1
|
Bărar AA, Pralea IE, Maslyennikov Y, Munteanu R, Berindan-Neagoe I, Pîrlog R, Rusu I, Nuțu A, Rusu CC, Moldovan DT, Potra AR, Tirinescu D, Ticala M, Elec FI, Iuga CA, Kacso IM. Minimal Change Disease: Pathogenetic Insights from Glomerular Proteomics. Int J Mol Sci 2024; 25:5613. [PMID: 38891801 PMCID: PMC11171934 DOI: 10.3390/ijms25115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The mechanism underlying podocyte dysfunction in minimal change disease (MCD) remains unknown. This study aimed to shed light on the potential pathophysiology of MCD using glomerular proteomic analysis. Shotgun proteomics using label-free quantitative mass spectrometry was performed on formalin-fixed, paraffin-embedded (FFPE) renal biopsies from two groups of samples: control (CTR) and MCD. Glomeruli were excised from FFPE renal biopsies using laser capture microdissection (LCM), and a single-pot solid-phase-enhanced sample preparation (SP3) digestion method was used to improve yield and protein identifications. Principal component analysis (PCA) revealed a distinct separation between the CTR and MCD groups. Forty-eight proteins with different abundance between the two groups (p-value ≤ 0.05 and |FC| ≥ 1.5) were identified. These may represent differences in podocyte structure, as well as changes in endothelial or mesangial cells and extracellular matrix, and some were indeed found in several of these structures. However, most differentially expressed proteins were linked to the podocyte cytoskeleton and its dynamics. Some of these proteins are known to be involved in focal adhesion (NID1 and ITGA3) or slit diaphragm signaling (ANXA2, TJP1 and MYO1C), while others are structural components of the actin and microtubule cytoskeleton of podocytes (ACTR3 and NES). This study suggests the potential of mass spectrometry-based shotgun proteomic analysis with LCM glomeruli to yield valuable insights into the pathogenesis of podocytopathies like MCD. The most significantly dysregulated proteins in MCD could be attributable to cytoskeleton dysfunction or may be a compensatory response to cytoskeleton malfunction caused by various triggers.
Collapse
Affiliation(s)
- Andrada Alina Bărar
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4-6, 400349 Cluj-Napoca, Romania;
| | - Yuriy Maslyennikov
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Raluca Munteanu
- Department of In Vivo Studies, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (I.B.-N.); (R.P.); (A.N.)
| | - Radu Pîrlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (I.B.-N.); (R.P.); (A.N.)
| | - Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400394 Cluj-Napoca, Romania;
| | - Andreea Nuțu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (I.B.-N.); (R.P.); (A.N.)
| | - Crina Claudia Rusu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Diana Tania Moldovan
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Alina Ramona Potra
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Dacian Tirinescu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Maria Ticala
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Florin Ioan Elec
- Department of Urology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4-6, 400349 Cluj-Napoca, Romania;
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ina Maria Kacso
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| |
Collapse
|
2
|
Abbey CA, Duran CL, Chen Z, Chen Y, Roy S, Coffell A, Sveeggen TM, Chakraborty S, Wells GB, Chang J, Bayless KJ. Identification of New Markers of Angiogenic Sprouting Using Transcriptomics: New Role for RND3. Arterioscler Thromb Vasc Biol 2024; 44:e145-e167. [PMID: 38482696 PMCID: PMC11043006 DOI: 10.1161/atvbaha.123.320599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.
Collapse
Affiliation(s)
- Colette A. Abbey
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Camille L. Duran
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Zhishi Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Yanping Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Sukanya Roy
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Ashley Coffell
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Timothy M. Sveeggen
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Sanjukta Chakraborty
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Gregg B. Wells
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, TX
| | - Jiang Chang
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Kayla J. Bayless
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| |
Collapse
|
3
|
Sveeggen TM, Abbey CA, Smith RL, Salinas ML, Chapkin RS, Bayless KJ. Annexin A2 modulates phospholipid membrane composition upstream of Arp2 to control angiogenic sprout initiation. FASEB J 2023; 37:e22715. [PMID: 36527391 PMCID: PMC10586062 DOI: 10.1096/fj.202201088r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The intersection of protein and lipid biology is of growing importance for understanding how cells address structural challenges during adhesion and migration. While protein complexes engaged with the cytoskeleton play a vital role, support from the phospholipid membrane is crucial for directing localization and assembly of key protein complexes. During angiogenesis, dramatic cellular remodeling is necessary for endothelial cells to shift from a stable monolayer to invasive structures. However, the molecular dynamics between lipids and proteins during endothelial invasion are not defined. Here, we utilized cell culture, immunofluorescence, and lipidomic analyses to identify a novel role for the membrane binding protein Annexin A2 (ANXA2) in modulating the composition of specific membrane lipids necessary for cortical F-actin organization and adherens junction stabilization. In the absence of ANXA2, there is disorganized cortical F-actin, reduced junctional Arp2, excess sprout initiation, and ultimately failed sprout maturation. Furthermore, we observed reduced filipin III labeling of membrane cholesterol in cells with reduced ANXA2, suggesting there is an alteration in phospholipid membrane dynamics. Lipidomic analyses revealed that 42 lipid species were altered with loss of ANXA2, including an accumulation of phosphatidylcholine (16:0_16:0). We found that supplementation of phosphatidylcholine (16:0_16:0) in wild-type endothelial cells mimicked the ANXA2 knock-down phenotype, indicating that ANXA2 regulated the phospholipid membrane upstream of Arp2 recruitment and organization of cortical F-actin. Altogether, these data indicate a novel role for ANXA2 in coordinating events at endothelial junctions needed to initiate sprouting and show that proper lipid modulation is a critical component of these events.
Collapse
Affiliation(s)
- Timothy M. Sveeggen
- Texas A&M Health Science Center, Texas, Bryan, USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, Texas, USA
| | | | | | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, USA
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, USA
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
4
|
Lin L, Hu K. Annexin A2 and Kidney Diseases. Front Cell Dev Biol 2022; 10:974381. [PMID: 36120574 PMCID: PMC9478026 DOI: 10.3389/fcell.2022.974381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Annexin A2 is a Ca2+- and phospholipid-binding protein which is widely expressed in various types of cells and tissues. As a multifunctional molecule, annexin A2 is found to be involved in diverse cell functions and processes, such as cell exocytosis, endocytosis, migration and proliferation. As a receptor of plasminogen and tissue plasminogen activator, annexin A2 promotes plasmin generation and regulates the homeostasis of blood coagulation, fibrinolysis and matrix degradation. As an antigen expressed on cell membranes, annexin A2 initiates local inflammation and damage through binding to auto-antibodies. Annexin A2 also mediates multiple signaling pathways induced by various growth factors and oxidative stress. Aberrant expression of annexin A2 has been found in numerous kidney diseases. Annexin A2 has been shown to act as a co-receptor of integrin CD11b mediating NF-kB-dependent kidney inflammation, which is further amplified through annexin A2/NF-kB-triggered macrophage M2 to M1 phenotypic change. It also modulates podocyte cytoskeleton rearrangement through Cdc42 and Rac1/2/3 Rho pathway causing proteinuria. Thus, annexin A2 is implicated in the pathogenesis and progression of various kidney diseases. In this review, we focus on the current understanding of the role of annexin A2 in kidney diseases.
Collapse
Affiliation(s)
- Ling Lin
- *Correspondence: Ling Lin, ; Kebin Hu,
| | - Kebin Hu
- *Correspondence: Ling Lin, ; Kebin Hu,
| |
Collapse
|
5
|
Probable Mechanisms of Doxorubicin Antitumor Activity Enhancement by Ginsenoside Rh2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030628. [PMID: 35163891 PMCID: PMC8838402 DOI: 10.3390/molecules27030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
Abstract
Ginsenoside Rh2 increases the efficacy of doxorubicin (DOX) treatment in murine models of solid and ascites Ehrlich’s adenocarcinoma. In a solid tumor model (treatment commencing 7 days after inoculation), DOX + Rh2 co-treatment was significantly more efficacious than DOX alone. If treatment was started 24 h after inoculation, the inhibition of tumor growth of a solid tumor for the DOX + Rh2 co-treatment group was complete. Furthermore, survival in the ascites model was dramatically higher for the DOX + Rh2 co-treatment group than for DOX alone. Mechanisms underlying the combined DOX and Rh2 effects were studied in primary Ehrlich’s adenocarcinoma-derived cells and healthy mice’s splenocytes. Despite the previously established Rh2 pro-oxidant activity, DOX + Rh2 co-treatment revealed no increase in ROS compared to DOX treatment alone. However, DOX + Rh2 treatment was more effective in suppressing Ehrlich adenocarcinoma cell adhesion than either treatment alone. We hypothesize that the benefits of DOX + Rh2 combination treatment are due to the suppression of tumor cell attachment/invasion that might be effective in preventing metastatic spread of tumor cells. Ginsenoside Rh2 was found to be a modest activator in a Neh2-luc reporter assay, suggesting that Rh2 can activate the Nrf2-driven antioxidant program. Rh2-induced direct activation of Nrf2 might provide additional benefits by minimizing DOX toxicity towards non-cancerous cells.
Collapse
|
6
|
Shotgun Immunoproteomics for Identification of Nonhuman Leukocyte Antigens Associated With Cellular Dysfunction in Heart Transplant Rejection. Transplantation 2021; 106:1376-1389. [PMID: 34923540 DOI: 10.1097/tp.0000000000004012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The International Society for Heart and Lung Transplant consensus panel notes that too little data exist regarding the role of non-HLA in allograft rejection. We developed a novel shotgun immunoproteomic approach to determine the identities and potential roles non-HLA play in antibody-mediated rejection (AMR) in heart transplant recipients. METHODS Serum was collected longitudinally from heart transplant recipients experiencing AMR in the absence of donor-specific anti-HLA antibodies (n = 6) and matched no rejection controls (n = 7). Antidonor heart affinity chromatography columns were formed by recipient immunoglobulin G immobilization at transplantation, acute rejection, and chronic postrejection time points. Affinity chromatography columns were used to capture antigens from individual patient's donor heart biopsies collected at transplantation. Captured proteins were subjected to quantitative proteomic analysis and the longitudinal response was calculated. RESULTS Overlap in antigen-specific response between AMR and non-AMR patients was only 8.3%. In AMR patients, a total of 155 non-HLAs were identified, with responses toward 43 high prevalence antigens found in ≥50% of patients. Immunofluorescence staining for representative high prevalence antigens demonstrated that their abundance increased at acute rejection, correlating with their respective non-HLA antibody response. Physiological changes in cardiomyocyte and endothelial cell function, following in vitro culture with patient immunoglobulin G, correlated with response toward several high prevalence antigens. CONCLUSIONS This work demonstrates a novel high-throughput strategy to identify clinically relevant non-HLA from donor endomyocardial biopsy. Such a technique has the potential to improve understanding of longitudinal timing of antigen-specific responses and their cause and effect relationship in graft rejection.
Collapse
|
7
|
Alexander R, Debiec N, Razzaque MS, He P. Inorganic phosphate-induced cytotoxicity. IUBMB Life 2021; 74:117-124. [PMID: 34676972 DOI: 10.1002/iub.2561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Phosphate, an essential nutrient, is available in organic and inorganic forms. The balance of phosphate is central for cellular homeostasis through the genomic roles of DNA and RNA synthesis and cell signaling processes. Therefore, an imbalance of this nutrient, manifested, either as a deficiency or excess in phosphate levels, can result in pathology, ranging from cytotoxicity to musculoskeletal defects. Inorganic phosphate (Pi) overdosing can result in a wide spectrum of cytotoxicity processes, as noted in both animal models and human studies. These include rewired cell signaling pathways, impaired bone mineralization, infertility, premature aging, vascular calcification, and renal dysfunction. This article briefly reviews the regulation of phosphate homeostasis and elaborates on cytotoxic effects of excessive Pi, as documented in cell-based models.
Collapse
Affiliation(s)
- Rachel Alexander
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Nicholas Debiec
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Mohammad S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| |
Collapse
|
8
|
Wu W, Jia G, Chen L, Liu H, Xia S. Analysis of the Expression and Prognostic Value of Annexin Family Proteins in Bladder Cancer. Front Genet 2021; 12:731625. [PMID: 34484309 PMCID: PMC8414640 DOI: 10.3389/fgene.2021.731625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023] Open
Abstract
Background Bladder cancer (BC) is the most common tumor of the urinary system. Non-muscle-invasive bladder cancer (NMIBC) has a high recurrence rate after surgery, and patients with muscle-invasive bladder cancer (MIBC) have poor quality of life after radical surgery. Understanding the molecular mechanism of bladder cancer is helpful for providing a more appropriate treatment approach. Annexins are calcium-binding proteins and play an important role in different tumor cells. However, the role of the annexin family in bladder cancer has not been studied in detail. Methods ONCOMINE, UALCAN, TIMER2.0, Kaplan-Meier Plotter, cBioPortal, and WebGestalt were utilized in this study. Results ANXA2, ANXA3, ANXA4, ANXA8, and ANXA9 were significantly increased in bladder tumor tissues, while ANXA6, ANXA7, and ANXA11 were significantly decreased. ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA7, and ANXA9 had prognostic value in bladder cancer. In addition, specific annexins were specifically expressed in different subtypes of MIBC and were related to the histological morphology of bladder tumors. ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA7, and ANXA8 were highly expressed in basal-subtype MIBC, while ANXA4, ANXA9, ANXA10, and ANXA11 were mainly expressed in luminal-subtype MIBC. Finally, we analyzed the possible mechanisms of ANXAs in different subtypes of bladder cancer through GO and KEGG analyses and the correlation between ANXAs and immune infiltration in the tumor microenvironment. Conclusion Taken together, our results indicate that annexins might play important roles in BC and have the potential to be used as markers for subtype classification.
Collapse
Affiliation(s)
- WenBo Wu
- Department of Urology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - GaoZhen Jia
- Department of Urology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - HaiTao Liu
- Department of Urology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - ShuJie Xia
- Department of Urology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Liu H, He J, Wu Y, Du Y, Jiang Y, Chen C, Yu Z, Zhong J, Wang Z, Cheng C, Sun X, Huang Z. Endothelial Regulation by Exogenous Annexin A1 in Inflammatory Response and BBB Integrity Following Traumatic Brain Injury. Front Neurosci 2021; 15:627110. [PMID: 33679307 PMCID: PMC7930239 DOI: 10.3389/fnins.2021.627110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Background and Target Following brain trauma, blood–brain barrier (BBB) disruption and inflammatory response are critical pathological steps contributing to secondary injury, leading to high mortality and morbidity. Both pathologies are closely associated with endothelial remodeling. In the present study, we concentrated on annexin A1 (ANXA1) as a novel regulator of endothelial function after traumatic brain injury. Methods After establishing controlled cortical impact (CCI) model in male mice, human recombinant ANXA1 (rANXA1) was administered intravenously, followed by assessments of BBB integrity, brain edema, inflammatory response, and neurological deficits. Result Animals treated with rANXA1 (1 μg/kg) at 1 h after CCI exhibited optimal BBB protection including alleviated BBB disruption and brain edema, as well as endothelial junction proteins loss. The infiltrated neutrophils and inflammatory cytokines were suppressed by rANXA1, consistent with decreased adhesive and transmigrating molecules from isolated microvessels. Moreover, rANXA1 attenuated the neurological deficits induced by CCI. We further found that the Ras homolog gene family member A (RhoA) inhibition has similar effect as rANXA1 in ameliorating brain injuries after CCI, whereas rANXA1 suppressed CCI-induced RhoA activation. Conclusion Our findings suggest that the endothelial remodeling by exogenous rANXA1 corrects BBB disruption and inflammatory response through RhoA inhibition, hence improving functional outcomes in CCI mice.
Collapse
Affiliation(s)
- Han Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao Campus), Qingdao, China
| | - Junchi He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yinghua Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Zhanyang Yu
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jianjun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao Campus), Qingdao, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhijian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Baldavira CM, Gomes LF, Cruz LTDL, Maria DA, Capelozzi VL. In vivo evidence of angiogenesis inhibition by β2-glycoprotein I subfractions in the chorioallantoic membrane of chicken embryos. ACTA ACUST UNITED AC 2021; 54:e10291. [PMID: 33470390 PMCID: PMC7812911 DOI: 10.1590/1414-431x202010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
The vascular network expansion and functioning are important factors affecting normal intra-uterine fetal development. This study addressed the previously reported antiangiogenic potential of beta-2-glycoprotein I (β2GPI) in vivo in the chick embryo model of angiogenesis. The effects of two naturally occurring β2GPI forms on the development of the chorioallantoic membrane (CAM) vessels and the chicken embryo were investigated. β2GPI monomers and dimers were obtained by fractioned purification and characterized using SDS-PAGE, immunoblot, and ELISA. The egg exposure was performed by injection of small volumes of 2.5 µg/mL solutions of the β2GPI subfractions. Angiogenesis was evaluated through quantitative measurements of vascular architecture parameters in the captured CAM images, using computational analysis of texture contrasts and computer vision techniques. Quantitative information was assigned to the CAM vasculature modifications. In vivo, the β2GPI dimer completely halted the formation of CAM vessels and led to embryo death after 48 h of exposure. The β2GPI monomer allowed the embryo to develop up to the 10th day, despite early changes of CAM vessels. The impaired normal vessel growth proceeded as a self-limited effect. The β2GPI monomer-exposed eggs showed reduced vascularization on the 6th day of incubation, but embryos were viable on the 10th day of incubation, with ingurgitated CAM vessels implying sequelae of the angiogenesis inhibition. Both subfractions impaired CAM vasculature development. The β2GPI dimer proved to be largely more harmful than the β2GPI monomer. β2GPI modification by cleavage or dimerization may play a role in angiogenesis control in vivo.
Collapse
Affiliation(s)
- C M Baldavira
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L F Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L T De La Cruz
- Laboratório de Sistemas Planctônicos, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP, Brasil
| | - D A Maria
- Laboratório de Biologia Molecular, Instituto Butantan, São Paulo, SP, Brasil
| | - V L Capelozzi
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
11
|
Kumaravel S, Abbey CA, Bayless KJ, Chakraborty S. The β 1-integrin plays a key role in LEC invasion in an optimized 3-D collagen matrix model. Am J Physiol Cell Physiol 2020; 319:C1045-C1058. [PMID: 33052069 DOI: 10.1152/ajpcell.00299.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lymphangiogenesis, or formation of new lymphatic vessels, is a tightly regulated process that is controlled by growth factor signaling and biomechanical cues. Lymphatic endothelial cells (LECs) undergo remodeling, migration, and proliferation to invade the surrounding extracellular matrix (ECM) during both physiological and pathological lymphangiogenesis. This study optimized conditions for an in vitro three-dimensional (3-D) collagen-based model that induced LEC invasion and recapitulated physiological formation of lymphatic capillaries with lumens. Invasion of LECs was enhanced in the presence of sphingosine 1-phosphate (S1P). Effects of various known lymphangiogenic factors, vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factor (bFGF), interleukin (IL)-8, and hepatocyte growth factor (HGF), were tested on LEC sprout formation synergistically with VEGF-C. Several of these growth factors significantly enhanced LEC invasion, and synergistic effects of some of these further enhanced the sprouting density and lumen volume. To determine the contribution of specific ECM components, we analyzed the expression of different integrin subunits. Basal expressions of the integrin α5- and integrin β1-subunits were high in LECs. The addition of fibronectin, which mediates cellular responses through these integrins, enhanced LEC sprouting density and sprout length dose-dependently. siRNA-mediated knockdown of the integrin β1-subunit suppressed LEC invasion and also inhibited VEGF receptor (VEGFR)3 and ERK activation. Furthermore, exposing LECs to the inflammatory mediator lipopolysaccharide (LPS) inhibited sprouting. This optimized model for LEC invasion includes S1P, VEGF-C, and fibronectin within a 3-D collagen matrix, along with VEGF-C, VEGF-A, bFGF, and HGF in the culture medium, and provides a useful tool to investigate the functional effect of various lymphangiogenic factors and inhibitors.
Collapse
Affiliation(s)
- Subhashree Kumaravel
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| |
Collapse
|
12
|
Huang K, Crist AM, Patel NR, Blanks A, Carter K, Cleaver O, Meadows SM. Annexin A3 is necessary for parallel artery-vein alignment in the mouse retina. Dev Dyn 2020; 249:666-678. [PMID: 32020697 PMCID: PMC7995330 DOI: 10.1002/dvdy.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/31/2019] [Accepted: 01/23/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Annexin A3 (Anxa3) is a member of the calcium-regulated, cell membrane-binding family of annexin proteins. We previously confirmed that Anxa3 is expressed in the endothelial lineage in vertebrates and that loss of anxa3 in Xenopus laevis leads to embryonic blood vessel defects. However, the biological function of Anxa3 in mammals is completely unknown. In order to investigate Anxa3 vascular function in mammals, we generated an endothelial cell-specific Anxa3 conditional knockout mouse model (Anxa3f/f ;Tie2-Cre). RESULTS Anxa3f/f ;Tie2-Cre mice are born at Mendelian ratios and display morphologically normal blood vessels during development. However, loss of Anxa3 leads to artery-vein (AV) misalignment characterized by atypical AV crossovers in the postnatal and adult retina. CONCLUSIONS Anxa3 is not essential for embryonic blood vessel formation but is required for proper parallel AV alignment in the murine retina. AV crossovers associated with Anxa3f/f ;Tie2-Cre mice are similar to AV intersections observed in patients with branch retinal vein occlusion (BRVO), although we did not observe occluded vessels. This new Anxa3 mouse model may provide a basis for understanding AV crossover formation associated with BRVO.
Collapse
Affiliation(s)
- Katie Huang
- Cell and Molecular Biology Department, Tulane University, New Orleans, Louisiana
| | - Angela M. Crist
- Cell and Molecular Biology Department, Tulane University, New Orleans, Louisiana
| | - Nehal R. Patel
- Cell and Molecular Biology Department, Tulane University, New Orleans, Louisiana
| | - Avery Blanks
- Cell and Molecular Biology Department, Tulane University, New Orleans, Louisiana
| | - Kelsey Carter
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stryder M. Meadows
- Cell and Molecular Biology Department, Tulane University, New Orleans, Louisiana
| |
Collapse
|
13
|
Wing TT, Erikson DW, Burghardt RC, Bazer FW, Bayless KJ, Johnson GA. OPN binds alpha V integrin to promote endothelial progenitor cell incorporation into vasculature. Reproduction 2020; 159:465-478. [PMID: 31990676 PMCID: PMC10792589 DOI: 10.1530/rep-19-0358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022]
Abstract
Angiogenesis is fundamental to the expansion of the placental vasculature during pregnancy. Integrins are associated with vascular formation; and osteopontin is a candidate ligand for integrins to promote angiogenesis. Endothelial progenitor cells (EPCs) are released from bone marrow into the blood and incorporate into newly vascularized tissue where they differentiate into mature endothelium. Results of studies in women suggest that EPCs may play an important role in maintaining placental vascular integrity during pregnancy, although little is known about how EPCs are recruited to these tissues. Our goal was to determine the αv integrin mediated effects of osteopontin on EPC adhesion and incorporation into angiogenic vascular networks. EPCs were isolated from 6 h old piglets. RT-PCR revealed that EPCs initially had a monocyte-like phenotype in culture that became more endothelial-like with cell passage. Immunofluorescence microscopy confirmed that the EPCs express platelet endothelial cell adhesion molecule, vascular endothelial cadherin, and von Willebrand factor. When EPCs were cultured on OPN-coated slides, the αv integrin subunit was observed in focal adhesions at the basal surface of EPCs. Silencing of αv integrin reduced EPC binding to OPN and focal adhesion assembly. In vitro siRNA knockdown in EPCs,demonstrated that OPN stimulates EPC incorporation into human umbilical vein endothelial cell (HUVEC) networks via αv-containing integrins. Finally, in situ hybridization and immunohistochemistry localized osteopontin near placental blood vessels. In summary, OPN binds the αv integrin subunit on EPCs to support EPC adhesion and increase EPC incorporation into angiogenic vascular networks.
Collapse
Affiliation(s)
- Theodore T. Wing
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - David W. Erikson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Robert C. Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843
| | - Greg A. Johnson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| |
Collapse
|
14
|
Li W, Chen Z, Yuan J, Yu Z, Cheng C, Zhao Q, Huang L, Hajjar KA, Chen Z, Lo EH, Dai H, Wang X. Annexin A2 is a Robo4 ligand that modulates ARF6 activation-associated cerebral trans-endothelial permeability. J Cereb Blood Flow Metab 2019; 39:2048-2060. [PMID: 29786451 PMCID: PMC6775579 DOI: 10.1177/0271678x18777916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Blood-brain barrier (BBB) disruption in neurological disorders remains an intractable problem with limited therapeutic options. Here, we investigate whether the endothelial cell membrane protein annexin A2 (ANXA2) may play a role in reducing trans-endothelial permeability and maintaining cerebrovascular integrity after injury. Compared with wild-type mice, the expression of cerebral endothelial junctional proteins was reduced in E15.5 and adult ANXA2 knockout mice, along with increased leakage of small molecule tracers. In human brain endothelial cells that were damaged by hypoxia plus IL-1β, treatment with recombinant ANXA2 (rA2) rescued the expression of junctional proteins and decreased trans-endothelial permeability. These protective effects were mediated in part by interactions with F-actin and VE-cadherin, and the ability of rA2 to modulate signaling via the roundabout guidance receptor 4 (Robo4)-paxillin-ADP-ribosylation factor 6 (ARF6) pathway. Taken together, these observations suggest that ANXA2 may be associated with the maintenance of endothelial tightness after cerebrovascular injury. ANXA2-mediated pathways should be further explored as potential therapeutic targets for protecting the BBB in neurological disorders.
Collapse
Affiliation(s)
- Wenlu Li
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhigang Chen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yuan
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chongjie Cheng
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Qiuchen Zhao
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lena Huang
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Katherine A Hajjar
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Eng H Lo
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Haibin Dai
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
15
|
Zibouche M, Illien F, Ayala-Sanmartin J. Annexin A2 expression and partners during epithelial cell differentiation. Biochem Cell Biol 2019; 97:612-620. [DOI: 10.1139/bcb-2018-0393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The members of the annexin family of calcium- and phospholipid-binding proteins participate in different cellular processes. Annexin A2 binds to S100A10, forming a functional heterotetrameric protein that has been involved in many cellular functions, such as exocytosis, endocytosis, cell junction formation, and actin cytoskeleton dynamics. Herein, we studied annexin A2 cellular movements and looked for its partners during epithelial cell differentiation. By using immunofluorescence, mass spectrometry (MS), and western blot analyses after S100A10 affinity column separation, we identified several annexin A2–S100A10 partner candidates. The association of putative annexin A2–S100A10 partner candidates obtained by MS after column affinity was validated by immunofluorescence and sucrose density gradient separation. The results show that three proteins are clearly associated with annexin A2: E-cadherin, actin, and caveolin 1. Overall, the data show that annexin A2 can associate with molecular complexes containing actin, caveolin 1, and flotillin 2 before epithelial differentiation and with complexes containing E-cadherin, actin, and caveolin 1, but not flotillin 2 after cell differentiation. The results indicate that actin, caveolin 1, and E-cadherin are the principal protein partners of annexin A2 in epithelial cells and that the serine phosphorylation of the N-terminal domain does not play an essential role during epithelial cell differentiation.
Collapse
Affiliation(s)
- Malik Zibouche
- CNRS, Université Sorbonne, École normale supérieure, Université PSL, Laboratoire des biomolécules, Paris 75005, France
- CNRS, Université Sorbonne, École normale supérieure, Université PSL, Laboratoire des biomolécules, Paris 75005, France
| | - Françoise Illien
- CNRS, Université Sorbonne, École normale supérieure, Université PSL, Laboratoire des biomolécules, Paris 75005, France
- CNRS, Université Sorbonne, École normale supérieure, Université PSL, Laboratoire des biomolécules, Paris 75005, France
| | - Jesus Ayala-Sanmartin
- CNRS, Université Sorbonne, École normale supérieure, Université PSL, Laboratoire des biomolécules, Paris 75005, France
- CNRS, Université Sorbonne, École normale supérieure, Université PSL, Laboratoire des biomolécules, Paris 75005, France
| |
Collapse
|
16
|
Wu W, Yu T, Wu Y, Tian W, Zhang J, Wang Y. The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:133. [PMID: 30898167 PMCID: PMC6427903 DOI: 10.1186/s13046-019-1132-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive form of astrocytoma among adult brain tumors. Multiple studies have shown that long non-coding RNAs (lncRNAs) play important roles in acting as molecular sponge for competing with microRNAs (miRNAs) to regulate downstream molecules in tumor progression. We previously reported that miR155 host gene (miR155HG), an lncRNA, and its derivative miR-155 promote epithelial-to-mesenchymal transition in glioma. However, the other biological functions and mechanisms of miR155HG sponging miRNAs have been unknown. Considering ANXA2 has been generally accepted as oncogene overexpressed in a vast of cancers correlated with tumorigenesis, which might be the target molecule of miR155HG sponging miRNA via bioinformatics analysis. We designed this study to explore the interaction of miR155HG and ANXA2 to reveal the malignancy of them in GBM development. Methods The expression of miR155HG was analyzed in three independent databases and clinical GBM specimens. Bioinformatics analysis was performed to assess the potential tumor-related functions of miR155HG. The interaction of miR155HG and miR-185 and the inhibition of ANXA2 by miR-185 were analyzed by luciferase reporter experiments, and biological effects in GBM were explored by colony formation assays, EDU cell proliferation assays, flow cytometric analysis and intracranial GBM mouse model. Changes in protein expression were analyzed using western blot. We examined the regulatory mechanism of ANXA2 on miR155HG in GBM by gene expression profiling analysis, double immunofluorescence staining, chromatin immunoprecipitation and luciferase reporter assays. Results We found that miR155HG was upregulated in GBM tissues and cell lines. Bioinformatic analyses of three GBM databases showed that miR155HG expression levels were closely associated with genes involved in cell proliferation and apoptosis. Knocking down miR155HG suppressed GBM cell proliferation in vitro, induced a G1/S-phase cell cycle arrest, and increased apoptosis. We also found that miR155HG functions as a competing endogenous RNA for miR-185. Moreover, miR-185 directly targets and inhibits ANXA2, which exhibits oncogenic functions in GBM. We also found that ANXA2 promoted miR155HG expression via STAT3 phosphorylation. Conclusion Our results demonstrated that overexpressed miR155HG in GBM can sponge miR-185 to promote ANXA2 expression, and ANXA2 stimulates miR155HG level through phosphorylated STAT3 binding to the miR155HG promoter. We establish the miR155HG/miR185/ANXA2 loop as a mechanism that underlies the biological functions of miR155HG and ANXA2 in GBM and further suggest this loop may serve as a therapeutic target and/or prognostic biomarker for GBM. Electronic supplementary material The online version of this article (10.1186/s13046-019-1132-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weining Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Neurosurgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Youzhi Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Neurosurgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Tian
- Department of Neurosurgery, Nanjing First Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
17
|
Lou Y, Yu Y, Xu X, Zhou S, Shen H, Fan T, Wu D, Yin J, Li G. Long non-coding RNA LUCAT1 promotes tumourigenesis by inhibiting ANXA2 phosphorylation in hepatocellular carcinoma. J Cell Mol Med 2018; 23:1873-1884. [PMID: 30588744 PMCID: PMC6378214 DOI: 10.1111/jcmm.14088] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/10/2018] [Accepted: 11/22/2018] [Indexed: 01/09/2023] Open
Abstract
Long non‐coding RNAs (lncRNAs) play essential roles in diverse biological processes; however, current understanding of the mechanism underlying the regulation of tumour proliferation and metastasis is limited. Lung cancer‐associated transcript 1 (LUCAT1) has been reported in a variety of human cancers, while its role in hepatocellular carcinoma (HCC) remains unclear. This study aimed to determine the biological role and underlying mechanism of LUCAT1 on progression and metastasis in HCC cells and clinical specimens. Our results demonstrated that LUCAT1 was up‐regulated in HCC tissues and cells. Loss‐ and gain‐of‐function studies revealed that LUCAT1 promotes the proliferation and metastasis of HCC cells in vitro and in vivo. Furthermore, RNA pulldown and Western blot assays indicated that LUCAT1 inhibited the phosphorylation of Annexin A2 (ANXA2) to reduce the degradation of ANXA2‐S100A10 heterotetramer (AIIt), which in turn accelerated the secretion of plasminogen into plasmin, thereby resulting in the activation of metalloprotease proteins. In conclusion, we propose that LUCAT1 serves as a novel diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yun Lou
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Yue Yu
- Key Laboratory of Living Donor Transplantation of Ministry of Public Health, Nanjing, Jiangsu province, China
| | - Xiaolia Xu
- Medical School of Southeast University, Nanjing, Jiangsu province, P.R. China
| | - Shu Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Haiyuan Shen
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Tianlong Fan
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Di Wu
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Jie Yin
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, Jiangsu province, China
| | - Guoqiang Li
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
18
|
Duran CL, Abbey CA, Bayless KJ. Establishment of a three-dimensional model to study human uterine angiogenesis. Mol Hum Reprod 2018; 24:74-93. [PMID: 29329415 PMCID: PMC6454809 DOI: 10.1093/molehr/gax064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/25/2017] [Accepted: 12/19/2017] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Can primary human uterine microvascular endothelial cells (UtMVECs) be used as a model to study uterine angiogenic responses in vitro that are relevant in pregnancy? SUMMARY ANSWER UtMVECs demonstrated angiogenic responses when stimulated with proangiogenic factors, including sphingosine 1-phosphate (S1P), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), physiological levels of wall shear stress (WSS), human chorionic gonadotropin (hCG) and various combinations of estrogen and progesterone. WHAT IS KNOWN ALREADY During sprouting angiogenesis, signaling from growth factors and cytokines induces a monolayer of quiescent endothelial cells (ECs) lining the vasculature to degrade the extracellular matrix and invade the surrounding tissue to form new capillaries. During pregnancy and the female reproductive cycle, the uterine endothelium becomes activated and undergoes sprouting angiogenesis to increase the size and number of blood vessels in the endometrium. STUDY DESIGN, SIZE, DURATION The study was designed to examine the angiogenic potential of primary human UtMVECs using the well-characterized human umbilical vein EC (HUVEC) line as a control to compare angiogenic potential. ECs were seeded onto three-dimensional (3D) collagen matrices, supplemented with known proangiogenic stimuli relevant to pregnancy and allowed to invade for 24 h. Sprouting responses were analyzed using manual and automated methods for quantification. PARTICIPANTS/MATERIALS, SETTING, METHODS RT-PCR, Western blot analysis and immunostaining were used to characterize UtMVECs. Angiogenic responses were examined using 3D invasion assays. Western blotting was used to confirm signaling responses after proangiogenic lipid, pharmacological inhibitor, and recombinant lentiviral treatments. All experiments were repeated at least three times. MAIN RESULTS AND THE ROLE OF CHANCE After ensuring that UtMVECs expressed the proper endothelial markers, we found that UtMVECs invade 3D collagen matrices dose-dependently in response to known proangiogenic stimuli (e.g. S1P, VEGF, bFGF, hCG, estrogen, progesterone and WSS) present during early pregnancy. Invasion responses were positively correlated with phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and p42/p44 mitogen-activated protein kinase (ERK). Inhibition of these second messengers significantly impaired sprouting (P < 0.01). Gene silencing of membrane type 1-matrix metalloproteinase using multiple approaches completely abrogated sprouting (P < 0.001). Finally, UtMVECs displayed a unique ability to undergo sprouting in response to hCG, and combined estrogen and progesterone treatment. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The study of uterine angiogenesis in vitro has limitations and any findings many not fully represent the in vivo state. However, these experiments do provide evidence for the ability of UtMVECs to be used in functional sprouting assays in a 3D environment, stimulated by physiological factors that are produced locally within the uterus during early pregnancy. WIDER IMPLICATIONS OF THE FINDINGS We show that UtMVECs can be used reliably to investigate how growth factors, hormones, lipids and other factors, such as flow, affect angiogenesis in the uterus. STUDY FUNDING/COMPETING INTERESTS This work was supported by NIH award HL095786 to K.J.B. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
- Interdisciplinary Faculty of Reproductive Biology, Texas A&M University, Mail Stop 2471, College Station, TX 77843, USA
| |
Collapse
|
19
|
Abstract
Under physiological conditions, the arterial endothelium exerts a powerful protective influence to maintain vascular homeostasis. However, during the development of vascular disease, these protective activities are lost, and dysfunctional endothelial cells actually promote disease pathogenesis. Numerous investigations have analyzed the characteristics of dysfunctional endothelium with a view to understanding the processes responsible for the dysfunction and to determining their role in vascular pathology. This review adopts an alternate approach: reviewing the mechanisms that contribute to the initial formation of a healthy protective endothelium and on how those mechanisms may be disrupted, precipitating the appearance of dysfunctional endothelial cells and the progression of vascular disease. This approach, which highlights the role of endothelial adherens junctions and vascular endothelial-cadherin in endothelial maturation and endothelial dysfunction, provides new insight into the remarkable biology of this important cell layer and its role in vascular protection and vascular disease.
Collapse
|
20
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
21
|
Foley K, Muth S, Jaffee E, Zheng L. Hedgehog signaling stimulates Tenascin C to promote invasion of pancreatic ductal adenocarcinoma cells through Annexin A2. Cell Adh Migr 2017; 11:514-523. [PMID: 28152318 PMCID: PMC5810754 DOI: 10.1080/19336918.2016.1259057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023] Open
Abstract
Pancreatic adenocarcinoma (PDA) is characterized by a dense desmoplastic reaction that comprises 60-90% of the tumor, while only 10-40% of the tumor is composed of malignant epithelial cells. This desmoplastic reaction is composed of stromal fibroblast cells, extracellular matrix proteins, and immune cells. Accumulating evidence has suggested that the stromal and epithelial cell compartments interact during the pathogenesis of this disease. Therefore, it is important to identify the signaling pathways responsible for this interaction to better understand the mechanisms by which PDA invades and metastasizes. Here, we show that secreted stromal factors induce invasion of PDA cells. Specifically, hedgehog signaling from the tumor cells induces tenascin C (TnC) secretion from the stromal cells that acts back upon the tumor cells in a paracrine fashion to induce the invasion of PDA cells through its' receptor annexin A2 (AnxA2). Therefore, blocking the interaction between TnC and AnxA2 has the potential to prevent liver metastasis in PDA.
Collapse
Affiliation(s)
- Kelly Foley
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Muth
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Luo M, Flood EC, Almeida D, Yan L, Berlin DA, Heerdt PM, Hajjar KA. Annexin A2 supports pulmonary microvascular integrity by linking vascular endothelial cadherin and protein tyrosine phosphatases. J Exp Med 2017; 214:2535-2545. [PMID: 28694388 PMCID: PMC5584111 DOI: 10.1084/jem.20160652] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 03/14/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022] Open
Abstract
Luo et al. demonstrate that annexin A2 is required to maintain vascular integrity in the hypoxic mouse lung. A2 prevents extravasation of fluid and leukocytes by promoting activity of the phosphatases VE-PTP and SHP2, thereby modulating phosphorylation of vascular endothelial cadherin. Relative or absolute hypoxia activates signaling pathways that alter gene expression and stabilize the pulmonary microvasculature. Alveolar hypoxia occurs in disorders ranging from altitude sickness to airway obstruction, apnea, and atelectasis. Here, we report that the phospholipid-binding protein, annexin A2 (ANXA2) functions to maintain vascular integrity in the face of alveolar hypoxia. We demonstrate that microvascular endothelial cells (ECs) from Anxa2−/− mice display reduced barrier function and excessive Src-related tyrosine phosphorylation of the adherens junction protein vascular endothelial cadherin (VEC). Moreover, unlike Anxa2+/+ controls, Anxa2−/− mice develop pulmonary edema and neutrophil infiltration in the lung parenchyma in response to subacute alveolar hypoxia. Mice deficient in the ANXA2-binding partner, S100A10, failed to demonstrate hypoxia-induced pulmonary edema under the same conditions. Further analyses reveal that ANXA2 forms a complex with VEC and its phosphatases, EC-specific protein tyrosine phosphatase (VE-PTP) and Src homology phosphatase 2 (SHP2), both of which are implicated in vascular integrity. In the absence of ANXA2, VEC is hyperphosphorylated at tyrosine 731 in response to vascular endothelial growth factor, which likely contributes to hypoxia-induced extravasation of fluid and leukocytes. We conclude that ANXA2 contributes to pulmonary microvascular integrity by enabling VEC-related phosphatase activity, thereby preventing vascular leak during alveolar hypoxia.
Collapse
Affiliation(s)
- Min Luo
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| | - Elle C Flood
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY
| | - Dena Almeida
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| | - LunBiao Yan
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY
| | - David A Berlin
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Paul M Heerdt
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY
| | - Katherine A Hajjar
- Department of Pediatrics, Weill Cornell Medical College, New York, NY .,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
23
|
Annexin A2 Plus Low-Dose Tissue Plasminogen Activator Combination Attenuates Cerebrovascular Dysfunction After Focal Embolic Stroke of Rats. Transl Stroke Res 2017; 8:549-559. [PMID: 28580536 DOI: 10.1007/s12975-017-0542-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
Previous studies showed recombinant annexin A2 (rA2) in combination with low-dose tissue-type plasminogen activator (tPA) improved thrombolytic efficacy and long-term neurological outcomes after embolic focal ischemia in rats. The objective of this study was to investigate the effects and mechanisms of the combination in early BBB integrity and cerebrovascular patency in the rat focal embolic stroke model. Ischemic brain infarct volume and hemorrhagic transformation were quantified at 24 h after stroke. At an earlier time point, 16 h after stroke, BBB integrity was evaluated by IgG extravasation, and the involved mechanisms were assessed for tight junction ZO-1 and adhesion junction ve-cadherin protein expression, matrix metalloproteinase activation, extracellular matrix collagen IV and endothelial barrier antigen expression, and activation of microglia/macrophages and astrocytes. While at the same time point, cerebrovascular patency was assessed by intravascular fibrin and platelet depositions. At 24 h after stroke, the combination showed significant reduction in brain infarction and intracerebral hemorrhage. At 16 h after stroke onset, the combination therapy significantly reduced BBB disruption, and improved preservation of the junction proteins ZO-1 and ve-cadherin, decreased activation of matrix metalloproteinase, inhibited degradation of extracellular matrix collagen IV and endothelial barrier antigen, and reduced microglia/macrophage and astrocytes activations. Meanwhile, the combination also significantly improved cerebrovascular patency by reducing intravascular fibrin and platelet depositions in the peri-infarct brain tissues. These results suggest the beneficial effects of the rA2 plus low-dose tPA combination may be mediated in part by the amelioration of BBB disruption and improvement of cerebrovascular patency.
Collapse
|
24
|
Annexin II-binding immunoglobulins in patients with lupus nephritis and their correlation with disease manifestations. Clin Sci (Lond) 2017; 131:653-671. [PMID: 28183811 DOI: 10.1042/cs20160732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/07/2023]
Abstract
Annexin II on mesangial cell surface mediates the binding of anti-dsDNA antibodies and consequent downstream inflammatory and fibrotic processes. We investigated the clinical relevance of circulating annexin II-binding immunoglobulins (Igs) in patients with severe proliferative lupus nephritis, and renal annexin II expression in relation to progression of nephritis in New Zealand Black and White F1 mice (NZBWF1/J) mice. Annexin II-binding Igs in serum were measured by ELISA. Ultrastructural localization of annexin II was determined by electron microscopy. Seropositivity rates for annexin II-binding IgG and IgM in patients with active lupus nephritis were significantly higher compared with controls (8.9%, 1.3% and 0.9% for annexin II-binding IgG and 11.1%, 4.0% and 1.9% for annexin II-binding IgM for patients with active lupus nephritis, patients with non-lupus renal disease and healthy subjects respectively). In lupus patients, annexin II-binding IgM level was higher at disease flare compared with remission. Annexin II-binding IgG and IgM levels were associated with that of anti-dsDNA and disease activity. Annexin II-binding IgG and IgM levels correlated with histological activity index in lupus nephritis biopsy samples. In NZBWF1/J mice, serum annexin II-binding IgG and IgM levels and glomerular annexin II and p11 expression increased with progression of active nephritis. Annexin II expression was present on mesangial cell surface and in the mesangial matrix, and co-localized with electron-dense deposits along the glomerular basement membrane. Our results show that circulating annexin II-binding IgG and IgM levels are associated with clinical and histological disease activity in proliferative lupus nephritis. The co-localization of annexin II and p11 expression with immune deposition in the kidney suggests pathogenic relevance.
Collapse
|
25
|
Duran CL, Kaunas R, Bayless KJ. S1P Synergizes with Wall Shear Stress and Other Angiogenic Factors to Induce Endothelial Cell Sprouting Responses. Methods Mol Biol 2017; 1697:99-115. [PMID: 28456951 DOI: 10.1007/7651_2017_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis is the process of new blood vessel growth from pre-existing structures. During sprout initiation, endothelial cells (ECs) are activated by pro-angiogenic factors to degrade the basement membrane, migrate into the surrounding matrix, and form structures that anastomose to connect neighboring vessels. Sphingosine 1-phosphate (S1P) is a biologically active lysosphingolipid that is secreted by platelets and promotes angiogenesis under normal and pathological conditions by acting on ECs. In addition to biochemical factors, the endothelium is continuously subjected to mechanical forces in the form of wall shear stress (WSS) from fluid forces. Here, we describe an in vitro, three-dimensional (3D) endothelial sprouting assay that is significantly enhanced by S1P, WSS, angiogenic growth factors (GFs), and fibronectin. This assay is assembled by seeding primary human endothelial cells onto 3D collagen matrices containing S1P and other pro-angiogenic factors. Once attached, physiological levels of WSS are applied to induce robust sprouting responses. This approach promotes the initiation of angiogenic sprouts stimulated by S1P, and allows the study of 3D sprouting of primary human endothelial cells induced in response to these physiological factors.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843-1114, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843-1114, USA.
| |
Collapse
|
26
|
Almutairi MMA, Gong C, Xu YG, Chang Y, Shi H. Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci 2016; 73:57-77. [PMID: 26403789 PMCID: PMC11108286 DOI: 10.1007/s00018-015-2050-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/27/2022]
Abstract
As the primary protective barrier for neurons in the brain, the blood-brain barrier (BBB) exists between the blood microcirculation system and the brain parenchyma. The normal BBB integrity is essential in protecting the brain from systemic toxins and maintaining the necessary level of nutrients and ions for neuronal function. This integrity is mediated by structural BBB components, such as tight junction proteins, integrins, annexins, and agrin, of a multicellular system including endothelial cells, astrocytes, pericytes, etc. BBB dysfunction is a significant contributor to the pathogeneses of a variety of brain disorders. Many signaling factors have been identified to be able to control BBB permeability through regulating the structural components. Among those signaling factors are inflammatory mediators, free radicals, vascular endothelial growth factor, matrix metalloproteinases, microRNAs, etc. In this review, we provide a summary of recent progress regarding these structural components and signaling factors, relating to their roles in various brain disorders. Attention is also devoted to recent research regarding impact of pharmacological agents such as isoflurane on BBB permeability and how iron ion passes across BBB. Hopefully, a better understanding of the factors controlling BBB permeability helps develop novel pharmacological interventions of BBB hyperpermeability under pathological conditions.
Collapse
Affiliation(s)
- Mohammed M A Almutairi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA
| | - Chen Gong
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA
| | - Yuexian G Xu
- Department of Anesthesiology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, 050016, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA.
| |
Collapse
|
27
|
Tang M, Chen L, Li B, Wang Y, Li S, Wen A, Yao S, Shang Y. BML-111 attenuates acute lung injury in endotoxemic mice. J Surg Res 2015; 200:619-30. [PMID: 26432471 DOI: 10.1016/j.jss.2015.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/13/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND BML-111 is a lipoxin receptor agonist that has protective effects in various lung injury models. We tried to elucidate whether BML-111 could mitigate lung injury in a mouse model of endotoxemia and endothelial hyperpermeability in vitro. METHODS The effect of BML-111 on lung injury was evaluated using C57BL/6 mice and human umbilical vein endothelial cells (HUVECs). Male C57BL/6 mice were intraperitoneally injected with normal saline, BML-111, and/or the lipoxin receptor antagonist Boc-2. Then, either lipopolysaccharide (LPS) or normal saline was given intraperitoneally. Lung injury was assessed by a pathohistologic examination for neutrophil infiltration, pulmonary endothelial permeability, and inflammatory cytokines in lung tissue and bronchoalveolar lavage fluid. HUVECs were treated with or without BML-111 before incubation with LPS for 24 h. Boc-2 was also tested as a novel inhibitor of BML-111. A Transwell assay was used to evaluate the permeability of HUVECs. Junction protein expression was also assessed. RESULTS BML-111 significantly improved the mouse survival rate, reduced body weight loss, attenuated the pulmonary pathologic changes, inhibited neutrophil infiltration and proinflammatory cytokine production, and mitigated endothelial hyperpermeability. The decreased expression of junction proteins induced by LPS in lung tissue and endothelial cells were upregulated by BML-111. In addition, BML-111 inhibited the activation of the Akt, ERK1/2, and p38 MAPK signaling pathways. However, the beneficial effects of BML-111 were abolished by Boc-2. CONCLUSIONS BML-111 attenuated lung injury in endotoxemic mice and mitigated endothelial hyperpermeability by upregulating the expression of junction proteins.
Collapse
Affiliation(s)
- Min Tang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shengnan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiqing Wen
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Shanglong Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
28
|
Annexin A2 and S100A10 in the mammalian oviduct. Cell Tissue Res 2015; 363:567-77. [PMID: 26329302 DOI: 10.1007/s00441-015-2266-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/31/2015] [Indexed: 01/01/2023]
Abstract
In many mammals, upon entry into the female reproductive tract, a subpopulation of sperm is stored in the oviduct forming a functional reservoir. In the oviducts of pig and cow, Annexin A2 (AnxA2) has been linked to the binding of sperm. This protein may exist as a monomer or bound to S100A10 and both forms are associated with different biological functions. S100A10 has not yet been reported in the oviduct. The objective of this work is to analyze for the presence of S100A10 in the oviduct and to advance the study of AnxA2 and S100A10 in this organ. This work shows the presence of both proteins, AnxA2 and S100A10, in the oviduct of human, pig, cow, cat, dog and rabbit. At least in pig, AnxA2 is found devoid of S100A10 in the outer surface of the apical plasma membrane of oviductal epithelial cells, indicating that it binds to sperm as a monomer or in association with proteins different from S100A10. In the apical cytoplasm of pig oviductal epithelial cells, AnxA2 is associated with S100A10. In primary culture of porcine oviductal cells, the expression of ANXA2 is increased by progesterone, while the expression of S100A10 is increased by progesterone and estradiol. The widespread detection of both proteins in the oviduct of mammals indicates a probable conserved function in this organ. In summary, S100A10 and AnxA2 are widespread in the mammalian oviduct but AnxA2 binds sperm in vivo devoid of S100A10 and may be related to reservoir formation.
Collapse
|
29
|
Meadows SM, Cleaver O. Annexin A3 Regulates Early Blood Vessel Formation. PLoS One 2015; 10:e0132580. [PMID: 26182056 PMCID: PMC4504506 DOI: 10.1371/journal.pone.0132580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/16/2015] [Indexed: 12/02/2022] Open
Abstract
Annexins are a large family of calcium binding proteins that associate with cell membrane phospholipids and are involved in various cellular processes including endocytosis, exocytosis and membrane-cytoskeletal organization. Despite studies on numerous Annexin proteins, the function of Annexin A3 (Anxa3) is largely unknown. Our studies identify Anxa3 as a unique marker of the endothelial and myeloid cell lineages of Xenopus laevis during development. Anxa3 transcripts are also detected in endothelial cells (ECs) of zebrafish and mouse embryos, suggesting an important evolutionary function during formation of blood vessels. Indeed, Anxa3 loss-of-function experiments in frog embryos reveal its critical role during the morphogenesis of early blood vessels, as angioblasts in MO injected embryos fail to form vascular cords. Furthermore, in vitro experiments in mammalian cells identify a role for Anxa3 in EC migration. Our results are the first to reveal an in vivo function for Anxa3 during vascular development and represent a previously unexplored aspect of annexin biology.
Collapse
Affiliation(s)
- Stryder M. Meadows
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, 6400 Freret St., New Orleans, LA, United States of America
- * E-mail:
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, United States of America
| |
Collapse
|
30
|
Raddum AM, Hollås H, Shumilin IA, Henklein P, Kretsinger R, Fossen T, Vedeler A. The native structure of annexin A2 peptides in hydrophilic environment determines their anti-angiogenic effects. Biochem Pharmacol 2015; 95:1-15. [PMID: 25772737 DOI: 10.1016/j.bcp.2015.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/27/2015] [Indexed: 01/23/2023]
Abstract
The progression of aggressive cancer occurs via angiogenesis and metastasis makes these processes important targets for the development of anti-cancer agents. However, recent studies have raised the concern that selective inhibition of angiogenesis results in a switch towards increased tumour growth and metastasis. Since Annexin A2 (AnxA2) is involved in both angiogenesis and metastasis, it may serve as an ideal target for the simultaneous inhibition of both processes. Based on the discovery that domains I (D(I)) and IV (D(IV)) of AnxA2 are potent inhibitors of angiogenesis, we designed seven peptides derived from these domains based on AnxA2 crystal structures. The peptides were expressed as fusion peptides to increase their folding and solubility. Light scattering, far-UV circular dichroism and thermal transition analyses were employed to investigate their aggregation tendencies, α-helical propensity and stability, respectively. 2,2,2-trifluoroethanol (50%) increased the α-helical propensities of all peptides, indicating that they may favour a hydrophobic environment, but did not enhance their thermal stability. D(I)-P2 appears to be the most stable and folded peptide in a hydrophilic environment. The secondary structure of D(I)-P2 was confirmed by nuclear magnetic resonance spectra. The effect of the seven AnxA2 peptides on the formation and integrity of capillary-like networks was studied in a co-culture system mimicking many of the angiogenesis-related processes. Notably, D(I)-P2 inhibited significantly network formation in this system, indicating that the folded D(I)-P2 peptide interferes with vascular endothelial growth factor-dependent pro-angiogenic processes. Thus, this peptide has the potential of being developed further as an anti-angiogenic drug.
Collapse
Affiliation(s)
| | | | | | | | | | - Torgils Fossen
- Centre for Pharmacy and Department of Chemistry, University of Bergen, Norway
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen.
| |
Collapse
|
31
|
Xu XH, Pan W, Kang LH, Feng H, Song YQ. Association of annexin A2 with cancer development (Review). Oncol Rep 2015; 33:2121-8. [PMID: 25760910 DOI: 10.3892/or.2015.3837] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/20/2015] [Indexed: 01/11/2023] Open
Abstract
Annexin A2 (ANXA2) is a well-known calcium-dependent phospholipid binding protein widely distributed in the nucleus, cytoplasm and extracellular surface of various eukaryotic cells. It has been recognized as a pleiotropic protein affecting a wide range of molecular and cellular processes. Dysregulation and abnormal expression of ANXA2 are linked to a large number of prevalent diseases, including autoimmune and neurodegenerative disease, antiphospholipid syndrome, inflammation, diabetes mellitus and a series of cancers. Accumulating data suggest that ANXA2 is aberrantly expressed in a wide spectrum of cancers, and exerts profound effects on tumor cell adhesion, proliferation, apoptosis, invasion and metastasis as well as tumor neovascularization via different modes of action. However, despite significant research, our knowledge of the mechanism by which ANXA2 participates in cancer development remains fragmented. The present review systematically summarizes the effects of ANXA2 on tumor progression, in an attempt to gain an improved understanding of the underlying mechanisms and to provide a potential effective target for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Heng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Wei Pan
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Li-Hua Kang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Hui Feng
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yan-Qiu Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
32
|
Matrix density alters zyxin phosphorylation, which limits peripheral process formation and extension in endothelial cells invading 3D collagen matrices. Matrix Biol 2014; 38:36-47. [PMID: 25038525 DOI: 10.1016/j.matbio.2014.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023]
Abstract
This study was designed to determine the optimal conditions required for known pro-angiogenic stimuli to elicit successful endothelial sprouting responses. We used an established, quantifiable model of endothelial cell (EC) sprout initiation where ECs were tested for invasion in low (1 mg/mL) and high density (5 mg/mL) 3D collagen matrices. Sphingosine 1-phosphate (S1P) alone, or S1P combined with stromal derived factor-1α (SDF) and phorbol ester (TPA), elicited robust sprouting responses. The ability of these factors to stimulate sprouting was more effective in higher density collagen matrices. S1P stimulation resulted in a significant increase in invasion distance, and with the exception of treatment groups containing phorbol ester, invasion distance was longer in 1mg/mL compared to 5mg/mL collagen matrices. Closer examination of cell morphology revealed that increasing matrix density and supplementing with SDF and TPA enhanced the formation of multicellular structures more closely resembling capillaries. TPA enhanced the frequency and size of lumen formation and correlated with a robust increase in phosphorylation of p42/p44 Erk kinase, while S1P and SDF did not. Also, a higher number of significantly longer extended processes formed in 5mg/mL compared to 1mg/mL collagen matrices. Because collagen matrices at higher density have been reported to be stiffer, we tested for changes in the mechanosensitive protein, zyxin. Interestingly, zyxin phosphorylation levels inversely correlated with matrix density, while levels of total zyxin did not change significantly. Immunofluorescence and localization studies revealed that total zyxin was distributed evenly throughout invading structures, while phosphorylated zyxin was slightly more intense in extended peripheral processes. Silencing zyxin expression increased extended process length and number of processes, while increasing zyxin levels decreased extended process length. Altogether these data indicate that ECs integrate signals from multiple exogenous factors, including changes in matrix density, to accomplish successful sprouting responses. We show here for the first time that zyxin limited the formation and extension of fine peripheral processes used by ECs for matrix interrogation, providing a molecular explanation for altered EC responses to high and low density collagen matrices.
Collapse
|
33
|
Lopez‐Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King‐Robson J, Kay O, Vries HE, Hirst MC, Sharrack B, Baker D, Male DK, Michael GJ, Romero IA. MicroRNA‐155 negatively affects blood–brain barrier function during neuroinflammation. FASEB J 2014; 28:2551-65. [DOI: 10.1096/fj.13-248880] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Dongsheng Wu
- Department of Life, Health, and Chemical Sciences, Biomedical Research NetworkThe Open UniversityMilton KeynesUK
| | - Gareth Pryce
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Julie E. Simpson
- Sheffield Institute for Translational NeuroscienceSheffield Teaching Hospitals National Health Service (NHS) TrustUniversity of SheffieldSheffieldUK
| | - Arie Reijerkerk
- Blood–Brain Barrier Research Group, Molecular Cell Biology and ImmunologyVU University Medical CenterAmsterdamThe Netherlands
| | - Josh King‐Robson
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Oliver Kay
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Helga E. Vries
- Blood–Brain Barrier Research Group, Molecular Cell Biology and ImmunologyVU University Medical CenterAmsterdamThe Netherlands
| | - Mark C. Hirst
- Department of Life, Health, and Chemical Sciences, Biomedical Research NetworkThe Open UniversityMilton KeynesUK
| | - Basil Sharrack
- Department of NeurologySheffield Teaching Hospitals National Health Service (NHS) TrustUniversity of SheffieldSheffieldUK
| | - David Baker
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - David Kingsley Male
- Department of Life, Health, and Chemical Sciences, Biomedical Research NetworkThe Open UniversityMilton KeynesUK
| | - Gregory J. Michael
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Ignacio Andres Romero
- Department of Life, Health, and Chemical Sciences, Biomedical Research NetworkThe Open UniversityMilton KeynesUK
| |
Collapse
|
34
|
Jolly C, Winfree S, Hansen B, Steele-Mortimer O. The Annexin A2/p11 complex is required for efficient invasion of Salmonella Typhimurium in epithelial cells. Cell Microbiol 2014; 16:64-77. [PMID: 23931152 PMCID: PMC3921270 DOI: 10.1111/cmi.12180] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022]
Abstract
The facultative intracellular pathogen, Salmonella enterica, triggers its own uptake into non-phagocytic epithelial cells. Invasion is dependent on a type 3 secretion system (T3SS), which delivers a cohort of effector proteins across the plasma membrane where they induce dynamic actin-driven ruffling of the membrane and ultimately, internalization of the bacteria into a modified phagosome. In eukaryotic cells, the calcium- and phospholipid-binding protein Annexin A2 (AnxA2) functions as a platform for actin remodelling in the vicinity of dynamic cellular membranes. AnxA2 is mostly found in a stable heterotetramer, with p11, which can interact with other proteins such as the giant phosphoprotein AHNAK. We show here that AnxA2, p11 and AHNAK are required for T3SS-mediated Salmonella invasion of cultured epithelial cells and that the T3SS effector SopB is required for recruitment of AnxA2 and AHNAK to Salmonella invasion sites. Altogether this work shows that, in addition to targeting Rho-family GTPases, Salmonella can intersect the host cell actin pathway via AnxA2.
Collapse
Affiliation(s)
- Carrie Jolly
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Seth Winfree
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Bryan Hansen
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Olivia Steele-Mortimer
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| |
Collapse
|
35
|
Dave JM, Kang H, Abbey CA, Maxwell SA, Bayless KJ. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). J Biol Chem 2013; 288:30720-30733. [PMID: 24005669 DOI: 10.1074/jbc.m113.512467] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Angiogenesis is critical for many physiological and pathological processes. To identify molecules relevant to angiogenesis, we performed a proteomic screen comparing invading versus non-invading endothelial cells in three-dimensional collagen matrices. We found up-regulated levels of receptor for activated C kinase 1 (RACK1) and the intermediate filament protein vimentin that correlated with increased endothelial cell invasion. Because both RACK1 and vimentin have been linked to focal adhesion kinase (FAK), we investigated whether this pathway regulated invasion. RACK1 depletion reduced invasion responses, and this was associated with attenuated activation of FAK. Knockdown of vimentin significantly decreased levels of phosphorylated and total FAK. Treatment with a pharmacological inhibitor of FAK dose-dependently reduced invasion, indicating a crucial role for FAK activity during invasion. Because RACK1 and vimentin were both up-regulated with sphingosine 1-phosphate treatment, required for invasion, and regulated FAK, we tested whether they complexed together. RACK1 complexed with vimentin, and growth factors enhanced this interaction. In addition, RACK1, vimentin, and FAK formed an intermolecular complex in invading endothelial cultures in three dimensions in response to stimulation by sphingosine 1-phosphate and growth factors. Moreover, depletion of RACK1 decreased the association of vimentin and FAK, suggesting that RACK1 was required for stabilizing vimentin-FAK interactions during sprouting. Silencing of vimentin and RACK1 decreased cell adhesion and focal contact formation. Taken together, these results demonstrate that proangiogenic signals converge to enhance expression and association of RACK1 and vimentin, which regulated FAK, resulting in successful endothelial sprout formation in three-dimensional collagen matrices.
Collapse
Affiliation(s)
- Jui M Dave
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Hojin Kang
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Colette A Abbey
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Steve A Maxwell
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Kayla J Bayless
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843.
| |
Collapse
|
36
|
Hankins JL, Ward KE, Linton SS, Barth BM, Stahelin RV, Fox TE, Kester M. Ceramide 1-phosphate mediates endothelial cell invasion via the annexin a2-p11 heterotetrameric protein complex. J Biol Chem 2013; 288:19726-38. [PMID: 23696646 DOI: 10.1074/jbc.m113.481622] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The bioactive sphingolipid, ceramide 1-phosphate (C-1-P), has been implicated as an extracellular chemotactic agent directing cellular migration in hematopoietic stem/progenitor cells and macrophages. However, interacting proteins that could mediate these actions of C-1-P have, thus far, eluded identification. We have now identified and characterized interactions between ceramide 1-phosphate and the annexin a2-p11 heterotetramer constituents. This C-1-P-receptor complex is capable of facilitating cellular invasion. Herein, we demonstrate in both coronary artery macrovascular endothelial cells and retinal microvascular endothelial cells that C-1-P induces invasion through an extracellular matrix barrier. By employing surface plasmon resonance, lipid-binding ELISA, and mass spectrometry technologies, we have demonstrated that the heterotetramer constituents bind to C-1-P. Although the annexin a2-p11 heterotetramer constituents do not bind the lipid C-1-P exclusively, other structurally similar lipids, such as phosphatidylserine, sphingosine 1-phosphate, and phosphatidic acid, could not elicit the potent chemotactic stimulation observed with C-1-P. Further, we show that siRNA-mediated knockdown of either annexin a2 or p11 protein significantly inhibits C-1-P-directed invasion, indicating that the heterotetrameric complex is required for C-1-P-mediated chemotaxis. These results imply that extracellular C-1-P, acting through the extracellular annexin a2-p11 heterotetrameric protein, can mediate vascular endothelial cell invasion.
Collapse
Affiliation(s)
- Jody L Hankins
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Domains I and IV of annexin A2 affect the formation and integrity of in vitro capillary-like networks. PLoS One 2013; 8:e60281. [PMID: 23555942 PMCID: PMC3612057 DOI: 10.1371/journal.pone.0060281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/24/2013] [Indexed: 12/19/2022] Open
Abstract
Annexin A2 (AnxA2) is a widely expressed multifunctional protein found in different cellular compartments. In spite of lacking a hydrophobic signal peptide, AnxA2 is found at the cell surface of endothelial cells, indicative of a role in angiogenesis. Increased extracellular levels of AnxA2 in tumours correlate with neoangiogenesis, metastasis and poor prognosis. We hypothesised that extracellular AnxA2 may contribute to angiogenesis by affecting endothelial cell-cell interactions and motility. To address this question, we studied the effect of heterotetrameric and monomeric forms of AnxA2, as well as its two soluble domains on the formation and maintenance of capillary-like structures by using an in vitro co-culture system consisting of endothelial and smooth muscle cells. In particular, addition of purified domains I and IV of AnxA2 potently inhibited the vascular endothelial growth factor (VEGF)-dependent formation of the capillary-like networks in a dose-dependent manner. In addition, these AnxA2 domains disrupted endothelial cell-cell contacts in preformed capillary-like networks, resulting in the internalisation of vascular endothelial (VE)-cadherin and the formation of VE-cadherin-containing filopodia-like structures between the endothelial cells, suggesting increased cell motility. Addition of monoclonal AnxA2 antibodies, in particular against Tyr23 phosphorylated AnxA2, also strongly inhibited network formation in the co-culture system. These results suggest that extracellular AnxA2, most likely in its Tyr phosphorylated form, plays a pivotal role in angiogenesis. The exogenously added AnxA2 domains most likely mediate their effects by competing with endogenous AnxA2 for extracellular factors necessary for the initiation and maintenance of angiogenesis, such as those involved in the formation/integrity of cell-cell contacts.
Collapse
|
38
|
Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14:6259-305. [PMID: 23519104 PMCID: PMC3634455 DOI: 10.3390/ijms14036259] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.
Collapse
|
39
|
Zhang W, Wang LJ, Xiao F, Wei Y, Ke W, Xin HB. Intermedin: a novel regulator for vascular remodeling and tumor vessel normalization by regulating vascular endothelial-cadherin and extracellular signal-regulated kinase. Arterioscler Thromb Vasc Biol 2012; 32:2721-32. [PMID: 22922959 DOI: 10.1161/atvbaha.112.300185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Intermedin (IMD), a member of calcitonin family, was suggested to play a role in angiogenesis and cancer. The aim of this study was to investigate the role of IMD in the angiogenic process and the underlying mechanism, and the possibility for it to be used as a target for angiogenesis-based anticancer therapies. METHODS AND RESULTS Using in vivo and in vitro 3-dimensional angiogenic models, we found that IMD induced a well-ordered vasculature with hierarchical structure and had a synergistic effect with vascular endothelial growth factor. Using RNA interference, real-time polymerase chain reaction, and Western blot analysis, we found that IMD alleviated the undesirable effects of vascular endothelial growth factor by restricting the excessive vessel sprouting and uneven lumen formation through the regulation of vascular endothelial-cadherin and identified its receptor on the endothelial cells. Both mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphoinositide 3-kinase/Akt activation were involved in the effects. Furthermore, using experimental tumor models, we demonstrated that IMD was involved in tumor angiogenesis, and the blockade of IMD severely impaired blood supply and eventually inhibited tumor growth. CONCLUSIONS We demonstrated that IMD played a critical role in the vascular remodeling process and tumor angiogenesis and may serve as a novel target for the development of angiogenesis-based anticancer therapies.
Collapse
Affiliation(s)
- Wei Zhang
- Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
40
|
Di Marco GS, König M, Stock C, Wiesinger A, Hillebrand U, Reiermann S, Reuter S, Amler S, Köhler G, Buck F, Fobker M, Kümpers P, Oberleithner H, Hausberg M, Lang D, Pavenstädt H, Brand M. High phosphate directly affects endothelial function by downregulating annexin II. Kidney Int 2012; 83:213-22. [PMID: 22913982 DOI: 10.1038/ki.2012.300] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hyperphosphatemia is associated with increased cardiovascular risk in patients with renal disease and in healthy individuals. Here we tested whether high phosphate has a role in the pathophysiology of cardiovascular events by interfering with endothelial function, thereby impairing microvascular function and angiogenesis. Protein expression analysis found downregulation of annexin II in human coronary artery endothelial cells, an effect associated with exacerbated shedding of annexin II-positive microparticles by the cells exposed to high phosphate media. EAhy926 endothelial cells exposed to sera from hyperphosphatemic patients also display decreased annexin II, suggesting a negative correlation between serum phosphate and annexin II expression. By using endothelial cell-based assays in vitro and the chicken chorioallantoic membrane assay in vivo, we found that angiogenesis, vessel wall morphology, endothelial cell migration, capillary tube formation, and endothelial survival were impaired in a hyperphosphatemic milieu. Blockade of membrane-bound extracellular annexin II with a specific antibody mimicked the effects of high phosphate. In addition, high phosphate stiffened endothelial cells in vitro and in rats in vivo. Thus, our results link phosphate and adverse clinical outcomes involving the endothelium in both healthy individuals and patients with renal disease.
Collapse
|
41
|
Grieve AG, Moss SE, Hayes MJ. Annexin A2 at the interface of actin and membrane dynamics: a focus on its roles in endocytosis and cell polarization. Int J Cell Biol 2012; 2012:852430. [PMID: 22505935 PMCID: PMC3296266 DOI: 10.1155/2012/852430] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/16/2011] [Accepted: 12/13/2011] [Indexed: 12/15/2022] Open
Abstract
Annexins are a family of calcium- and phospholipid-binding proteins found in nearly all eukaryotes. They are structurally highly conserved and have been implicated in a wide range of cellular activities. In this paper, we focus on Annexin A2 (AnxA2). Altered expression of this protein has been identified in a wide variety of cancers, has also been found on the HIV particle, and has been implicated in the maturation of the virus. Recently, it has also been shown to have an important role in the establishment of normal apical polarity in epithelial cells. We synthesize here the known biochemical properties of this protein and the extensive literature concerning its involvement in the endocytic pathway. We stress the importance of AnxA2 as a platform for actin remodeling in the vicinity of dynamic cellular membranes, in the hope that this may shed light on the normal functions of the protein and its contribution to disease.
Collapse
Affiliation(s)
- Adam G. Grieve
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Stephen E. Moss
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| | - Matthew J. Hayes
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| |
Collapse
|
42
|
Su SC, Bayless KJ. Utilizing sphingosine-1-phosphate to stimulate sprouting angiogenesis. Methods Mol Biol 2012; 874:201-13. [PMID: 22528450 DOI: 10.1007/978-1-61779-800-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In vitro models are useful for dissecting cell behavior under controlled conditions. Angiogenesis is a multistep process where endothelial cells (ECs) are activated by pro-angiogenic factors to degrade the basement membrane, migrate into the surrounding matrix, and form sprouting structures connecting neighboring vessels. Sphingosine-1-phosphate (S1P), a biologically active sphingolipid, promotes vessel morphogenesis and angiogenesis during embryonic development and in adults under normal and pathological conditions via its actions on ECs. Here, we describe an in vitro endothelial morphogenic assay that is significantly enhanced by S1P. This method allows for testing whether molecules and their related signaling pathways regulate the initiation of angiogenic sprouts stimulated by S1P, as well as whether individual compounds have pro- or anti-angiogenic properties.
Collapse
Affiliation(s)
- Shih-Chi Su
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | | |
Collapse
|
43
|
Bayless KJ, Johnson GA. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. J Vasc Res 2011; 48:369-85. [PMID: 21464572 DOI: 10.1159/000324751] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing structures, and is a key step in tissue and organ development, wound healing and pathological events. Changes in cell shape orchestrated by the cytoskeleton are integral to accomplishing the various steps of angiogenesis, and an intact cytoskeleton is also critical for maintaining newly formed structures. This review focuses on how the 3 main cytoskeletal elements--microfilaments, microtubules, and intermediate filaments--regulate the formation and maintenance of angiogenic sprouts. Multiple classes of compounds target microtubules and microfilaments, revealing much about the role of actin and tubulin and their associated molecules in angiogenic sprout formation and maintenance. In contrast, intermediate filaments are much less studied, yet intriguing evidence suggests a vital, but unresolved, role in angiogenic sprouting. This review discusses evidence for regulatory molecules and pharmacological compounds that affect actin, microtubule and intermediate filament dynamics to alter various steps of angiogenesis, including endothelial sprout formation and maintenance.
Collapse
Affiliation(s)
- Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | |
Collapse
|
44
|
Davis GE, Stratman AN, Sacharidou A, Koh W. Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:101-65. [PMID: 21482411 DOI: 10.1016/b978-0-12-386041-5.00003-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many studies reveal a fundamental role for extracellular matrix-mediated signaling through integrins and Rho GTPases as well as matrix metalloproteinases (MMPs) in the molecular control of vascular tube morphogenesis in three-dimensional (3D) tissue environments. Recent work has defined an endothelial cell (EC) lumen signaling complex of proteins that controls these vascular morphogenic events. These findings reveal a signaling interdependence between Cdc42 and MT1-MMP to control the 3D matrix-specific process of EC tubulogenesis. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels in 3D matrices that are utilized to remodel EC-lined tubes through EC motility and could facilitate processes such as flow-induced remodeling and arteriovenous EC sorting and differentiation. Within vascular guidance tunnels, key dynamic interactions occur between ECs and pericytes to affect vessel remodeling, diameter, and vascular basement membrane matrix assembly, a fundamental process necessary for endothelial tube maturation and stabilization. Thus, the EC lumen and tube formation mechanism coordinates the concomitant establishment of a network of vascular tubes within tunnel spaces to allow for flow responsiveness, EC-mural cell interactions, and vascular extracellular matrix assembly to control the development of the functional microcirculation.
Collapse
Affiliation(s)
- George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | | | | | | |
Collapse
|