1
|
Biswas P, Roy R, Ghosh K, Nath D, Samadder A, Nandi S. To quest new targets of Plasmodium parasite and their potential inhibitors to combat antimalarial drug resistance. J Parasit Dis 2024; 48:671-722. [PMID: 39493470 PMCID: PMC11527868 DOI: 10.1007/s12639-024-01687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/08/2024] [Indexed: 11/05/2024] Open
Abstract
Malaria remains a global health challenge with significant mortality and morbidity annually, with resistant parasite strains complicating treatment efforts. There is an acute need for novel antimalarial drugs that can put a stop to the future public health crisis caused by the multi-drug resistance strains of the Plasmodium parasite. However, the discovery of these new components is very challenging in the context of the generation of multi-drug resistance properties of malaria. The novel drugs also need to have several properties involving enhanced therapeutic prospects, successful treatment capabilities, and novel mechanisms of action that will forestall the resistance. To successfully achieve this aim researchers are trying to focus on exploring promising malaria targets. Various approaches have been made for the development of drugs for malaria including the remodelling of existing drugs and the development of novel inhibitors which acts on new targets. Advancement in the study provides more information on the biology of parasites and the new targets which help in the development of novel drugs. The present review focuses on the study of novel targets of malaria parasites and subsequent inhibitors of those particular targets. Some of these targets include malarial protease, various transporter proteins, enzymes involved in the synthesis of DNA, and nucleic acids like dihydroorotate dehydrogenase, dihydrofolate reductase, apicoplast and dihydropteroate synthase. Other potential targets are also included in this review such as isoprenoid biosynthesis, farnesyl transferase of parasite, P. falciparum translational elongation factor 2, and phosphatidyl inositol 4 kinase. These promising targets have also been summed up along with their corresponding inhibitors for combating multi-drug resistance malaria.
Collapse
Affiliation(s)
- Pratyusa Biswas
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Rini Roy
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Kuldip Ghosh
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Debjani Nath
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Asmita Samadder
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713 India
| |
Collapse
|
2
|
Sharma M, Lolli ML, Vyas VK. A comprehensive review of synthetic strategies and SAR studies for the discovery of PfDHODH inhibitors as antimalarial agents. Part 2: Non-DSM compounds. Bioorg Chem 2024; 153:107754. [PMID: 39241585 DOI: 10.1016/j.bioorg.2024.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Malaria remains a severe global health concern, with 249 million cases reported in 2022, according to the World Health Organization (WHO) [1]. PfDHODH is an essential enzyme in malaria parasites that helps to synthesize certain building blocks for their growth and development. It has been confirmed that targeting Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme could lead to new and effective antimalarial drugs. Inhibitors of PfDHODH have shown potential for slowing down parasite growth during both the blood and liver stages. Over the last two decades, many species selective PfDHODH inhibitors have been designed, including DSM compounds and other non-DSM compounds. In the first chapter [2] of this review, we have reviewed all synthetic schemes and structure-activity relationship (SAR) studies of DSM compounds. In this second chapter, we have compiled all the other non-DSM PfDHODH inhibitors based on dihydrothiophenones, thiazoles, hydroxyazoles, and N-alkyl-thiophene-2-carboxamides. The review not only offers an insightful overview of the synthetic methods employed but also explores into alternative routes and innovative strategies involving different catalysts and chemical reagents. A critical aspect covered in the review is the SAR studies, which provide a comprehensive understanding of how structural modifications impact the efficacy of PfDHODH inhibitors and challenges related to the discovery of PfDHODH inhibitors. This information is invaluable for scientists engaged in the development of new antimalarial drugs, offering insights into the most promising scaffolds and their synthetic techniques.
Collapse
Affiliation(s)
- Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India.
| |
Collapse
|
3
|
de Sousa NF, de Araújo IMA, Rodrigues TCML, da Silva PR, de Moura JP, Scotti MT, Scotti L. Proposition of In silico Pharmacophore Models for Malaria: A Review. Comb Chem High Throughput Screen 2024; 27:2525-2543. [PMID: 37815185 DOI: 10.2174/0113862073247691230925062440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023]
Abstract
In the field of medicinal chemistry, the concept of pharmacophore refers to the specific region of a molecule that possesses essential structural and chemical characteristics for binding to a receptor and eliciting biological activity. Understanding the pharmacophore is crucial for drug research and development, as it allows the design of new drugs. Malaria, a widespread disease, is commonly treated with chloroquine and artemisinin, but the emergence of parasite resistance limits their effectiveness. This study aims to explore computer simulations to discover a specific pharmacophore for Malaria, providing new alternatives for its treatment. A literature review was conducted, encompassing articles proposing a pharmacophore for Malaria, gathered from the "Web of Science" database, with a focus on recent publications to ensure up-to-date analysis. The selected articles employed diverse methods, including ligand-based and structurebased approaches, integrating molecular structure and biological activity data to yield comprehensive analyses. Affinity evaluation between the proposed pharmacophore and the target receptor involved calculating free energy to quantify their interaction. Multiple linear regression was commonly utilized, though it is sensitive to multicollinearity issues. Another recurrent methodology was the use of the Schrödinger package, employing tools such as the Phase module and the OPLS force field for interaction analysis. Pharmacophore model proposition allows threedimensional representations guiding the synthesis and design of new biologically active compounds, offering a promising avenue for discovering therapeutic agents to combat Malaria.
Collapse
Affiliation(s)
- Natália Ferreira de Sousa
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Igor Mikael Alves de Araújo
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | | | - Pablo Rayff da Silva
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Jéssica Paiva de Moura
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Luciana Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| |
Collapse
|
4
|
Oluwafemi KA, Oyeneyin OE, Babatunde DD, Agbaffa EB, Aigbogun JA, Odeja OO, Emmanuel AV. Parasitic Protozoans: Exploring the Potential of N,N'-Bis[2-(5-bromo-7-azabenzimidazol-1-yl)-2-oxoethyl]ethylene-1,3-Diamine and Its Cyclohexyl-1,2-diamine Analogue as TryR and Pf-DHODH Inhibitors. Acta Parasitol 2023; 68:807-819. [PMID: 37821729 DOI: 10.1007/s11686-023-00719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Major human parasitic protozoans, such as Plasmodium falciparum and Trypanosoma brucei, cause malaria and trypanosomiasis also known as sleeping sickness. In anti-parasitic drug discovery research, trypanothione reductase (TryR) and P. falciparum dihydroorotate dehydrogenase (Pf-DHODH) enzymes are key drug targets in T. brucei and P. falciparum, respectively. The possibility of co-infection of single host by T. brucei and P. falciparum is because both parasites exist in sub-Saharan Africa and the problem of parasite drug resistance necessitates the discovery of new scaffolds, which are strange to the organisms causing these infectious diseases-new scaffolds may help overcome established resistance mechanisms of the organisms. METHOD In this study, N,N'-bis[2-(5-bromo-7-azabenzimidazol-1-yl)-2-oxoethyl]ethylene-1,3-diamine and its cyclohexyl-1,2-diamine analogue were explored for their inhibitory potential against TryR and Pf-DHODH by engaging density functional study, molecular dynamic simulations, drug-likeness, in silico and in vitro studies RESULTS/CONCLUSION: Results obtained indicated excellent binding potential of the ligands to the receptors and good ADMET (adsorption, desorption, metabolism, excretion, and toxicity) properties.
Collapse
Affiliation(s)
- Kola A Oluwafemi
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria.
| | - Oluwatoba E Oyeneyin
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria.
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Nigeria.
| | | | - Eric B Agbaffa
- Department of Chemistry, Federal University of Technology, Akure, Nigeria
- Department of Physical Sciences, Wesley University, Ondo, Nigeria
| | - Jane A Aigbogun
- Department of Chemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwakayode O Odeja
- Department of Chemistry, Federal University of Petroleum Recourses, Effurun, Nigeria
| | - Abiodun V Emmanuel
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
5
|
Lima Costa AH, Bezerra KS, de Lima Neto JX, Oliveira JIN, Galvão DS, Fulco UL. Deciphering Interactions between Potential Inhibitors and the Plasmodium falciparum DHODH Enzyme: A Computational Perspective. J Phys Chem B 2023; 127:9461-9475. [PMID: 37897437 DOI: 10.1021/acs.jpcb.3c05738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Malaria is a parasitic disease that, in its most severe form, can even lead to death. Insect-resistant vectors, insufficiently effective vaccines, and drugs that cannot stop parasitic infestations are making the fight against the disease increasingly difficult. It is known that the enzyme dihydroorotate dehydrogenase (DHODH) is of paramount importance for the synthesis of pyrimidine from the Plasmodium precursor, that is, for its growth and reproduction. Therefore, its blockade can lead to disruption of the parasite's life cycle in the vertebrate host. In this scenario, PfDHODH inhibitors have been considered candidates for a new therapy to stop the parasitic energy source. Given what is known, in this work, we applied molecular fractionation with conjugated caps (MFCC) in the framework of the quantum formalism of density functional theory (DFT) to evaluate the energies of the interactions between the enzyme and the different triazolopyrimidines (DSM483, DMS557, and DSM1), including a complex carrying the mutation C276F. From these results, it was possible to identify the main features of each system, focusing on the wild-type and mutant PfDHODH and examining the major amino acid residues that are part of the four complexes. Our analysis provides new information that can be used to develop new drugs that could prove to be more effective alternatives to present antimalarial drugs.
Collapse
Affiliation(s)
- Aranthya Hevelly Lima Costa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Katyanna Sales Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
- Applied Physics Department, University of Campinas, 130838-59 Campinas, São Paulo, Brazil
| | - José Xavier de Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Jonas Ivan Nobre Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Douglas Soares Galvão
- Applied Physics Department, University of Campinas, 130838-59 Campinas, São Paulo, Brazil
| | - Umberto Laino Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| |
Collapse
|
6
|
Mandt REK, Luth MR, Tye MA, Mazitschek R, Ottilie S, Winzeler EA, Lafuente-Monasterio MJ, Gamo FJ, Wirth DF, Lukens AK. Diverse evolutionary pathways challenge the use of collateral sensitivity as a strategy to suppress resistance. eLife 2023; 12:e85023. [PMID: 37737220 PMCID: PMC10695565 DOI: 10.7554/elife.85023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
Drug resistance remains a major obstacle to malaria control and eradication efforts, necessitating the development of novel therapeutic strategies to treat this disease. Drug combinations based on collateral sensitivity, wherein resistance to one drug causes increased sensitivity to the partner drug, have been proposed as an evolutionary strategy to suppress the emergence of resistance in pathogen populations. In this study, we explore collateral sensitivity between compounds targeting the Plasmodium dihydroorotate dehydrogenase (DHODH). We profiled the cross-resistance and collateral sensitivity phenotypes of several DHODH mutant lines to a diverse panel of DHODH inhibitors. We focus on one compound, TCMDC-125334, which was active against all mutant lines tested, including the DHODH C276Y line, which arose in selections with the clinical candidate DSM265. In six selections with TCMDC-125334, the most common mechanism of resistance to this compound was copy number variation of the dhodh locus, although we did identify one mutation, DHODH I263S, which conferred resistance to TCMDC-125334 but not DSM265. We found that selection of the DHODH C276Y mutant with TCMDC-125334 yielded additional genetic changes in the dhodh locus. These double mutant parasites exhibited decreased sensitivity to TCMDC-125334 and were highly resistant to DSM265. Finally, we tested whether collateral sensitivity could be exploited to suppress the emergence of resistance in the context of combination treatment by exposing wildtype parasites to both DSM265 and TCMDC-125334 simultaneously. This selected for parasites with a DHODH V532A mutation which were cross-resistant to both compounds and were as fit as the wildtype parent in vitro. The emergence of these cross-resistant, evolutionarily fit parasites highlights the mutational flexibility of the DHODH enzyme.
Collapse
Affiliation(s)
- Rebecca EK Mandt
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Madeline R Luth
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
| | - Mark A Tye
- Center for Systems Biology, Massachusetts General HospitalBostonUnited States
- Harvard Graduate School of Arts and SciencesCambridgeUnited States
| | - Ralph Mazitschek
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Center for Systems Biology, Massachusetts General HospitalBostonUnited States
| | - Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
| | - Elizabeth A Winzeler
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
- Skaggs School of Pharmaceutical Sciences, University of California, San DiegoLa JollaUnited States
| | | | - Francisco Javier Gamo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKlineMadridSpain
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Infectious Disease and Microbiome Program, The Broad InstituteCambridgeUnited States
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Infectious Disease and Microbiome Program, The Broad InstituteCambridgeUnited States
| |
Collapse
|
7
|
Vyas VK, Shukla T, Sharma M. Medicinal chemistry approaches for the discovery of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. Future Med Chem 2023; 15:1295-1321. [PMID: 37551689 DOI: 10.4155/fmc-2023-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Malaria is a severe human disease and a global health problem because of drug-resistant strains. Drugs reported to prevent the growth of Plasmodium parasites target various phases of the parasites' life cycle. Antimalarial drugs can inhibit key enzymes that are responsible for the cellular growth and development of parasites. Plasmodium falciparum dihydroorotate dehydrogenase is one such enzyme that is necessary for de novo pyrimidine biosynthesis. This review focuses on various medicinal chemistry approaches used for the discovery and identification of selective P. falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. This comprehensive review discusses recent advances in the selective therapeutic activity of distinct chemical classes of compounds as P. falciparum dihydroorotate dehydrogenase inhibitors and antimalarial drugs.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Tanvi Shukla
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
8
|
Elamin EM, Eshage SE, Mohmmode SM, Mukhtar RM, Mahjoub M, Sadelin E, Shoaib TH, Edris A, Elshamly EM, Makki AA, Ashour A, Sherif AE, Osman W, Ibrahim SRM, Mohamed GA, Alzain AA. Discovery of dual-target natural antimalarial agents against DHODH and PMT of Plasmodium falciparum: pharmacophore modelling, molecular docking, quantum mechanics, and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:709-728. [PMID: 37665563 DOI: 10.1080/1062936x.2023.2251876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Malaria is a lethal disease that claims thousands of lives worldwide annually. The objective of this study was to identify new natural compounds that can target two P. falciparum enzymes; P. falciparum Dihydroorotate dehydrogenase (PfDHODH) and P. falciparum phosphoethanolamine methyltransferase (PfPMT). To accomplish this, e-pharmacophore modelling and molecular docking were employed against PfDHODH. Following this, 1201 natural compounds with docking scores of ≤ -7 kcal/mol were docked into the active site of the second enzyme PMT. The top nine compounds were subjected to further investigation using MM-GBSA free binding energy calculations and ADME analysis. The results revealed favourable free binding energy values better than the references, as well as acceptable pharmacokinetic properties. Compounds ZINC000013377887, ZINC000015113777, and ZINC000085595753 were scrutinized to assess their interaction stability with the PfDHODH enzyme, and chemical stability reactivity using molecular dynamics (MD) simulation and density functional theory (DFT) calculations. These findings indicate that the three natural compounds are potential candidates for dual PfDHODH and PfPMT inhibitors for malaria treatment.
Collapse
Affiliation(s)
- E M Elamin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - S E Eshage
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - S M Mohmmode
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - R M Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - M Mahjoub
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - E Sadelin
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - T H Shoaib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - A Edris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - E M Elshamly
- Department of Molecular Biotechnology, Hochschule Anhalt, Köthen, Germany
| | - A A Makki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - A Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Al Mansurah, Egypt
| | - A E Sherif
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Al Mansurah, Egypt
| | - W Osman
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - S R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - G A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
9
|
Akinnusi PA, Olubode SO, Adebesin AO, Osadipe TJ, Nwankwo DO, Adebisi AD, Titilayo I BA, Alo YM, Owoloye A, Oyebola KM. Structure-based scoring of anthocyanins and molecular modeling of PfLDH, PfDHODH, and PfDHFR reveal novel potential P. falciparum inhibitors. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
10
|
Clemente CM, Robledo SM, Ravetti S. Menthol carbonates as potent antiparasitic agents: synthesis and in vitro studies along with computer-aided approaches. BMC Complement Med Ther 2022; 22:156. [PMID: 35698116 PMCID: PMC9190099 DOI: 10.1186/s12906-022-03636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
Despite the number of deaths and the significant economic and social costs associated with Chagas, Leishmaniasis and Malaria diseases worldwide, available drugs are limited and have serious side effects and high toxicity for the patient. Therefore, there is an urgent need for safe, low-cost, and effective treatments. Natural products are an important source of bioactive compounds and there is current interest in finding natural bioactive molecules that can be used for treating these parasitic diseases. In the present study we proposed to evaluate the in vitro antiparasitic activity of new menthol derivatives against Trypanosoma cruzi, Leishmania braziliensis and Plasmodium falciparum; moreover, we propose to explore their mode of action through in silico approaches.
Material and methods
A series of carbonate prodrugs (1–9) were synthesized from menthol with different aliphatic alcohols. Spectroscopic techniques were used to confirm the structures of the synthesized compounds. The cytotoxicity of the compounds was assessed using U-937 cells. In vitro trypanocidal, leishmanicidal and antiplasmodial activity were evaluated using a T. cruzi, L. braziliensis and P. falciparum organism, respectively. In addition, in silico studies were also performed through molecular dynamics simulations and MM-PBSA analysis.
Results
The assay revealed that most of the compounds were highly active against intracellular amastigotes of T. cruzi and L. braziliensis, and had moderate activity against the total forms of P. falciparum. Compound 2 was one of the drugs that showed a high selectivity index (SI) for the three organisms evaluated. The prediction of the ADME properties suggests that all the compounds have drug-like molecular properties and the probability to be lead candidates. Finally, molecular dynamics simulations, and MM-PBSA studies indicate that menthol at the substrate binding site of TcDHODH, LbDHODH and PfDHODH is structurally stable in the same order as the natural substrate; also, interactions of menthol with residues involved in the inhibition of TcDHODH and PfDHODH proteins were predicted.
Conclusions
The present study demonstrates that menthol prodrugs are promising antiparasitic agents; however, the mechanisms of action proposed in this study need to be experimentally verified by future enzymatic assays.
Collapse
|
11
|
Simwela NV, Waters AP. Current status of experimental models for the study of malaria. Parasitology 2022; 149:1-22. [PMID: 35357277 PMCID: PMC9378029 DOI: 10.1017/s0031182021002134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Infection by malaria parasites (Plasmodium spp.) remains one of the leading causes of morbidity and mortality, especially in tropical regions of the world. Despite the availability of malaria control tools such as integrated vector management and effective therapeutics, these measures have been continuously undermined by the emergence of vector resistance to insecticides or parasite resistance to frontline antimalarial drugs. Whilst the recent pilot implementation of the RTS,S malaria vaccine is indeed a remarkable feat, highly effective vaccines against malaria remain elusive. The barriers to effective vaccines result from the complexity of both the malaria parasite lifecycle and the parasite as an organism itself with consequent major gaps in our understanding of their biology. Historically and due to the practical and ethical difficulties of working with human malaria infections, research into malaria parasite biology has been extensively facilitated by animal models. Animals have been used to study disease pathogenesis, host immune responses and their (dys)regulation and further disease processes such as transmission. Moreover, animal models remain at the forefront of pre-clinical evaluations of antimalarial drugs (drug efficacy, mode of action, mode of resistance) and vaccines. In this review, we discuss commonly used animal models of malaria, the parasite species used and their advantages and limitations which hinder their extrapolation to actual human disease. We also place into this context the most recent developments such as organoid technologies and humanized mice.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Andrew P. Waters
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Bharti H, Singal A, Saini M, Cheema PS, Raza M, Kundu S, Nag A. Repurposing the Pathogen Box compounds for identification of potent anti-malarials against blood stages of Plasmodium falciparum with PfUCHL3 inhibitory activity. Sci Rep 2022; 12:918. [PMID: 35042884 PMCID: PMC8766476 DOI: 10.1038/s41598-021-04619-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
Malaria has endured as a global epidemic since ages and its eradication poses an immense challenge due to the complex life cycle of the causative pathogen and its tolerance to a myriad of therapeutics. PfUCHL3, a member of the ubiquitin C-terminal hydrolase (UCH) family of deubiquitinases (DUBs) is cardinal for parasite survival and emerges as a promising therapeutic target. In this quest, we employed a combination of computational and experimental approaches to identify PfUCHL3 inhibitors as novel anti-malarials. The Pathogen Box library was screened against the crystal structure of PfUCHL3 (PDB ID: 2WE6) and its human ortholog (PDB ID: 1XD3). Fifty molecules with better comparative score, bioavailability and druglikeliness were subjected to in-vitro enzyme inhibition assay and among them only two compounds effectively inhibited PfUCHL3 activity at micro molar concentrations. Both MMV676603 and MMV688704 exhibited anti-plasmodial activity by altering the parasite phenotype at late stages of the asexual life cycle and inducing the accumulation of polyubiquitinated substrates. In addition, both the compounds were non-toxic and portrayed high selectivity window for the parasite over mammalian cells. This is the first comprehensive study to demonstrate the anti-malarial efficacy of PfUCHL3 inhibitors and opens new avenues to exploit UCH family of DUBs as a promising target for the development of next generation anti-malaria therapy.
Collapse
Affiliation(s)
- Hina Bharti
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Aakriti Singal
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manisha Saini
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Pradeep Singh Cheema
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Mohsin Raza
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
13
|
Clemente CM, Pineda T, Yepes LM, Upegui Y, Allemandi DA, Robledo SM, Ravetti S. Eugenol carbonate activity against Plasmodium falciparum, Leishmania braziliensis, and Trypanosoma cruzi. Arch Pharm (Weinheim) 2021; 355:e2100432. [PMID: 34954824 DOI: 10.1002/ardp.202100432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022]
Abstract
Neglected tropical diseases are a major health problem throughout the world, and there are few effective and safe drugs. In this study, we report the design and synthesis of a novel series of carbonates of eugenol using different aliphatic alcohols and N,N-carbonyldiimidazole. Spectroscopic techniques, including 1 H nuclear magnetic resonance (NMR), 13 C NMR, Fourier transform infrared, and high-resolution mass spectrometry, were used to confirm the structures of the synthesized compounds. In vitro and in silico studies of prodrugs of eugenol were performed to determine their antiplasmodial, trypanocidal, and leishmanicidal activities, and also their cytotoxicity. Compounds were highly active against Leishmania braziliensis and Plasmodium falciparum, whereas the activity shown for Trypanosoma cruzi was moderate. Molecular docking was used to determine a possible mode of action of eugenol against the dihydroorotate dehydrogenase of the three parasites (TcDHODH, LbDHODH, and PfDHODH). Notably, the docking results showed that eugenol not only has binding energy similar to that of the natural substrate (-7.2 and -7.1, respectively) but also has interactions with relevant biological residues of PfDHODH. This result indicates that eugenol could act as a substrate for PfDHODH in the pyrimidine biosynthesis pathway of P. falciparum. In conclusion, the combination of certain aliphatic alcohols and eugenol through a carbonate bond could significantly increase the antiparasitic activity of this class of compounds, which merits further studies.
Collapse
Affiliation(s)
- Camila M Clemente
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Córdoba, Argentina
| | - Tatiana Pineda
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Lina M Yepes
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Yulieth Upegui
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia.,Corporación de Innovación CIDEPRO, Medellín, Colombia
| | - Daniel A Allemandi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sara M Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Soledad Ravetti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto Académico Pedagógico de Ciencias Humanas, Centro de Investigaciones y Transferencia de Villa María (CIT VM), Villa María, Córdoba, Argentina
| |
Collapse
|
14
|
Rout UK, Sanket AS, Sisodia BS, Mohapatra PK, Pati S, Kant R, Dwivedi GR. A Comparative Review on Current and Future Drug Targets Against Bacteria & Malaria. Curr Drug Targets 2021; 21:736-775. [PMID: 31995004 DOI: 10.2174/1389450121666200129103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 11/22/2022]
Abstract
Long before the discovery of drugs like 'antibiotic and anti-parasitic drugs', the infectious diseases caused by pathogenic bacteria and parasites remain as one of the major causes of morbidity and mortality in developing and underdeveloped countries. The phenomenon by which the organism exerts resistance against two or more structurally unrelated drugs is called multidrug resistance (MDR) and its emergence has further complicated the treatment scenario of infectious diseases. Resistance towards the available set of treatment options and poor pipeline of novel drug development puts an alarming situation. A universal goal in the post-genomic era is to identify novel targets/drugs for various life-threatening diseases caused by such pathogens. This review is conceptualized in the backdrop of drug resistance in two major pathogens i.e. "Pseudomonas aeruginosa" and "Plasmodium falciparum". In this review, the available targets and key mechanisms of resistance of these pathogens have been discussed in detail. An attempt has also been made to analyze the common drug targets of bacteria and malaria parasite to overcome the current drug resistance scenario. The solution is also hypothesized in terms of a present pipeline of drugs and efforts made by scientific community.
Collapse
Affiliation(s)
- Usha K Rout
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar-751023, India
| | | | - Brijesh S Sisodia
- Regional Ayurveda Research Institute for Drug Development, Gwalior-474 009, India
| | | | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar-751023, India
| | - Rajni Kant
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh- 273013, India
| | - Gaurav R Dwivedi
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh- 273013, India
| |
Collapse
|
15
|
Yang T, Ottilie S, Istvan ES, Godinez-Macias KP, Lukens AK, Baragaña B, Campo B, Walpole C, Niles JC, Chibale K, Dechering KJ, Llinás M, Lee MCS, Kato N, Wyllie S, McNamara CW, Gamo FJ, Burrows J, Fidock DA, Goldberg DE, Gilbert IH, Wirth DF, Winzeler EA. MalDA, Accelerating Malaria Drug Discovery. Trends Parasitol 2021; 37:493-507. [PMID: 33648890 PMCID: PMC8261838 DOI: 10.1016/j.pt.2021.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
The Malaria Drug Accelerator (MalDA) is a consortium of 15 leading scientific laboratories. The aim of MalDA is to improve and accelerate the early antimalarial drug discovery process by identifying new, essential, druggable targets. In addition, it seeks to produce early lead inhibitors that may be advanced into drug candidates suitable for preclinical development and subsequent clinical testing in humans. By sharing resources, including expertise, knowledge, materials, and reagents, the consortium strives to eliminate the structural barriers often encountered in the drug discovery process. Here we discuss the mission of the consortium and its scientific achievements, including the identification of new chemically and biologically validated targets, as well as future scientific directions.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Pediatrics, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Eva S Istvan
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | - Karla P Godinez-Macias
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Beatriz Baragaña
- Wellcome Center for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Brice Campo
- Medicines for Malaria Venture, 1215 Geneva 15, Switzerland
| | - Chris Walpole
- Structural Genomics Consortium, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Building 56-341, 77 Massachusetts Avenue, Cambridge MA 02139-4307, USA
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16082, USA
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nobutaka Kato
- Global Health Drug Discovery Institute, Zhongguancun Dongsheng International Science Park, 1 North Yongtaizhuang Road, Beijing 100192, China
| | - Susan Wyllie
- Wellcome Center for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Francisco Javier Gamo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, 28760, Madrid, Spain
| | - Jeremy Burrows
- Medicines for Malaria Venture, 1215 Geneva 15, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology and Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniel E Goldberg
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | - Ian H Gilbert
- Wellcome Center for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Asiri YI, Muhsinah AB, Alsayari A, Venkatesan K, Al-Ghorbani M, Mabkhot YN. Design, synthesis and antimicrobial activity of novel 2-aminothiophene containing cyclic and heterocyclic moieties. Bioorg Med Chem Lett 2021; 44:128117. [PMID: 34015500 DOI: 10.1016/j.bmcl.2021.128117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 11/19/2022]
Abstract
One of the major challenges in the community and healthcare was an impedance of pathogenic bacteria to antibiotics. This work developed 2-aminothiophene derivatives as novel antimicrobial agents. Various 2-aminothiophene derivatives (3a-f, 5a-c, 6a, b, 7, 8a, b and 9) with cyclic and heterocyclic moieties at 5-position were synthesized, and characterized using NMR, IR, and mass spectroscopic techniques. The newly synthesized compounds were evaluated for their antimicrobial activity against bacteria S. pneumoniae, B. subtilis, P. aeruginosa, E. coli, and fungi A. fumigatus, S. mracemosum, G. candidum, C. albicans. Compound 3a with OH group at para position of phenyl ring exhibited significant antibacterial activity stronger than that of the drug standards Ampicillin and Gentamicin. Compound 6b possess pyrazole ring and compound 9 bearing pyridine ring showed promising antifungal activity compare to the standard drug Amphotericin B. The remaining compounds exhibited good to moderate inhibitory activities. In summary, the results suggest that the compounds from 2-aminothiophene derivatives can be used as antimicrobial agents.
Collapse
Affiliation(s)
- Yahya I Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia.
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia.
| | - Mohammed Al-Ghorbani
- Department of Chemistry, College of Science and Arts, Ulla, Taibah University, Madina Monora, Saudi Arabia; Department of Chemistry, College of Education, Thamar University, Thamar, Yemen
| | - Yahia N Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia.
| |
Collapse
|
17
|
Palmer MJ, Deng X, Watts S, Krilov G, Gerasyuto A, Kokkonda S, El Mazouni F, White J, White KL, Striepen J, Bath J, Schindler KA, Yeo T, Shackleford DM, Mok S, Deni I, Lawong A, Huang A, Chen G, Wang W, Jayaseelan J, Katneni K, Patil R, Saunders J, Shahi SP, Chittimalla R, Angulo-Barturen I, Jiménez-Díaz MB, Wittlin S, Tumwebaze PK, Rosenthal PJ, Cooper RA, Aguiar ACC, Guido RVC, Pereira DB, Mittal N, Winzeler EA, Tomchick DR, Laleu B, Burrows JN, Rathod PK, Fidock DA, Charman SA, Phillips MA. Potent Antimalarials with Development Potential Identified by Structure-Guided Computational Optimization of a Pyrrole-Based Dihydroorotate Dehydrogenase Inhibitor Series. J Med Chem 2021; 64:6085-6136. [PMID: 33876936 DOI: 10.1021/acs.jmedchem.1c00173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dihydroorotate dehydrogenase (DHODH) has been clinically validated as a target for the development of new antimalarials. Experience with clinical candidate triazolopyrimidine DSM265 (1) suggested that DHODH inhibitors have great potential for use in prophylaxis, which represents an unmet need in the malaria drug discovery portfolio for endemic countries, particularly in areas of high transmission in Africa. We describe a structure-based computationally driven lead optimization program of a pyrrole-based series of DHODH inhibitors, leading to the discovery of two candidates for potential advancement to preclinical development. These compounds have improved physicochemical properties over prior series frontrunners and they show no time-dependent CYP inhibition, characteristic of earlier compounds. Frontrunners have potent antimalarial activity in vitro against blood and liver schizont stages and show good efficacy in Plasmodium falciparum SCID mouse models. They are equally active against P. falciparum and Plasmodium vivax field isolates and are selective for Plasmodium DHODHs versus mammalian enzymes.
Collapse
Affiliation(s)
| | - Xiaoyi Deng
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - Shawn Watts
- Schrodinger, Inc., 120 West 45th St, 17th Floor, New York, New York 100036-4041, United States
| | - Goran Krilov
- Schrodinger, Inc., 120 West 45th St, 17th Floor, New York, New York 100036-4041, United States
| | - Aleksey Gerasyuto
- Schrodinger, Inc., 120 West 45th St, 17th Floor, New York, New York 100036-4041, United States
| | - Sreekanth Kokkonda
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Farah El Mazouni
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - John White
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jade Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - Ann Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Wen Wang
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jaya Jayaseelan
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rahul Patil
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jessica Saunders
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | | | | | - Iñigo Angulo-Barturen
- TAD, Biscay Science and Technology Park, Astondo Bidea, BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- TAD, Biscay Science and Technology Park, Astondo Bidea, BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | | | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, California 94143, United States
| | - Roland A Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | | | - Rafael V C Guido
- University of Sao Paulo, Sao Carlos Institute of Physics, Sáo Carlos, SP 13560-970, Brazil
| | - Dhelio B Pereira
- Tropical Medicine Research Center of Rondonia, Av. Guaporé, 215, Porto Velho, RO 76812-329, Brazil
| | - Nimisha Mittal
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Diana R Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | - Pradipsinh K Rathod
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington 98195, United States
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| |
Collapse
|
18
|
Jaromin A, Parapini S, Basilico N, Zaremba-Czogalla M, Lewińska A, Zagórska A, Walczak M, Tyliszczak B, Grzeszczak A, Łukaszewicz M, Kaczmarek Ł, Gubernator J. Azacarbazole n-3 and n-6 polyunsaturated fatty acids ethyl esters nanoemulsion with enhanced efficacy against Plasmodium falciparum. Bioact Mater 2021; 6:1163-1174. [PMID: 33134609 PMCID: PMC7588843 DOI: 10.1016/j.bioactmat.2020.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Alternative therapies are necessary for the treatment of malaria due to emerging drug resistance. However, many promising antimalarial compounds have poor water solubility and suffer from the lack of suitable delivery systems, which seriously limits their activity. To address this problem, we synthesized a series of azacarbazoles that were evaluated for antimalarial activity against D10 (chloroquine-sensitive) and W2 (chloroquine-resistant) strains of P. falciparum. The most active compound, 9H-3-azacarbazole (3), was encapsulated in a novel o/w nanoemulsion consisting of ethyl esters of polyunsaturated fatty acids n-3 and n-6 obtained from flax oil as the oil phase, Smix (Tween 80 and Transcutol HP) and water. This formulation was further analyzed using transmission electron microscopy, dynamic light scattering and in vitro and in vivo studies. It was shown that droplets of the 3-loaded nanosystem were spherical, with satisfactory stability, without cytotoxicity towards fibroblasts and intestinal cell lines at concentrations corresponding to twice the IC50 for P. falciparum. Moreover, the nanoemulsion with this type of oil phase was internalized by Caco-2 cells. Additionally, pharmacokinetics demonstrated rapid absorption of compound 3 (tmax = 5.0 min) after intragastric administration of 3-encapsulated nanoemulsion at a dose of 0.02 mg/kg in mice, with penetration of compound 3 to deep compartments. The 3-encapsulated nanoemulsion was found to be 2.8 and 4.2 times more effective in inhibiting the D10 and W2 strains of the parasite, respectively, compared to non-encapsulated 3. Our findings support a role for novel o/w nanoemulsions as delivery vehicles for antimalarial drugs.
Collapse
Affiliation(s)
- Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | | | | | - Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Jagiellonian University Medical College, Faculty of Pharmacy, Cracow, Poland
| | - Bożena Tyliszczak
- Instytute of Materials Science, Cracow University of Technology, Cracow, Poland
| | - Aleksandra Grzeszczak
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
19
|
Krishnan A, Soldati-Favre D. Amino Acid Metabolism in Apicomplexan Parasites. Metabolites 2021; 11:61. [PMID: 33498308 PMCID: PMC7909243 DOI: 10.3390/metabo11020061] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Obligate intracellular pathogens have coevolved with their host, leading to clever strategies to access nutrients, to combat the host's immune response, and to establish a safe niche for intracellular replication. The host, on the other hand, has also developed ways to restrict the replication of invaders by limiting access to nutrients required for pathogen survival. In this review, we describe the recent advancements in both computational methods and high-throughput -omics techniques that have been used to study and interrogate metabolic functions in the context of intracellular parasitism. Specifically, we cover the current knowledge on the presence of amino acid biosynthesis and uptake within the Apicomplexa phylum, focusing on human-infecting pathogens: Toxoplasma gondii and Plasmodium falciparum. Given the complex multi-host lifecycle of these pathogens, we hypothesize that amino acids are made, rather than acquired, depending on the host niche. We summarize the stage specificities of enzymes revealed through transcriptomics data, the relevance of amino acids for parasite pathogenesis in vivo, and the role of their transporters. Targeting one or more of these pathways may lead to a deeper understanding of the specific contributions of biosynthesis versus acquisition of amino acids and to design better intervention strategies against the apicomplexan parasites.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland;
| | | |
Collapse
|
20
|
Driving antimalarial design through understanding of target mechanism. Biochem Soc Trans 2020; 48:2067-2078. [PMID: 32869828 PMCID: PMC7609028 DOI: 10.1042/bst20200224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022]
Abstract
Malaria continues to be a global health threat, affecting approximately 219 million people in 2018 alone. The recurrent development of resistance to existing antimalarials means that the design of new drug candidates must be carefully considered. Understanding of drug target mechanism can dramatically accelerate early-stage target-based development of novel antimalarials and allows for structural modifications even during late-stage preclinical development. Here, we have provided an overview of three promising antimalarial molecular targets, PfDHFR, PfDHODH and PfA-M1, and their associated inhibitors which demonstrate how mechanism can inform drug design and be effectively utilised to generate compounds with potent inhibitory activity.
Collapse
|
21
|
Owoloye A, Enejoh OA, Akanbi OM, Bankole OM. Molecular docking analysis of Plasmodium falciparum dihydroorotate dehydrogenase towards the design of effective inhibitors. Bioinformation 2020; 16:672-678. [PMID: 34621112 PMCID: PMC8457017 DOI: 10.6026/97320630016672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Malaria remains a global public health burden with significant mortality and morbidity. Despite the several approved drugs available for its management, the parasite has developed resistance to virtually all known antimalarial drugs. The development of a new drug that can combat resistant to Artemisinin based Combination Therapies (ACTs) for malaria is imperative. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a flavin-dependent mitochondrial enzyme is vital in the parasite's pyrimidine biosynthesis is a well-known drug target. Therefore, it is of interest to document the MOLECULAR DOCKING analysis (using Maestro, Schrodinger) data of DIHYDROOROTATE DEHYDROGENASE PfDHODH from P. falciparum towards the design of effective inhibitors. The molecular docking features of 10 compounds with reference to chloroquine with PfDHODH are documented in this report for further consideration.
Collapse
Affiliation(s)
- Afolabi Owoloye
- Parasitology Unit, Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
- Centre for Biocomputing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Ojochenemi A Enejoh
- Centre for Biocomputing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Olusegun M Akanbi
- Parasitology Unit, Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Owolabi M Bankole
- Centre for Biocomputing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Nigeria
- Department of Chemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
22
|
Kokkonda S, Deng X, White KL, El Mazouni F, White J, Shackleford DM, Katneni K, Chiu FCK, Barker H, McLaren J, Crighton E, Chen G, Angulo-Barturen I, Jimenez-Diaz MB, Ferrer S, Huertas-Valentin L, Martinez-Martinez MS, Lafuente-Monasterio MJ, Chittimalla R, Shahi SP, Wittlin S, Waterson D, Burrows JN, Matthews D, Tomchick D, Rathod PK, Palmer MJ, Charman SA, Phillips MA. Lead Optimization of a Pyrrole-Based Dihydroorotate Dehydrogenase Inhibitor Series for the Treatment of Malaria. J Med Chem 2020; 63:4929-4956. [PMID: 32248693 DOI: 10.1021/acs.jmedchem.0c00311] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Malaria puts at risk nearly half the world's population and causes high mortality in sub-Saharan Africa, while drug resistance threatens current therapies. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated target for malaria treatment based on our finding that triazolopyrimidine DSM265 (1) showed efficacy in clinical studies. Herein, we describe optimization of a pyrrole-based series identified using a target-based DHODH screen. Compounds with nanomolar potency versus Plasmodium DHODH and Plasmodium parasites were identified with good pharmacological properties. X-ray studies showed that the pyrroles bind an alternative enzyme conformation from 1 leading to improved species selectivity versus mammalian enzymes and equivalent activity on Plasmodium falciparum and Plasmodium vivax DHODH. The best lead DSM502 (37) showed in vivo efficacy at similar levels of blood exposure to 1, although metabolic stability was reduced. Overall, the pyrrole-based DHODH inhibitors provide an attractive alternative scaffold for the development of new antimalarial compounds.
Collapse
Affiliation(s)
- Sreekanth Kokkonda
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Xiaoyi Deng
- Departments of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Farah El Mazouni
- Departments of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - John White
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington 98195, United States
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Francis C K Chiu
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Helena Barker
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jenna McLaren
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | | | - Santiago Ferrer
- GSK, Tres Cantos Medicines Development Campus, Severo Ochoa, Madrid 28760, Spain
| | | | | | | | | | | | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | | | | | - Dave Matthews
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Diana Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| | - Pradipsinh K Rathod
- Departments of Chemistry and Global Health, University of Washington, Seattle, Washington 98195, United States
| | | | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Margaret A Phillips
- Departments of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9135, United States
| |
Collapse
|
23
|
Antimalarial Properties of Isoquinoline Derivative from Streptomyces hygroscopicus subsp. Hygroscopicus: An In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6135696. [PMID: 31993450 PMCID: PMC6973190 DOI: 10.1155/2020/6135696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022]
Abstract
Malaria is one of the life-threatening diseases in the world. The spread of resistance to antimalarial drugs is a major challenge, and resistance to artemisinin has been reported in the Southeast Asian region. In the previous study, the active compound of Streptomyces hygroscopicus subsp. Hygroscopicus (S. hygroscopicus), eponemycin, has been shown to have antimalarial effects. To further analyze the effects of other active compounds on the Plasmodium parasite, identifying and analyzing the effectiveness of compounds contained in S. hygroscopicus through instrumentation of liquid chromatography/mass spectrometry (LC/MS) and in silico studies were very useful. This study aimed at identifying other derivative compounds from S. hygroscopicus and screening the antimalarial activity of the compound by assessing the binding affinity, pharmacokinetic profile, and bond interaction. The derivative compounds were identified using LC/MS. Protein targets for derivative compounds were found through literature studies, and the results of identification of compounds and protein targets were reconstructed into three-dimensional models. Prediction of pharmacokinetic profiles was carried out using Swiss ADME. Screening of protein targets for the derivative compound was carried out using the reverse molecular docking method. Analyzing bond interaction was done by LigPlot. One compound from S. hygroscopicus, i.e., 6,7-dinitro-2-[1, 2, 4]triazole-4-yl-benzo[de]isoquinoline-1,3-dione, was successfully identified using LC/MS. This compound was an isoquinoline derivative compound. Through literature studies with inclusion criteria, thirteen protein targets were obtained for reverse molecular docking. This isoquinoline derivative had the potential to bind to each protein target. The pharmacokinetic profile showed that this compound had the drug-likeness criteria. Conclusion. 6,7-Dinitro-2-[1, 2, 4]triazole-4-yl-benzo[de]isoquinoline-1,3-dione has antimalarial activity as shown by reverse molecular docking studies and pharmacokinetic profiles. The best inhibitory ability of compounds based on bond affinity is with adenylosuccinate synthetase.
Collapse
|
24
|
Rawat R, Verma SM. An exclusive computational insight toward molecular mechanism of MMV007571, a multitarget inhibitor of Plasmodium falciparum. J Biomol Struct Dyn 2019; 38:5362-5373. [PMID: 31790334 DOI: 10.1080/07391102.2019.1700165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recently, two Malaria Box molecules namely MMV007571 and MMV020439 well known inhibitors of New Permeability Pathway (NPP) function also showed a secondary phenotype of inhibition of enzyme Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) and cytochrome bc1 complex in metabolic profile assays. Intricacies of their binding at the newly identified targets was need of the hour which motivated us to study their binding using molecular docking and dynamics simulations approach. Interestingly, molecular docking results of both MMV007571 and MMV020439 showed good binding affinity toward the Qo site of cytochrome bc1 complex while only MMV007571 illustrated notable binding characterstics for PfDHODH. Molecular Dynamics (MD) simulations when carried out for native-PfDHODH, PfDHODH-MMV007571 and PfDHODH-Genz667348 models (100 ns each) demonstrated the role of inhibitors over the N-terminus domain which experienced conformational transition from an open state (22 Å) to closed state (16 Å) in the protein-inhibitor models. Dynamics also indicated that the loop domain near cofactor flavin mononucleotide (FMN) attained more felxibility which further lead to its poor binding and may contribute to inhibition of the oxidation (catalytic) process. Moreover, the pharmacophoric features of MMV007571 was justified and may serve as a template for the design of novel series of more potent multitarget inhibitors against Plasmodium falciparum.AbbreviationsÅAngstromACTsArtemisinin combination therapiescyt bc1cytochrome bc1 complexhhour(s)KKelvinµMmicromolarMMVMedicine for malaria ventureNLucNanoluciferasenMnanomolarNPPNew permeation pathwayPDBProtein data bankPfDHODHPlasmodium falciparum dihydroorotate dehydrogenasePOPC1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholineRBCRed blood corpusclesRMSDRoot-mean-square deviationSPStandard precisionvdWvan der WaalsXPExtra precisionyDHODHYeast dihydroorotate dehydrogenaseCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Rawat
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Saurabh M Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
25
|
Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem 2019; 183:111681. [PMID: 31557612 DOI: 10.1016/j.ejmech.2019.111681] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
Pyrimidines are essential for the cell survival and proliferation of living parasitic organisms, such as Helicobacter pylori, Plasmodium falciparum and Schistosoma mansoni, that are able to impact upon human health. Pyrimidine building blocks, in human cells, are synthesised via both de novo biosynthesis and salvage pathways, the latter of which is an effective way of recycling pre-existing nucleotides. As many parasitic organisms lack pyrimidine salvage pathways for pyrimidine nucleotides, blocking de novo biosynthesis is seen as an effective therapeutic means to selectively target the parasite without effecting the human host. Dihydroorotate dehydrogenase (DHODH), which is involved in the de novo biosynthesis of pyrimidines, is a validated target for anti-infective drug research. Recent advances in the DHODH microorganism field are discussed herein, as is the potential for the development of DHODH-targeted therapeutics.
Collapse
|
26
|
Nonato MC, de Pádua RA, David JS, Reis RA, Tomaleri GP, D'Muniz Pereira H, Calil FA. Structural basis for the design of selective inhibitors for Schistosoma mansoni dihydroorotate dehydrogenase. Biochimie 2019; 158:180-190. [DOI: 10.1016/j.biochi.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
|
27
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
28
|
Triazole derivatives and their antiplasmodial and antimalarial activities. Eur J Med Chem 2019; 166:206-223. [PMID: 30711831 DOI: 10.1016/j.ejmech.2019.01.047] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 01/23/2023]
Abstract
Malaria, caused by protozoan parasites of the genus Plasmodium especially by the most prevalent parasite Plasmodium falciparum, represents one of the most devastating and common infectious disease globally. Nearly half of the world population is under the risk of being infected, and more than 200 million new clinical cases with around half a million deaths occur annually. Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance, so it's imperative to develop new antimalarials with great potency against both drug-susceptible and drug-resistant malaria. Triazoles, bearing a five-membered heterocyclic ring with three nitrogen atoms, exhibit promising in vitro antiplasmodial and in vivo antimalarial activities. Moreover, several triazole-based drugs have already used in clinics for the treatment of various diseases, demonstrating the excellent pharmaceutical profiles. Therefore, triazole derivatives have the potential for clinical deployment in the control and eradication of malaria. This review covers the recent advances of triazole derivatives especially triazole hybrids as potential antimalarials. The structure-activity relationship is also discussed to provide an insight for rational designs of more efficient antimalarial candidates.
Collapse
|
29
|
White J, Dhingra SK, Deng X, El Mazouni F, Lee MCS, Afanador GA, Lawong A, Tomchick DR, Ng CL, Bath J, Rathod PK, Fidock DA, Phillips MA. Identification and Mechanistic Understanding of Dihydroorotate Dehydrogenase Point Mutations in Plasmodium falciparum that Confer in Vitro Resistance to the Clinical Candidate DSM265. ACS Infect Dis 2019; 5:90-101. [PMID: 30375858 DOI: 10.1021/acsinfecdis.8b00211] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malaria is one of the most challenging human infectious diseases, and both prevention and control have been hindered by the development of Plasmodium falciparum resistance to existing therapies. Several new compounds with novel mechanisms are in clinical development for the treatment of malaria, including DSM265, an inhibitor of Plasmodium dihydroorotate dehydrogenase. To explore the mechanisms by which resistance might develop to DSM265 in the field, we selected for DSM265-resistant P. falciparum parasites in vitro. Any of five different amino acid changes led to reduced efficacy on the parasite and to decreased DSM265 binding to P. falciparum DHODH. The DSM265-resistant parasites retained full sensitivity to atovaquone. All but one of the observed mutations were in the DSM265 binding site, and the remaining C276F was in the adjacent flavin cofactor site. The C276F mutation was previously identified in a recrudescent parasite during a Phase IIa clinical study. We confirmed that this mutation (and the related C276Y) accounted for the full level of observed DSM265 resistance by regenerating the mutation using CRISPR/Cas9 genome editing. X-ray structure analysis of the C276F mutant enzyme showed that conformational changes of nearby residues were required to accommodate the larger F276 residue, which in turn led to a restriction in the size of the DSM265 binding pocket. These findings underscore the importance of developing DSM265 as part of a combination therapy with other agents for successful use against malaria.
Collapse
Affiliation(s)
- John White
- Departments of Chemistry and Global Health, University of Washington, 36 Bagley Hall, 400 15th Avenue NE, Seattle, Washington 98195, United States
| | - Satish K. Dhingra
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, 701 West 168th Street, HHSC 1502, New York, New York 10032, United States
| | - Xiaoyi Deng
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Farah El Mazouni
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Marcus C. S. Lee
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, 701 West 168th Street, HHSC 1502, New York, New York 10032, United States
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, U.K
| | - Gustavo A. Afanador
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Diana R. Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| | - Caroline L. Ng
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, 701 West 168th Street, HHSC 1502, New York, New York 10032, United States
| | - Jade Bath
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, 701 West 168th Street, HHSC 1502, New York, New York 10032, United States
| | - Pradipsinh K. Rathod
- Departments of Chemistry and Global Health, University of Washington, 36 Bagley Hall, 400 15th Avenue NE, Seattle, Washington 98195, United States
| | - David A. Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, 701 West 168th Street, HHSC 1502, New York, New York 10032, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, PH8-W, 630 West 168th Street, PH 8-West, New York, New York 10032, United States
| | - Margaret A. Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390, United States
| |
Collapse
|
30
|
Patel MM, Volkov OA, Leija C, Lemoff A, Phillips MA. A dual regulatory circuit consisting of S-adenosylmethionine decarboxylase protein and its reaction product controls expression of the paralogous activator prozyme in Trypanosoma brucei. PLoS Pathog 2018; 14:e1007404. [PMID: 30365568 PMCID: PMC6221367 DOI: 10.1371/journal.ppat.1007404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/07/2018] [Accepted: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
Polyamines are essential for cell growth of eukaryotes including the etiologic agent of human African trypanosomiasis (HAT), Trypanosoma brucei. In trypanosomatids, a key enzyme in the polyamine biosynthetic pathway, S-adenosylmethionine decarboxylase (TbAdoMetDC) heterodimerizes with a unique catalytically-dead paralog called prozyme to form the active enzyme complex. In higher eukaryotes, polyamine metabolism is subject to tight feedback regulation by spermidine-dependent mechanisms that are absent in trypanosomatids. Instead, in T. brucei an alternative regulatory strategy based on TbAdoMetDC prozyme has evolved. We previously demonstrated that prozyme protein levels increase in response to loss of TbAdoMetDC activity. Herein, we show that prozyme levels are under translational control by monitoring incorporation of deuterated leucine into nascent prozyme protein. We furthermore identify pathway factors that regulate prozyme mRNA translation. We find evidence for a regulatory feedback mechanism in which TbAdoMetDC protein and decarboxylated AdoMet (dcAdoMet) act as suppressors of prozyme translation. In TbAdoMetDC null cells expressing the human AdoMetDC enzyme, prozyme levels are constitutively upregulated. Wild-type prozyme levels are restored by complementation with either TbAdoMetDC or an active site mutant, suggesting that TbAdoMetDC possesses an enzyme activity-independent function that inhibits prozyme translation. Depletion of dcAdoMet pools by three independent strategies: inhibition/knockdown of TbAdoMetDC, knockdown of AdoMet synthase, or methionine starvation, each cause prozyme upregulation, providing independent evidence that dcAdoMet functions as a metabolic signal for regulation of the polyamine pathway in T. brucei. These findings highlight a potential regulatory paradigm employing enzymes and pseudoenzymes that may have broad implications in biology. Trypanosoma brucei is a single-celled eukaryotic pathogen and the causative agent of human African trypanosomiasis (HAT). Polyamines are organic polycations that are essential for growth in T. brucei to facilitate protein translation and to maintain redox homeostasis. The pathway is the target of eflornithine, a current frontline therapy for treatment of HAT. Polyamine biosynthetic enzymes are regulated at multiple levels in mammals (e.g. transcription, translation and protein turnover), but in contrast, T. brucei lacks these mechanisms. Instead in T. brucei a central enzyme in polyamine metabolism called AdoMetDC must form a complex with a sister protein (termed a pseudoenzyme) to be active. Herein, we show that cellular levels of this sister protein we call prozyme are in turn feedback regulated by both AdoMetDC and by its reaction product in response to cell treatments that reduce pathway output. This regulatory paradigm highlights how pseudoenzymes can evolve to play an important role in metabolic pathway regulation and in organismal fitness.
Collapse
Affiliation(s)
- Manish M. Patel
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Harry Hines Blvd, Dallas, TX, United States of America
| | - Oleg A. Volkov
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Harry Hines Blvd, Dallas, TX, United States of America
| | - Christopher Leija
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Harry Hines Blvd, Dallas, TX, United States of America
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Harry Hines Blvd, Dallas, TX, United States of America
| | - Margaret A. Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Harry Hines Blvd, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
31
|
Miyazaki Y, Inaoka DK, Shiba T, Saimoto H, Sakura T, Amalia E, Kido Y, Sakai C, Nakamura M, Moore AL, Harada S, Kita K. Selective Cytotoxicity of Dihydroorotate Dehydrogenase Inhibitors to Human Cancer Cells Under Hypoxia and Nutrient-Deprived Conditions. Front Pharmacol 2018; 9:997. [PMID: 30233375 PMCID: PMC6131557 DOI: 10.3389/fphar.2018.00997] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
Human dihydroorotate dehydrogenase (HsDHODH) is a key enzyme of pyrimidine de novo biosynthesis pathway. It is located on the mitochondrial inner membrane and contributes to the respiratory chain by shuttling electrons to the ubiquinone pool. We have discovered ascofuranone (1), a natural compound produced by Acremonium sclerotigenum, and its derivatives are a potent class of HsDHODH inhibitors. We conducted a structure–activity relationship study and have identified functional groups of 1 that are essential for the inhibition of HsDHODH enzymatic activity. Furthermore, the binding mode of 1 and its derivatives to HsDHODH was demonstrated by co-crystallographic analysis and we show that these inhibitors bind at the ubiquinone binding site. In addition, the cytotoxicities of 1 and its potent derivatives 7, 8, and 9 were studied using human cultured cancer cells. Interestingly, they showed selective and strong cytotoxicity to cancer cells cultured under microenvironment (hypoxia and nutrient-deprived) conditions. The selectivity ratio of 8 under this microenvironment show the most potent inhibition which was over 1000-fold higher compared to that under normal culture condition. Our studies suggest that under microenvironment conditions, cancer cells heavily depend on the pyrimidine de novo biosynthesis pathway. We also provide the first evidence that 1 and its derivatives are potential lead candidates for drug development which target the HsDHODH of cancer cells living under a tumor microenvironment.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daniel K Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Takaya Sakura
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Eri Amalia
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasutoshi Kido
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Chika Sakai
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mari Nakamura
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Anthony L Moore
- Biochemistry and Medicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
32
|
Kokkonda S, El Mazouni F, White KL, White J, Shackleford DM, Lafuente-Monasterio MJ, Rowland P, Manjalanagara K, Joseph JT, Garcia-Pérez A, Fernandez J, Gamo FJ, Waterson D, Burrows JN, Palmer MJ, Charman SA, Rathod PK, Phillips MA. Isoxazolopyrimidine-Based Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Antimalarial Activity. ACS OMEGA 2018; 3:9227-9240. [PMID: 30197997 PMCID: PMC6120730 DOI: 10.1021/acsomega.8b01573] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Malaria kills nearly 0.5 million people yearly and impacts the lives of those living in over 90 countries where it is endemic. The current treatment programs are threatened by increasing drug resistance. Dihydroorotate dehydrogenase (DHODH) is now clinically validated as a target for antimalarial drug discovery as a triazolopyrimidine class inhibitor (DSM265) is currently undergoing clinical development. We discovered a related isoxazolopyrimidine series in a phenotypic screen, later determining that it targeted DHODH. To determine if the isoxazolopyrimidines could yield a drug candidate, we initiated hit-to-lead medicinal chemistry. Several potent analogues were identified, including a compound that showed in vivo antimalarial activity. The isoxazolopyrimidines were more rapidly metabolized than their triazolopyrimidine counterparts, and the pharmacokinetic data were not consistent with the goal of a single-dose treatment for malaria.
Collapse
Affiliation(s)
- Sreekanth Kokkonda
- Departments
of Chemistry and Global Health, University
of Washington, Seattle, Washington 98195, United States
| | - Farah El Mazouni
- Department
of Biochemistry, University of Texas Southwestern
Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9038, United States
| | - Karen L. White
- Centre
for Drug Candidate Optimisation, Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John White
- Departments
of Chemistry and Global Health, University
of Washington, Seattle, Washington 98195, United States
| | - David M. Shackleford
- Centre
for Drug Candidate Optimisation, Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Paul Rowland
- Tres
Cantos Medicines Development Campus, GSK, Severo Ochoa, Madrid 28760, Spain
| | | | | | - Adolfo Garcia-Pérez
- Tres
Cantos Medicines Development Campus, GSK, Severo Ochoa, Madrid 28760, Spain
| | - Jorge Fernandez
- Tres
Cantos Medicines Development Campus, GSK, Severo Ochoa, Madrid 28760, Spain
| | | | - David Waterson
- Medicines
for Malaria Venture, 20, Route de Pré-Bois, 1215 Geneva, Switzerland
| | - Jeremy N. Burrows
- Medicines
for Malaria Venture, 20, Route de Pré-Bois, 1215 Geneva, Switzerland
| | - Michael J. Palmer
- Medicines
for Malaria Venture, 20, Route de Pré-Bois, 1215 Geneva, Switzerland
| | - Susan A. Charman
- Centre
for Drug Candidate Optimisation, Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Pradipsinh K. Rathod
- Departments
of Chemistry and Global Health, University
of Washington, Seattle, Washington 98195, United States
| | - Margaret A. Phillips
- Department
of Biochemistry, University of Texas Southwestern
Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9038, United States
| |
Collapse
|
33
|
Cleghorn LAT, Ray PC, Odingo J, Kumar A, Wescott H, Korkegian A, Masquelin T, Lopez Moure A, Wilson C, Davis S, Huggett M, Turner P, Smith A, Epemolu O, Zuccotto F, Riley J, Scullion P, Shishikura Y, Ferguson L, Rullas J, Guijarro L, Read KD, Green SR, Hipskind P, Parish T, Wyatt PG. Identification of Morpholino Thiophenes as Novel Mycobacterium tuberculosis Inhibitors, Targeting QcrB. J Med Chem 2018; 61:6592-6608. [PMID: 29944372 PMCID: PMC6089501 DOI: 10.1021/acs.jmedchem.8b00172] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With the emergence of multidrug-resistant strains of Mycobacterium tuberculosis there is a pressing need for new oral drugs with novel mechanisms of action. Herein, we describe the identification of a novel morpholino-thiophenes (MOT) series following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis strain H37Rv. The design, synthesis, and structure-activity relationships of a range of analogues around the confirmed actives are described. Optimized leads with potent whole cell activity against H37Rv, no cytotoxicity flags, and in vivo efficacy in an acute murine model of infection are described. Mode-of-action studies suggest that the novel scaffold targets QcrB, a subunit of the menaquinol cytochrome c oxidoreductase, part of the bc1-aa3-type cytochrome c oxidase complex that is responsible for driving oxygen-dependent respiration.
Collapse
Affiliation(s)
- Laura A T Cleghorn
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Peter C Ray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Joshua Odingo
- TB Discovery Research , Infectious Disease Research Institute (IDRI) , 1616 Eastlake Avenue East, Suite 400 , Seattle , Washington 98102 , United States
| | - Anuradha Kumar
- TB Discovery Research , Infectious Disease Research Institute (IDRI) , 1616 Eastlake Avenue East, Suite 400 , Seattle , Washington 98102 , United States
| | - Heather Wescott
- TB Discovery Research , Infectious Disease Research Institute (IDRI) , 1616 Eastlake Avenue East, Suite 400 , Seattle , Washington 98102 , United States
| | - Aaron Korkegian
- TB Discovery Research , Infectious Disease Research Institute (IDRI) , 1616 Eastlake Avenue East, Suite 400 , Seattle , Washington 98102 , United States
| | - Thierry Masquelin
- Eli Lilly and Company, Discovery Chemistry Research, Lilly Corporate Centre , MC/87/02/203, G17, Indianapolis , Indiana 46285 , United States
| | - Abraham Lopez Moure
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Caroline Wilson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Susan Davis
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Margaret Huggett
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Penelope Turner
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Alasdair Smith
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Ola Epemolu
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Fabio Zuccotto
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Jennifer Riley
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Paul Scullion
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Yoko Shishikura
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Liam Ferguson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Joaquin Rullas
- Diseases of the Developing World , GlaxoSmithKline , Calle Severo Ochoa 2 , 28760 Tres Cantos , Madrid Spain
| | - Laura Guijarro
- Diseases of the Developing World , GlaxoSmithKline , Calle Severo Ochoa 2 , 28760 Tres Cantos , Madrid Spain
| | - Kevin D Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Simon R Green
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Phil Hipskind
- Eli Lilly and Company, Discovery Chemistry Research, Lilly Corporate Centre , MC/87/02/203, G17, Indianapolis , Indiana 46285 , United States
| | - Tanya Parish
- TB Discovery Research , Infectious Disease Research Institute (IDRI) , 1616 Eastlake Avenue East, Suite 400 , Seattle , Washington 98102 , United States
| | - Paul G Wyatt
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| |
Collapse
|
34
|
Plasmodium falciparum dihydroorotate dehydrogenase: a drug target against malaria. Future Med Chem 2018; 10:1853-1874. [PMID: 30019917 DOI: 10.4155/fmc-2017-0250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malaria remains one of the most lethal infectious diseases worldwide, and the most severe form is caused by Plasmodium falciparum. In recent decades, the major challenge to treatment of this disease has been the ability of the protozoan parasite to develop resistance to the drugs that are currently in use. Among P. falciparum enzymes, P. falciparum dihydroorotate dehydrogenase has been identified as an important target in drug discovery. Interference with the activity of this enzyme inhibits de novo pyrimidine biosynthesis and consequently prevents malarial infection. Organic synthesis, x-ray crystallography, high-throughput screening and molecular modeling methods such as molecular docking, quantitative structure-activity relationships, structure-based pharmacophore mapping and molecular dynamics simulations have been applied to the discovery of new inhibitors of P. falciparum dihydroorotate dehydrogenase.
Collapse
|
35
|
van Schalkwyk DA, Moon RW, Blasco B, Sutherland CJ. Comparison of the susceptibility of Plasmodium knowlesi and Plasmodium falciparum to antimalarial agents. J Antimicrob Chemother 2018; 72:3051-3058. [PMID: 28961865 PMCID: PMC5890772 DOI: 10.1093/jac/dkx279] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
Background The simian malaria parasite Plasmodium knowlesi is now a well-recognized pathogen of humans in South-East Asia. Clinical infections appear adequately treated with existing drug regimens, but the evidence base for this practice remains weak. The availability of P. knowlesi cultures adapted to continuous propagation in human erythrocytes enables specific studies of in vitro susceptibility of the species to antimalarial agents, and could provide a surrogate system for testing investigational compounds against Plasmodium vivax and other non-Plasmodium falciparum infections that cannot currently be propagated in vitro. Objectives We sought to optimize protocols for in vitro susceptibility testing of P. knowlesi and to contrast outputs with those obtained for P. falciparum under comparable test conditions. Methods Growth monitoring of P. knowlesi in vitro was by DNA quantification using a SYBR Green fluorescent assay or by colorimetric detection of the lactate dehydrogenase enzyme. For comparison, P. falciparum was tested under conditions identical to those used for P. knowlesi. Results The SYBR Green I assay proved the most robust format over one (27 h) or two (54 h) P. knowlesi life cycles. Unexpectedly, P. knowlesi displays significantly greater susceptibility to the dihydrofolate reductase inhibitors pyrimethamine, cycloguanil and trimethoprim than does P. falciparum, but is less susceptible to the selective agents blasticidin and DSM1 used in parasite transfections. Inhibitors of dihydroorotate dehydrogenase also demonstrate lower activity against P. knowlesi. Conclusions The fluorescent assay system validated here identified species-specific P. knowlesi drug susceptibility profiles and can be used for testing investigational compounds for activity against non-P. falciparum malaria.
Collapse
Affiliation(s)
- Donelly A van Schalkwyk
- Department of Immunology & Infection, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Robert W Moon
- Department of Immunology & Infection, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Benjamin Blasco
- Medicines for Malaria Venture, 20 rte de Pré Bois, Geneva CH 1215, Switzerland
| | - Colin J Sutherland
- Department of Immunology & Infection, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,Department of Clinical Parasitology, Hospital for Tropical Diseases, Mortimer Market Centre, Capper Street, London WC1E 6JB, UK
| |
Collapse
|
36
|
Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomed Pharmacother 2018; 104:8-27. [PMID: 29758416 DOI: 10.1016/j.biopha.2018.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/22/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - T R Bhardwaj
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - D N Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|
37
|
Luth MR, Gupta P, Ottilie S, Winzeler EA. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis 2018; 4:301-314. [PMID: 29451780 PMCID: PMC5848146 DOI: 10.1021/acsinfecdis.7b00276] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although
many new anti-infectives have been discovered and developed solely
using phenotypic cellular screening and assay optimization, most researchers
recognize that structure-guided drug design is more practical and
less costly. In addition, a greater chemical space can be interrogated
with structure-guided drug design. The practicality of structure-guided
drug design has launched a search for the targets of compounds discovered
in phenotypic screens. One method that has been used extensively in
malaria parasites for target discovery and chemical validation is in vitro evolution and whole genome analysis (IVIEWGA).
Here, small molecules from phenotypic screens with demonstrated antiparasitic
activity are used in genome-based target discovery methods. In this
Review, we discuss the newest, most promising druggable targets discovered
or further validated by evolution-based methods, as well as some exceptions.
Collapse
Affiliation(s)
- Madeline R. Luth
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Purva Gupta
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Elizabeth A. Winzeler
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
38
|
Brandão GC, Rocha Missias FC, Arantes LM, Soares LF, Roy KK, Doerksen RJ, Braga de Oliveira A, Pereira GR. Antimalarial naphthoquinones. Synthesis via click chemistry, in vitro activity , docking to Pf DHODH and SAR of lapachol-based compounds. Eur J Med Chem 2018; 145:191-205. [DOI: 10.1016/j.ejmech.2017.12.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/29/2022]
|
39
|
Wadood A, Ghufran M, Hassan SF, Khan H, Azam SS, Rashid U. In silico identification of promiscuous scaffolds as potential inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase for treatment of Falciparum malaria. PHARMACEUTICAL BIOLOGY 2017; 55:19-32. [PMID: 27650666 PMCID: PMC7011789 DOI: 10.1080/13880209.2016.1225778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/12/2016] [Indexed: 05/20/2023]
Abstract
CONTEXT Malaria remains one of the prevalent infectious diseases worldwide. Plasmodium falciparum 1-deoxy-d-xylulose-5-phosphate reductoisomerase (PfDXR) plays a role in isoprenoid biosynthesis in the malaria parasite, making this parasite enzyme an attractive target for antimalarial drug design. Fosmidomycin is a promising DXR inhibitor, which showed safety as well as efficacy against Plasmodium falciparum malaria in clinical trials. However, due to its poor oral bioavailability and non-drug-like properties, the focus of medicinal chemists is to develop inhibitors with improved pharmacological properties. OBJECTIVE This study described the computational design of new and potent inhibitors for deoxyxylulose 5-phosphate reductoisomerase and the prediction of their pharmacokinetic and pharmacodynamic properties. MATERIAL AND METHODS A complex-based pharmacophore model was generated from the complex X-ray crystallographic structure of PfDXR using MOE (Molecular Operating Environment). Furthermore, MOE-Dock was used as docking software to predict the binding modes of hits and target enzyme. RESULTS Finally, 14 compounds were selected as new and potent inhibitors of PfDXR on the basis of pharmacophore mapping, docking score, binding energy and binding interactions with the active site residues of the target protein. The predicted pharmacokinetic properties showed improved permeability by efficiently crossing blood-brain barrier. While, in silico promiscuity binding data revealed that these hits also have the ability to bind with other P. falciparum drug targets. DISCUSSION AND CONCLUSION In conclusion, innovative scaffolds with novel modes of action, improved efficacy and acceptable physiochemical/pharmacokinetic properties were computationally identified.
Collapse
Affiliation(s)
- Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- CONTACT Abdul WadoodDepartment of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Umer Rashid Department of Chemistry, COMSAT, Abbatabad, Pakistan
| | - Mehreen Ghufran
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | | | - Huma Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Syed Sikandar Azam
- Department of Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSAT, Abbatabad, Pakistan
- CONTACT Abdul WadoodDepartment of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Umer Rashid Department of Chemistry, COMSAT, Abbatabad, Pakistan
| |
Collapse
|
40
|
Moreno-Sabater A, Pérignon JL, Mazier D, Lavazec C, Soulard V. Humanized mouse models infected with human Plasmodium species for antimalarial drug discovery. Expert Opin Drug Discov 2017; 13:131-140. [DOI: 10.1080/17460441.2018.1410136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alicia Moreno-Sabater
- UPMC Faculte de Medecine - INSERM U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, Île-de-France France
- Assistance Publique - Hopitaux de Paris - Hôpitaux Universitaires Paris-Est - Site Saint-Antoine, Paris, Île-de-France France
| | | | - Dominique Mazier
- UPMC Faculte de Medecine - INSERM U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, Île-de-France France
| | - Catherine Lavazec
- Institut Cochin – INSERM U1016, Paris, Île-de-France France
- CNRS - UMR8104, Paris, France
- Universite Paris Descartes, Paris, Île-de-France France
| | - Valerie Soulard
- UPMC Faculte de Medecine - INSERM U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, Île-de-France France
| |
Collapse
|
41
|
Thillainayagam M, Malathi K, Ramaiah S. In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J Biomol Struct Dyn 2017; 36:3993-4009. [DOI: 10.1080/07391102.2017.1404935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mahalakshmi Thillainayagam
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| | - Kullappan Malathi
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| |
Collapse
|
42
|
Arnould S, Rodier G, Matar G, Vincent C, Pirot N, Delorme Y, Berthet C, Buscail Y, Noël JY, Lachambre S, Jarlier M, Bernex F, Delpech H, Vidalain PO, Janin YL, Theillet C, Sardet C. Checkpoint kinase 1 inhibition sensitises transformed cells to dihydroorotate dehydrogenase inhibition. Oncotarget 2017; 8:95206-95222. [PMID: 29221122 PMCID: PMC5707016 DOI: 10.18632/oncotarget.19199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/17/2017] [Indexed: 12/17/2022] Open
Abstract
Reduction in nucleotide pools through the inhibition of mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) has been demonstrated to effectively reduce cancer cell proliferation and tumour growth. The current study sought to investigate whether this antiproliferative effect could be enhanced by combining Chk1 kinase inhibition. The pharmacological activity of DHODH inhibitor teriflunomide was more selective towards transformed mouse embryonic fibroblasts than their primary or immortalised counterparts, and this effect was amplified when cells were subsequently exposed to PF477736 Chk1 inhibitor. Flow cytometry analyses revealed substantial accumulations of cells in S and G2/M phases, followed by increased cytotoxicity which was characterised by caspase 3-dependent induction of cell death. Associating PF477736 with teriflunomide also significantly sensitised SUM159 and HCC1937 human triple negative breast cancer cell lines to dihydroorotate dehydrogenase inhibition. The main characteristic of this effect was the sustained accumulation of teriflunomide-induced DNA damage as cells displayed increased phospho serine 139 H2AX (γH2AX) levels and concentration-dependent phosphorylation of Chk1 on serine 345 upon exposure to the combination as compared with either inhibitor alone. Importantly a similar significant increase in cell death was observed upon dual siRNA mediated depletion of Chk1 and DHODH in both murine and human cancer cell models. Altogether these results suggest that combining DHODH and Chk1 inhibitions may be a strategy worth considering as a potential alternative to conventional chemotherapies.
Collapse
Affiliation(s)
- Stéphanie Arnould
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Geneviève Rodier
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Gisèle Matar
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Charles Vincent
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Nelly Pirot
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Yoann Delorme
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Charlène Berthet
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Yoan Buscail
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Jean Yohan Noël
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Simon Lachambre
- Montpellier RIO Imaging, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Marta Jarlier
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Florence Bernex
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Hélène Delpech
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Pierre Olivier Vidalain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Equipe Chimie and Biologie, Modélisation et Immunologie pour la Thérapie, CNRS UMR 8601 CNRS-Université Paris Descartes, Paris, France
| | - Yves L. Janin
- Institut Pasteur, Unité de Chimie et Biocatalyse, CNRS UMR3523, Paris, France
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
43
|
+Targeting Mitochondrial Functions as Antimalarial Regime, What Is Next? CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
2-Aminothiophene scaffolds: Diverse biological and pharmacological attributes in medicinal chemistry. Eur J Med Chem 2017; 140:465-493. [PMID: 28987607 DOI: 10.1016/j.ejmech.2017.09.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/02/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
2-Aminothiophenes are important five-membered heterocyclic building blocks in organic synthesis, and the chemistry of these small molecules is still developing based on the discovery of cyclization by Gewald. Another attractive feature of 2-aminothiophene scaffolds is their ability to act as synthons for the synthesis of biological active thiophene-containing heterocycles, conjugates and hybrids. Currently, the biological actions of 2-aminothiophenes or their 2-N-substituted analogues are still being investigated because of their various mechanisms of action (e.g., pharmacophore and pharmacokinetic properties). Likewise, the 2-aminothiophene family is used as diverse promising selective inhibitors, receptors, and modulators in medicinal chemistry, and these compounds even exhibit effective pharmacological properties in the various clinical phases of appropriate diseases. In this review, major biological and pharmacological reports on 2-aminothiophenes and related compounds have been highlighted; most perspective drug-candidate hits were selected for discussion and described, along with additional synthetic pathways. In addition, we focused on the literature dedicated to 2-aminothiophenes and 2-N-substituted derivatives, which have been published from 2010 to 2017.
Collapse
|
45
|
Interconvertible geometric isomers of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors exhibit multiple binding modes. Bioorg Med Chem Lett 2017; 27:3878-3882. [DOI: 10.1016/j.bmcl.2017.06.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/15/2017] [Accepted: 06/17/2017] [Indexed: 11/21/2022]
|
46
|
Manhas A, Lone MY, Jha PC. Multicomplex-based pharmacophore modeling coupled with molecular dynamics simulations: An efficient strategy for the identification of novel inhibitors of Pf DHODH. J Mol Graph Model 2017; 75:413-423. [DOI: 10.1016/j.jmgm.2017.04.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 01/08/2023]
|
47
|
Reis RAG, Calil FA, Feliciano PR, Pinheiro MP, Nonato MC. The dihydroorotate dehydrogenases: Past and present. Arch Biochem Biophys 2017; 632:175-191. [PMID: 28666740 DOI: 10.1016/j.abb.2017.06.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 01/24/2023]
Abstract
The flavoenzyme dihydroorotate dehydrogenase catalyzes the stereoselective oxidation of (S)-dihydroorotate to orotate in the fourth of the six conserved enzymatic reactions involved in the de novo pyrimidine biosynthetic pathway. Inhibition of pyrimidine metabolism by selectively targeting DHODHs has been exploited in the development of new therapies against cancer, immunological disorders, bacterial and viral infections, and parasitic diseases. Through a chronological narrative, this review summarizes the efforts of the scientific community to achieve our current understanding of structural and biochemical properties of DHODHs. It also attempts to describe the latest advances in medicinal chemistry for therapeutic development based on the selective inhibition of DHODH, including an overview of the experimental techniques used for ligand screening during the process of drug discovery.
Collapse
Affiliation(s)
- Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | - Felipe Antunes Calil
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Patricia Rosa Feliciano
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Matheus Pinto Pinheiro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil
| | - M Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, Brazil.
| |
Collapse
|
48
|
Bu FZ, Tan XJ, Xing DX, Wang C. Design, synthesis, crystal structure and in vitro cytotoxic properties of a novel Schiff base derived from indole and biphenyl. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2017; 73:546-555. [DOI: 10.1107/s2053229617009044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/16/2017] [Indexed: 03/18/2023]
Abstract
A novel and potentially active dihydroorotate dehydrogenase (DHODH) inhibitor, namely 3-({(E)-[(E)-1-(biphenyl-4-yl)ethylidene]hydrazinylidene}methyl)-1H-indole (BEHI) acetonitrile disolvate, C23H19N3·2CH3CN, has been designed and synthesized. The structure of BEHI was characterized by elemental analysis, Q-TOF (quadrupole time-of-flight) MS, NMR, UV–Vis and single-crystal X-ray diffraction. The antitumour activity of the target molecule was evaluated by the MTT method. Results indicated that BEHI exhibited rather potent cytotoxic activity against human A549 (IC50 = 20.5 µM) and mouse breast 4T1 (IC50 = 18.5 µM) cancer cell lines. Meanwhile, to rationalize its potencies in the target, BEHI was docked into DHODH and the interactions with the active site residues were analyzed. Single-crystal structure analysis indicated that hydrogen bonds are present only between BEHI and acetonitrile solvent molecules in the asymmetric unit. The interplay of weak π–π stacking and weak C(N)—H...π interactions between neighbouring BEHI molecules play crucial roles in the formation of the final supramolecular frameworks.
Collapse
|
49
|
Maetani M, Kato N, Jabor VAP, Calil FA, Nonato MC, Scherer CA, Schreiber SL. Discovery of Antimalarial Azetidine-2-carbonitriles That Inhibit P. falciparum Dihydroorotate Dehydrogenase. ACS Med Chem Lett 2017; 8:438-442. [PMID: 28435533 PMCID: PMC5392761 DOI: 10.1021/acsmedchemlett.7b00030] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Dihydroorotate dehydrogenase (DHODH) is an enzyme necessary for pyrimidine biosynthesis in protozoan parasites of the genus Plasmodium, the causative agents of malaria. We recently reported the identification of novel compounds derived from diversity-oriented synthesis with activity in multiple stages of the malaria parasite life cycle. Here, we report the optimization of a potent series of antimalarial inhibitors consisting of azetidine-2-carbonitriles, which we had previously shown to target P. falciparum DHODH in a biochemical assay. Optimized compound BRD9185 (27) has in vitro activity against multidrug-resistant blood-stage parasites (EC50 = 0.016 μM) and is curative after just three doses in a P. berghei mouse model. BRD9185 has a long half-life (15 h) and low clearance in mice and represents a new structural class of DHODH inhibitors with potential as antimalarial drugs.
Collapse
Affiliation(s)
- Micah Maetani
- Department of Chemistry
and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Nobutaka Kato
- Broad Institute, Cambridge, Massachusetts 02142, United States
| | - Valquiria A. P. Jabor
- School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Felipe A. Calil
- School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Maria Cristina Nonato
- School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | | | - Stuart L. Schreiber
- Department of Chemistry
and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Broad Institute, Cambridge, Massachusetts 02142, United States
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
50
|
Is the Mitochondrion a Good Malaria Drug Target? Trends Parasitol 2017; 33:185-193. [DOI: 10.1016/j.pt.2016.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/25/2016] [Accepted: 10/06/2016] [Indexed: 01/21/2023]
|