1
|
Dowd S, Lagalante L, Rahlfs J, Sharo C, Opulente D, Lagalante A, Elmer J. Sequencing of the Lumbricus terrestris genome reveals degeneracy in its erythrocruorin genes. Biochimie 2024; 219:130-141. [PMID: 37981225 DOI: 10.1016/j.biochi.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The erythrocruorin of Lumbricus terrestris (LtEc) is a relatively large macromolecular assembly that consists of at least four different hemoglobin subunits (A, B, C, and D) and four linker subunits (L1, L2, L3, and L4). The complexity and stability of this large structure make LtEc an attractive hemoglobin-based oxygen carrier that could potentially be used as a substitute for donated red blood cells. However, the sequences of the LtEc subunit sequences must be determined before a scalable recombinant expression platform can be developed. The goal of this study was to sequence the L. terrestris genome to identify the complete sequences of the LtEc subunit genes. Our results revealed multiple homologous genes for each subunit (e.g., two homologous A globin genes; A1 and A2), with the exception of the L4 linker. Some of the homologous genes encoded identical peptide sequences (C1 and C2, L1a and L1b), while cDNA and mass spectrometry experiments revealed that some of the homologs are not expressed (e.g., A2). In contrast, multiple sequences for the B, D, L2, and L4 subunits were detected in LtEc samples. These observations reveal novel degeneracy in LtEc and other annelids, along with some new revisions to its previously published peptide sequences.
Collapse
Affiliation(s)
- Sean Dowd
- Department of Chemical and Biological Engineering, Villanova University, 800 E Lancaster Avenue, Villanova, PA, 19085, USA
| | - Luke Lagalante
- Department of Chemical and Biological Engineering, Villanova University, 800 E Lancaster Avenue, Villanova, PA, 19085, USA
| | - Jack Rahlfs
- Department of Chemical and Biological Engineering, Villanova University, 800 E Lancaster Avenue, Villanova, PA, 19085, USA
| | - Catherine Sharo
- Department of Chemical and Biological Engineering, Villanova University, 800 E Lancaster Avenue, Villanova, PA, 19085, USA
| | - Dana Opulente
- Department of Biology, Villanova University, 800 E Lancaster Avenue, Villanova, PA, 19085, USA
| | - Anthony Lagalante
- Department of Chemistry, Villanova University, 800 E Lancaster Avenue, Villanova, PA, 19085, USA
| | - Jacob Elmer
- Department of Chemical and Biological Engineering, Villanova University, 800 E Lancaster Avenue, Villanova, PA, 19085, USA.
| |
Collapse
|
2
|
Foley EL, Hvitved AN, Eich RF, Olson JS. Mechanisms of nitric oxide reactions with Globins using mammalian myoglobin as a model system. J Inorg Biochem 2022; 233:111839. [DOI: 10.1016/j.jinorgbio.2022.111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
|
3
|
Gardner PR. Ordered Motions in the Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted Globins with Tightly Coupled Reductases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:45-96. [PMID: 36520413 DOI: 10.1007/5584_2022_751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric-oxide dioxygenases (NODs) activate and combine O2 with NO to form nitrate. A variety of oxygen-binding hemoglobins with associated partner reductases or electron donors function as enzymatic NODs. Kinetic and structural investigations of the archetypal two-domain microbial flavohemoglobin-NOD have illuminated an allosteric mechanism that employs selective tunnels for O2 and NO, gates for NO and nitrate, transient O2 association with ferric heme, and an O2 and NO-triggered, ferric heme spin crossover-driven, motion-controlled, and dipole-regulated electron-transfer switch. The proposed mechanism facilitates radical-radical coupling of ferric-superoxide with NO to form nitrate while preventing suicidal ferrous-NO formation. Diverse globins display the structural and functional motifs necessary for a similar allosteric NOD mechanism. In silico docking simulations reveal monomeric erythrocyte hemoglobin alpha-chain and beta-chain intrinsically matched and tightly coupled with NADH-cytochrome b5 oxidoreductase and NADPH-cytochrome P450 oxidoreductase, respectively, forming membrane-bound flavohemoglobin-like mammalian NODs. The neuroprotective neuroglobin manifests a potential NOD role in a close-fitting ternary complex with membrane-bound NADH-cytochrome b5 oxidoreductase and cytochrome b5. Cytoglobin interfaces weakly with cytochrome b5 for O2 and NO-regulated electron-transfer and coupled NOD activity. The mechanistic model also provides insight into the evolution of O2 binding cooperativity in hemoglobin and a basis for the discovery of allosteric NOD inhibitors.
Collapse
|
4
|
Olson JS. Kinetic mechanisms for O 2 binding to myoglobins and hemoglobins. Mol Aspects Med 2021; 84:101024. [PMID: 34544605 DOI: 10.1016/j.mam.2021.101024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 11/29/2022]
Abstract
Antonini and Brunori's 1971 book "Hemoglobin and Myoglobin in Their Reactions with Ligands" was a truly remarkable publication that summarized almost 100 years of research on O2 binding to these globins. Over the ensuing 50 years, ultra-fast laser photolysis techniques, high-resolution and time resolved X-ray crystallography, molecular dynamics simulations, and libraries of recombinant myoglobin (Mb) and hemoglobin (Hb) variants have provided structural interpretations of O2 binding to these proteins. The resultant mechanisms provide quantitative descriptions of the stereochemical factors that govern overall affinity, including proximal and distal steric restrictions that affect iron reactivity and favorable positive electrostatic interactions that preferentially stabilize bound O2. The pathway for O2 uptake and release by Mb and subunits of Hb has been mapped by screening libraries of site-directed mutants in laser photolysis experiments. O2 enters mammalian Mb and the α and β subunits of human HbA through a channel created by upward and outward rotation of the distal His at the E7 helical position, is non-covalently captured in the interior of the distal cavity, and then internally forms a bond with the heme Fe(II) atom. O2 dissociation is governed by disruption of hydrogen bonding interactions with His (E7), breakage of the Fe(II)-O2 bond, and then competition between rebinding and escape through the E7-gate. The structural features that govern the rates of both the individual steps and overall reactions have been determined and provide the framework for: (1) defining the physiological functions of specific globins and their evolution; (2) understanding the clinical features of hemoglobinopathies; and (3) designing safer and more efficient acellular hemoglobin-based oxygen carriers (HBOCs) for transfusion therapy, organ preservation, and other commercially relevant O2 transport and storage processes.
Collapse
Affiliation(s)
- John S Olson
- Department of Biosciences, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
5
|
Abstract
Human hemoglobin is the textbook example of the stereochemistry of an allosteric protein and of the exquisite control that a protein can exert over ligand binding. However, the fundamental basis by which the protein facilitates the ligand movement remains unknown. In this study, we used cryogenic X-ray crystallography and a high-repetition pulsed laser irradiation technique to elucidate the atomic details of ligand migration processes in hemoglobin after photolysis of the bound CO. Our data clarify the distinct CO migration pathways in the individual subunits of hemoglobin and unravel the functional roles of the internal cavities and neighboring amino acid residues in ligand exit and entry. Our results also demonstrate the high gas permeability and porosity of hemoglobin, facilitating O2 delivery. Hemoglobin is one of the best-characterized proteins with respect to structure and function, but the internal ligand diffusion pathways remain obscure and controversial. Here we captured the CO migration processes in the tense (T), relaxed (R), and second relaxed (R2) quaternary structures of human hemoglobin by crystallography using a high-repetition pulsed laser technique at cryogenic temperatures. We found that in each quaternary structure, the photodissociated CO molecules migrate along distinct pathways in the α and β subunits by hopping between the internal cavities with correlated side chain motions of large nonpolar residues, such as α14Trp(A12), α105Leu(G12), β15Trp(A12), and β71Phe(E15). We also observe electron density evidence for the distal histidine [α58/β63His(E7)] swing-out motion regardless of the quaternary structure, although less evident in α subunits than in β subunits, suggesting that some CO molecules have escaped directly through the E7 gate. Remarkably, in T-state Fe(II)-Ni(II) hybrid hemoglobins in which either the α or β subunits contain Ni(II) heme that cannot bind CO, the photodissociated CO molecules not only dock at the cavities in the original Fe(II) subunit, but also escape from the protein matrix and enter the cavities in the adjacent Ni(II) subunit even at 95 K, demonstrating the high gas permeability and porosity of the hemoglobin molecule. Our results provide a comprehensive picture of ligand movements in hemoglobin and highlight the relevance of cavities, nonpolar residues, and distal histidines in facilitating the ligand migration.
Collapse
|
6
|
Olson JS. Lessons Learned from 50 Years of Hemoglobin Research: Unstirred and Cell-Free Layers, Electrostatics, Baseball Gloves, and Molten Globules. Antioxid Redox Signal 2020; 32:228-246. [PMID: 31530172 PMCID: PMC6948003 DOI: 10.1089/ars.2019.7876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: Over the past 50 years, the mechanisms for O2 storage and transport have been determined quantitatively on distance scales from millimeters to tenths of nanometers and timescales from seconds to picoseconds. Recent Advances: In this review, I have described four key conclusions from work done by my group and our close colleagues. (i) O2 uptake by mammalian red cells is limited by diffusion through unstirred water layers adjacent to the cell surface and across cell-free layers adjacent to vessel walls. (ii) In most vertebrates, hemoglobins (Hbs) and myoglobins (Mbs), the distal histidine at the E7 helical position donates a strong hydrogen bond to bound O2, which selectively enhances O2 affinity, prevents carbon monoxide poisoning, and markedly slows autoxidation. (iii) O2 binding to mammalian Hbs and Mbs occurs by migration of the ligand through a channel created by upward rotation of the His(E7) side chain, capture in the empty space of the distal pocket, and then coordination with the ferroprotoporphyrin IX (heme) iron atom. (iv) The assembly of Mbs and Hbs occurs by formation of molten globule intermediates, in which the N- and C-terminal helices have almost fully formed secondary structures, but the heme pockets are disordered and followed by high-affinity binding of heme. Critical Issues: These conclusions indicate that there are often compromises between O2 transport function, holoprotein stability, and the efficiency of assembly. Future Directions: However, the biochemical mechanisms underlying these conclusions provide the framework for understanding globin evolution in greater detail and for engineering more efficient and stable globins.
Collapse
Affiliation(s)
- John S Olson
- BioSciences Department, Rice University, Houston, Texas
| |
Collapse
|
7
|
Abstract
This chapter reviews how allosteric (heterotrophic) effectors and natural mutations impact hemoglobin (Hb) primary physiological function of oxygen binding and transport. First, an introduction about the structure of Hb is provided, including the ensemble of tense and relaxed Hb states and the dynamic equilibrium of Hb multistate. This is followed by a brief review of Hb variants with altered Hb structure and oxygen binding properties. Finally, a review of different endogenous and exogenous allosteric effectors of Hb is presented with particular emphasis on the atomic interactions of synthetic ligands with altered allosteric function of Hb that could potentially be harnessed for the treatment of diseases.
Collapse
Affiliation(s)
- Mostafa H Ahmed
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA. .,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA.
| |
Collapse
|
8
|
Li R, Dai X, Feng Z, Li Y, Zhao M, Liu J, Li H, Chen Y, Ma Y, Tang Y. Effect of toxic ligands on O 2 binding to heme and their toxicity mechanism. Phys Chem Chem Phys 2019; 21:14957-14963. [PMID: 31236551 DOI: 10.1039/c9cp02583a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heme, as the cofactor and active site of Hb, enables Hb to carry out the necessary function required for O2 management for life, that is, reversible O2 binding for transport. In this paper, the microscopic mechanism of heme-associated poisoning has been elucidated from the perspective of electronic interaction by performing first-principles calculations. The results show that the functional groups (-CHO, -COOH, -NO2, -NH2) and CN exhibit a stronger affinity for heme than O2 and are more likely to occupy the O2 binding site, which results in the loss of the ability of heme to carry O2. Moreover, the addition of functional groups, CO and CN to heme at the side site can cause a pronounced enhancement toward the O2 binding characteristics of heme, which prevents heme from releasing O2 to oxygen-consuming tissues as the blood circulates. The reversible O2 binding function of heme is disrupted by the presence of these toxic ligands in the heme binding pocket, which greatly affects O2 transport in the blood. The inability of tissues to obtain O2 leads to tissue hypoxia, which is the main cause of poisoning. Based on the energy, geometry and electronic properties, the hypoxia mechanism proposed by us coincides well with experiment, and the research has the potential to provide a theoretical reference for the relevant areas of bioscience.
Collapse
Affiliation(s)
- Renyi Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xianqi Dai
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zhen Feng
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yi Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Mingyu Zhao
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jing Liu
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Huiting Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yang Chen
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yaqiang Ma
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yanan Tang
- Quantum Materials Research Center, College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China.
| |
Collapse
|
9
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Wang A, Singh S, Yu B, Bloch DB, Zapol WM, Kluger R. Cross-linked hemoglobin bis-tetramers from bioorthogonal coupling do not induce vasoconstriction in the circulation. Transfusion 2018; 59:359-370. [PMID: 30444016 DOI: 10.1111/trf.15003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hemoglobin-based oxygen carriers (HBOCs) are potential alternatives to red blood cells in transfusions. Clinical trials using early versions of HBOCs noted adverse effects that appeared to result from removal of the vasodilator nitric oxide (NO). Previous reports suggest that size-enlarged HBOCs may avoid NO-rich regions along the vasculature and therefore not cause vasoconstriction and hypertension. STUDY DESIGN AND METHODS Hemoglobin (Hb) bis-tetramers (bis-tetramers of hemoglobin that are prepared using CuAAC chemistry [BT-Hb] and bis-tetramers of hemoglobin that are specifically acetylated and prepared using CuAAC chemistry [BT-acHb]) can be reliably produced by a bio-orthogonal cyclo-addition approach. We considered that an HBOC derived from chemical coupling of two Hbs would be sufficiently large to avoid NO scavenging and related side effects. The ability of intravenously infused BT-Hb and BT-acHb to remain in the circulation without causing hypertension were determined in wild-type (WT) and diabetic (db/db) mouse models. RESULTS In WT mice, the coupled oxygen-carrying proteins retained their function over several hours after administration. No significant changes in systolic blood pressure from baseline were observed after intravenous infusion of BT-Hb or BT-acHb in awake WT and db/db mice. In contrast, infusion of native Hb or cross-linked Hb tetramers in both animal models induced systemic hypertension. CONCLUSION The results of this study indicate that bis-tetrameric HBOCs derived from the bio-orthogonal cyclo-addition process are likely to overcome clinical issues that arise from NO scavenging by Hb derivatives.
Collapse
Affiliation(s)
- Aizhou Wang
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Serena Singh
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Binglan Yu
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Warren M Zapol
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ronald Kluger
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Chintapalli SV, Anishkin A, Adams SH. Exploring the entry route of palmitic acid and palmitoylcarnitine into myoglobin. Arch Biochem Biophys 2018; 655:56-66. [PMID: 30092229 DOI: 10.1016/j.abb.2018.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
Abstract
Myoglobin, besides its role in oxygen turnover, has gained recognition as a potential regulator of lipid metabolism. Previously, we confirmed the interaction of fatty acids and acylcarnitines with Oxy-Myoglobin, using both molecular dynamic simulations and Isothermal Titration Calorimetry studies. However, those studies were limited to testing only the binding sites derived from homology to fatty acid binding proteins and predictions using automated docking. To explore the entry mechanisms of the lipid ligands into myoglobin, we conducted molecular dynamic simulations of murine Oxy- and Deoxy-Mb structures with palmitate or palmitoylcarnitine starting at different positions near the protein surface. The simulations indicated that both ligands readily (under ∼10-20 ns) enter the Oxy-Mb structure through a dynamic area ("portal region") near heme, known to be the entry point for small molecule gaseous ligands like O2, CO and NO. The entry is not observed with Deoxy-Mb where lipid ligands move away from protein surface, due to a compaction of the entry portal and the heme-containing crevice in the Mb protein upon O2 removal. The results suggest quick spontaneous binding of lipids to Mb driven by hydrophobic interactions, strongly enhanced by oxygenation, and consistent with the emergent role of Mb in lipid metabolism.
Collapse
Affiliation(s)
- Sree V Chintapalli
- Arkansas Children's Nutrition Center -and- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA.
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, USA
| | - Sean H Adams
- Arkansas Children's Nutrition Center -and- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
12
|
Terrell JR, Gumpper RH, Luo M. Hemoglobin crystals immersed in liquid oxygen reveal diffusion channels. Biochem Biophys Res Commun 2018; 495:1858-1863. [DOI: 10.1016/j.bbrc.2017.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 11/24/2022]
|
13
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
14
|
Inoguchi N, Mizuno N, Baba S, Kumasaka T, Natarajan C, Storz JF, Moriyama H. Alteration of the α1β2/α2β1 subunit interface contributes to the increased hemoglobin-oxygen affinity of high-altitude deer mice. PLoS One 2017; 12:e0174921. [PMID: 28362841 PMCID: PMC5376325 DOI: 10.1371/journal.pone.0174921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/17/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. RESULTS Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetrameric hemoglobin molecules. CONCLUSIONS The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β2/α2β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites.
Collapse
Affiliation(s)
- Noriko Inoguchi
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Nobuhiro Mizuno
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Seiki Baba
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Chandrasekhar Natarajan
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
15
|
Lepeshkevich SV, Gilevich SN, Parkhats MV, Dzhagarov BM. Molecular oxygen migration through the xenon docking sites of human hemoglobin in the R-state. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1110-1121. [DOI: 10.1016/j.bbapap.2016.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022]
|
16
|
Structural Plasticity in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:59-80. [PMID: 27567484 DOI: 10.1016/bs.apcsb.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Globins are a family of proteins characterized by the presence of the heme prosthetic group and involved in variety of biological functions in the cell. Due to their biological relevance and widespread distribution in all kingdoms of life, intense research efforts have been devoted to disclosing the relationships between structural features, protein dynamics, and function. Particular attention has been paid to the impact of differences in amino acid sequence on the topological features of docking sites and cavities and to the influence of conformational flexibility in facilitating the migration of small ligands through these cavities. Often, tunnels are carved in the interior of globins, and ligand exchange is regulated by gating residues. Understanding the subtle intricacies that relate the differences in sequence with the structural and dynamical features of globins with the ultimate aim of rationalizing the thermodynamics and kinetics of ligand binding continues to be a major challenge in the field. Due to the evolution of computational techniques, significant advances into our understanding of these questions have been made. In this review we focus our attention on the analysis of the ligand migration pathways as well as the function of the structural cavities and tunnels in a series of representative globins, emphasizing the synergy between experimental and theoretical approaches to gain a comprehensive knowledge into the molecular mechanisms of this diverse family of proteins.
Collapse
|
17
|
Shadrina MS, English AM, Peslherbe GH. Benchmarking Rapid TLES Simulations of Gas Diffusion in Proteins: Mapping O2 Migration and Escape in Myoglobin as a Case Study. J Chem Theory Comput 2016; 12:2038-46. [PMID: 26938707 DOI: 10.1021/acs.jctc.5b01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Standard molecular dynamics (MD) simulations of gas diffusion consume considerable computational time and resources even for small proteins. To combat this, temperature-controlled locally enhanced sampling (TLES) examines multiple diffusion trajectories per simulation by accommodating multiple noninteracting copies of a gas molecule that diffuse independently, while the protein and water molecules experience an average interaction from all copies. Furthermore, gas migration within a protein matrix can be accelerated without altering protein dynamics by increasing the effective temperature of the TLES copies. These features of TLES enable rapid simulations of gas diffusion within a protein matrix at significantly reduced (∼98%) computational cost. However, the results of TLES and standard MD simulations have not been systematically compared, which limits the adoption of the TLES approach. We address this drawback here by benchmarking TLES against standard MD in the simulation of O2 diffusion in myoglobin (Mb) as a case study since this model system has been extensively characterized. We find that 2 ns TLES and 108 ns standard simulations map the same network of diffusion tunnels in Mb and uncover the same docking sites, barriers, and escape portals. We further discuss the influence of simulation time as well as the number of independent simulations on the O2 population density within the diffusion tunnels and on the sampling of Mb's conformational space as revealed by principal component analysis. Overall, our comprehensive benchmarking reveals that TLES is an appropriate and robust tool for the rapid mapping of gas diffusion in proteins when the kinetic data provided by standard MD are not required. Furthermore, TLES provides explicit ligand diffusion pathways, unlike most rapid methods.
Collapse
Affiliation(s)
- Maria S Shadrina
- Centre for Research in Molecular Modeling (CERMM) and Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| | - Ann M English
- Centre for Research in Molecular Modeling (CERMM) and Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| | - Gilles H Peslherbe
- Centre for Research in Molecular Modeling (CERMM) and Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
18
|
Contribution of a mutational hot spot to hemoglobin adaptation in high-altitude Andean house wrens. Proc Natl Acad Sci U S A 2015; 112:13958-63. [PMID: 26460028 DOI: 10.1073/pnas.1507300112] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A key question in evolutionary genetics is why certain mutations or certain types of mutation make disproportionate contributions to adaptive phenotypic evolution. In principle, the preferential fixation of particular mutations could stem directly from variation in the underlying rate of mutation to function-altering alleles. However, the influence of mutation bias on the genetic architecture of phenotypic evolution is difficult to evaluate because data on rates of mutation to function-altering alleles are seldom available. Here, we report the discovery that a single point mutation at a highly mutable site in the β(A)-globin gene has contributed to an evolutionary change in hemoglobin (Hb) function in high-altitude Andean house wrens (Troglodytes aedon). Results of experiments on native Hb variants and engineered, recombinant Hb mutants demonstrate that a nonsynonymous mutation at a CpG dinucleotide in the β(A)-globin gene is responsible for an evolved difference in Hb-O2 affinity between high- and low-altitude house wren populations. Moreover, patterns of genomic differentiation between high- and low-altitude populations suggest that altitudinal differentiation in allele frequencies at the causal amino acid polymorphism reflects a history of spatially varying selection. The experimental results highlight the influence of mutation rate on the genetic basis of phenotypic evolution by demonstrating that a large-effect allele at a highly mutable CpG site has promoted physiological differentiation in blood O2 transport capacity between house wren populations that are native to different elevations.
Collapse
|
19
|
Shadrina MS, Peslherbe GH, English AM. Quaternary-Linked Changes in Structure and Dynamics That Modulate O2 Migration within Hemoglobin’s Gas Diffusion Tunnels. Biochemistry 2015; 54:5268-78. [DOI: 10.1021/acs.biochem.5b00368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria S. Shadrina
- Department of Chemistry and
Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Gilles H. Peslherbe
- Department of Chemistry and
Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Ann M. English
- Department of Chemistry and
Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
20
|
Shadrina MS, Peslherbe GH, English AM. O2 and Water Migration Pathways between the Solvent and Heme Pockets of Hemoglobin with Open and Closed Conformations of the Distal HisE7. Biochemistry 2015; 54:5279-89. [PMID: 26226401 DOI: 10.1021/acs.biochem.5b00369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemoglobin transports O2 by binding the gas at its four hemes. Hydrogen bonding between the distal histidine (HisE7) and heme-bound O2 significantly increases the affinity of human hemoglobin (HbA) for this ligand. HisE7 is also proposed to regulate the release of O2 to the solvent via a transient E7 channel. To reveal the O2 escape routes controlled by HisE7 and to evaluate its role in gating heme access, we compare simulations of O2 diffusion from the distal heme pockets of the T and R states of HbA performed with HisE7 in its open (protonated) and closed (neutral) conformations. Irrespective of HisE7's conformation, we observe the same four or five escape routes leading directly from the α- or β-distal heme pockets to the solvent. Only 21-53% of O2 escapes occur via these routes, with the remainder escaping through routes that encompass multiple internal cavities in HbA. The conformation of the distal HisE7 controls the escape of O2 from the heme by altering the distal pocket architecture in a pH-dependent manner, not by gating the E7 channel. Removal of the HisE7 side chain in the GlyE7 variant exposes the distal pockets to the solvent, and the percentage of O2 escapes to the solvent directly from the α- or β-distal pockets of the mutant increases to 70-88%. In contrast to O2, the dominant water route from the bulk solvent is gated by HisE7 because protonation and opening of this residue dramatically increase the rate of influx of water into the empty distal heme pockets. The occupancy of the distal heme site by a water molecule, which functions as an additional nonprotein barrier to binding of the ligand to the heme, is also controlled by HisE7. Overall, analysis of gas and water diffusion routes in the subunits of HbA and its GlyE7 variant sheds light on the contribution of distal HisE7 in controlling polar and nonpolar ligand movement between the solvent and the hemes.
Collapse
Affiliation(s)
- Maria S Shadrina
- Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University , Montreal, Quebec H4B 1R6, Canada
| | - Gilles H Peslherbe
- Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University , Montreal, Quebec H4B 1R6, Canada
| | - Ann M English
- Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University , Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
21
|
Strader MB, Hicks WA, Kassa T, Singleton E, Soman J, Olson JS, Weiss MJ, Mollan TL, Wilson MT, Alayash AI. Post-translational transformation of methionine to aspartate is catalyzed by heme iron and driven by peroxide: a novel subunit-specific mechanism in hemoglobin. J Biol Chem 2014; 289:22342-57. [PMID: 24939847 DOI: 10.1074/jbc.m114.568980] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A pathogenic V67M mutation occurs at the E11 helical position within the heme pockets of variant human fetal and adult hemoglobins (Hb). Subsequent post-translational modification of Met to Asp was reported in γ subunits of human fetal Hb Toms River (γ67(E11)Val → Met) and β subunits of adult Hb (HbA) Bristol-Alesha (β67(E11)Val → Met) that were associated with hemolytic anemia. Using kinetic, proteomic, and crystal structural analysis, we were able to show that the Met → Asp transformation involves heme cycling through its oxoferryl state in the recombinant versions of both proteins. The conversion to Met and Asp enhanced the spontaneous autoxidation of the mutants relative to wild-type HbA and human fetal Hb, and the levels of Asp were elevated with increasing levels of hydrogen peroxide (H2O2). Using H2(18)O2, we verified incorporation of (18)O into the Asp carboxyl side chain confirming the role of H2O2 in the oxidation of the Met side chain. Under similar experimental conditions, there was no conversion to Asp at the αMet(E11) position in the corresponding HbA Evans (α62(E11)Val → Met). The crystal structures of the three recombinant Met(E11) mutants revealed similar thioether side chain orientations. However, as in the solution experiments, autoxidation of the Hb mutant crystals leads to electron density maps indicative of Asp(E11) formation in β subunits but not in α subunits. This novel post-translational modification highlights the nonequivalence of human Hb α, β, and γ subunits with respect to redox reactivity and may have direct implications to α/β hemoglobinopathies and design of oxidatively stable Hb-based oxygen therapeutics.
Collapse
Affiliation(s)
- Michael Brad Strader
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892
| | - Wayne A Hicks
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892
| | - Tigist Kassa
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892
| | - Eileen Singleton
- the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251
| | - Jayashree Soman
- the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251
| | - John S Olson
- the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251
| | - Mitchell J Weiss
- the Childrens Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, and
| | - Todd L Mollan
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892
| | - Michael T Wilson
- the Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Abdu I Alayash
- From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892,
| |
Collapse
|
22
|
Zhao J, de Serrano V, Franzen S. A model for the flexibility of the distal histidine in dehaloperoxidase-hemoglobin A based on X-ray crystal structures of the carbon monoxide adduct. Biochemistry 2014; 53:2474-82. [PMID: 24670063 PMCID: PMC4203366 DOI: 10.1021/bi5001905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Dehaloperoxidase
hemoglobin A (DHP A) is a multifunctional hemoglobin
that appears to have evolved oxidative pathways for the degradation
of xenobiotics as a protective function that complements the oxygen
transport function. DHP A possesses at least two internal binding
sites, one for substrates and one for inhibitors, which include various
halogenated phenols and indoles. Herein, we report the X-ray crystallographic
structure of the carbonmonoxy complex (DHPCO). Unlike other DHP structures
with 6-coordinated heme, the conformation of the distal histidine
(H55) in DHPCO is primarily external or solvent exposed, despite the
fact that the heme Fe is 6-coordinated. As observed generally in globins,
DHP exhibits two distal histidine conformations (one internal and
one external). In previous structural studies, we have shown that
the distribution of H55 conformations is weighted strongly toward
the external position when the DHP heme Fe is 5-coordinated. The large
population of the external conformation of the distal histidine observed
in DHPCO crystals at pH 6.0 indicates that some structural factor
in DHP must account for the difference from other globins, which exhibit
a significant external conformation only when pH < 4.5. While the
original hypothesis suggested that interaction with a heme-Fe-bound
ligand was the determinant of H55 conformation, the current study
forces a refinement of that hypothesis. The external or open conformation
of H55 is observed to have interactions with two propionate groups
in heme, at distances of 3.82 and 2.73 Å, respectively. A relatively
weak hydrogen bonding interaction between H55 and CO, combined with
strong interactions with heme propionate (position 6), is hypothesized
to strengthen the external conformation of H55. Density function theory
(DFT) calculations were conducted to test whether there is a weaker
hydrogen bond interaction between H55 and heme bonded CO or O2. Molecular dynamics simulations were conducted to examine
how the tautomeric forms of H55 affect the dynamic motions of the
distal histidine that govern the switching between open and closed
conformations. The calculations support the modified hypothesis suggesting
a competition between the strength of interactions with heme ligand
and the heme propionates as the factors that determine the conformation
of the distal histidine.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
23
|
Tam MF, Rice NW, Maillett DH, Simplaceanu V, Ho NT, Tam TCS, Shen TJ, Ho C. Autoxidation and oxygen binding properties of recombinant hemoglobins with substitutions at the αVal-62 or βVal-67 position of the distal heme pocket. J Biol Chem 2013; 288:25512-25521. [PMID: 23867463 DOI: 10.1074/jbc.m113.474841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The E11 valine in the distal heme pocket of either the α- or β-subunit of human adult hemoglobin (Hb A) was replaced by leucine, isoleucine, or phenylalanine. Recombinant proteins were expressed in Escherichia coli and purified for structural and functional studies. (1)H NMR spectra were obtained for the CO and deoxy forms of Hb A and the mutants. The mutations did not disturb the α1β2 interface in either form, whereas the H-bond between αHis-103 and βGln-131 in the α1β1 interfaces of the deoxy α-subunit mutants was weakened. Localized structural changes in the mutated heme pocket were detected for the CO form of recombinant Hb (rHb) (αV62F), rHb (βV67I), and rHb (βV67F) compared with Hb A. In the deoxy form the proximal histidyl residue in the β-subunit of rHb (βV67F) has been altered. Furthermore, the interactions between the porphyrin ring and heme pocket residues have been perturbed in rHb (αV62I), rHb (αV62F), and rHb (βV67F). Functionally, the oxygen binding affinity (P50), cooperativity (n50), and the alkaline Bohr Effect of the three α-subunit mutants and rHb (βV67L) are similar to those of Hb A. rHb (βV67I) and rHb (βV67F) exhibit low and high oxygen affinity, respectively. rHb (βV67F) has P50 values lower that those reported for rHb (αL29F), a B10 mutant studied previously in our laboratory (Wiltrout, M. E., Giovannelli, J. L., Simplaceanu, V., Lukin, J. A., Ho, N. T., and Ho, C. (2005) Biochemistry 44, 7207-7217). These E11 mutations do not slow down the autoxidation and azide-induced oxidation rates of the recombinant proteins. Results from this study provide new insights into the roles of E11 mutants in the structure-function relationship in hemoglobin.
Collapse
Affiliation(s)
- Ming F Tam
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Natalie W Rice
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - David H Maillett
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Virgil Simplaceanu
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Nancy T Ho
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Tsuey Chyi S Tam
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Tong-Jian Shen
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Chien Ho
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
24
|
Varnado CL, Mollan TL, Birukou I, Smith BJ, Henderson DP, Olson JS. Development of recombinant hemoglobin-based oxygen carriers. Antioxid Redox Signal 2013; 18:2314-28. [PMID: 23025383 PMCID: PMC3638513 DOI: 10.1089/ars.2012.4917] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/23/2012] [Accepted: 10/01/2012] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE The worldwide blood shortage has generated a significant demand for alternatives to whole blood and packed red blood cells for use in transfusion therapy. One such alternative involves the use of acellular recombinant hemoglobin (Hb) as an oxygen carrier. RECENT ADVANCES Large amounts of recombinant human Hb can be expressed and purified from transgenic Escherichia coli. The physiological suitability of this material can be enhanced using protein-engineering strategies to address specific efficacy and toxicity issues. Mutagenesis of Hb can (i) adjust dioxygen affinity over a 100-fold range, (ii) reduce nitric oxide (NO) scavenging over 30-fold without compromising dioxygen binding, (iii) slow the rate of autooxidation, (iv) slow the rate of hemin loss, (v) impede subunit dissociation, and (vi) diminish irreversible subunit denaturation. Recombinant Hb production is potentially unlimited and readily subjected to current good manufacturing practices, but may be restricted by cost. Acellular Hb-based O(2) carriers have superior shelf-life compared to red blood cells, are universally compatible, and provide an alternative for patients for whom no other alternative blood products are available or acceptable. CRITICAL ISSUES Remaining objectives include increasing Hb stability, mitigating iron-catalyzed and iron-centered oxidative reactivity, lowering the rate of hemin loss, and lowering the costs of expression and purification. Although many mutations and chemical modifications have been proposed to address these issues, the precise ensemble of mutations has not yet been identified. FUTURE DIRECTIONS Future studies are aimed at selecting various combinations of mutations that can reduce NO scavenging, autooxidation, oxidative degradation, and denaturation without compromising O(2) delivery, and then investigating their suitability and safety in vivo.
Collapse
Affiliation(s)
| | - Todd L. Mollan
- Center for Biologics Evaluation and Research, Division of Hematology, United States Food and Drug Administration, Bethesda, Maryland
| | - Ivan Birukou
- Department of Biochemistry, Duke University, Durham, North Carolina
| | - Bryan J.Z. Smith
- Department of Biology, The University of Texas of the Permian Basin, Odessa, Texas
| | - Douglas P. Henderson
- Department of Biology, The University of Texas of the Permian Basin, Odessa, Texas
| | - John S. Olson
- Department of Biochemistry & Cell Biology, Rice University, Houston, Texas
| |
Collapse
|
25
|
Takayanagi M, Kurisaki I, Nagaoka M. Oxygen Entry through Multiple Pathways in T-State Human Hemoglobin. J Phys Chem B 2013; 117:6082-91. [DOI: 10.1021/jp401459b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masayoshi Takayanagi
- Core
Research for Evolutional
Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| | - Ikuo Kurisaki
- Core
Research for Evolutional
Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| | - Masataka Nagaoka
- Core
Research for Evolutional
Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| |
Collapse
|
26
|
Boechi L, Arrar M, Martí MA, Olson JS, Roitberg AE, Estrin DA. Hydrophobic effect drives oxygen uptake in myoglobin via histidine E7. J Biol Chem 2013; 288:6754-62. [PMID: 23297402 DOI: 10.1074/jbc.m112.426056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the elucidation of the myoglobin (Mb) structure, a histidine residue on the E helix (His-E7) has been proposed to act as a gate with an open or closed conformation controlling access to the active site. Although it is believed that at low pH, the His-E7 gate is in its open conformation, the full relationship between the His-E7 protonation state, its conformation, and ligand migration in Mb is hotly debated. We used molecular dynamics simulations to first address the effect of His-E7 protonation on its conformation. We observed the expected shift from the closed to the open conformation upon protonation, but more importantly, noted a significant difference between the conformations of the two neutral histidine tautomers. We further computed free energy profiles for oxygen migration in each of the possible His-E7 states as well as in two instructive Mb mutants: Ala-E7 and Trp-E7. Our results show that even in the closed conformation, the His-E7 gate does not create a large barrier to oxygen migration and permits oxygen entry with only a small rotation of the imidazole side chain and movement of the E helix. We identify, instead, a hydrophobic site in the E7 channel that can accommodate an apolar diatomic ligand and enhances ligand uptake particularly in the open His-E7 conformation. This rate enhancement is diminished in the closed conformation. Taken together, our results provide a new conceptual framework for the histidine gate hypothesis.
Collapse
Affiliation(s)
- Leonardo Boechi
- Departamento de Química Inorgánica, Analítica, y Química Física/Inquimae-Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellon 2, C1428EHA Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
27
|
Yoo BK, Lamarre I, Rappaport F, Nioche P, Raman CS, Martin JL, Negrerie M. Picosecond to second dynamics reveals a structural transition in Clostridium botulinum NO-sensor triggered by the activator BAY-41-2272. ACS Chem Biol 2012; 7:2046-54. [PMID: 23009307 DOI: 10.1021/cb3003539] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor that synthesizes cGMP upon NO activation. In synergy with the artificial allosteric effector BAY 41-2272 (a lead compound for drug design in cardiovascular treatment), sGC can also be activated by carbon monoxide (CO), but the structural basis for this synergistic effect are unknown. We recorded in the unusually broad time range from 1 ps to 1 s the dynamics of the interaction of CO binding to full length sGC, to the isolated sGC heme domain β(1)(200) and to the homologous bacterial NO-sensor from Clostridium botulinum. By identifying all phases of CO binding in this full time range and characterizing how these phases are modified by BAY 41-2272, we show that this activator induces the same structural changes in both proteins. This result demonstrates that the BAY 41-2272 binding site resides in the β(1)(200) sGC heme domain and is the same in sGC and in the NO-sensor from Clostridium botulinum.
Collapse
Affiliation(s)
- Byung-Kuk Yoo
- Laboratoire d’Optique et Biosciences,
INSERM U696, CNRS UMR 7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Isabelle Lamarre
- Laboratoire d’Optique et Biosciences,
INSERM U696, CNRS UMR 7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimie, UMR
7141 CNRS-UPMC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Pierre Nioche
- Laboratoire de Toxicologie et
Pharmacologie, UMR S747, Centre Universitaire des Saints-Pères, 75006 Paris, France
| | - C. S. Raman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201,
United States
| | - Jean-Louis Martin
- Laboratoire d’Optique et Biosciences,
INSERM U696, CNRS UMR 7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Michel Negrerie
- Laboratoire d’Optique et Biosciences,
INSERM U696, CNRS UMR 7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| |
Collapse
|
28
|
Salter MD, Blouin GC, Soman J, Singleton EW, Dewilde S, Moens L, Pesce A, Nardini M, Bolognesi M, Olson JS. Determination of ligand pathways in globins: apolar tunnels versus polar gates. J Biol Chem 2012; 287:33163-78. [PMID: 22859299 DOI: 10.1074/jbc.m112.392258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although molecular dynamics simulations suggest multiple interior pathways for O(2) entry into and exit from globins, most experiments indicate well defined single pathways. In 2001, we highlighted the effects of large-to-small amino acid replacements on rates for ligand entry and exit onto the three-dimensional structure of sperm whale myoglobin. The resultant map argued strongly for ligand movement through a short channel from the heme iron to solvent that is gated by the distal histidine (His-64(E7)) near the solvent edge of the porphyrin ring. In this work, we have applied the same mutagenesis mapping strategy to the neuronal mini-hemoglobin from Cerebratulus lacteus (CerHb), which has a large internal tunnel from the heme iron to the C-terminal ends of the E and H helices, a direction that is 180° opposite to the E7 channel. Detailed comparisons of the new CerHb map with expanded results for Mb show unambiguously that the dominant (>90%) ligand pathway in CerHb is through the internal tunnel, and the major (>75%) ligand pathway in Mb is through the E7 gate. These results demonstrate that: 1) mutagenesis mapping can identify internal pathways when they exist; 2) molecular dynamics simulations need to be refined to address discrepancies with experimental observations; and 3) alternative pathways have evolved in globins to meet specific physiological demands.
Collapse
Affiliation(s)
- Mallory D Salter
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shadrina MS, English AM, Peslherbe GH. Effective Simulations of Gas Diffusion Through Kinetically Accessible Tunnels in Multisubunit Proteins: O2 Pathways and Escape Routes in T-state Deoxyhemoglobin. J Am Chem Soc 2012; 134:11177-84. [DOI: 10.1021/ja300903c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria S. Shadrina
- Department
of Chemistry and Biochemistry and Centre
for Research in Molecular Modeling, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| | - Ann M. English
- Department
of Chemistry and Biochemistry and Centre
for Research in Molecular Modeling, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| | - Gilles H. Peslherbe
- Department
of Chemistry and Biochemistry and Centre
for Research in Molecular Modeling, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
30
|
Drummond ML, Wilson AK, Cundari TR. Carbon Dioxide Migration Pathways in Proteins. J Phys Chem Lett 2012; 3:830-833. [PMID: 26286405 DOI: 10.1021/jz3001085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Some of the most important biological processes, such as carbon fixation, are dependent on protein-gas interactions. The motion of CO2 through the enzyme phosphoenolpyruvate carboxykinase was investigated using extensive all-atom molecular dynamics simulations. Three discrete migration pathways were located, suggesting the protein directs the movement of CO2. The chemical nature of these pathways is discussed, as are their biotechnological ramifications.
Collapse
Affiliation(s)
- Michael L Drummond
- Center for Advanced Scientific Computing and Modeling (CASCaM), Department of Chemistry, University of North Texas, Denton, Texas 76203-5070, United States
| | - Angela K Wilson
- Center for Advanced Scientific Computing and Modeling (CASCaM), Department of Chemistry, University of North Texas, Denton, Texas 76203-5070, United States
| | - Thomas R Cundari
- Center for Advanced Scientific Computing and Modeling (CASCaM), Department of Chemistry, University of North Texas, Denton, Texas 76203-5070, United States
| |
Collapse
|
31
|
Yoo BK, Lamarre I, Martin JL, Negrerie M. Quaternary structure controls ligand dynamics in soluble guanylate cyclase. J Biol Chem 2012; 287:6851-9. [PMID: 22223482 PMCID: PMC3307277 DOI: 10.1074/jbc.m111.299297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 01/03/2012] [Indexed: 11/06/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor. The mechanisms of activation and deactivation of this heterodimeric enzyme are unknown. For deciphering them, functional domains can be overexpressed. We have probed the dynamics of the diatomic ligands NO and CO within the isolated heme domain β(1)(190) of human sGC by piconanosecond absorption spectroscopy. After photo-excitation of nitrosylated sGC, only NO geminate rebinding occurs in 7.5 ps. In β(1)(190), both photo-dissociation of 5c-NO and photo-oxidation occur, contrary to sGC, followed by NO rebinding (7 ps) and back-reduction (230 ps and 2 ns). In full-length sGC, CO geminate rebinding to the heme does not occur. In contrast, CO geminately rebinds to β(1)(190) with fast multiphasic process (35, 171, and 18 ns). We measured the bimolecular association rates k(on) = 0.075 ± 0.01 × 10(6) M(-1) · S(-1) for sGC and 0.83 ± 0.1 × 10(6) M(-1) · S(-1) for β(1)(190). These different dynamics reflect conformational changes and less proximal constraints in the isolated heme domain with respect to the dimeric native sGC. We concluded that the α-subunit and the β(1)(191-619) domain exert structural strains on the heme domain. These strains are likely involved in the transmission of the energy and relaxation toward the activated state after Fe(2+)-His bond breaking. This also reveals the heme domain plasticity modulated by the associated domains and subunit.
Collapse
Affiliation(s)
- Byung-Kuk Yoo
- From the Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France
| | - Isabelle Lamarre
- From the Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France
| | - Jean-Louis Martin
- From the Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France
| | - Michel Negrerie
- From the Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR 7645 Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
32
|
Lucas MF, Guallar V. An atomistic view on human hemoglobin carbon monoxide migration processes. Biophys J 2012; 102:887-96. [PMID: 22385860 DOI: 10.1016/j.bpj.2012.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/02/2012] [Accepted: 01/11/2012] [Indexed: 10/28/2022] Open
Abstract
A significant amount of work has been devoted to obtaining a detailed atomistic knowledge of the human hemoglobin mechanism. Despite this impressive research, to date, the ligand diffusion processes remain unclear and controversial. Using recently developed computational techniques, PELE, we are capable of addressing the ligand migration processes. First, the methodology was tested on myoglobin's CO migration, and the results were compared with the wealth of theoretical and experimental studies. Then, we explored both hemoglobin tense and relaxed states and identified the differences between the α-and β-subunits. Our results indicate that the proximal site, equivalent to the Xe1 cavity in myoglobin, is never visited. Furthermore, strategically positioned residues alter the diffusion processes within hemoglobin's subunits and suggest that multiple pathways exist, especially diversified in the α-globins. A significant dependency of the ligand dynamics on the tertiary structure is also observed.
Collapse
Affiliation(s)
- M Fátima Lucas
- Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | | |
Collapse
|
33
|
Elmer J, Palmer AF. Biophysical Properties of Lumbricus terrestris Erythrocruorin and Its Potential Use as a Red Blood Cell Substitute. J Funct Biomater 2012; 3:49-60. [PMID: 24956515 PMCID: PMC4031009 DOI: 10.3390/jfb3010049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/09/2011] [Accepted: 12/24/2011] [Indexed: 01/21/2023] Open
Abstract
Previous generations of hemoglobin (Hb)-based oxygen carriers (HBOCs) have been plagued by key biophysical limitations that result in severe side-effects once transfused in vivo, including protein instability, high heme oxidation rates, and nitric oxide (NO) scavenging. All of these problems emerge after mammalian Hbs are removed from red blood cells (RBCs) and used for HBOC synthesis/formulation. Therefore, extracellular Hbs (erythrocruorins) from organisms which lack RBCs might serve as better HBOCs. This review focuses on the erythrocruorin of Lumbricus terrestris (LtEc), which has been shown to be extremely stable, resistant to oxidation, and may interact with NO differently than mammalian Hbs. All of these beneficial properties show that LtEc is a promising new HBOC which warrants further investigation.
Collapse
Affiliation(s)
- Jacob Elmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 425 Koffolt Laboratories, 140 West 19th Avenue, Columbus, OH 43210, USA.
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 425 Koffolt Laboratories, 140 West 19th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Birukou I, Maillett DH, Birukova A, Olson JS. Modulating distal cavities in the α and β subunits of human HbA reveals the primary ligand migration pathway. Biochemistry 2011; 50:7361-74. [PMID: 21793487 DOI: 10.1021/bi200923k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The free volume in the active site of human HbA plays a crucial role in governing the bimolecular rates of O(2), CO, and NO binding, the fraction of geminate ligand recombination, and the rate of NO dioxygenation by the oxygenated complex. We have decreased the size of the distal pocket by mutating Leu(B10), Val(E11), and Leu(G8) to Phe and Trp and that of other more internal cavities by filling them with Xe at high gas pressures. Increasing the size of the B10 side chain reduces bimolecular rates of ligand binding nearly 5000-fold and inhibits CO geminate recombination due to both reduction of the capture volume in the distal pocket and direct steric hindrance of Fe-ligand bond formation. Phe and Trp(E11) mutations also cause a decrease in distal pocket volume but, at the same time, increase access to the Fe atom because of the loss of the γ2 CH(3) group of the native Val(E11) side chain. The net result of these E11 substitutions is a dramatic increase in the rate of geminate recombination because dissociated CO is sequestered close to the Fe atom and can rapidly rebind without steric resistance. However, the bimolecular rate constants for binding of ligand to the Phe and Trp(E11) mutants are decreased 5-30-fold, because of a smaller capture volume. Geminate and bimolecular kinetic parameters for Phe and Trp(G8) mutants are similar to those for the native HbA subunits because the aromatic rings at this position cause little change in distal pocket volume and because ligands do not move past this position into the globin interior of wild-type HbA subunits. The latter conclusion is verified by the observation that Xe binding to the α and β Hb subunits has little effect on either geminate or bimolecular ligand rebinding. All of these experimental results argue strongly against alternative ligand migration pathways that involve movements through the protein interior in HbA. Instead, ligands appear to enter through the His(E7) gate and are captured directly in the distal cavity.
Collapse
Affiliation(s)
- Ivan Birukou
- Department of Biochemistry and Cell Biology and WM Keck Center for Computational Biology, Rice University, Houston, Texas 77005, United States
| | | | | | | |
Collapse
|
35
|
Shibayama N, Sugiyama K, Park SY. Structures and oxygen affinities of crystalline human hemoglobin C (β6 Glu->Lys) in the R and R2 quaternary structures. J Biol Chem 2011; 286:33661-8. [PMID: 21816820 DOI: 10.1074/jbc.m111.266056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent crystallographic studies suggested that fully liganded human hemoglobin can adopt multiple quaternary conformations that include the two previously solved relaxed conformations, R and R2, whereas fully unliganded deoxyhemoglobin may adopt only one T (tense) quaternary conformation. An important unanswered question is whether R, R2, and other relaxed quaternary conformations represent different physiological states with different oxygen affinities. Here, we answer this question by showing the oxygen equilibrium curves of single crystals of human hemoglobin in the R and R2 state. In this study, we have used a naturally occurring mutant hemoglobin C (β6 Glu→Lys) to stabilize the R and R2 crystals. Additionally, we have refined the x-ray crystal structure of carbonmonoxyhemoglobin C, in the R and R2 state, to 1.4 and 1.8 Å resolution, respectively, to compare precisely the structures of both types of relaxed states. Despite the large quaternary structural difference between the R and R2 state, both crystals exhibit similar noncooperative oxygen equilibrium curves with a very high affinity for oxygen, comparable with the fourth oxygen equilibrium constant (K(4)) of human hemoglobin in solution. One small difference is that the R2 crystals have an oxygen affinity that is 2-3 times higher than that of the R crystals. These results demonstrate that the functional difference between the two typical relaxed quaternary conformations is small and physiologically less important, indicating that these relaxed conformations simply reflect a structural polymorphism of a high affinity relaxed state.
Collapse
Affiliation(s)
- Naoya Shibayama
- Department of Physiology, Division of Biophysics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | |
Collapse
|