 'shield' nanocarriers from immune surveillance. However, due to broad use of PEG in cosmetics and other industries, the prevalence of anti-PEG antibodies has been reported, which may limit the utility of PEGylation in nanomedicine. Alternative strategies are needed to tailor the in vivo properties of (plant virus-based) nanocarriers. We demonstrate the use of serum albumin (SA) as a viable alternative. SA conjugation to tobacco mosaic virus (TMV)-based nanocarriers results in a 'camouflage' effect more effective than PEG coatings. SA-'camouflaged' TMV particles exhibit decreased antibody recognition, as well as enhanced pharmacokinetics in a Balb/C mouse model. Therefore, SA-coatings may provide an alternative and improved coating technique to yield (plant virus-based) NPs with improved in vivo properties enhancing drug delivery and molecular imaging.
Collapse
Affiliation(s)
- Andrzej S Pitek
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Slater A Jameson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Frank A Veliz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
30
|
Svensson L, Frick IM, Shannon O. Group G streptococci mediate fibrinogen-dependent platelet aggregation leading to transient entrapment in platelet aggregates. MICROBIOLOGY-SGM 2015; 162:117-126. [PMID: 26511072 DOI: 10.1099/mic.0.000203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Platelets have been reported to become activated in response to bacteria and this is proposed to contribute to the acute response to bacterial infection. In the present study, we investigated platelet aggregation in response to group G streptococci (GGS) in vitro in healthy human donors and in vivo in a mouse model of streptococcal sepsis. Platelet aggregation by GGS was dependent on the bacterial surface protein FOG and engagement of the platelet fibrinogen receptor; however, it was independent of IgG and the platelet Fc receptor. Platelets exerted no antibacterial effects on the bacteria, and aggregates formed were markedly unstable, allowing bacteria to rapidly return to the plasma and grow post-aggregation. Thrombocytopenia and platelet activation occurred during invasive infection with GGS, and platelets were demonstrated to contribute to bacterial dissemination during infection. These findings reveal an important role for bacteria-platelet interactions during the pathogenesis of streptococcal infection.
Collapse
Affiliation(s)
- Lisbeth Svensson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, SE-22184 Lund, Sweden
| | - Inga-Maria Frick
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, SE-22184 Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, SE-22184 Lund, Sweden
| |
Collapse
|
31
|
Reid-Yu SA, Tuinema BR, Small CN, Xing L, Coombes BK. CXCL9 contributes to antimicrobial protection of the gut during citrobacter rodentium infection independent of chemokine-receptor signaling. PLoS Pathog 2015; 11:e1004648. [PMID: 25643352 PMCID: PMC4333760 DOI: 10.1371/journal.ppat.1004648] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/30/2014] [Indexed: 12/20/2022] Open
Abstract
Chemokines have been shown to be effective bactericidal molecules against a variety of bacteria and fungi in vitro. These direct antimicrobial effects are independent of their chemotactic activities involving immunological receptors. However, the direct biological role that these proteins may play in host defense, particularly against intestinal pathogens, is poorly understood. Here, we show that CXCL9, an ELR- chemokine, exhibits direct antimicrobial activity against Citrobacter rodentium, an attaching/effacing pathogen that infects the gut mucosa. Inhibition of this antimicrobial activity in vivo using anti-CXCL9 antibodies increases host susceptibility to C. rodentium infection with pronounced bacterial penetration into crypts, increased bacterial load, and worsened tissue pathology. Using Rag1-/- mice and CXCR3-/- mice, we demonstrate that the role for CXCL9 in protecting the gut mucosa is independent of an adaptive response or its immunological receptor, CXCR3. Finally, we provide evidence that phagocytes function in tandem with NK cells for robust CXCL9 responses to C. rodentium. These findings identify a novel role for the immune cell-derived CXCL9 chemokine in directing a protective antimicrobial response in the intestinal mucosa. Host defense peptides are an essential part of the innate immune response to pathogens, particularly at mucosal surfaces. Some chemokines, previously known for their ability to recruit immune cells to a site of inflammation, have been identified to have direct antimicrobial activity in vitro against a variety of pathogens. Despite this, it was unknown whether chemokines play a role in protecting the gut mucosa against enteric pathogens, independent of their immunological receptors. Using a mouse model of enteric pathogen infection with both wild type mice and genetic knockouts, we showed that the chemokine CXCL9 has direct antimicrobial activity against pathogen infection. This antimicrobial activity prevented the invasion of bacteria into intestinal crypts, thus protecting the host from immunopathology. Neutralization of this CXCL9-dependent antimicrobial activity increased host susceptibility to infection, leading to bacterial penetration into intestinal crypts and increased tissue pathology. These data support the importance of a receptor-independent role for chemokines in host defense at mucosal surfaces and may offer alternative treatment strategies for infections, particularly in regards to organisms that are resistant to conventional antibiotics.
Collapse
Affiliation(s)
- Sarah A. Reid-Yu
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian R. Tuinema
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cherrie N. Small
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Lydia Xing
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
32
|
Wollein Waldetoft K, Karlsson C, Gram M, Malmström J, Mörgelin M, Frick IM, Björck L. Surface proteins of group G Streptococcus in different phases of growth: patterns of production and implications for the host-bacteria relationship. MICROBIOLOGY-SGM 2013; 160:279-286. [PMID: 24222616 DOI: 10.1099/mic.0.071332-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Group G Streptococcus (GGS) is a human bacterial pathogen expressing surface proteins FOG and protein G (PG) which interact with several host defence systems, including the complement and contact systems. Selected reaction monitoring mass spectrometry, electron microscopy and protein binding assays were used to track the amounts of FOG and PG intracellularly and on the bacterial surface during different phases of growth. Large and increasing amounts of PG were present on the surface in the stationary growth phase, and this was due to de novo production. In contrast, the amount of FOG did not change substantially during this phase. Apart from PG, a number of housekeeping proteins also increased in abundance in the stationary phase. These results show that GGS protein production is active during the stationary phase and that the bacteria actively remodel their surface and enter a less pro-inflammatory state in this phase.
Collapse
Affiliation(s)
| | - Christofer Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Magnus Gram
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Inga-Maria Frick
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
33
|
Nilvebrant J, Hober S. The albumin-binding domain as a scaffold for protein engineering. Comput Struct Biotechnol J 2013; 6:e201303009. [PMID: 24688717 PMCID: PMC3962080 DOI: 10.5936/csbj.201303009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/31/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022] Open
Abstract
The albumin-binding domain is a small, three-helical protein domain found in various surface proteins expressed by gram-positive bacteria. Albumin binding is important in bacterial pathogenesis and several homologous domains have been identified. Such albumin-binding regions have been used for protein purification or immobilization. Moreover, improvement of the pharmacokinetics, through the non-covalent association to albumin, by fusing such domains to therapeutic proteins has been shown to be successful. Domains derived from streptococcal protein G and protein PAB from Finegoldia magna, which share a common origin and therefore represent an interesting evolutionary system, have been thoroughly studied structurally and functionally. Their albumin-binding sites have been mapped and these domains form the basis for a wide range of protein engineering approaches. By substitution-mutagenesis they have been engineered to achieve a broader specificity, an increased stability or an improved binding affinity, respectively. Furthermore, novel binding sites have been incorporated either by replacing the original albumin-binding surface, or by complementing it with a novel interaction interface. Combinatorial protein libraries, where several residues have been randomized simultaneously, have generated a large number of new variants with desired binding characteristics. The albumin-binding domain has also been utilized to explore the relationship between three-dimensional structure and amino acid sequence. Proteins with latent structural information built into their sequence, where a single amino acid substitution shifts the equilibrium in favor of a different fold with a new function, have been designed. Altogether, these examples illustrate the versatility of the albumin-binding domain as a scaffold for protein engineering.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Sophia Hober
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
34
|
Gruss A, Borezée-Durant E, Lechardeur D. Environmental heme utilization by heme-auxotrophic bacteria. Adv Microb Physiol 2013; 61:69-124. [PMID: 23046952 DOI: 10.1016/b978-0-12-394423-8.00003-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heme, an iron-containing porphyrin, is the prosthetic group for numerous key cellular enzymatic and regulatory processes. Many bacteria encode the biosynthetic enzymes needed for autonomous heme production. Remarkably, however, numerous other bacteria lack a complete heme biosynthesis pathway, yet encode heme-requiring functions. For such heme-auxotrophic bacteria (HAB), heme or porphyrins must be captured from the environment. Functional studies, aided by genomic analyses, provide insight into the HAB lifestyle, how they acquire and manage heme, and the uses of heme that make it worthwhile, and sometimes necessary, to capture this bioactive molecule.
Collapse
Affiliation(s)
- Alexandra Gruss
- INRA, UMR1319 Micalis and AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | | |
Collapse
|
35
|
Murphy EC, Frick IM. Gram-positive anaerobic cocci--commensals and opportunistic pathogens. FEMS Microbiol Rev 2012; 37:520-53. [PMID: 23030831 DOI: 10.1111/1574-6976.12005] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/30/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022] Open
Abstract
Among the Gram-positive anaerobic bacteria associated with clinical infections, the Gram-positive anaerobic cocci (GPAC) are the most prominent and account for approximately 25-30% of all isolated anaerobic bacteria from clinical specimens. Still, routine culture and identification of these slowly growing anaerobes to the species level has been limited in the diagnostic laboratory, mainly due to the requirement of prolonged incubation times and time-consuming phenotypic identification. In addition, GPAC are mostly isolated from polymicrobial infections with known pathogens and therefore their relevance has often been overlooked. However, through improvements in diagnostic and in particular molecular techniques, the isolation and identification of individual genera and species of GPAC associated with specific infections have been enhanced. Furthermore, the taxonomy of GPAC has undergone considerable changes over the years, mainly due to the development of molecular identification methods. Existing species have been renamed and novel species have been added, resulting in changes of the nomenclature. As the abundance and significance of GPAC in clinical infections grow, knowledge of virulence factors and antibiotic resistance patterns of different species becomes more important. The present review describes recent advances of GPAC and what is known of the biology and pathogenic effects of Anaerococcus, Finegoldia, Parvimonas, Peptoniphilus and Peptostreptococcus, the most important GPAC genera isolated from human infections.
Collapse
Affiliation(s)
- Elizabeth Carmel Murphy
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | | |
Collapse
|
36
|
Chan PH, Chen YC. Human serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Anal Chem 2012; 84:8952-6. [PMID: 23088348 DOI: 10.1021/ac302417k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, human serum albumin (HSA) stabilized gold nanoclusters (HSA-AuNCs) with reddish photoluminescence were used as sensing probes for pathogenic bacteria including Enterobacter cloacae, Escherichia coli J96, Pseudomonas aeruginosa, pandrug-resistant Acinetobacter baumannii (PDRAB), Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Streptococcus pyogenes, and vancomycin-resistant Enterococcus faecalis (VRE). We discovered that HSA-AuNCs have unique affinity with S. aureus and MRSA. In addition to demonstrating the selective sensing ability of HSA-AuNCs toward S. aureus and MRSA, the binding peptide motifs identified from HSA-AuNCs were characterized by mass spectrometry. The identified binding peptides were further used as the reducing and stabilizing agents for generation of peptide-bound AuNCs (Pep-AuNCs). The generated Pep-AuNCs were demonstrated to have the binding affinities with S. aureus and MRSA.
Collapse
|
37
|
Wolf M, Moser B. Antimicrobial activities of chemokines: not just a side-effect? Front Immunol 2012; 3:213. [PMID: 22837760 PMCID: PMC3401835 DOI: 10.3389/fimmu.2012.00213] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/03/2012] [Indexed: 11/22/2022] Open
Abstract
The large family of chemoattractant cytokines (chemokines) embraces multiple, in part unrelated functions that go well beyond chemotaxis. Undoubtedly, the control of immune cell migration (chemotaxis) is the single, unifying response mediated by all chemokines, which involves the sequential engagement of chemokine receptors on migrating target cells. However, numerous additional cellular responses are mediated by some (but not all) chemokines, including angiogenesis, tumor cell growth, T-cell co-stimulation, and control of HIV-1 infection. The recently described antimicrobial activity of several chemokines is of particular interest because antimicrobial peptides are thought to provide an essential first-line defense against invading microbes at the extremely large body surfaces of the skin, lungs, and gastrointestinal-urinary tract. Here we summarize the current knowledge about chemokines with antimicrobial activity and discuss their potential contribution to the control of bacterial infections that may take place at the earliest stage of antimicrobial immunity. In the case of homeostatic chemokines with antimicrobial function, such as CXCL14, we propose an immune surveillance function in healthy epithelial tissues characterized by low-level exposure to environmental microbes. Inflammatory chemokines, i.e., chemokines that are produced in tissue cells in response to microbial antigens (such as pathogen-associated molecular patterns) may be more important in orchestrating the cellular arm in antimicrobial immunity.
Collapse
Affiliation(s)
- Marlene Wolf
- Theodor Kocher Institute, University of BernBern, Switzerland
| | - Bernhard Moser
- Institute of Infection and Immunity, School of Medicine, Cardiff UniversityCardiff, UK
| |
Collapse
|
38
|
Real-time monitoring of the adherence of Streptococcus anginosus group bacteria to extracellular matrix decorin and biglycan proteoglycans in biofilm formation. Res Microbiol 2012; 163:436-47. [DOI: 10.1016/j.resmic.2012.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/16/2012] [Indexed: 11/22/2022]
|
39
|
Abstract
Zoonotic infections caused by Streptococcus spp. have been neglected in spite of the fact that frequency and severity of outbreaks increased dramatically in recent years. This may be due to non-identification since respective species are often not considered in human medical diagnostic procedures. On the other hand, an expanding human population concomitant with an increasing demand for food and the increased number of companion animals favour conditions for host species adaptation of animal streptococci. This review aims to give an overview on streptococcal zoonoses with focus on epidemiology and pathogenicity of four major zoonotic species, Streptococcus canis, Streptococcus equi sub. zooepidemicus, Streptococcus iniae and Streptococcus suis.
Collapse
|
40
|
Malmström J, Karlsson C, Nordenfelt P, Ossola R, Weisser H, Quandt A, Hansson K, Aebersold R, Malmström L, Björck L. Streptococcus pyogenes in human plasma: adaptive mechanisms analyzed by mass spectrometry-based proteomics. J Biol Chem 2011; 287:1415-25. [PMID: 22117078 DOI: 10.1074/jbc.m111.267674] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pyogenes is a major bacterial pathogen and a potent inducer of inflammation causing plasma leakage at the site of infection. A combination of label-free quantitative mass spectrometry-based proteomics strategies were used to measure how the intracellular proteome homeostasis of S. pyogenes is influenced by the presence of human plasma, identifying and quantifying 842 proteins. In plasma the bacterium modifies its production of 213 proteins, and the most pronounced change was the complete down-regulation of proteins required for fatty acid biosynthesis. Fatty acids are transported by albumin (HSA) in plasma. S. pyogenes expresses HSA-binding surface proteins, and HSA carrying fatty acids reduced the amount of fatty acid biosynthesis proteins to the same extent as plasma. The results clarify the function of HSA-binding proteins in S. pyogenes and underline the power of the quantitative mass spectrometry strategy used here to investigate bacterial adaptation to a given environment.
Collapse
Affiliation(s)
- Johan Malmström
- Department of Immunotechnology, Lund University, SE-22100 Lund, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|