1
|
Lu K, Liang XF, Liu T, Cai W, Zhuang W, Zhang Y, Bibi A. DNA methylation of pck1 might contribute to the programming effects of early high-carbohydrate diets feeding to the glucose metabolism across two generations in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1619-1633. [PMID: 36481836 DOI: 10.1007/s10695-022-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The purpose of this study is to assess the effects of early high-carbohydrate stimulus on glucose metabolism in zebrafish (Danio rerio) over two generations and explore the mechanisms that explain those nutritional programming effects via epigenetic modifications. The larvae were delivered a high-carbohydrate diet (53.66%) that was used as an early nutritional stimulus from the first feeding to the end of the yolk sac (FF) and 5 days after yolk-sac exhaustion (YE). The larvae (F0) and their offspring (F1) were then both fed the control diet (22.69%) until adulthood (15 weeks), and they were challenged with a high-carbohydrate diet (35.36%) at the 16th week. The results indicated that early stimulus immediately raised the mRNA levels of genes involved in glycolysis and gluconeogenesis. At the end of F0 challenge, both treatment groups decreased the plasma glucose levels, increased the expression levels of glucokinase (gck), and inhibited the mRNA during gluconeogenesis. When challenged in F1, the glucose levels were lower in FF (F1), and the mRNA levels of phosphoenolpyruvate carboxykinase 1 (pck1) were decreased in FF (F1) and YE (F1). Besides, in both experimental groups (F0 and F1), the CpG island of pck1 maintained lower levels of hypermethylated expression from F0 adult, 24 h post-fertilization embryo, to F1 adult. In conclusion, these results indicated that an early high-carbohydrate stimulus could significantly reprogram glucose metabolism in adult zebrafish, that those modifications could be partially transmitted to the next generation, and that the DNA methylation of pck1 might work as a stable epigenetic marker to contribute to those processes.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Tong Liu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wenjing Cai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wuyuan Zhuang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Yanpeng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Asima Bibi
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
2
|
Tseng HC, Hsiao CT, Yamakawa N, Guérardel Y, Khoo KH. Discovery Sulfoglycomics and Identification of the Characteristic Fragment Ions for High-Sensitivity Precise Mapping of Adult Zebrafish Brain-Specific Glycotopes. Front Mol Biosci 2022; 8:771447. [PMID: 34988116 PMCID: PMC8721812 DOI: 10.3389/fmolb.2021.771447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Mass spectrometry-based high-sensitivity mapping of terminal glycotopes relies on diagnostic MS2 and/or MS3 ions that can differentiate linkage and define the location of substituents including sulfates. Unambiguous identification of adult zebrafish glycotopes is particularly challenging due to the presence of extra β4-galactosylation on the basic building block of Galβ1-4GlcNAc that can be fucosylated and variably sialylated by N-acetyl, N-glycolyl, or deaminated neuraminic acids. Building on previous groundwork that have identified various organ-specific N- and O-glycans of adult zebrafish, we show here that all the major glycotopes of interest can be readily mapped by direct nano-LC-MS/MS analysis of permethylated glycans. Homing in on the brain-, intestine-, and ovary-derived samples, organ-specific glycomic reference maps based on overlaid extracted ion chromatograms of resolved glycan species, and composite charts of summed intensities of diagnostic MS2 ions representing the distribution and relative abundance of each of the glycotopes and sialic acid variants were established. Moreover, switching to negative mode analysis of sample fractions enriched in negatively charged glycans, we show, for the first time, that a full range of sulfated glycotopes is expressed in adult zebrafish. In particular, 3-O-sulfation of terminal Gal was commonly found, whereas terminal sulfated HexNAc as in GalNAcβ1-4GlcNAc (LacdiNAc), and 3-O-sulfated hexuronic acid as in HNK-1 epitope (SO3-3GlcAβ1-3Galβ1-4GlcNAc) were identified only in the brain and not in the intestine or ovaries analyzed in parallel. Other characteristic structural features of sulfated O- and N-glycans along with their diagnostic ions detected in this discovery mode sulfoglycomic work collectively expand our adult zebrafish glycome atlas, which can now allow for a more complete navigation and probing of the underlying sulfotransferases and glycosyltransferases, in search of the functional relevance of zebrafish-specific glycotopes. Of particular importance is the knowledge of glycomic features distinct from those of humans when using adult zebrafish as an alternative vertebrate model, rather than mouse, for brain-related glyco-neurobiology studies.
Collapse
Affiliation(s)
- Huan-Chuan Tseng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Cheng-Te Hsiao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Nao Yamakawa
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, Lille, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576-UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.,Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
4
|
Establishment and characterization of Neu1-knockout zebrafish and its abnormal clinical phenotypes. Biochem J 2020; 477:2841-2857. [PMID: 32686823 DOI: 10.1042/bcj20200348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 11/17/2022]
Abstract
Mammalian sialidase Neu1 is involved in various physiological functions, including cell adhesion, differentiation, cancer metastasis, and diabetes through lysosomal catabolism and desialylation of glycoproteins at the plasma membrane. Various animal models have been established to further explore the functions of vertebrate Neu1. The present study focused on zebrafish (Danio rerio) belonging to Cypriniformes as an experimental animal model with neu1 gene deficiency. The results revealed that the zebrafish Neu1 desialyzed both α2-3 and α2-6 sialic acid linkages from oligosaccharides and glycoproteins at pH 4.5, and it is highly conserved with other fish species and mammalian Neu1. Furthermore, Neu1-knockout zebrafish (Neu1-KO) was established through CRISPR/Cas9 genome editing. Neu1-KO fish exhibited slight abnormal embryogenesis with the accumulation of pleural effusion; however, no embryonic lethality was observed. Although Neu1-KO fish were able to be maintained as homozygous, they showed smaller body length and weight than the wild-type (WT) fish, and muscle atrophy and curvature of the vertebra were observed in adult Neu1-KO fish (8 months). The expression patterns of myod and myog transcription factors regulating muscle differentiation varied between Neu1-KO and WT fish embryo. Expression of lysosomal-related genes, including ctsa, lamp1a, and tfeb were up-regulated in adult Neu1-KO muscle as compared with WT. Furthermore, the expression pattern of genes involved in bone remodeling (runx2a, runx2b, and mmp9) was decreased in Neu1-KO fish. These phenotypes were quite similar to those of Neu1-KO mice and human sialidosis patients, indicating the effectiveness of the established Neu1-KO zebrafish for the study of vertebrate Neu1 sialidase.
Collapse
|
5
|
Honda A, Chigwechokha PK, Takase R, Hayasaka O, Fujimura K, Kotani T, Komatsu M, Shiozaki K. Novel Nile tilapia Neu1 sialidases: Molecular cloning and biochemical characterization of the sialidases Neu1a and Neu1b. Gene 2020; 742:144538. [DOI: 10.1016/j.gene.2020.144538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/06/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
|
6
|
Lelieveld LT, Mirzaian M, Kuo CL, Artola M, Ferraz MJ, Peter REA, Akiyama H, Greimel P, van den Berg RJBHN, Overkleeft HS, Boot RG, Meijer AH, Aerts JMFG. Role of β-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. J Lipid Res 2019; 60:1851-1867. [PMID: 31562193 DOI: 10.1194/jlr.ra119000154] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/24/2019] [Indexed: 11/20/2022] Open
Abstract
β-glucosidases [GBA1 (glucocerebrosidase) and GBA2] are ubiquitous essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease, a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly converted to glucosylsphingosine (GlcSph). GBA1 and GBA2 also may transfer glucose from GlcCer to cholesterol, yielding glucosylated cholesterol (GlcChol). Here, we aimed to clarify the role of zebrafish Gba2 in glycosphingolipid metabolism during Gba1 deficiency in zebrafish (Danio rerio), which are able to survive total Gba1 deficiency. We developed Gba1 (gba1 -/-), Gba2 (gba2 -/-), and double (gba1 -/- :gba2 -/-) zebrafish knockouts using CRISPR/Cas9 and explored the effects of both genetic and pharmacological interventions on GlcCer metabolism in individual larvae. Activity-based probes and quantification of relevant glycolipid metabolites confirmed enzyme deficiency. GlcSph increased in gba1 -/- larvae (0.09 pmol/fish) but did not increase more in gba1 -/- :gba2 -/- larvae. GlcCer was comparable in gba1 -/- and WT larvae but increased in gba2 -/- and gba1 -/- :gba2 -/- larvae. Independent of Gba1 status, GlcChol was low in all gba2 -/- larvae (0.05 vs. 0.18 pmol/fish in WT). Pharmacologic inactivation of zebrafish Gba1 comparably increased GlcSph. Inhibition of GlcCer synthase (GCS) in Gba1-deficient larvae reduced GlcCer and GlcSph, and concomitant inhibition of GCS and Gba2 with iminosugars also reduced excessive GlcChol. Finally, overexpression of human GBA1 and injection of recombinant GBA1 both decreased GlcSph. We determined that zebrafish larvae offer an attractive model to study glucosidase actions in glycosphingolipid metabolism in vivo, and we identified distinguishing characteristics of zebrafish Gba2 deficiency.
Collapse
Affiliation(s)
- Lindsey T Lelieveld
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Chi-Lin Kuo
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marta Artola
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands.,Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Maria J Ferraz
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Remco E A Peter
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | | | | | | | - Herman S Overkleeft
- Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Rolf G Boot
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | | | - Johannes M F G Aerts
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| |
Collapse
|
7
|
Shiozaki K, Oishi K, Honda A. Functional Characterization of Fish Sialidases and Their Diversity among Different Orders. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1518.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kazuhiro Shiozaki
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Kazuki Oishi
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Akinobu Honda
- The United Graduate School of Agricultural Sciences, Kagoshima University
| |
Collapse
|
8
|
Role of Forkhead Box O (FOXO) transcription factor in aging and diseases. Gene 2018; 648:97-105. [PMID: 29428128 DOI: 10.1016/j.gene.2018.01.051] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022]
Abstract
Fork head box O (FOXO) transcription factor is a key player in an evolutionarily conserved pathway. The mammalian FOXO family consists of FOXO1, 3, 4 and 6, are highly similar in their structure, function and regulation. To maintain optimum body function, the organisms have developed complex mechanisms for homeostasis. Importantly, it is well known that when these mechanisms dysregulate it results in the development of age-related disease. FOXO proteins are involved in a diverse cellular function and also have clinical significance including cell cycle arrest, cell differentiation, tumour suppression, DNA repair, longevity, diabetic complications, immunity, wound healing, regulation of metabolism and thus treatment of several types of diseases. By the combinations of post-translational modifications FOXO's serve as a 'molecular code' to sense external stimuli and recruit it as to specific regions of the genome and provide an integrated cellular response to changing physiological conditions. Akt/Protein kinase B a signaling pathway as a main regulator of FOXO to perform a diverse function in organisms. The present review summarizes the molecular and clinical aspects of FOXO transcription factor. And also elaborate the interaction of FOXO with the nucleosome remodelling complex to target genes, which is essential to cellular homeostasis.
Collapse
|
9
|
Hanzawa K, Suzuki N, Natsuka S. Structures and developmental alterations of N-glycans of zebrafish embryos. Glycobiology 2017; 27:228-245. [PMID: 27932382 DOI: 10.1093/glycob/cww124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022] Open
Abstract
Zebrafish is a model organism suitable for studying vertebrate development. We analyzed the N-glycan structures of zebrafish embryos and their alterations during zebrafish embryogenesis to obtain basic data for studying the roles of N-glycosylation. Multiple modes of high-performance liquid chromatography and multistage mass spectrometry were used for structural analysis of N-glycans. The N-glycans from deyolked embryos at 36 hours postfertilization, a mid-pharyngula stage, contained relatively higher amounts of complex- and hybrid-type glycans with LacNAc (Galβ1-4GlcNAc) and/or sialyl LacNAc without additional β1,4-Gal, which are commonly found in mammalian tissues, as well as abundant oligomannose-type glycans. Some of the complex- and hybrid-type glycans possessed various extended LacNAc structures, such as Galβ1-4LacNAc, LacNAc-repeat or unique (+/- dHex)-GalNAcα1-GlcNAcβ1-LacNAc. In contrast, the yolk of the embryo contains predominant oligomannose-type glycans and complex-type glycans with Galβ1-4(Siaα2-3)Galβ1-4(Fucα1-3)GlcNAc antennae. N-Glycan profiles obtained from deyolked embryos at different stages showed stage-dependent variation of complex- and hybrid-type glycans. At gastrula and early segmentation stages, complex- and hybrid-type glycans were minor components, and their antenna structures were mainly sialyl LacdiNAc (Siaα2-6GalNAcβ1-4GlcNAc). From the mid-segmentation to pharyngula stages, those with LacNAc and/or α2,6-sialyl LacNAc antenna structures increased remarkably, and those with α2,3-sialyl LacNAc antenna, core α1,6-Fuc and bisecting GlcNAc modifications increased gradually. These results suggest the presence of mechanisms for regulating the antenna structures of complex/hybrid N-glycan biosynthesis in the phylotypic stage of vertebrate development.
Collapse
Affiliation(s)
- Ken Hanzawa
- Department of Food and Life Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Noriko Suzuki
- Department of Food and Life Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan.,Department of Biology, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Shunji Natsuka
- Department of Food and Life Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan.,Department of Biology, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
10
|
Ryuzono S, Takase R, Kamada Y, Ikenaga T, Chigwechokha PK, Komatsu M, Shiozaki K. Suppression of Neu1 sialidase delays the absorption of yolk sac in medaka (Oryzias latipes) accompanied with the accumulation of α2-3 sialo-glycoproteins. Biochimie 2017; 135:63-71. [DOI: 10.1016/j.biochi.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/16/2017] [Indexed: 02/01/2023]
|
11
|
Sasaki T, Lian S, Khan A, Llop JR, Samuelson AV, Chen W, Klionsky DJ, Kishi S. Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase. Autophagy 2016; 13:386-403. [PMID: 27875093 DOI: 10.1080/15548627.2016.1256934] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Spns1 (Spinster homolog 1 [Drosophila]) in vertebrates, as well as Spin (Spinster) in Drosophila, is a hypothetical lysosomal H+-carbohydrate transporter, which functions at a late stage of macroautophagy (hereafter autophagy). The Spin/Spns1 defect induces aberrant autolysosome formation that leads to developmental senescence in the embryonic stage and premature aging symptoms in adulthood. However, the molecular mechanism by which loss of Spin/Spns1 leads to the specific pathogenesis remains to be elucidated. Using chemical, genetic and CRISPR/Cas9-mediated genome-editing approaches in zebrafish, we investigated and determined a mechanism that suppresses embryonic senescence as well as autolysosomal impairment mediated by Spns1 deficiency. Unexpectedly, we found that a concurrent disruption of the vacuolar-type H+-ATPase (v-ATPase) subunit gene, atp6v0ca (ATPase, H+ transporting, lysosomal, V0 subunit ca) led to suppression of the senescence induced by the Spns1 defect, whereas the sole loss of Atp6v0ca led to senescent embryos similar to the single spns1 mutation. Moreover, we discovered that the combined stable defect seen in the presence of both the spns1 and atp6v0ca mutant genes still subsequently induced premature autophagosome-lysosome fusion marked by insufficient acidity, while extending developmental life span, compared with the solely mutated spns1 defect. Our data suggest that Spns1 and the v-ATPase orchestrate proper autolysosomal biogenesis with optimal acidification that is critically linked to developmental senescence and survival.
Collapse
Affiliation(s)
- Tomoyuki Sasaki
- a Department of Metabolism & Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Shanshan Lian
- a Department of Metabolism & Aging , The Scripps Research Institute , Jupiter , FL , USA
| | - Alam Khan
- a Department of Metabolism & Aging , The Scripps Research Institute , Jupiter , FL , USA.,b Department of Pharmacy , University of Rajshahi , Rajshahi , Bangladesh
| | - Jesse R Llop
- c Department of Biomedical Genetics , University of Rochester Medical Center , Rochester , NY , USA
| | - Andrew V Samuelson
- c Department of Biomedical Genetics , University of Rochester Medical Center , Rochester , NY , USA
| | - Wenbiao Chen
- d Department of Molecular Physiology and Biophysics , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Daniel J Klionsky
- e Life Sciences Institute, Department of Molecular, Cellular, and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Shuji Kishi
- a Department of Metabolism & Aging , The Scripps Research Institute , Jupiter , FL , USA
| |
Collapse
|
12
|
Flanagan-Steet H, Matheny C, Petrey A, Parker J, Steet R. Enzyme-specific differences in mannose phosphorylation between GlcNAc-1-phosphotransferase αβ and γ subunit deficient zebrafish support cathepsin proteases as early mediators of mucolipidosis pathology. Biochim Biophys Acta Gen Subj 2016; 1860:1845-53. [PMID: 27241848 DOI: 10.1016/j.bbagen.2016.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022]
Abstract
Targeting soluble acid hydrolases to lysosomes requires the addition of mannose 6-phosphate residues on their N-glycans. This process is initiated by GlcNAc-1-phosphotransferase, a multi-subunit enzyme encoded by the GNPTAB and GNPTG genes. The GNPTAB gene products (the α and ß subunits) are responsible for recognition and catalysis of hydrolases whereas the GNPTG gene product (the γ subunit) enhances mannose phosphorylation of a subset of hydrolases. Here we identify and characterize a zebrafish gnptg insertional mutant and show that loss of the gamma subunit reduces mannose phosphorylation on a subset glycosidases but does not affect modification of several cathepsin proteases. We further show that glycosidases, but not cathepsins, are hypersecreted from gnptg(-/-) embryonic cells, as evidenced by reduced intracellular activity and increased circulating serum activity. The gnptg(-/-) embryos lack the gross morphological or craniofacial phenotypes shown in gnptab-deficient morphant embryos to result from altered cathepsin activity. Despite the lack of overt phenotypes, decreased fertilization and embryo survival were noted in mutants, suggesting that gnptg associated deposition of mannose 6-phosphate modified hydrolases into oocytes is important for early embryonic development. Collectively, these findings demonstrate that loss of the zebrafish GlcNAc-1-phosphotransferase γ subunit causes enzyme-specific effects on mannose phosphorylation. The finding that cathepsins are normally modified in gnptg(-/-) embryos is consistent with data from gnptab-deficient zebrafish suggesting these proteases are the key mediators of acute pathogenesis. This work also establishes a valuable new model that can be used to probe the functional relevance of GNPTG mutations in the context of a whole animal.
Collapse
Affiliation(s)
- Heather Flanagan-Steet
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Courtney Matheny
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Aaron Petrey
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Joshua Parker
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Richard Steet
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
13
|
Flanagan-Steet H, Aarnio M, Kwan B, Guihard P, Petrey A, Haskins M, Blanchard F, Steet R. Cathepsin-Mediated Alterations in TGFß-Related Signaling Underlie Disrupted Cartilage and Bone Maturation Associated With Impaired Lysosomal Targeting. J Bone Miner Res 2016; 31:535-48. [PMID: 26404503 PMCID: PMC4808492 DOI: 10.1002/jbmr.2722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/11/2022]
Abstract
Hypersecretion of acid hydrolases is a hallmark feature of mucolipidosis II (MLII), a lysosomal storage disease caused by loss of carbohydrate-dependent lysosomal targeting. Inappropriate extracellular action of these hydrolases is proposed to contribute to skeletal pathogenesis, but the mechanisms that connect hydrolase activity to the onset of disease phenotypes remain poorly understood. Here we link extracellular cathepsin K activity to abnormal bone and cartilage development in MLII animals by demonstrating that it disrupts the balance of TGFß-related signaling during chondrogenesis. TGFß-like Smad2,3 signals are elevated and BMP-like Smad1,5,8 signals reduced in both feline and zebrafish MLII chondrocytes and osteoblasts, maintaining these cells in an immature state. Reducing either cathepsin K activity or expression of the transcriptional regulator Sox9a in MLII zebrafish significantly improved phenotypes. We further identify components of the large latent TGFß complex as novel targets of cathepsin K at neutral pH, providing a possible mechanism for enhanced Smad2,3 activation in vivo. These findings highlight the complexity of the skeletal disease associated with MLII and bring new insight to the role of secreted cathepsin proteases in cartilage development and growth factor regulation.
Collapse
Affiliation(s)
| | - Megan Aarnio
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Brian Kwan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | - Aaron Petrey
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Mark Haskins
- Departments of Pathology and Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | | | - Richard Steet
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
14
|
Ryuzono S, Takase R, Oishi K, Ikeda A, Chigwechokha PK, Funahashi A, Komatsu M, Miyagi T, Shiozaki K. Lysosomal localization of Japanese medaka ( Oryzias latipes ) Neu1 sialidase and its highly conserved enzymatic profiles with human. Gene 2016; 575:513-523. [DOI: 10.1016/j.gene.2015.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/07/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022]
|
15
|
FOXL2 down-regulates vitellogenin expression at mature stage in Eriocheir sinensis. Biosci Rep 2015; 35:BSR20150151. [PMID: 26430246 PMCID: PMC4708011 DOI: 10.1042/bsr20150151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/16/2015] [Indexed: 11/17/2022] Open
Abstract
The present study highlights that forkhead transcription factor (FOXL)2 down-regulates vitellogenin (VTG) synthesis not only through the regulation of follicular cell apoptosis with DEAD-box RNA helicase 20 (DDX20), but also may through the steroidogenic pathway with fushi tarazu factor (FTZ-F)1 at mature stage in Eriocheir sinensis. Ovarian development in crustaceans is characterized by rapid production of egg yolk protein in a process called vitellogenesis. In the present study, we investigated the involvement of a DEAD (Asp-Glu-Ala-Asp) box RNA helicase 20 (DDX20), forkhead transcription factor (FOXL)2 and fushi tarazu factor (FTZ-F)1 in the regulation of vitellogenesis. Based on ESTs from the testis and accessory gland of Eriocheir sinensis, we cloned the full-length cDNAs of foxl2 and fushitarazu factor 1 (ftz-f1), which include the conserved structural features of the forkhead family and nuclear receptor 5A (NR5A) family respectively. The expression of foxl2 mRNA surged at the mature stage of the ovary, when vtg mRNA swooped, suggesting that foxl2 negatively affects the vitellogenin (VTG) synthesis at this developmental stage. Etoposide (inducing germ cell apoptosis) treatment up-regulated FOXL2 and DDX20 at both the mRNA and the protein levels, primarily in the follicular cells as shown by immunofluorescence analysis. Furthermore, foxl2, ddx20 and ftz-f1 mRNA levels increased significantly with right-eyestalk ablation. Interactions between FOXL2 and DDX20 or FTZ-F1 were confirmed by co-immunoprecipitation and the forkhead domain of FOXL2 was identified as the specific structure interacting with FTZ-F1. In conclusion, FOXL2 down-regulates VTG expression by binding with DDX20 in regulation of follicular cell apoptosis and with FTZ-F1 to repress the synthesis of VTG at the mature stage. This report is the first to describe the molecular mechanism of VTG synthesis in E. sinensis and may shed new light on the regulation of cytochrome P450 enzyme by FOXL2 and FTZ-F1 in vitellogenesis.
Collapse
|
16
|
Abstract
This review of simple indolizidine and quinolizidine alkaloids (i.e., those in which the parent bicyclic systems are in general not embedded in polycyclic arrays) is an update of the previous coverage in Volume 55 of this series (2001). The present survey covers the literature from mid-1999 to the end of 2013; and in addition to aspects of the isolation, characterization, and biological activity of the alkaloids, much emphasis is placed on their total synthesis. A brief introduction to the topic is followed by an overview of relevant alkaloids from fungal and microbial sources, among them slaframine, cyclizidine, Steptomyces metabolites, and the pantocins. The important iminosugar alkaloids lentiginosine, steviamine, swainsonine, castanospermine, and related hydroxyindolizidines are dealt with in the subsequent section. The fourth and fifth sections cover metabolites from terrestrial plants. Pertinent plant alkaloids bearing alkyl, functionalized alkyl or alkenyl substituents include dendroprimine, anibamine, simple alkaloids belonging to the genera Prosopis, Elaeocarpus, Lycopodium, and Poranthera, and bicyclic alkaloids of the lupin family. Plant alkaloids bearing aryl or heteroaryl substituents include ipalbidine and analogs, secophenanthroindolizidine and secophenanthroquinolizidine alkaloids (among them septicine, julandine, and analogs), ficuseptine, lasubines, and other simple quinolizidines of the Lythraceae, the simple furyl-substituted Nuphar alkaloids, and a mixed quinolizidine-quinazoline alkaloid. The penultimate section of the review deals with the sizable group of simple indolizidine and quinolizidine alkaloids isolated from, or detected in, ants, mites, and terrestrial amphibians, and includes an overview of the "dietary hypothesis" for the origin of the amphibian metabolites. The final section surveys relevant alkaloids from marine sources, and includes clathryimines and analogs, stellettamides, the clavepictines and pictamine, and bis(quinolizidine) alkaloids.
Collapse
|
17
|
Sasaki T, Lian S, Qi J, Bayliss PE, Carr CE, Johnson JL, Guha S, Kobler P, Catz SD, Gill M, Jia K, Klionsky DJ, Kishi S. Aberrant autolysosomal regulation is linked to the induction of embryonic senescence: differential roles of Beclin 1 and p53 in vertebrate Spns1 deficiency. PLoS Genet 2014; 10:e1004409. [PMID: 24967584 PMCID: PMC4072523 DOI: 10.1371/journal.pgen.1004409] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 04/16/2014] [Indexed: 12/04/2022] Open
Abstract
Spinster (Spin) in Drosophila or Spinster homolog 1 (Spns1) in vertebrates is a putative lysosomal H+-carbohydrate transporter, which functions at a late stage of autophagy. The Spin/Spns1 defect induces aberrant autolysosome formation that leads to embryonic senescence and accelerated aging symptoms, but little is known about the mechanisms leading to the pathogenesis in vivo. Beclin 1 and p53 are two pivotal tumor suppressors that are critically involved in the autophagic process and its regulation. Using zebrafish as a genetic model, we show that Beclin 1 suppression ameliorates Spns1 loss-mediated senescence as well as autophagic impairment, whereas unexpectedly p53 deficit exacerbates both of these characteristics. We demonstrate that ‘basal p53’ activity plays a certain protective role(s) against the Spns1 defect-induced senescence via suppressing autophagy, lysosomal biogenesis, and subsequent autolysosomal formation and maturation, and that p53 loss can counteract the effect of Beclin 1 suppression to rescue the Spns1 defect. By contrast, in response to DNA damage, ‘activated p53’ showed an apparent enhancement of the Spns1-deficient phenotype, by inducing both autophagy and apoptosis. Moreover, we found that a chemical and genetic blockage of lysosomal acidification and biogenesis mediated by the vacuolar-type H+-ATPase, as well as of subsequent autophagosome-lysosome fusion, prevents the appearance of the hallmarks caused by the Spns1 deficiency, irrespective of the basal p53 state. Thus, these results provide evidence that Spns1 operates during autophagy and senescence differentially with Beclin 1 and p53. Spinster homolog 1 (Spns1) in vertebrates, as well as Spinster (Spin) in Drosophila, is a hypothetical lysosomal H+-carbohydrate transporter, which functions at a late stage of autophagy. The Spin/Spns1 defect induces aberrant autolysosome formation that leads to embryonic senescence and accelerated aging symptoms, while the molecular mechanisms of the pathogenesis are unknown in vivo. Using zebrafish, we show that Beclin 1 suppression ameliorates Spns1 loss-mediated senescence as well as autolysosomal impairment, whereas p53 deficit unexpectedly exacerbates these characteristics. We demonstrate that basal p53 activity has a certain protective role(s) against the Spns1 defect via suppressing autophagosome-lysosome fusion, while p53 activated by ultraviolet radiation amplifies the Spns1 deficit. In addition, we found that excessive lysosomal biogenesis and prolonged suboptimal acidification, modulated by v-ATPase, could be the primary reason for the appearance on the hallmarks of Spns1 deficiency. Our findings thus suggest that Spns1 is critically involved in lysosomal acidification and trafficking during autophagy, and differentially acts in a pathway with Beclin 1 and p53 in the regulation of senescence.
Collapse
Affiliation(s)
- Tomoyuki Sasaki
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Shanshan Lian
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Jie Qi
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Peter E. Bayliss
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christopher E. Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jennifer L. Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sujay Guha
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Patrick Kobler
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Sergio D. Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Matthew Gill
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Kailiang Jia
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Daniel J. Klionsky
- Life Sciences Institute, Department of Molecular, Cellular, and Developmental Biology, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shuji Kishi
- Department of Metabolism & Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
18
|
Seabra Pereira CD, Abessa DMS, Choueri RB, Almagro-Pastor V, Cesar A, Maranho LA, Martín-Díaz ML, Torres RJ, Gusso-Choueri PK, Almeida JE, Cortez FS, Mozeto AA, Silbiger HLN, Sousa ECPM, Del Valls TA, Bainy ACD. Ecological relevance of Sentinels' biomarker responses: a multi-level approach. MARINE ENVIRONMENTAL RESEARCH 2014; 96:118-126. [PMID: 24314371 DOI: 10.1016/j.marenvres.2013.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/10/2013] [Accepted: 11/14/2013] [Indexed: 06/02/2023]
Abstract
In response to the need for more sensitive and rapid indicators of environmental quality, sublethal effects on the lowest levels of biological organization have been investigated. The ecological relevance of these responses assumes a prevailing role to assure effectiveness as indicator of ecological status. This study aimed to investigate the linkages between biomarker responses of caged bivalves and descriptive parameters of macrobenthic community structure. For this purpose a multi-level environmental assessment of marine and estuarine zones was performed in São Paulo coast, Brazil. Multivariate analysis was applied to identify linkages between biological responses and ecological indices, as well as to characterizing the studied stations. Individuals of the marine mussel Perna perna caged along Santos Bay showed signs of oxidative stress, lysosomal membrane destabilization, histological alterations and reduced embryonic development. The estuarine oyster Crassostrea rhizophorae caged along Santos Port Channel showed alterations on biotransformation enzymes and antioxidant system, DNA damage and lysosomal membrane destabilization. The benthic community analysis showed reduced richness and diversity in the same areas of the Santos bay and estuary where biomarker responses were altered. Our results revealed that xenobiotics are inducing physiological stress, which may lead to changes of the benthic community structure and deterioration of the ecological status over time. Integrating biomarker responses and ecological indexes improved certainty that alterations found at community level could be related to xenobiotic as stressors, which was very useful to improve the discriminatory power of the environmental assessment.
Collapse
Affiliation(s)
- Camilo D Seabra Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Almirante Saldanha da Gama 89, 11030-490 Santos, SP, Brazil; Departamento de Ecotoxicologia, Universidade Santa Cecília, Av. Oswaldo Cruz 266, 11045-907 Santos, SP, Brazil.
| | - Denis M S Abessa
- NEPEA, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique, s/n, 11330-900 Saão Vicente, SP, Brazil
| | - Rodrigo B Choueri
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Almirante Saldanha da Gama 89, 11030-490 Santos, SP, Brazil
| | | | - Augusto Cesar
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Almirante Saldanha da Gama 89, 11030-490 Santos, SP, Brazil; Departamento de Ecotoxicologia, Universidade Santa Cecília, Av. Oswaldo Cruz 266, 11045-907 Santos, SP, Brazil
| | - Luciane A Maranho
- Universidad de Cádiz, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
| | | | - Ronaldo J Torres
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Almirante Saldanha da Gama 89, 11030-490 Santos, SP, Brazil
| | - Paloma K Gusso-Choueri
- NEPEA, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique, s/n, 11330-900 Saão Vicente, SP, Brazil; Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CP19031, 81531-990 Curitiba, PR, Brazil
| | - João E Almeida
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Almirante Saldanha da Gama 89, 11030-490 Santos, SP, Brazil
| | - Fernando S Cortez
- Departamento de Ecotoxicologia, Universidade Santa Cecília, Av. Oswaldo Cruz 266, 11045-907 Santos, SP, Brazil
| | - Antonio A Mozeto
- Laboratório de Biogeoquímica Ambiental, Departamento de Química, UFSCar, Rod. Washington Luiz, 13565-905 São Carlos, SP, Brazil
| | - Helcy L N Silbiger
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Eduinetty C P M Sousa
- Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | | | - Afonso C D Bainy
- Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
19
|
Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio. Br J Nutr 2013; 111:808-18. [PMID: 24112146 DOI: 10.1017/s0007114513003243] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to determine the potential long-term metabolic effects of early nutritional programming on carbohydrate utilisation in adult zebrafish (Danio rerio). High-carbohydrate diets were fed to fish during four ontogenetic stages: from the first-feeding stage to the end of the yolk-sac larval stage; from the first-feeding stage to 2 d after yolk-sac exhaustion; after yolk-sac exhaustion for 3 or 5 d. The carbohydrate stimuli significantly increased the body weight of the first-feeding groups in the short term. The expression of genes was differentially regulated by the early dietary intervention. The high-carbohydrate diets resulted in decreased plasma glucose levels in the adult fish. The mRNA levels and enzyme activities of glucokinase, pyruvate kinase, α-amylase and sodium-dependent glucose co-transporter 1 were up-regulated in the first-feeding groups. There was no significant change in the mRNA levels of glucose-6-phosphatase (G6Pase) in any experimental group, and the activity of G6Pase enzyme in the FF-5 (first feeding to 2 d after yolk-sac exhaustion) group was significantly different from that of the other groups. The expression of phosphoenolpyruvate carboxykinase gene in all the groups was significantly decreased. In the examined early programming range, growth performance was not affected. Taken together, data reported herein indicate that the period ranging from the polyculture to the external feeding stage is an important window for potential modification of the long-term physiological functions. In conclusion, the present study demonstrates that it is possible to permanently modify carbohydrate digestion, transport and metabolism of adult zebrafish through early nutritional programming.
Collapse
|
20
|
Flanagan-Steet HR, Steet R. "Casting" light on the role of glycosylation during embryonic development: insights from zebrafish. Glycoconj J 2012; 30:33-40. [PMID: 22638861 DOI: 10.1007/s10719-012-9390-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 12/23/2022]
Abstract
Zebrafish (Danio rerio) remains a versatile model organism for the investigation of early development and organogenesis, and has emerged as a valuable platform for drug discovery and toxicity evaluation [1-6]. Harnessing the genetic power and experimental accessibility of this system, three decades of research have identified key genes and pathways that control the development of multiple organ systems and tissues, including the heart, kidney, and craniofacial cartilage, as well as the hematopoietic, vascular, and central and peripheral nervous systems [7-31]. In addition to their application in large mutagenic screens, zebrafish has been used to model a variety of diseases such as diabetes, polycystic kidney disease, muscular dystrophy and cancer [32-36]. As this work continues to intersect with cellular pathways and processes such as lipid metabolism, glycosylation and vesicle trafficking, investigators are often faced with the challenge of determining the degree to which these pathways are functionally conserved in zebrafish. While they share a high degree of genetic homology with mouse and human, the manner in which cellular pathways are regulated in zebrafish during early development, and the differences in the organ physiology, warrant consideration before functional studies can be effectively interpreted and compared with other vertebrate systems. This point is particularly relevant for glycosylation since an understanding of the glycan diversity and the mechanisms that control glycan biosynthesis during zebrafish embryogenesis (as in many organisms) is still developing.Nonetheless, a growing number of studies in zebrafish have begun to cast light on the functional roles of specific classes of glycans during organ and tissue development. While many of the initial efforts involved characterizing identified mutants in a number of glycosylation pathways, the use of reverse genetic approaches to directly model glycosylation-related disorders is now increasingly popular. In this review, the glycomics of zebrafish and the developmental expression of their glycans will be briefly summarized along with recent chemical biology approaches to visualize certain classes of glycans within developing embryos. Work regarding the role of protein-bound glycans and glycosaminoglycans (GAG) in zebrafish development and organogenesis will also be highlighted. Lastly, future opportunities and challenges in the expanding field of zebrafish glycobiology are discussed.
Collapse
|
21
|
Baycin-Hizal D, Tian Y, Akan I, Jacobson E, Clark D, Wu A, Jampol R, Palter K, Betenbaugh M, Zhang H. GlycoFish: a database of zebrafish N-linked glycoproteins identified using SPEG method coupled with LC/MS. Anal Chem 2011; 83:5296-303. [PMID: 21591763 DOI: 10.1021/ac200726q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zebrafish (Danio rerio) is a model organism that is used to study the mechanisms and pathways of human disorders. Many dysfunctions in neurological, development, and neuromuscular systems are due to glycosylation deficiencies, but the glycoproteins involved in zebrafish embryonic development have not been established. In this study, a mass spectrometry-based glycoproteomic characterization of zebrafish embryos was performed to identify the N-linked glycoproteins and N-linked glycosylation sites. To increase the number of glycopeptides, proteins from zebrafish were digested with two different proteases--chymotrypsin and trypsin--into peptides of different length. The N-glycosylated peptides of zebrafish were then captured by the solid-phase extraction of N-linked glycopeptides (SPEG) method and the peptides were identified with an LTQ OrbiTrap Velos mass spectrometer. From 265 unique glycopeptides, including 269 consensus NXT/S glycosites, we identified 169 different N-glycosylated proteins. The identified glycoproteins were highly abundant in proteins belonging to the transporter, cell adhesion, and ion channel/ion binding categories, which are important to embryonic, organ, and central nervous system development. This proteomics data will expand our knowledge about glycoproteins in zebrafish and may be used to elucidate the role that glycosylation plays in cellular processes and disease. The glycoprotein data are available through the GlycoFish database (http://betenbaugh.jhu.edu/GlycoFish) introduced in this paper.
Collapse
Affiliation(s)
- Deniz Baycin-Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|