1
|
Esclapez J, Matarredona L, Zafrilla G, Camacho M, Bonete MJ, Zafrilla B. Optimization of Phycocyanobilin Synthesis in E. coli BL21: Biotechnological Insights and Challenges for Scalable Production. Genes (Basel) 2024; 15:1058. [PMID: 39202418 PMCID: PMC11353606 DOI: 10.3390/genes15081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Phycocyanobilin (PCB) is a small chromophore found in certain phycobiliproteins, such as phycocyanins (PCs) and allophycocyanins (APCs). PCB, along with other phycobilins (PBs) and intermediates such as biliverdin (BV) or phycoerythrobilin (PEB), is attracting increasing biotechnological interest due to its fluorescent and medicinal properties that allow potential applications in biomedicine and the food industry. This study aims to optimize PCB synthesis in Escherichia coli BL21 (DE3) and scale the process to a pre-industrial level. Parameters such as optimal temperature, inducer concentration, initial OD600, and stirring speed were analyzed in shake flask cultures to maximize PCB production. The best results were obtained at a temperature of 28 °C, an IPTG concentration of 0.1 mM, an initial OD600 of 0.5, and an orbital shaking speed of 260 rpm. Furthermore, the optimized protocol was scaled up into a 2 L bioreactor batch, achieving a maximum PCB concentration of 3.8 mg/L. Analysis of the results revealed that biosynthesis of exogenous PBs in Escherichia coli BL21 (DE3) is highly dependent on the metabolic burden of the host. Several scenarios, such as too rapid growth, high inducer concentration, or mechanical stress, can advance entry into the stationary phase. That progressively halts pigment synthesis, leading, in some cases, to its excretion into the growth media and ultimately triggering rapid degradation by the host. These conclusions provide a promising protocol for scalable PCB production and highlight the main biotechnological challenges to increase the yields of the process.
Collapse
Affiliation(s)
- Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain; (J.E.); (L.M.); (G.Z.); (M.C.)
| | - Laura Matarredona
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain; (J.E.); (L.M.); (G.Z.); (M.C.)
| | - Guillermo Zafrilla
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain; (J.E.); (L.M.); (G.Z.); (M.C.)
- Global BioTech SL, C/Padre Manjón Nº2, 03560 Alicante, Spain
| | - Mónica Camacho
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain; (J.E.); (L.M.); (G.Z.); (M.C.)
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain; (J.E.); (L.M.); (G.Z.); (M.C.)
| | - Basilio Zafrilla
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain; (J.E.); (L.M.); (G.Z.); (M.C.)
- Global BioTech SL, C/Padre Manjón Nº2, 03560 Alicante, Spain
| |
Collapse
|
2
|
Garric S, Ratin M, Marie D, Foulon V, Probert I, Rodriguez F, Six C. Impaired photoacclimation in a kleptoplastidic dinoflagellate reveals physiological limits of early stages of endosymbiosis. Curr Biol 2024; 34:3064-3076.e5. [PMID: 38936366 DOI: 10.1016/j.cub.2024.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Dinophysis dinoflagellates are predators of Mesodinium ciliates, from which they retain only the plastids of cryptophyte origin. The absence of nuclear photosynthetic cryptophyte genes in Dinophysis raises intriguing physiological and evolutionary questions regarding the functional dynamics of these temporary kleptoplastids within a foreign cellular environment. In an experimental setup including two light conditions, the comparative analysis with Mesodinium rubrum and the cryptophyte Teleaulax amphioxeia revealed that Dinophysis acuminata possessed a smaller and less dynamic functional photosynthetic antenna for green light, a function performed by phycoerythrin. We showed that the lack of the cryptophyte nucleus prevented the synthesis of the phycoerythrin α subunit, thereby hindering the formation of a complete phycoerythrin in Dinophysis. In particular, biochemical analyses showed that Dinophysis acuminata synthesized a poorly stable, incomplete phycoerythrin composed of chromophorylated β subunits, with impaired performance. We show that, consequently, a continuous supply of new plastids is crucial for growth and effective photoacclimation in this organism. Transcriptome analyses revealed that all examined strains of Dinophysis spp. have acquired the cryptophyte pebA and pebB genes through horizontal gene transfer, suggesting a potential ability to synthesize the phycobilin pigments bound to the cryptophyte phycoerythrin. By emphasizing that a potential long-term acquisition of the cryptophyte plastid relies on establishing genetic independence for essential functions such as light harvesting, this study highlights the intricate molecular challenges inherent in the enslavement of organelles and the processes involved in the diversification of photosynthetic organisms through endosymbiosis.
Collapse
Affiliation(s)
- Sarah Garric
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Morgane Ratin
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Dominique Marie
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Valentin Foulon
- Centre National de la Recherche Scientifique, UMR 6285 Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance (Lab-STICC), Technopole Brest-Iroise, Brest 29238, France
| | - Ian Probert
- Sorbonne Université, FR 2424, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Francisco Rodriguez
- Centro oceanográfico de Vigo (IEO-CSIC), Subida a Radio Faro 50, Vigo 36390, Spain
| | - Christophe Six
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France.
| |
Collapse
|
3
|
Druce E, Grego M, Bolhuis H, Johnes PJ, Sánchez-Baracaldo P. Draft Genome Sequences of Synechococcus sp. strains CCAP1479/9, CCAP1479/10, CCAP1479/13, CCY0621, and CCY9618: Five Freshwater Syn/Pro Clade Picocyanobacteria. J Genomics 2023; 11:26-36. [PMID: 37152813 PMCID: PMC10161378 DOI: 10.7150/jgen.81013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/13/2023] [Indexed: 05/09/2023] Open
Abstract
Picocyanobacteria are essential primary producers in freshwaters yet little is known about their genomic diversity and ecological niches. We report here five draft genomes of freshwater picocyanobacteria: Synechococcus sp. CCAP1479/9, Synechococcus sp. CCAP1479/10, and Synechococcus sp. CCAP1479/13 isolated from Lake Windermere in the Lake District, UK; and Synechococcus sp. CCY0621 and Synechococcus sp. CCY9618 isolated from lakes in The Netherlands. Phylogenetic analysis reveals all five strains belonging to sub-cluster 5.2 of the Synechococcus and Prochlorococcus clade of Cyanobacteria. These five strains are divergent from Synechococcus elongatus, an often-used model for freshwater Synechococcus. Functional annotation revealed significant differences in the number of genes involved in the transport and metabolism of several macro-molecules between freshwater picocyanobacteria from sub-cluster 5.2 and Synechococcus elongatus, including amino acids, lipids, and carbohydrates. Comparative genomic analysis identified further differences in the presence of photosynthesis-associated proteins while gene neighbourhood comparisons revealed alternative structures of the nitrate assimilation operon nirA.
Collapse
Affiliation(s)
- Elliot Druce
- School of Geographical Sciences, Faculty of Science, University of Bristol, Bristol, BS8 1SS, United Kingdom
| | - Michele Grego
- CNRS and Sorbonne Université, FR 2424, Roscoff Culture Collection, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, the Netherlands
| | - Penny J. Johnes
- School of Geographical Sciences, Faculty of Science, University of Bristol, Bristol, BS8 1SS, United Kingdom
| | - Patricia Sánchez-Baracaldo
- School of Geographical Sciences, Faculty of Science, University of Bristol, Bristol, BS8 1SS, United Kingdom
| |
Collapse
|
4
|
Chen H, Qi H, Xiong P. Phycobiliproteins-A Family of Algae-Derived Biliproteins: Productions, Characterization and Pharmaceutical Potentials. Mar Drugs 2022; 20:md20070450. [PMID: 35877743 PMCID: PMC9318637 DOI: 10.3390/md20070450] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Phycobiliproteins (PBPs) are colored and water-soluble biliproteins found in cyanobacteria, rhodophytes, cryptomonads and cyanelles. They are divided into three main types: allophycocyanin, phycocyanin and phycoerythrin, according to their spectral properties. There are two methods for PBPs preparation. One is the extraction and purification of native PBPs from Cyanobacteria, Cryptophyta and Rhodophyta, and the other way is the production of recombinant PBPs by heterologous hosts. Apart from their function as light-harvesting antenna in photosynthesis, PBPs can be used as food colorants, nutraceuticals and fluorescent probes in immunofluorescence analysis. An increasing number of reports have revealed their pharmaceutical potentials such as antioxidant, anti-tumor, anti-inflammatory and antidiabetic effects. The advances in PBP biogenesis make it feasible to construct novel PBPs with various activities and produce recombinant PBPs by heterologous hosts at low cost. In this review, we present a critical overview on the productions, characterization and pharmaceutical potentials of PBPs, and discuss the key issues and future perspectives on the exploration of these valuable proteins.
Collapse
Affiliation(s)
- Huaxin Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
- Correspondence:
| | - Hongtao Qi
- School of Life Sciences, Qingdao University, Qingdao 266000, China;
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
| |
Collapse
|
5
|
Tomazic N, Overkamp KE, Wegner H, Gu B, Mahler F, Aras M, Keller S, Pierik AJ, Hofmann E, Frankenberg-Dinkel N. Exchange of a single amino acid residue in the cryptophyte phycobiliprotein lyase GtCPES expands its substrate specificity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148493. [PMID: 34537203 DOI: 10.1016/j.bbabio.2021.148493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Cryptophytes are among the few eukaryotes employing phycobiliproteins (PBP) for light harvesting during oxygenic photosynthesis. In contrast to cyanobacterial PBP that are organized in membrane-associated phycobilisomes, those from cryptophytes are soluble within the chloroplast thylakoid lumen. Their light-harvesting capacity is due to covalent linkage of several open-chain tetrapyrrole chromophores (phycobilins). Guillardia theta utilizes the PBP phycoerythrin 545 with 15,16-dihydrobiliverdin (DHBV) in addition to phycoerythrobilin (PEB) as chromophores. The assembly of PBPs in cryptophytes involves the action of PBP-lyases as shown for cyanobacterial PBP. PBP-lyases facilitate the attachment of the chromophore in the right configuration and stereochemistry. Here we present the functional characterization of the eukaryotic S-type PBP lyase GtCPES. We show GtCPES-mediated transfer and covalent attachment of PEB to the conserved Cys82 of the acceptor PBP β-subunit (PmCpeB) of Prochlorococcus marinus MED4. On the basis of the previously solved crystal structure, the GtCPES binding pocket was investigated using site-directed mutagenesis. Thereby, amino acid residues involved in phycobilin binding and transfer were identified. Interestingly, exchange of a single amino acid residue Met67 to Ala extended the substrate specificity to phycocyanobilin (PCB), most likely by enlarging the substrate-binding pocket. Variant GtCPES_M67A binds both PEB and PCB forming a stable, colored complex in vitro and produced in Escherichia coli. GtCPES_M67A is able to mediate PCB transfer to Cys82 of PmCpeB. Based on these findings, we postulate that this single amino acid residue has a crucial role for bilin binding specificity of S-type phycoerythrin lyases but additional factors regulate handover to the target protein.
Collapse
Affiliation(s)
- Natascha Tomazic
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Kristina E Overkamp
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Helen Wegner
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Bin Gu
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Florian Mahler
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Germany
| | - Marco Aras
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Germany; Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Antonio J Pierik
- Biochemistry, Faculty for Chemistry, Technische Universität Kaiserslautern (TUK), Germany
| | - Eckhard Hofmann
- Proteincrystallography, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
6
|
Kronfel CM, Biswas A, Frick JP, Gutu A, Blensdorf T, Karty JA, Kehoe DM, Schluchter WM. The roles of the chaperone-like protein CpeZ and the phycoerythrobilin lyase CpeY in phycoerythrin biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:549-561. [PMID: 31173730 DOI: 10.1016/j.bbabio.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/26/2019] [Accepted: 06/02/2019] [Indexed: 02/08/2023]
Abstract
Phycoerythrin (PE) present in the distal ends of light-harvesting phycobilisome rods in Fremyella diplosiphon (Tolypothrix sp. PCC 7601) contains five phycoerythrobilin (PEB) chromophores attached to six cysteine residues for efficient green light capture for photosynthesis. Chromophore ligation on PE subunits occurs through bilin lyase catalyzed reactions, but the characterization of the roles of all bilin lyases for phycoerythrin is not yet complete. To gain a more complete understanding about the individual functions of CpeZ and CpeY in PE biogenesis in cyanobacteria, we examined PE and phycobilisomes purified from wild type F. diplosiphon, cpeZ and cpeY knockout mutants. We find that the cpeZ and cpeY mutants accumulate less PE than wild type cells. We show that in the cpeZ mutant, chromophorylation of both PE subunits is affected, especially the Cys-80 and Cys-48/Cys-59 sites of CpeB, the beta-subunit of PE. The cpeY mutant showed reduced chromophorylation at Cys-82 of CpeA. We also show that, in vitro, CpeZ stabilizes PE subunits and assists in refolding of CpeB after denaturation. Taken together, we conclude that CpeZ acts as a chaperone-like protein, assisting in the folding/stability of PE subunits, allowing bilin lyases such as CpeY and CpeS to attach PEB to their PE subunit.
Collapse
Affiliation(s)
- Christina M Kronfel
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Avijit Biswas
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | - Jacob P Frick
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Andrian Gutu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tyler Blensdorf
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
7
|
Interplay between differentially expressed enzymes contributes to light color acclimation in marine Synechococcus. Proc Natl Acad Sci U S A 2019; 116:6457-6462. [PMID: 30846551 DOI: 10.1073/pnas.1810491116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine Synechococcus, a globally important group of cyanobacteria, thrives in various light niches in part due to its varied photosynthetic light-harvesting pigments. Many Synechococcus strains use a process known as chromatic acclimation to optimize the ratio of two chromophores, green-light-absorbing phycoerythrobilin (PEB) and blue-light-absorbing phycourobilin (PUB), within their light-harvesting complexes. A full mechanistic understanding of how Synechococcus cells tune their PEB to PUB ratio during chromatic acclimation has not yet been obtained. Here, we show that interplay between two enzymes named MpeY and MpeZ controls differential PEB and PUB covalent attachment to the same cysteine residue. MpeY attaches PEB to the light-harvesting protein MpeA in green light, while MpeZ attaches PUB to MpeA in blue light. We demonstrate that the ratio of mpeY to mpeZ mRNA determines if PEB or PUB is attached. Additionally, strains encoding only MpeY or MpeZ do not acclimate. Examination of strains of Synechococcus isolated from across the globe indicates that the interplay between MpeY and MpeZ uncovered here is a critical feature of chromatic acclimation for marine Synechococcus worldwide.
Collapse
|
8
|
Lu L, Zhao BQ, Miao D, Ding WL, Zhou M, Scheer H, Zhao KH. A Simple Preparation Method for Phytochromobilin. Photochem Photobiol 2017; 93:675-680. [DOI: 10.1111/php.12710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Lu Lu
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Bao-Qing Zhao
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Dan Miao
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Hugo Scheer
- Department Biologie I; Universität München; München Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| |
Collapse
|
9
|
Mahmoud RM, Sanfilippo JE, Nguyen AA, Strnat JA, Partensky F, Garczarek L, Abo El Kassem N, Kehoe DM, Schluchter WM. Adaptation to Blue Light in Marine Synechococcus Requires MpeU, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases. Front Microbiol 2017; 8:243. [PMID: 28270800 PMCID: PMC5318389 DOI: 10.3389/fmicb.2017.00243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/03/2017] [Indexed: 11/25/2022] Open
Abstract
Marine Synechococcus has successfully adapted to environments with different light colors, which likely contributes to this genus being the second most abundant group of microorganisms worldwide. Populations of Synechococcus that grow in deep, blue ocean waters contain large amounts of the blue-light absorbing chromophore phycourobilin (PUB) in their light harvesting complexes (phycobilisomes). Here, we show that all Synechococcus strains adapted to blue light possess a gene called mpeU. MpeU is structurally similar to phycobilin lyases, enzymes that ligate chromophores to phycobiliproteins. Interruption of mpeU caused a reduction in PUB content, impaired phycobilisome assembly and reduced growth rate more strongly in blue than green light. When mpeU was reintroduced in the mpeU mutant background, the mpeU-less phenotype was complemented in terms of PUB content and phycobilisome content. Fluorescence spectra of mpeU mutant cells and purified phycobilisomes revealed red-shifted phycoerythrin emission peaks, likely indicating a defect in chromophore ligation to phycoerythrin-I (PE-I) or phycoerythrin-II (PE-II). Our results suggest that MpeU is a lyase-isomerase that attaches a phycoerythrobilin to a PEI or PEII subunit and isomerizes it to PUB. MpeU is therefore an important determinant in adaptation of Synechococcus spp. to capture photons in blue light environments throughout the world’s oceans.
Collapse
Affiliation(s)
- Rania M Mahmoud
- Department of Biology, Indiana University, BloomingtonIN, USA; Department of Botany, Faculty of Science, University of FayoumFayoum, Egypt
| | | | - Adam A Nguyen
- Department of Biological Sciences, University of New Orleans, New OrleansLA, USA; Department of Chemistry, University of New Orleans, New OrleansLA, USA
| | - Johann A Strnat
- Department of Biology, Indiana University, Bloomington IN, USA
| | - Frédéric Partensky
- CNRS, Sorbonne Universités, Université Pierre et Marie Curie University Paris 06, UMR 7144 Roscoff, France
| | - Laurence Garczarek
- CNRS, Sorbonne Universités, Université Pierre et Marie Curie University Paris 06, UMR 7144 Roscoff, France
| | - Nabil Abo El Kassem
- Department of Botany, Faculty of Science, University of Fayoum Fayoum, Egypt
| | - David M Kehoe
- Department of Biology, Indiana University, BloomingtonIN, USA; Indiana Molecular Biology Institute, Indiana University, BloomingtonIN, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New OrleansLA, USA; Department of Chemistry, University of New Orleans, New OrleansLA, USA
| |
Collapse
|
10
|
Gasper R, Schwach J, Hartmann J, Holtkamp A, Wiethaus J, Riedel N, Hofmann E, Frankenberg-Dinkel N. Distinct Features of Cyanophage-encoded T-type Phycobiliprotein Lyase ΦCpeT: THE ROLE OF AUXILIARY METABOLIC GENES. J Biol Chem 2017; 292:3089-3098. [PMID: 28073912 DOI: 10.1074/jbc.m116.769703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/03/2017] [Indexed: 11/06/2022] Open
Abstract
Auxiliary metabolic genes (AMG) are commonly found in the genomes of phages that infect cyanobacteria and increase the fitness of the cyanophage. AMGs are often homologs of host genes, and also typically related to photosynthesis. For example, the ΦcpeT gene in the cyanophage P-HM1 encodes a putative phycobiliprotein lyase related to cyanobacterial T-type lyases, which facilitate attachment of linear tetrapyrrole chromophores to Cys-155 of phycobiliprotein β-subunits, suggesting that ΦCpeT may also help assemble light-harvesting phycobiliproteins during infection. To investigate this possibility, we structurally and biochemically characterized recombinant ΦCpeT. The solved crystal structure of ΦCpeT at 1.8-Å resolution revealed that the protein adopts a similar fold as the cyanobacterial T-type lyase CpcT from Nostoc sp. PCC7120 but overall is more compact and smaller. ΦCpeT specifically binds phycoerythrobilin (PEB) in vitro leading to a tight complex that can also be formed in Escherichia coli when it is co-expressed with genes encoding PEB biosynthesis (i.e. ho1 and pebS). The formed ΦCpeT·PEB complex was very stable as the chromophore was not lost during chromatography and displayed a strong red fluorescence with a fluorescence quantum yield of ΦF = 0.3. This complex was not directly able to transfer PEB to the host phycobiliprotein β-subunit. However, it could assist the host lyase CpeS in its function by providing a pool of readily available PEB, a feature that might be important for fast phycobiliprotein assembly during phage infection.
Collapse
Affiliation(s)
| | - Julia Schwach
- Physiology of Microorganisms Group, Faculty for Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum
| | - Jana Hartmann
- Department of Biology, Division for Microbiology, Technical University Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Andrea Holtkamp
- Physiology of Microorganisms Group, Faculty for Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum
| | - Jessica Wiethaus
- Physiology of Microorganisms Group, Faculty for Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum
| | - Natascha Riedel
- Department of Biology, Division for Microbiology, Technical University Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Nicole Frankenberg-Dinkel
- Physiology of Microorganisms Group, Faculty for Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum; Department of Biology, Division for Microbiology, Technical University Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
11
|
Ledermann B, Aras M, Frankenberg-Dinkel N. Biosynthesis of Cyanobacterial Light-Harvesting Pigments and Their Assembly into Phycobiliproteins. MODERN TOPICS IN THE PHOTOTROPHIC PROKARYOTES 2017:305-340. [DOI: 10.1007/978-3-319-51365-2_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Metagenomic Analysis of the Indian Ocean Picocyanobacterial Community: Structure, Potential Function and Evolution. PLoS One 2016; 11:e0155757. [PMID: 27196065 PMCID: PMC4890579 DOI: 10.1371/journal.pone.0155757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 05/04/2016] [Indexed: 11/19/2022] Open
Abstract
Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the genera Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin (apcAB), phycocyanin (cpcAB) and phycoerythin (cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. Comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.
Collapse
|
13
|
Overkamp KE, Gasper R, Kock K, Herrmann C, Hofmann E, Frankenberg-Dinkel N. Insights into the biosynthesis and assembly of cryptophycean phycobiliproteins. J Biol Chem 2014; 289:26691-26707. [PMID: 25096577 DOI: 10.1074/jbc.m114.591131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phycobiliproteins are employed by cyanobacteria, red algae, glaucophytes, and cryptophytes for light-harvesting and consist of apoproteins covalently associated with open-chain tetrapyrrole chromophores. Although the majority of organisms assemble the individual phycobiliproteins into larger aggregates called phycobilisomes, members of the cryptophytes use a single type of phycobiliprotein that is localized in the thylakoid lumen. The cryptophyte Guillardia theta (Gt) uses phycoerythrin PE545 utilizing the uncommon chromophore 15,16-dihydrobiliverdin (DHBV) in addition to phycoerythrobilin (PEB). Both the biosynthesis and the attachment of chromophores to the apophycobiliprotein have not yet been investigated for cryptophytes. In this study, we identified and characterized enzymes involved in PEB biosynthesis. In addition, we present the first in-depth biochemical characterization of a eukaryotic phycobiliprotein lyase (GtCPES). Plastid-encoded HO (GtHo) was shown to convert heme into biliverdin IXα providing the substrate with a putative nucleus-encoded DHBV:ferredoxin oxidoreductase (GtPEBA). A PEB:ferredoxin oxidoreductase (GtPEBB) was found to convert DHBV to PEB, which is the substrate for the phycobiliprotein lyase GtCPES. The x-ray structure of GtCPES was solved at 2.0 Å revealing a 10-stranded β-barrel with a modified lipocalin fold. GtCPES is an S-type lyase specific for binding of phycobilins with reduced C15=C16 double bonds (DHBV and PEB). Site-directed mutagenesis identified residues Glu-136 and Arg-146 involved in phycobilin binding. Based on the crystal structure, a model for the interaction of GtCPES with the apophycobiliprotein CpeB is proposed and discussed.
Collapse
Affiliation(s)
- Kristina E Overkamp
- Physiology of Microorganisms, Faculty for Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Raphael Gasper
- Protein Crystallography, Faculty for Biology and Biotechnology, and Ruhr University Bochum, 44780 Bochum, Germany
| | - Klaus Kock
- Physical Chemistry I, Protein Interactions, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Christian Herrmann
- Physical Chemistry I, Protein Interactions, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty for Biology and Biotechnology, and Ruhr University Bochum, 44780 Bochum, Germany
| | - Nicole Frankenberg-Dinkel
- Physiology of Microorganisms, Faculty for Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
14
|
Kronfel CM, Kuzin AP, Forouhar F, Biswas A, Su M, Lew S, Seetharaman J, Xiao R, Everett JK, Ma LC, Acton TB, Montelione GT, Hunt JF, Paul CEC, Dragomani TM, Boutaghou MN, Cole RB, Riml C, Alvey RM, Bryant DA, Schluchter WM. Structural and biochemical characterization of the bilin lyase CpcS from Thermosynechococcus elongatus. Biochemistry 2013; 52:8663-76. [PMID: 24215428 DOI: 10.1021/bi401192z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded β barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.
Collapse
Affiliation(s)
- Christina M Kronfel
- Department of Biological Sciences, University of New Orleans , New Orleans, LA 70148, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Boutaghou MN, Kronfel CM, Hernandez LS, Biswas A, Schluchter WM, Cole RB. Direct differentiation of A-ring single attachment versus A- and D-ring double attachment of phycoerythrobilin chromophores to phycobiliproteins using MALDI mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:187-192. [PMID: 23378091 DOI: 10.1002/jms.3146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/13/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
Bilin chromophore attachment to phycobiliproteins is an enzyme-catalyzed post-translational modification process. Bilin-lyases attach a bilin chromophore to their cognate protein through a thioether bond between the chromophore and a cysteine moiety. Bilin chromophores are attached to their phycobiliproteins through the 3(1) carbon of the bilin. Double attachment may also occur, and in this case, carbons 3(1) and 18(1) of the bilin are both forming covalent linkages to cysteine moieties. There is a mass spectrometric limitation when examining tryptic peptides containing two (or more) cysteines if one seeks to ascertain whether chromopeptides are singly or doubly attached. The problem is that singly and doubly attached chromopeptides appear at the same m/z value; thus, up until the present, only NMR analysis has been successful at determining whether the chromophore is singly or doubly attached. We report in this work a new, fast and accurate method for discriminating singly from doubly attached chromophores using MALDI-TOF mass spectrometry. This method was developed from mass spectral analysis of chromopeptides that had undergone in vitro or in vivo attachment of bilin chromophores to phycobiliproteins. Distinction is based on a characteristic neutral loss that appears in the MALDI-TOF mass spectrum only when the bilin is singly attached.
Collapse
Affiliation(s)
- M Nazim Boutaghou
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA 70148, USA
| | | | | | | | | | | |
Collapse
|
16
|
Wu XJ, Chang K, Luo J, Zhou M, Scheer H, Zhao KH. Modular generation of fluorescent phycobiliproteins. Photochem Photobiol Sci 2013; 12:1036-40. [DOI: 10.1039/c3pp25383j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus. Proc Natl Acad Sci U S A 2012; 109:20136-41. [PMID: 23161909 DOI: 10.1073/pnas.1211777109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.
Collapse
|
18
|
Coelho SM, Simon N, Ahmed S, Cock JM, Partensky F. Ecological and evolutionary genomics of marine photosynthetic organisms. Mol Ecol 2012; 22:867-907. [PMID: 22989289 DOI: 10.1111/mec.12000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/10/2012] [Accepted: 07/15/2012] [Indexed: 01/05/2023]
Abstract
Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms.
Collapse
Affiliation(s)
- Susana M Coelho
- UPMC-Université Paris 06, Station Biologique de Roscoff, Roscoff, France.
| | | | | | | | | |
Collapse
|
19
|
Biswas A, Boutaghou MN, Alvey RM, Kronfel CM, Cole RB, Bryant DA, Schluchter WM. Characterization of the activities of the CpeY, CpeZ, and CpeS bilin lyases in phycoerythrin biosynthesis in Fremyella diplosiphon strain UTEX 481. J Biol Chem 2011; 286:35509-35521. [PMID: 21865169 PMCID: PMC3195565 DOI: 10.1074/jbc.m111.284281] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/21/2011] [Indexed: 02/02/2023] Open
Abstract
When grown in green light, Fremyella diplosiphon strain UTEX 481 produces the red-colored protein phycoerythrin (PE) to maximize photosynthetic light harvesting. PE is composed of two subunits, CpeA and CpeB, which carry two and three phycoerythrobilin (PEB) chromophores, respectively, that are attached to specific Cys residues via thioether linkages. Specific bilin lyases are hypothesized to catalyze each PEB ligation. Using a heterologous, coexpression system in Escherichia coli, the PEB ligation activities of putative lyase subunits CpeY, CpeZ, and CpeS were tested on the CpeA and CpeB subunits from F. diplosiphon. Purified His(6)-tagged CpeA, obtained by coexpressing cpeA, cpeYZ, and the genes for PEB synthesis, had absorbance and fluorescence emission maxima at 566 and 574 nm, respectively. CpeY alone, but not CpeZ, could ligate PEB to CpeA, but the yield of CpeA-PEB was lower than achieved with CpeY and CpeZ together. Studies with site-specific variants of CpeA(C82S and C139S), together with mass spectrometric analysis of trypsin-digested CpeA-PEB, revealed that CpeY/CpeZ attached PEB at Cys(82) of CpeA. The CpeS bilin lyase ligated PEB at both Cys(82) and Cys(139) of CpeA but very inefficiently; the yield of PEB ligated at Cys(82) was much lower than observed with CpeY or CpeY/CpeZ. However, CpeS efficiently attached PEB to Cys(80) of CpeB but neither CpeY, CpeZ, nor CpeY/CpeZ could ligate PEB to CpeB.
Collapse
Affiliation(s)
- Avijit Biswas
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148
| | - M Nazim Boutaghou
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148
| | - Richard M Alvey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Christina M Kronfel
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148
| | - Richard B Cole
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802; Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Wendy M Schluchter
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148.
| |
Collapse
|
20
|
Alvey RM, Biswas A, Schluchter WM, Bryant DA. Attachment of noncognate chromophores to CpcA of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 by heterologous expression in Escherichia coli. Biochemistry 2011; 50:4890-902. [PMID: 21553904 DOI: 10.1021/bi200307s] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many cyanobacteria use brilliantly pigmented, multisubunit macromolecular structures known as phycobilisomes as antenna to enhance light harvesting for photosynthesis. Recent studies have defined the enzymes that synthesize phycobilin chromophores as well as many of the phycobilin lyase enzymes that attach these chromophores to their cognate apoproteins. The ability of the phycocyanin α-subunit (CpcA) to bind alternative linear tetrapyrrole chromophores was examined through the use of a heterologous expression system in Escherichia coli. E. coli strains produced phycocyanobilin, phytochromobilin, or phycoerythrobilin when they expressed 3Z-phycocyanobilin:ferredoxin oxidoreductase (PcyA), 3Z-phytochromobilin:ferredoxin oxidoreductase (HY2) from Arabidopsis thaliana, or phycoerythrobilin synthase (PebS) from the myovirus P-SSM4, respectively. CpcA from Synechocystis sp. PCC 6803 or Synechococcus sp. PCC 7002 was coexpressed in these strains with the phycocyanin α-subunit phycocyanobilin lyase, CpcE/CpcF, or the phycoerythrocyanin α-subunit phycocyanobilin isomerizing lyase, PecE/PecF, from Noctoc sp. PCC 7120. Both lyases were capable of attaching three different linear tetrapyrrole chromophores to CpcA; thus, up to six different CpcA variants, each with a unique chromophore, could be produced with this system. One of these chromophores, denoted phytoviolobilin, has not yet been observed naturally. The recombinant proteins had unexpected and potentially useful properties, which included very high fluorescence quantum yields and photochemical activity. Chimeric lyases PecE/CpcF and CpcE/PecF were used to show that the isomerizing activity that converts phycocyanobilin to phycoviolobilin resides with PecF and not PecE. Finally, spectroscopic properties of recombinant phycocyanin R-PCIII, in which the CpcA subunits carry a phycoerythrobilin chromophore, are described.
Collapse
Affiliation(s)
- Richard M Alvey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
21
|
Effects of modified Phycobilin biosynthesis in the Cyanobacterium Synechococcus sp. Strain PCC 7002. J Bacteriol 2011; 193:1663-71. [PMID: 21296968 DOI: 10.1128/jb.01392-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathway for phycocyanobilin biosynthesis in Synechococcus sp. strain PCC 7002 comprises two enzymes: heme oxygenase and phycocyanobilin synthase (PcyA). The phycobilin content of cells can be modified by overexpressing genes encoding alternative enzymes for biliverdin reduction. Overexpression of the pebAB and HY2 genes, encoding alternative ferredoxin-dependent biliverdin reductases, caused unique effects due to the overproduction of phycoerythrobilin and phytochromobilin, respectively. Colonies overexpressing pebAB became reddish brown and visually resembled strains that naturally produce phycoerythrin. This was almost exclusively due to the replacement of phycocyanobilin by phycoerythrobilin on the phycocyanin α-subunit. This phenotype was unstable, and such strains rapidly reverted to the wild-type appearance, presumably due to strong selective pressure to inactivate pebAB expression. Overproduction of phytochromobilin, synthesized by the Arabidopsis thaliana HY2 product, was tolerated much better. Cells overexpressing HY2 were only slightly less pigmented and blue-green than the wild type. Although the pcyA gene could not be inactivated in the wild type, pcyA was easily inactivated when cells expressed HY2. These results indicate that phytochromobilin can functionally substitute for phycocyanobilin in Synechococcus sp. strain PCC 7002. Although functional phycobilisomes were assembled in this strain, the overall phycobiliprotein content of cells was lower, the efficiency of energy transfer by these phycobilisomes was lower than for wild-type phycobilisomes, and the absorption cross-section of the cells was reduced relative to that of the wild type because of an increased spectral overlap of the modified phycobiliproteins with chlorophyll a. As a result, the strain producing phycobiliproteins carrying phytochromobilin grew much more slowly at low light intensity.
Collapse
|