1
|
Reynolds TS, Blagg BSJ. Extracellular heat shock protein 90 alpha (eHsp90α)'s role in cancer progression and the development of therapeutic strategies. Eur J Med Chem 2024; 277:116736. [PMID: 39126794 PMCID: PMC11374465 DOI: 10.1016/j.ejmech.2024.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Heat shock protein 90 alpha (Hsp90α) is an abundantly expressed and evolutionarily conserved molecular chaperone. Hsp90α is the inducible Hsp90 isoform, and its expression and secretion extracellularly (eHsp90α) can be triggered in response to a variety of cellular stresses to protect/activate client proteins and to facilitate cellular adjustment to the stress. As a result, cancers often have high expression levels of intracellular and extracellular (plasma) Hsp90α, allowing them to support their oncogenesis and progression. In fact, (e)Hsp90α has been implicated in regulating processes such as cell signaling transduction, DNA repair, promotion of the Epithelial-to-Mesenchymal Transition (EMT), promotion of angiogenesis, immune response, and cell migration. Hsp90α levels have been correlated with cancer progression and severity in several cancers, indicating that it may be a useful biomarker or drug-target for cancer. To date, the development of intracellular Hsp90α-targeted therapies include standard N-terminal ATP-competitive inhibitors and allosteric regulators that bind to Hsp90α's middle or C-terminal domain. On-target toxicities and dosing complications as a result of Hsp90α inhibition has driven the development of eHsp90α-targeted therapies. Examples include anti-Hsp90α monoclonal antibodies and cell-impermeable Hsp90α small molecule inhibitors. This review aims to discuss the many roles Hsp90α plays in cancer progression with a focus on the current development of Hsp90α-targeted therapies.
Collapse
Affiliation(s)
- Tyelor S Reynolds
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Albakova Z. HSP90 multi-functionality in cancer. Front Immunol 2024; 15:1436973. [PMID: 39148727 PMCID: PMC11324539 DOI: 10.3389/fimmu.2024.1436973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
The 90-kDa heat shock proteins (HSP90s) are molecular chaperones essential for folding, unfolding, degradation and activity of a wide range of client proteins. HSP90s and their cognate co-chaperones are subject to various post-translational modifications, functional consequences of which are not fully understood in cancer. Intracellular and extracellular HSP90 family members (HSP90α, HSP90β, GRP94 and TRAP1) promote cancer by sustaining various hallmarks of cancer, including cell death resistance, replicative immortality, tumor immunity, angiogenesis, invasion and metastasis. Given the importance of HSP90 in tumor progression, various inhibitors and HSP90-based vaccines were developed for the treatment of cancer. Further understanding of HSP90 functions in cancer may provide new opportunities and novel therapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Chokan Limited Liability Partnership, Almaty, Kazakhstan
| |
Collapse
|
3
|
Liu B, Qian D. Hsp90α and cell death in cancers: a review. Discov Oncol 2024; 15:151. [PMID: 38727789 PMCID: PMC11087423 DOI: 10.1007/s12672-024-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Heat shock protein 90α (Hsp90α), an important molecular chaperone, plays a crucial role in regulating the activity of various intracellular signaling pathways and maintaining the stability of various signaling transduction proteins. In cancer, the expression level of Hsp90α is often significantly upregulated and is recognized as one of the key factors in cancer cell survival and proliferation. Cell death can help achieve numerous purposes, such as preventing aging, removing damaged or infected cells, facilitating embryonic development and tissue repair, and modulating immune response. The expression of Hsp90α is closely associated with specific modes of cell death including apoptosis, necrotic apoptosis, and autophagy-dependent cell death, etc. This review discusses the new results on the relationship between expression of Hsp90α and cell death in cancer. Hsp90α is frequently overexpressed in cancer and promotes cancer cell growth, survival, and resistance to treatment by regulating cell death, rendering it a promising target for cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China
| | - Daohai Qian
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 240001, Anhui, China.
| |
Collapse
|
4
|
Zhu M, Li J, Chu Z, Li L, Meng B, Zhao Y, Gong X, Qu Z, Mi W, Jiang Y, Wu L, Dai X, Fang X, Zhai R. Development of cancer biomarker heat shock protein 90α certified reference material using two different isotope dilution mass spectrometry techniques. Anal Bioanal Chem 2024; 416:913-923. [PMID: 38117323 DOI: 10.1007/s00216-023-05079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Heat shock protein 90α (HSP90α) has been regarded as an important indicator for judging tumor metastasis and prognosis due to its significant upregulation in various tumors. Therefore, the accurate quantification of HSP90α is of great significance for clinical diagnosis and therapy of cancers. However, the lack of HSP90α certified reference material (CRM) leads to the accuracy and consistency of quantification methods not being effectively evaluated. Besides, quantitative results without traceability make comparisons between different studies difficult. In this study, an HSP90α solution CRM was developed from the recombinant protein raw material. The recombinant protein is a dimer, and the purity of the CRM candidate reached 96.71%. Both amino acid analysis-isotope dilution mass spectrometry (AAA-IDMS) and unique peptide analysis-isotope dilution mass spectrometry (UPA-IDMS) were performed to measure the content of HSP90α in the solution CRM candidate, and the certified value was assessed to be 66.2 ± 8.8 µg/g. Good homogeneity of the CRM was identified, and the stability examination suggested that the CRM was stable for at least 4 months at - 80 °C and for 7 days at 4 °C. With traceability to SI unit (kg), this CRM has potential to help establish a metrological traceability chain for quantification of HSP90α, which will make the quantification results standardized and comparable regardless of the quantitative methods.
Collapse
Affiliation(s)
- Manman Zhu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Jingjing Li
- Beijing Institute of Metrology, Beijing, 100191, People's Republic of China
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Lan Li
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Ziyu Qu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Wei Mi
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Liqing Wu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
5
|
Singh P, Ramanathan V, Zhang Y, Georgakoudi I, Jay DG. Extracellular Hsp90 Binds to and Aligns Collagen-1 to Enhance Breast Cancer Cell Invasiveness. Cancers (Basel) 2023; 15:5237. [PMID: 37958410 PMCID: PMC10648158 DOI: 10.3390/cancers15215237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Cancer cell-secreted eHsp90 binds and activates proteins in the tumor microenvironment crucial in cancer invasion. Therefore, targeting eHsp90 could inhibit invasion, preventing metastasis-the leading cause of cancer-related mortality. Previous eHsp90 studies have solely focused on its role in cancer invasion through the 2D basement membrane (BM), a form of extracellular matrix (ECM) that lines the epithelial compartment. However, its role in cancer invasion through the 3D Interstitial Matrix (IM), an ECM beyond the BM, remains unexplored. Using a Collagen-1 binding assay and second harmonic generation (SHG) imaging, we demonstrate that eHsp90 directly binds and aligns Collagen-1 fibers, the primary component of IM. Furthermore, we show that eHsp90 enhances Collagen-1 invasion of breast cancer cells in the Transwell assay. Using Hsp90 conformation mutants and inhibitors, we established that the Hsp90 dimer binds to Collagen-1 via its N-domain. We also demonstrated that while Collagen-1 binding and alignment are not influenced by Hsp90's ATPase activity attributed to the N-domain, its open conformation is crucial for increasing Collagen-1 alignment and promoting breast cancer cell invasion. These findings unveil a novel role for eHsp90 in invasion through the IM and offer valuable mechanistic insights into potential therapeutic approaches for inhibiting Hsp90 to suppress invasion and metastasis.
Collapse
Affiliation(s)
- Pragya Singh
- Department of Developmental, Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; (P.S.); (I.G.)
| | - Varshini Ramanathan
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA; (V.R.); (Y.Z.)
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA; (V.R.); (Y.Z.)
| | - Irene Georgakoudi
- Department of Developmental, Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; (P.S.); (I.G.)
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA; (V.R.); (Y.Z.)
| | - Daniel G. Jay
- Department of Developmental, Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; (P.S.); (I.G.)
| |
Collapse
|
6
|
Reynolds T, Blagg BSJ. Synthesis and Validation of the First Cell-Impermeable Hsp90α-Selective Inhibitors. ACS Med Chem Lett 2023; 14:1250-1256. [PMID: 37736193 PMCID: PMC10510499 DOI: 10.1021/acsmedchemlett.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
Hsp90α is an isoform of the heat shock protein 90 (Hsp90) family of molecular chaperones and mediates the folding and activation of ∼400 client proteins. However, inhibition of intracellular Hsp90α has caused detrimental side effects and significantly hindered the clinical development of Hsp90 inhibitors. As an alternative strategy, 14 Hsp90α-selective inhibitors were synthesized to introduce permanently charged moieties onto the solvent-exposed portion of the Hsp90α binding site to produce cell-impermeable extracellular Hsp90α-selective inhibitors. The resulting lead compounds were cell-permeable dimethylamine 14 (NDNA3), with an affinity of 0.51 μM for Hsp90α and >196-fold selectivity over the other Hsp90 isoforms, and cell-impermeable quaternary ammonium 17 (NDNA4), with an affinity of 0.34 μM for Hsp90α and >294-fold selectivity. The permanently charged analogs were determined to have low membrane permeability, to be nontoxic against Ovcar-8 and MCF-10A cells, to avoid disruption of hERG channel maturation, and not to induce the heat shock response or Hsp90α-dependent client degradation.
Collapse
Affiliation(s)
- Tyelor
S. Reynolds
- Department of Chemistry and
Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Brian S. J. Blagg
- Department of Chemistry and
Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
7
|
Chowdhury SR, Koley T, Singh M, Samath EA, Kaur P. Association of Hsp90 with p53 and Fizzy related homolog (Fzr) synchronizing Anaphase Promoting Complex (APC/C): An unexplored ally towards oncogenic pathway. Biochim Biophys Acta Rev Cancer 2023; 1878:188883. [PMID: 36972769 DOI: 10.1016/j.bbcan.2023.188883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.
Collapse
Affiliation(s)
- Sanghati Roy Chowdhury
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tirthankar Koley
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
8
|
Votra SD, Alsalih D, Bourboulia D. Methods to Assess the Impact of Hsp90 Chaperone Function on Extracellular Client MMP2 Activity. Methods Mol Biol 2023; 2693:221-232. [PMID: 37540438 PMCID: PMC10594791 DOI: 10.1007/978-1-0716-3342-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Secreted, or extracellular, heat shock protein 90 (eHsp90) is considered a recent discovery in eukaryotes. Over the last two decades, studies have provided significant supporting evidence that implicates eHsp90 both in normal cellular processes such as wound healing and in the development of human pathologies and diseases including fibrosis and cancer. In the early 2000s, Eustace et al. demonstrated that eHsp90 promotes the invasion of breast cancer cells by binding to and regulating the activity of an extracellular matrix (ECM) remodeling enzyme, the matrix metalloproteinase 2 or MMP2. Interestingly, inside mammalian cells, Hsp90 is an essential chaperone that interacts with hundreds of newly synthesized proteins, known as "clients," that require Hsp90's assistance to perform their function. Several methods are routinely used to characterize the role and impact of Hsp90 on a client protein's functionality in vitro and in vivo. However, the mechanistic role of eHsp90 is less well-defined since, so far, only a handful of extracellular client proteins have been identified. Here, we describe methods to characterize the impact of the secreted chaperone on MMP2 activity, the most characterized extracellular client of eHsp90. The procedures described here can be applied and adapted to characterize other extracellular clients, particularly members of the MMP family.
Collapse
Affiliation(s)
- SarahBeth D Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Deema Alsalih
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
9
|
Liu BP, Zhang C, Zhang YP, Li KW, Song C. The combination of chronic stress and smoke exacerbated depression-like changes and lung cancer factor expression in A/J mice: Involve inflammation and BDNF dysfunction. PLoS One 2022; 17:e0277945. [PMID: 36417428 PMCID: PMC9683596 DOI: 10.1371/journal.pone.0277945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Depression is positively correlated with the high incidence and low survival rate of cancers, while more cancer patients suffer depression. However, the interaction between depression and cancer, and possible underline mechanisms are unclear. METHODS Chronic unpredictable mild stress (CUMS) was used to induce depression, and smoke to induce lung cancer in lung cancer vulnerable AJ mice. After 8 weeks, sucrose preference and forced swimming behaviors were tested. Blood corticosterone concentration, and levels of cytokines, lung cancer-related factors, brain-derived neurotrophic factor (BDNF) and apoptosis-related factors in the lung, amygdala and hippocampus were measured. RESULTS Compared to control group, CUMS or smoke decreased sucrose consumption and increased immobility time, which were deteriorated by stress+smoke. CUMS, smoke or both combination decreased mononuclear viability and lung TNF-α concentration, increased serum corticosterone and lung interleukin (IL)-1, IL-2, IL-6, IL-8, IL-10, IL-12 and HSP-90α concentrations. Furthermore, stress+smoke caused more increase in corticosterone and IL-10, but decreased TNF-α. In parallel, in the lung, Bcl-2/Bax and lung cancer-related factors CDK1, CDC20, P38α etc were significantly increased in stress+smoke group. Moreover, CUMS decreased BDNF, while CUMS or smoke increased TrkB and P75 concentrations, which were exacerbated by stress+smoke. In the amygdala, except for CUMS largely increased Bax/Bcl-2 and decreased TrkB, each single factor decreased BDNF and IL-10, but increased P75, IL-1β, IL-12, TNF-α concentrations. Changes in Bax/Bcl-2, IL-10 and TNF-α were further aggravated by the combination. In the hippocampus, except for CUMS largely increased P75 concentration, each single factor significantly increased Bax/Bcl-2 ratio, IL-1β and TNF-α, but decreased BDNF, TrkB and IL-10 concentrations. Changes in Bax, Bax/Bcl-2, IL-10 and TNF-α were further aggravated by the combination. CONCLUSION These results suggest that a synergy between CUMS and smoke exposure could promote the development of depression and lung cancer, through CUMS increased the risk of cancer occurrence, and conversely lung cancer inducer smoke exposure deteriorated depressive symptoms.
Collapse
Affiliation(s)
- Bai-Ping Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Key laboratory of Aquatic Product Processing, Guangdong Ocean University, Zhanjiang, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Key laboratory of Aquatic Product Processing, Guangdong Ocean University, Zhanjiang, China
| | - Yong-Ping Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Key laboratory of Aquatic Product Processing, Guangdong Ocean University, Zhanjiang, China
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Kang-Wei Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Key laboratory of Aquatic Product Processing, Guangdong Ocean University, Zhanjiang, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Key laboratory of Aquatic Product Processing, Guangdong Ocean University, Zhanjiang, China
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
- * E-mail:
| |
Collapse
|
10
|
Sager RA, Khan F, Toneatto L, Votra SD, Backe SJ, Woodford MR, Mollapour M, Bourboulia D. Targeting extracellular Hsp90: A unique frontier against cancer. Front Mol Biosci 2022; 9:982593. [PMID: 36060252 PMCID: PMC9428293 DOI: 10.3389/fmolb.2022.982593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular chaperone Heat Shock Protein-90 (Hsp90) is known to interact with over 300 client proteins as well as regulatory factors (eg. nucleotide and proteins) that facilitate execution of its role as a chaperone and, ultimately, client protein activation. Hsp90 associates transiently with these molecular modulators during an eventful chaperone cycle, resulting in acquisition of flexible structural conformations, perfectly customized to the needs of each one of its client proteins. Due to the plethora and diverse nature of proteins it supports, the Hsp90 chaperone machinery is critical for normal cellular function particularly in response to stress. In diseases such as cancer, the Hsp90 chaperone machinery is hijacked for processes which encompass many of the hallmarks of cancer, including cell growth, survival, immune response evasion, migration, invasion, and angiogenesis. Elevated levels of extracellular Hsp90 (eHsp90) enhance tumorigenesis and the potential for metastasis. eHsp90 has been considered one of the new targets in the development of anti-cancer drugs as there are various stages of cancer progression where eHsp90 function could be targeted. Our limited understanding of the regulation of the eHsp90 chaperone machinery is a major drawback for designing successful Hsp90-targeted therapies, and more research is still warranted.
Collapse
Affiliation(s)
- Rebecca A. Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Farzana Khan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Lorenzo Toneatto
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - SarahBeth D. Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Dimitra Bourboulia,
| |
Collapse
|
11
|
Somogyvári M, Khatatneh S, Sőti C. Hsp90: From Cellular to Organismal Proteostasis. Cells 2022; 11:cells11162479. [PMID: 36010556 PMCID: PMC9406713 DOI: 10.3390/cells11162479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Assuring a healthy proteome is indispensable for survival and organismal health. Proteome disbalance and the loss of the proteostasis buffer are hallmarks of various diseases. The essential molecular chaperone Hsp90 is a regulator of the heat shock response via HSF1 and a stabilizer of a plethora of signaling proteins. In this review, we summarize the role of Hsp90 in the cellular and organismal regulation of proteome maintenance.
Collapse
|
12
|
Zhang S, Wang C, Ju J, Wang C. Extracellular Hsp90α Supports the ePKM2-GRP78-AKT Axis to Promote Tumor Metastasis. Front Oncol 2022; 12:906080. [PMID: 35847880 PMCID: PMC9280132 DOI: 10.3389/fonc.2022.906080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor-secreted proteins can provide numerous molecular targets for cancer diagnosis and treatment. Of note, pyruvate kinase M2 (PKM2) is secreted by tumor cells to promote malignant progression, while its regulatory mechanism or the interacting network remains uncovered. In the present study, we identified extracellular heat shock protein 90 alpha (eHsp90α) as one potential interacting protein of ePKM2 by mass spectrometry (MS), which was further verified by pull-down and co-immunoprecipitation analysis. Later, we found that eHsp90α enhanced the effect of ePKM2 on migration and invasion of lung cancer cells. Blocking of Hsp90α activity, on the other hand, attenuated tumor migration or invasion induced by ePKM2. Eventually, the in vivo role of Hsp90α in regulating ePKM2 activity was validated by the mouse xenograft tumor model. Mechanistically, we found that eHsp90α binds to and stabilizes ePKM2 to protect it from degradation in the extracellular environment. Besides, eHsp90α promoted the interaction of ePKM2 with cell surface receptor GRP78, which leads to the activation of the ePKM2/GRP78/AKT axis. Collectively, we unraveled the novel molecular mechanism of eHsp90α in regulating ePKM2 activity during tumor progression, which is beneficial for the development of new treatments against lung cancer.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caihong Wang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiujun Ju
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Caixia Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- *Correspondence: Caixia Wang,
| |
Collapse
|
13
|
Extracellular Heat Shock Protein-90 (eHsp90): Everything You Need to Know. Biomolecules 2022; 12:biom12070911. [PMID: 35883467 PMCID: PMC9313274 DOI: 10.3390/biom12070911] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
“Extracellular” Heat Shock Protein-90 (Hsp90) was initially reported in the 1970s but was not formally recognized until 2008 at the 4th International Conference on The Hsp90 Chaperone Machine (Monastery Seeon, Germany). Studies presented under the topic of “extracellular Hsp90 (eHsp90)” at the conference provided direct evidence for eHsp90’s involvement in cancer invasion and skin wound healing. Over the past 15 years, studies have focused on the secretion, action, biological function, therapeutic targeting, preclinical evaluations, and clinical utility of eHsp90 using wound healing, tissue fibrosis, and tumour models both in vitro and in vivo. eHsp90 has emerged as a critical stress-responding molecule targeting each of the pathophysiological conditions. Despite the studies, our current understanding of several fundamental questions remains little beyond speculation. Does eHsp90 indeed originate from purposeful live cell secretion or rather from accidental dead cell leakage? Why did evolution create an intracellular chaperone that also functions as a secreted factor with reported extracellular duties that might be (easily) fulfilled by conventional secreted molecules? Is eHsp90 a safer and more optimal drug target than intracellular Hsp90 chaperone? In this review, we summarize how much we have learned about eHsp90, provide our conceptual views of the findings, and make recommendations on the future studies of eHsp90 for clinical relevance.
Collapse
|
14
|
A novel HSP90 inhibitor SL-145 suppresses metastatic triple-negative breast cancer without triggering the heat shock response. Oncogene 2022; 41:3289-3297. [PMID: 35501463 PMCID: PMC9166677 DOI: 10.1038/s41388-022-02269-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
Despite recent advances, there remains a significant unmet need for the development of new targeted therapies for triple-negative breast cancer (TNBC). Although the heat shock protein HSP90 is a promising target, previous inhibitors have had issues during development including undesirable induction of the heat shock response (HSR) and off-target effects leading to toxicity. SL-145 is a novel, rationally-designed C-terminal HSP90 inhibitor that induces apoptosis in TNBC cells via the suppression of oncogenic AKT, MEK/ERK, and JAK2/STAT3 signaling and does not trigger the HSR, in contrast to other inhibitors. In an orthotopic allograft model incorporating breast cancer stem cell-enriched TNBC tumors, SL-145 potently suppressed tumor growth, angiogenesis, and metastases concomitant with dysregulation of the JAK2/STAT3 signaling pathway. Our findings highlight the potential of SL-145 in suppressing metastatic TNBC independent of the HSR.
Collapse
|
15
|
HSP90 as a regulator of extracellular matrix dynamics. Biochem Soc Trans 2021; 49:2611-2625. [PMID: 34913470 DOI: 10.1042/bst20210374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The extracellular matrix (ECM) is a dynamic and organised extracellular network assembled from proteins and carbohydrates exported from the cell. The ECM is critical for multicellular life, providing spatial and temporal cellular cues to maintain tissue homeostasis. Consequently, ECM production must be carefully balanced with turnover to ensure homeostasis; ECM dysfunction culminates in disease. Hsp90 is a molecular chaperone central to protein homeostasis, including in the ECM. Intracellular and extracellular Hsp90 isoforms collaborate to regulate the levels and status of proteins in the ECM via multiple mechanisms. In so doing, Hsp90 regulates ECM dynamics, and changes in Hsp90 levels or activity support the development of ECM-related diseases, like cancer and fibrosis. Consequently, Hsp90 levels may have prognostic value, while inhibition of Hsp90 may have therapeutic potential in conditions characterised by ECM dysfunction.
Collapse
|
16
|
Shang BB, Chen J, Wang ZG, Liu H. Significant correlation between HSPA4 and prognosis and immune regulation in hepatocellular carcinoma. PeerJ 2021; 9:e12315. [PMID: 34754620 PMCID: PMC8555498 DOI: 10.7717/peerj.12315] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an inflammation-associated tumor involved in immune tolerance and evasion in the immune microenvironment. Heat shock proteins (HSPs) are involved in the occurrence, progression, and immune regulation of tumors. Therefore, HSPs have been considered potential therapeutic targets. Here, we aimed to elucidate the value of HSP family A (Hsp70) member 4 (HSPA4) in the diagnosis and predicting prognosis of HCC, and its relationship with immune cell infiltration, immune cell biomarkers, and immune checkpoints. Gene mutation, DNA methylation, and the pathway involved in HCC were also analyzed. Methods The gene expression omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to compare HSPA4 expression, and the results were confirmed by immunohistochemical staining of clinical samples. R package was used to analyze the correlation between HSPA4 and cancer stage, and to establish receiver operating characteristic (ROC) curve of diagnosis, time-dependent survival ROC curve, and a nomogram model. cBioPortal and MethSurv were used to identify genetic alterations and DNA methylation, and their effect on prognosis. The Tumor Immune Estimation Resource (TIMER) was used to analyze immune cell infiltration, immune cell biomarkers, and immune checkpoints. The STRING database was used to analyze protein-protein interaction network information. Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the functions of HSPA4 and its functional partner genes. Results Overexpression of HSPA4 was identified in 25 cancers. Overexpression of HSPA4 considerably correlated with cancer stage and alpha-fetoprotein (AFP) level in HCC. Patients with higher HSPA4 expression showed poorer prognosis. HSPA4 expression can accurately identify tumor from normal tissue (AUC = 0.957). The area under 1-, 3-, and 5-year survival ROCs were above 0.6. The HSPA4 genetic alteration rate was 1.3%. Among the 14 DNA methylation CpG sites, seven were related to the prognosis of HCC. HSPA4 was positively related to immune cell infiltration and immune checkpoints (PD-1 and CTLA-4) in HCC. The KEGG pathway enrichment analysis revealed HSPA4 enrichment in antigen processing and presentation together with HSPA8 and HSP90AA1. We verified the value of HSPA4 in the diagnosis and predicting prognosis of HCC. HSPA4 may not only participate in the occurrence and progression but also the immune regulation of HCC. Therefore, HSPA4 can be a potential diagnostic and prognostic biomarker and a therapeutic target for HCC.
Collapse
Affiliation(s)
| | - Jun Chen
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Zhi-Guo Wang
- Second Hospital of Dalian Medical University, Dalian, China
| | - Hui Liu
- Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
17
|
Poggio P, Sorge M, Seclì L, Brancaccio M. Extracellular HSP90 Machineries Build Tumor Microenvironment and Boost Cancer Progression. Front Cell Dev Biol 2021; 9:735529. [PMID: 34722515 PMCID: PMC8551675 DOI: 10.3389/fcell.2021.735529] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
HSP90 is released by cancer cells in the tumor microenvironment where it associates with different co-chaperones generating complexes with specific functions, ranging from folding and activation of extracellular clients to the stimulation of cell surface receptors. Emerging data indicate that these functions are essential for tumor growth and progression. The understanding of the exact composition of extracellular HSP90 complexes and the molecular mechanisms at the basis of their functions in the tumor microenvironment may represent the first step to design innovative diagnostic tools and new effective therapies. Here we review the impact of extracellular HSP90 complexes on cancer cell signaling and behavior.
Collapse
Affiliation(s)
- Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
18
|
Birbo B, Madu EE, Madu CO, Jain A, Lu Y. Role of HSP90 in Cancer. Int J Mol Sci 2021; 22:ijms221910317. [PMID: 34638658 PMCID: PMC8508648 DOI: 10.3390/ijms221910317] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
HSP90 is a vital chaperone protein conserved across all organisms. As a chaperone protein, it correctly folds client proteins. Structurally, this protein is a dimer with monomer subunits that consist of three main conserved domains known as the N-terminal domain, middle domain, and the C-terminal domain. Multiple isoforms of HSP90 exist, and these isoforms share high homology. These isoforms are present both within the cell and outside the cell. Isoforms HSP90α and HSP90β are present in the cytoplasm; TRAP1 is present in the mitochondria; and GRP94 is present in the endoplasmic reticulum and is likely secreted due to post-translational modifications (PTM). HSP90 is also secreted into an extracellular environment via an exosome pathway that differs from the classic secretion pathway. Various co-chaperones are necessary for HSP90 to function. Elevated levels of HSP90 have been observed in patients with cancer. Despite this observation, the possible role of HSP90 in cancer was overlooked because the chaperone was also present in extreme amounts in normal cells and was vital to normal cell function, as observed when the drastic adverse effects resulting from gene knockout inhibited the production of this protein. Differences between normal HSP90 and HSP90 of the tumor phenotype have been better understood and have aided in making the chaperone protein a target for cancer drugs. One difference is in the conformation: HSP90 of the tumor phenotype is more susceptible to inhibitors. Since overexpression of HSP90 is a factor in tumorigenesis, HSP90 inhibitors have been studied to combat the adverse effects of HSP90 overexpression. Monotherapies using HSP90 inhibitors have shown some success; however, combination therapies have shown better results and are thus being studied for a more effective cancer treatment.
Collapse
Affiliation(s)
- Bereket Birbo
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Elechi E. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Chikezie O. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Aayush Jain
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Yi Lu
- Health Science Center, Department of Pathology and Laboratory Medicine, University of Tennessee, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-(901)-448-5436; Fax: +1-(901)-448-5496
| |
Collapse
|
19
|
Wang Y, Chen Q, Wu D, Chen Q, Gong G, He L, Wu X. Lamin-A interacting protein Hsp90 is required for DNA damage repair and chemoresistance of ovarian cancer cells. Cell Death Dis 2021; 12:786. [PMID: 34381017 PMCID: PMC8358027 DOI: 10.1038/s41419-021-04074-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
Ovarian cancer is the most malignant gynecologic cancer. Previous studies found that lamin-A was associated with DNA damage repair proteins but the underlying mechanism remains unclear. We speculate that this may be related to its interacting proteins, such as Hsp90. The aim of this study is to investigate the effects of Hsp90 on DNA damage repair and chemoresistance of ovarian cancer cells. In our research, co-immunoprecipitation (co-IP) and mass spectrometry (MS) were used to identify proteins interacting with lamin-A and the interaction domain. Next, the relationship between lamin-A and Hsp90 was explored by Western blotting (WB) and immunofluorescence staining. Then, effect of Hsp90 inhibition on DNA damage repair was assessed through detecting Rad50 and Ku80 by WB. Furthermore, to test the roles of 17-AAG on cell chemosensitivity, CCK-8 and colony formation assay were carried out. Meanwhile, IC50 of cells were calculated, followed by immunofluorescence to detect DNA damage. At last, the mouse xenograft model was used in determining the capacity of 17-AAG and DDP to suppress tumor growth and metastatic potential. The results showed that lamin-A could interact with Hsp90 via the domain of lamin-A1-430. Besides, the distribution of Hsp90 could be affected by lamin-A. After lamin-A knockdown, Hsp90 decreased in the cytoplasm and increased in the nucleus, suggesting that the interaction between lamin-A and Hsp90 may be related to the nucleocytoplasmic transport of Hsp90. Moreover, inhibition of Hsp90 led to an obvious decrease in the expression of DSBs (DNA double-strand break) repair proteins, as well as cell proliferation ability upon DDP treatment and IC50 of DDP, causing more serious DNA damage. In addition, the combination of 17-AAG and DDP restrained the growth of ovarian cancer efficiently in vivo and prolonged the survival time of tumor-bearing mice.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Quan Chen
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Di Wu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Qifeng Chen
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Guanghui Gong
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Liuqing He
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Xiaoying Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China.
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, P. R. China.
| |
Collapse
|
20
|
Extracellular Hsp90α Promotes Tumor Lymphangiogenesis and Lymph Node Metastasis in Breast Cancer. Int J Mol Sci 2021; 22:ijms22147747. [PMID: 34299365 PMCID: PMC8305043 DOI: 10.3390/ijms22147747] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
Early detection and discovery of new therapeutic targets are urgently needed to improve the breast cancer treatment outcome. Here we conducted an official clinical trial with cross-validation to corroborate human plasma Hsp90α as a novel breast cancer biomarker. Importantly, similar results were noticed in detecting early-stage breast cancer patients. Additionally, levels of plasma Hsp90α in breast cancer patients were gradually elevated as their clinical stages of regional lymph nodes advanced. In orthotopic breast cancer mouse models, administrating with recombinant Hsp90α protein increased both the primary tumor lymphatic vessel density and sentinel lymph node metastasis by 2 and 10 times, respectively. What is more, Hsp90α neutralizing antibody treatment approximately reduced 70% of lymphatic vessel density and 90% of sentinel lymph node metastasis. In the in vitro study, we demonstrated the role of extracellular Hsp90α (eHsp90α) as a pro-lymphangiogenic factor, which significantly enhanced migration and tube formation abilities of lymphatic endothelial cells (LECs). Mechanistically, eHsp90α signaled to the AKT pathway through low-density lipoprotein receptor-related protein 1 (LRP1) to upregulate the expression and secretion of CXCL8 in the lymphangiogenic process. Collectively, this study proves that plasma Hsp90α serves as an auxiliary diagnosis biomarker and eHsp90α as a molecular mediator promoting lymphangiogenesis in breast cancer.
Collapse
|
21
|
Seclì L, Avalle L, Poggio P, Fragale G, Cannata C, Conti L, Iannucci A, Carrà G, Rubinetto C, Miniscalco B, Hirsch E, Poli V, Morotti A, De Andrea M, Turco E, Cavallo F, Fusella F, Brancaccio M. Targeting the extracellular HSP90 co-chaperone Morgana inhibits cancer cell migration and promotes anti-cancer immunity. Cancer Res 2021; 81:4794-4807. [PMID: 34193441 DOI: 10.1158/0008-5472.can-20-3150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Heat shock protein 90 (HSP90) is secreted by cancer cells into the extracellular milieu, where it exerts pro-tumoral activities by activating extracellular substrate proteins and triggering autocrine signals through cancer cell surface receptors. Emerging evidence indicates that HSP90 co-chaperones are also secreted and may direct HSP90 extracellular activities. In this study, we found that the HSP90 co-chaperone Morgana is released by cancer cells and, in association with HSP90, induces cancer cell migration through TLR2, TLR4, and LRP1. In syngeneic cancer mouse models, a monoclonal antibody targeting Morgana extracellular activity reduced primary tumor growth via macrophage-dependent recruitment of CD8+ T lymphocytes, blocked cancer cell migration, and inhibited metastatic spreading. Overall, this data defines Morgana as a new player in the HSP90 extracellular interactome and suggests that Morgana may regulate HSP90 activity to promote cancer cell migration and suppress anti-tumor immunity.
Collapse
Affiliation(s)
- Laura Seclì
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Lidia Avalle
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Pietro Poggio
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Giuseppe Fragale
- Molecular Biotechnology and Health Sciences, University of Turin
| | | | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences - Molecular Biotechnology Center, University of Turin
| | - Andrea Iannucci
- CAAD-Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin
| | | | | | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Turin
| | | | - Marco De Andrea
- Public Health and Pediatric Sciences, University of Turin, Medical School
| | - Emilia Turco
- Molecular Biotechnology and Health Sciences, University of Torino, Molecular Biotechnology Center
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin
| | - Federica Fusella
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Mara Brancaccio
- Molecular Biotechnology and Health Sciences, University of Turin
| |
Collapse
|
22
|
Zhalimov VK, Skarga YY, Gritsyna YV, Morenkov OS. Influence of the Recombinant Heat Shock Protein 90β (HSP90β) on the Wound Healing Rate in Mice. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Zhang S, Wang C, Ma B, Xu M, Xu S, Liu J, Tian Y, Fu Y, Luo Y. Mutant p53 Drives Cancer Metastasis via RCP-Mediated Hsp90α Secretion. Cell Rep 2021; 32:107879. [PMID: 32640214 DOI: 10.1016/j.celrep.2020.107879] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/10/2020] [Accepted: 06/17/2020] [Indexed: 01/26/2023] Open
Abstract
Mutant p53 (mutp53) loses its tumor suppressor properties but gains oncogenic functions of driving malignancy. However, it remains largely unknown how mutp53 drives cancer metastasis. Here, we show that wild-type p53 (WTp53) suppresses the secretion of heat shock protein 90-alpha (Hsp90α), whereas mutp53 enhances Hsp90α vesicular trafficking and exosome-mediated secretion. Long-term delivery of an antibody that blocks extracellular Hsp90α (eHsp90α) function extends the survival of p53-/- mice and attenuates the invasiveness of p53 mutant tumors. Furthermore, mass spectrometry and functional analysis identified a critical role for Rab coupling protein (RCP) in mutp53-induced Hsp90α secretion. RCP knockdown decreases eHsp90α levels and inhibits malignant progression. Notably, recombinant Hsp90α re-introduction markedly rescues the impaired migration and invasion abilities caused by RCP depletion. Taken together, these findings elucidate the molecular mechanisms by which mutp53 executes oncogenic activities via its downstream RCP-mediated Hsp90α secretion and a strategy to treat human cancers expressing mutp53 proteins.
Collapse
Affiliation(s)
- Shaosen Zhang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Caihong Wang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Boyuan Ma
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Min Xu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Siran Xu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Jie Liu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yang Tian
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Seclì L, Fusella F, Avalle L, Brancaccio M. The dark-side of the outside: how extracellular heat shock proteins promote cancer. Cell Mol Life Sci 2021; 78:4069-4083. [PMID: 33544155 PMCID: PMC8164615 DOI: 10.1007/s00018-021-03764-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
In addition to exerting several essential house-keeping activities in the cell, heat shock proteins (HSPs) are crucial players in a well-structured molecular program activated in response to stressful challenges. Among the different activities carried out by HSPs during emergency, they reach the extracellular milieu, from where they scout the surroundings, regulate extracellular protein activity and send autocrine and paracrine signals. Cancer cells permanently experience stress conditions due to their altered equilibrium and behaviour, and constantly secrete heat shock proteins as a result. Other than supporting anti-tumour immunity, extracellular heat shock proteins (eHSPs), can also exacerbate cancer cell growth and malignancy by sustaining different cancer hallmarks. eHSPs are implicated in extracellular matrix remodelling, resistance to apoptosis, promotion of cell migration and invasion, induction of epithelial to mesenchymal transition, angiogenesis and activation of stromal cells, supporting ultimately, metastasis dissemination. A broader understanding of eHSP activity and contribution to tumour development and progression is leading to new opportunities in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| | - Federica Fusella
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
25
|
Zhong B, Shen J, Zhang C, Zhou G, Yu Y, Qin E, Tang J, Wu D, Liang X. Plasma Heat Shock Protein 90 Alpha: A Valuable Predictor of Early Chemotherapy Effectiveness in Advanced Non-Small-Cell Lung Cancer. Med Sci Monit 2021; 27:e924778. [PMID: 33419959 PMCID: PMC7805245 DOI: 10.12659/msm.924778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Heat shock protein-90 alpha (HSP90α) is more abundant in non-small-cell lung cancer (NSCLC) patients than in control individuals. However, whether it can reflect chemotherapy efficacy remains unknown. This study aimed to investigate the association of HSP90α with chemotherapy in advanced NSCLC. Material/Methods We retrospectively evaluated data from patients admitted to the Department of Respiratory Medicine, Shaoxing People’s Hospital, from September 2016 to September 2018 with stage IIIB or IV NSCLC and administered 4 cycles of third-generation platinum-based combination chemotherapy (2 drugs simultaneously). Based on the RECIST1.1 criteria, complete remission (CR), partial response (PR), and stable disease (SD) in 60 cases were determined before and after chemotherapy. Before chemotherapy and after 1, 2, and 4 cycles of chemotherapy, plasma HSP90α levels were quantitated by ELISA. Chest CT was performed before and after 2 and 4 cycles of chemotherapy. Results After 1–4 cycles of chemotherapy, plasma HSP90α levels were significantly lower than pre-chemotherapy levels (P<0.05). The sums of the longest tumor diameters after 2 and 4 cycles of chemotherapy were decreased compared with pre-chemotherapy values (P<0.05). Plasma HSP90α levels and tumor size showed no significant correlation before and after chemotherapy (r=0.244, P=0.06). Conclusions Plasma HSP90α can be considered a valuable predictor of early chemotherapy effectiveness in advanced NSCLC, and is positively correlated with tumor remission after chemotherapy. However, plasma HSP90α level is not correlated with tumor diameter and pathological type.
Collapse
Affiliation(s)
- Bo Zhong
- Department of Respiratory Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, China (mainland)
| | - Juxin Shen
- Department of Respiratory Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, China (mainland)
| | - Chunyi Zhang
- Department of Respiratory Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, China (mainland)
| | - Guozhong Zhou
- Department of Clinical Laboratory, Shaoxing People's Hospital, Shaoxing, Zhejiang, China (mainland)
| | - Yuefang Yu
- Department of Respiratory Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, China (mainland)
| | - E Qin
- Department of Respiratory Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, China (mainland)
| | - Jixian Tang
- Department of Respiratory Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, China (mainland)
| | - Dongping Wu
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China (mainland)
| | - Xiaochao Liang
- Department of Respiratory Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, China (mainland)
| |
Collapse
|
26
|
Pavlakis E, Neumann M, Stiewe T. Extracellular Vesicles: Messengers of p53 in Tumor-Stroma Communication and Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21249648. [PMID: 33348923 PMCID: PMC7766631 DOI: 10.3390/ijms21249648] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor progression to a metastatic and ultimately lethal stage relies on a tumor-supporting microenvironment that is generated by reciprocal communication between tumor and stromal host cells. The tumor–stroma crosstalk is instructed by the genetic alterations of the tumor cells—the most frequent being mutations in the gene Tumor protein p53 (TP53) that are clinically correlated with metastasis, drug resistance and poor patient survival. The crucial mediators of tumor–stroma communication are tumor-derived extracellular vesicles (EVs), in particular exosomes, which operate both locally within the primary tumor and in distant organs, at pre-metastatic niches as the future sites of metastasis. Here, we review how wild-type and mutant p53 proteins control the secretion, size, and especially the RNA and protein cargo of tumor-derived EVs. We highlight how EVs extend the cell-autonomous tumor suppressive activity of wild-type p53 into the tumor microenvironment (TME), and how mutant p53 proteins switch EVs into oncogenic messengers that reprogram tumor–host communication within the entire organism so as to promote metastatic tumor cell dissemination.
Collapse
Affiliation(s)
- Evangelos Pavlakis
- Institute of Molecular Oncology, Philipps University, 35034 Marburg, Germany; (E.P.); (M.N.)
| | - Michelle Neumann
- Institute of Molecular Oncology, Philipps University, 35034 Marburg, Germany; (E.P.); (M.N.)
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps University, 35034 Marburg, Germany; (E.P.); (M.N.)
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center of Lung Research (DZL), Philipps University, 35034 Marburg, Germany
- Correspondence:
| |
Collapse
|
27
|
Diagnostic and prognostic value of plasma heat shock protein 90alpha in gastric cancer. Int Immunopharmacol 2020; 90:107145. [PMID: 33162344 DOI: 10.1016/j.intimp.2020.107145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND The role of plasma heat shock protein 90alpha (Hsp90α) in gastric cancers remains unclear. This study aimed to clarify the diagnostic and prognostic value of plasma Hsp90α in gastric cancer. METHODS Data regarding 976 gastric cancer, 50 gastric inflammatory diseases, and 100 healthy controls were collected. Plasma Hsp90α levels in gastric cancer were compared to those in controls. Its correlation with tumor biomarkers and immune cells was examined. The association of plasma Hsp90α with clinical features and the diagnostic and prognostic value in gastric cancer were also determined. RESULTS Plasma Hsp90α levels were remarkably increased in gastric cancer, compared to those in gastric inflammatory diseases and healthy controls. Moreover, plasma Hsp90α was correlated with CEA, CA125, CA153, CA199, T cells, Th/Ts ratio, and B cells. Plasma Hsp90α was also associated with the metastasis stage. Multivariate logistic regression analysis revealed that Hsp90α, B cells, and T cells were significantly associated with gastric cancer. Plasma Hsp90α has a moderate diagnostic value, which increased when combined with B cell, T cells. Finally, plasma Hsp90α was not associated with the survival of gastric cancer patients. CONCLUSION Plasma Hsp90α was elevated in gastric cancer and correlated with tumor biomarkers and immune cells. Plasma Hsp90α was associated with the metastasis stage and had moderate diagnostic performance but little prognostic value in gastric cancer.
Collapse
|
28
|
Baker-Williams AJ, Hashmi F, Budzyński MA, Woodford MR, Gleicher S, Himanen SV, Makedon AM, Friedman D, Cortes S, Namek S, Stetler-Stevenson WG, Bratslavsky G, Bah A, Mollapour M, Sistonen L, Bourboulia D. Co-chaperones TIMP2 and AHA1 Competitively Regulate Extracellular HSP90:Client MMP2 Activity and Matrix Proteolysis. Cell Rep 2020; 28:1894-1906.e6. [PMID: 31412254 DOI: 10.1016/j.celrep.2019.07.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/01/2019] [Accepted: 07/15/2019] [Indexed: 11/26/2022] Open
Abstract
The extracellular molecular chaperone heat shock protein 90 (eHSP90) stabilizes protease client the matrix metalloproteinase 2 (MMP2), leading to tumor cell invasion. Although co-chaperones are critical modulators of intracellular HSP90:client function, how the eHSP90:MMP2 complex is regulated remains speculative. Here, we report that the tissue inhibitor of metalloproteinases-2 (TIMP2) is a stress-inducible extracellular co-chaperone that binds to eHSP90, increases eHSP90 binding to ATP, and inhibits its ATPase activity. In addition to disrupting the eHSP90:MMP2 complex and terminally inactivating MMP2, TIMP2 loads the client to eHSP90, keeping the protease in a transient inhibitory state. Secreted activating co-chaperone AHA1 displaces TIMP2 from the complex, providing a "reactivating" mechanism for MMP2. Gene knockout or blocking antibodies targeting TIMP2 and AHA1 released by HT1080 cancer cells modify their gelatinolytic activity. Our data suggest that TIMP2 and AHA1 co-chaperones function as a molecular switch that determines the inhibition and reactivation of the eHSP90 client protein MMP2.
Collapse
Affiliation(s)
- Alexander J Baker-Williams
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Fiza Hashmi
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Marek A Budzyński
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Stephanie Gleicher
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Derek Friedman
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, MD Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Stephanie Cortes
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, MD Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sara Namek
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Alaji Bah
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
29
|
Tang Y, Li K, Cai Z, Xie Y, Tan X, Su C, Li J. HSP90α combined with AFP and TK1 improved the diagnostic value for hepatocellular carcinoma. Biomark Med 2020; 14:869-878. [PMID: 32490681 DOI: 10.2217/bmm-2019-0484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/14/2020] [Indexed: 01/02/2023] Open
Abstract
Aim: We investigated the effect of the combination of heat shock protein 90α (HSP90α), alpha-fetoprotein (AFP) and thymidine kinase 1 (TK1) in the diagnosis of hepatocellular carcinoma (HCC). Methods & results: A total of 409 patients with HCC, 101 patients with benign liver disorder and 78 healthy individuals were retrospectively analyzed. HSP90α level was higher in HCC patients than in controls. The expression of HSP90α showed a positive correlation with tumor stage, differentiation, lymph node metastasis and tumor thrombus formation. The combination of HSP90α, AFP and TK1 improved the diagnostic sensitivity (89.24%) and the area under the receiver operating characteristic curve (0.919). Conclusion: The detection of HSP90α, AFP and TK1 is more efficient than a single tumor marker for the diagnosis of HCC.
Collapse
Affiliation(s)
- Yanping Tang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Kezhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Zhengmin Cai
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Yuxuan Xie
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Xiaoyu Tan
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Chenglin Su
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Jilin Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| |
Collapse
|
30
|
Snigireva AV, Morenkov OS, Skarga YY, Lisov AV, Lisova ZA, Leontievsky AA, Zhmurina MA, Petrenko VS, Vrublevskaya VV. A 2,5-Dihydroxybenzoic Acid-Gelatin Conjugate Inhibits the Basal and Hsp90-Stimulated Migration and Invasion of Tumor Cells. J Funct Biomater 2020; 11:jfb11020039. [PMID: 32503118 PMCID: PMC7353502 DOI: 10.3390/jfb11020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
The extracellular cell surface-associated and soluble heat shock protein 90 (Hsp90) is known to participate in the migration and invasion of tumor cells. Earlier, we demonstrated that plasma membrane-associated heparan sulfate proteoglycans (HSPGs) bind the extracellular Hsp90 and thereby promote the Hsp90-mediated motility of tumor cells. Here, we showed that a conjugate of 2,5-dihydroxybenzoic acid with gelatin (2,5-DHBA–gelatin), a synthetic polymer with heparin-like properties, suppressed the basal (unstimulated) migration and invasion of human glioblastoma A-172 and fibrosarcoma HT1080 cells, which was accompanied by the detachment of a fraction of Hsp90 from cell surface HSPGs. The polymeric conjugate also inhibited the migration/invasion of cells stimulated by exogenous soluble native Hsp90, which correlated with the inhibition of the attachment of soluble Hsp90 to cell surface HSPGs. The action of the 2,5-DHBA–gelatin conjugate on the motility of A-172 and HT1080 cells was similar to that of heparin. The results demonstrate a potential of the 2,5-DHBA–gelatin polymer for the development of antimetastatic drugs targeting cell motility and a possible role of extracellular Hsp90 in the suppression of the migration and invasion of tumor cells mediated by the 2,5-DHBA–gelatin conjugate and heparin.
Collapse
Affiliation(s)
- Anastasiya V. Snigireva
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.S.); (O.S.M.); (Y.Y.S.); (M.A.Z.); (V.S.P.)
| | - Oleg S. Morenkov
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.S.); (O.S.M.); (Y.Y.S.); (M.A.Z.); (V.S.P.)
| | - Yuri Y. Skarga
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.S.); (O.S.M.); (Y.Y.S.); (M.A.Z.); (V.S.P.)
| | - Alexander V. Lisov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.L.); (Z.A.L.); (A.A.L.)
| | - Zoya A. Lisova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.L.); (Z.A.L.); (A.A.L.)
| | - Alexey A. Leontievsky
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.L.); (Z.A.L.); (A.A.L.)
| | - Mariya A. Zhmurina
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.S.); (O.S.M.); (Y.Y.S.); (M.A.Z.); (V.S.P.)
| | - Viktoria S. Petrenko
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.S.); (O.S.M.); (Y.Y.S.); (M.A.Z.); (V.S.P.)
| | - Veronika V. Vrublevskaya
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia; (A.V.S.); (O.S.M.); (Y.Y.S.); (M.A.Z.); (V.S.P.)
- Correspondence: ; Tel.: +7-4967-739221
| |
Collapse
|
31
|
SNX-2112, an Hsp90 inhibitor, suppresses cervical cancer cells proliferation, migration, and invasion by inhibiting the Akt/mTOR signaling pathway. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02534-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
32
|
Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Taranejoo S, Zali H. HSP90 and Co-chaperones: Impact on Tumor Progression and Prospects for Molecular-Targeted Cancer Therapy. Cancer Invest 2020; 38:310-328. [PMID: 32274949 DOI: 10.1080/07357907.2020.1752227] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heat shock protein 90 (HSP90), a highly and unique chaperone, presents as a double-edged sword. It plays an essential role in many physiological and pathological processes, including tumor development. The current review highlights a recent understanding of the roles of HSP90 in molecular mechanisms underlying cancer survival and progression. HSP90 and its client proteins through the regulation of oncoproteins including signaling proteins, receptors, and transcriptional factors involved in tumorigenesis. It also has potential clinical application as diagnostic and prognostic biomarkers for assessing cancer progression. In this way, using HSP90 to develop new anticancer therapeutic agents including HSP90 inhibitors, anti-HSP90 antibody, and HSP90-based vaccines has been promising.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrouz Taranejoo
- Wellman Centre for Photomedicine, Harvard-MIT Division of Health Sciences and Technology (HST), Boston, MA, USA
| | - Hakimeh Zali
- Department of Tissue engineering and applied cell, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Damasiewicz-Bodzek A, Szumska M, Tyrpień-Golder K. Antibodies to Heat Shock Proteins 90α and 90β in Psoriasis. Arch Immunol Ther Exp (Warsz) 2020; 68:9. [PMID: 32239296 PMCID: PMC7113222 DOI: 10.1007/s00005-020-00573-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 02/14/2020] [Indexed: 01/23/2023]
Abstract
One of many hypotheses of psoriasis pathogenesis supposes an overexpression of heat shock proteins (Hsps) in different skin layers and systemic immunologic response to them. Hsp90 is one of the most abundant chaperone in eukaryotic cells. The number of studies concerning the role of Hsp90 and anti-Hsp90 antibodies in etiopathogenesis of various diseases is also constantly expanding. Still, there are not many reports concerning potential involvement of this Hsp family or anti-Hsp90 immunization in pathomechanism of psoriasis. The aim of the study was the estimation of anti-Hsp90α and anti-Hsp90β IgG antibodies in the sera of the psoriatic patients at different phases of disease activity in comparison to the sera of healthy individuals. The study material consisted of sera from psoriasis patients (n = 80) in active phase and in the remission phase and healthy individuals (n = 80). Concentrations of anti-Hsp90α and anti-Hsp90β IgG antibodies were determined using ELISA technique. In the patients with psoriasis (both in the active phase of the disease and in the remission phase) concentrations of anti-Hsp90α antibodies were significantly higher than in healthy individuals and they correlated positively with psoriasis area severity index values. The mean concentrations of anti-Hsp90β antibodies in the psoriatic patients and healthy controls were comparable. The obtained results indicate an existence of increased immunological response to Hsp90α in psoriasis. It may suggest the role of the extracellular form of this chaperone and/or anti-Hsp90α antibodies in etiopathogenesis of this dermatosis. The inhibition of Hsp90α may represent a novel therapeutic approach to treat psoriasis.
Collapse
Affiliation(s)
| | - Magdalena Szumska
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Krystyna Tyrpień-Golder
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
34
|
Pai JT, Hsu CY, Hsieh YS, Tsai TY, Hua KT, Weng MS. Suppressing migration and invasion of H1299 lung cancer cells by honokiol through disrupting expression of an HDAC6-mediated matrix metalloproteinase 9. Food Sci Nutr 2020; 8:1534-1545. [PMID: 32180962 PMCID: PMC7063368 DOI: 10.1002/fsn3.1439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Metastasis is the crucial mechanism to cause high mortality in lung cancer. Degradation of extracellular matrix (ECM) by proteolytic enzymes, especially matrix metalloproteinases (MMPs), is a key process for promoting cancer cell migration and invasion. Therefore, targeting MMPs might be a strategy for lung cancer metastasis suppression. Honokiol, a biological active component of Magnolia officinalis, has been indicated to suppress lung cancer tumorigenesis through epigenetic regulation. However, the regulation of MMPs‐mediated migration and invasion by honokiol through epigenetic regulation in lung cancer is still a mystery. In the present study, the migration and invasion ability of H1299 lung cancer was suppressed by noncytotoxic concentrations of honokiol treatment. The proteolytic activity of MMP‐9, rather than MMP‐2, was inhibited in honokiol‐treated H1299 cells. Honokiol‐inhibited MMP‐9 expression was through promoting MMP‐9 protein degradation rather than suppressing transcription mechanism. Furthermore, the expression of specific histone deacetylases 6 (HDAC6) substrate, acetyl‐α‐tubulin, was accumulated after honokiol incubation. The disassociation of MMP‐9 with hyper‐acetylated heat shock protein 90 (Hsp90) was observed resulting in MMP‐9 degradation after honokiol treatment. Meanwhile, honokiol‐suppressed MMP‐9 expression and invasion ability of H1299 lung cancer cells was rescued by HDAC6 overexpression. Accordingly, the results suggested that the suppression of migration and invasion activities by honokiol was through inhibiting HDAC6‐mediated Hsp90/MMP‐9 interaction and followed by MMP‐9 degradation in lung cancer.
Collapse
Affiliation(s)
- Jih-Tung Pai
- Division of Hematology and Oncology Tao-Yuan General Hospital Ministry of Health and Welfare Taoyuan City Taiwan
| | - Chia-Yun Hsu
- Department of Nutritional Science Fu Jen Catholic University New Taipei city Taiwan
| | - Yei-San Hsieh
- Department of Chest Surgery Tao-Yuan General Hospital Ministry of Health and Welfare Taoyuan City Taiwan
| | - Tsung-Yu Tsai
- Department of Food Science Fu Jen Catholic University New Taipei City Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology College of Medicine National Taiwan University Taipei Taiwan
| | - Meng-Shih Weng
- Department of Nutritional Science Fu Jen Catholic University New Taipei city Taiwan
| |
Collapse
|
35
|
HSP90 Interacts with the Fibronectin N-terminal Domains and Increases Matrix Formation. Cells 2020; 9:cells9020272. [PMID: 31979118 PMCID: PMC7072298 DOI: 10.3390/cells9020272] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/20/2022] Open
Abstract
Heat shock protein 90 (HSP90) is an evolutionarily conserved chaperone protein that controls the function and stability of a wide range of cellular client proteins. Fibronectin (FN) is an extracellular client protein of HSP90, and exogenous HSP90 or inhibitors of HSP90 alter the morphology of the extracellular matrix. Here, we further characterized the HSP90 and FN interaction. FN bound to the M domain of HSP90 and interacted with both the open and closed HSP90 conformations; and the interaction was reduced in the presence of sodium molybdate. HSP90 interacted with the N-terminal regions of FN, which are known to be important for matrix assembly. The highest affinity interaction was with the 30-kDa (heparin-binding) FN fragment, which also showed the greatest colocalization in cells and accommodated both HSP90 and heparin in the complex. The strength of interaction with HSP90 was influenced by the inherent stability of the FN fragments, together with the type of motif, where HSP90 preferentially bound the type-I FN repeat over the type-II repeat. Exogenous extracellular HSP90 led to increased incorporation of both full-length and 70-kDa fragments of FN into fibrils. Together, our data suggested that HSP90 may regulate FN matrix assembly through its interaction with N-terminal FN fragments.
Collapse
|
36
|
Costa TEMM, Raghavendra NM, Penido C. Natural heat shock protein 90 inhibitors in cancer and inflammation. Eur J Med Chem 2020; 189:112063. [PMID: 31972392 DOI: 10.1016/j.ejmech.2020.112063] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
Abstract
Heat shock protein (HSP)90 is the most abundant HSPs, which are chaperone molecules whose major roles are cell protection and maintenance by means of aiding the folding, the stabilization and the remodeling of a wide range of proteins. A few hundreds of proteins depend on HSP90 chaperone activity, including kinases and transcriptional factors that play essential roles in cancer and inflammation, so that HSP90-targeted therapies have been considered as a potential strategy for the treatment of cancer and inflammatory-associated diseases. HSP90 inhibition by natural, semi-synthetic and synthetic compounds have yield promising results in pre-clinical studies and clinical trials for different types of cancers and inflammation. Natural products are a huge source of biologically active compounds widely used in drug development due to the great diversity of their metabolites which are capable to modulate several protein functions. HSP90 inhibitors have been isolated from bacteria, fungi and vegetal species. These natural compounds have a noteworthy ability to modulate HSP90 activity as well as serve as scaffolds for the development of novel synthetic or semi-synthetic inhibitors. Over a hundred clinical trials have evaluated the effect of HSP90 inhibitors as adjuvant treatment against different types of tumors and, currently, new studies are being developed to gain sight on novel promising and more effective approaches for cancer treatment. In this review, we present the naturally occurring HSP90 inhibitors and analogues, discussing their anti-cancer and anti-inflammatory effects.
Collapse
Affiliation(s)
- Thadeu E M M Costa
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation, Rio de Janeiro, 21040-361, Brazil; Laboratory of Applied Pharmacology, Institute of Drug Technology, Farmanguinhos, 21041-250, Rio de Janeiro, Brazil.
| | - Nulgumnalli Manjunathaiah Raghavendra
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation, Rio de Janeiro, 21040-361, Brazil; Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, 560090, India.
| | - Carmen Penido
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation, Rio de Janeiro, 21040-361, Brazil; Laboratory of Applied Pharmacology, Institute of Drug Technology, Farmanguinhos, 21041-250, Rio de Janeiro, Brazil.
| |
Collapse
|
37
|
Gong Y, Wang C, Jiang Y, Zhang S, Feng S, Fu Y, Luo Y. Metformin Inhibits Tumor Metastasis through Suppressing Hsp90α Secretion in an AMPKα1-PKCγ Dependent Manner. Cells 2020; 9:cells9010144. [PMID: 31936169 PMCID: PMC7016760 DOI: 10.3390/cells9010144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin has been documented in epidemiological studies to mitigate tumor progression. Previous reports show that metformin inhibits tumor migration in several cell lines, such as MCF-7 and H1299, but the mechanisms whereby metformin exerts its inhibitory effects on tumor metastasis remain largely unknown. The secreted proteins in cancer cell-derived secretome have been reported to play important roles in tumor metastasis, but whether metformin has an effect on tumor secretome remains unclear. Here we show that metformin inhibits tumor metastasis by suppressing Hsp90α (heat shock protein 90α) secretion. Mass spectrometry (MS) analysis and functional validation identify that eHsp90α (extracellular Hsp90α) is one of the most important secreted proteins for metformin to inhibit tumor cells migration, invasion and metastasis both in vitro and in vivo. Moreover, we find that metformin inhibits Hsp90α secretion in an AMPKα1 dependent manner. Our data elucidate that AMPKα1 (AMP-activated protein kinase α1) decreases the phosphorylation level of Hsp90α by inhibiting the kinase activity of PKCγ (protein kinase Cγ), which suppresses the membrane translocation and secretion of Hsp90α. Collectively, our results illuminate that metformin inhibits tumor metastasis by suppressing Hsp90α secretion in an AMPKα1 dependent manner.
Collapse
Affiliation(s)
- Yuanchao Gong
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Caihong Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Jiang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shaosen Zhang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shi Feng
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Correspondence: ; Tel.: +86-10-6277-2897; Fax: +86-10-6279-4691
| |
Collapse
|
38
|
Wei W, Liu M, Ning S, Wei J, Zhong J, Li J, Cai Z, Zhang L. Diagnostic value of plasma HSP90α levels for detection of hepatocellular carcinoma. BMC Cancer 2020; 20:6. [PMID: 31898536 PMCID: PMC6941289 DOI: 10.1186/s12885-019-6489-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major health problem worldwide. However, the popular tumor marker, AFP, lacks sensitivity although its specificity is high. Tissue biopsy is an invasive operation and may increase the risk of needle-track metastases. Heat shock protein 90 (HSP90) is a potential biomarker for tumor diagnosis and prognosis. This study aims to determine whether levels of plasma HSP90α in HCC patients can be used as a cost-effective and simple test for the initial diagnosis of the disease. METHODS Plasma samples were collected from 659 HCC patients, 114 secondary hepatic carcinoma (SHC) patients, 28 hepatic hemangioma patients and 230 healthy donors. The levels of HSP90α were measured by ELISA. RESULTS The levels of plasma HSP90α in HCC patients were significantly higher than in healthy donors and in patients with hepatic hemangioma or SHC (144.08 ± 4.98, 46.81 ± 1.11, 61.56 ± 8.20 and 111.96 ± 10.08 ng/mL, respectively; p < 0.05 in all cases). The levels were associated with age (p = 0.001), BCLC stage (p < 0.001), levels of AFP (p < 0.001), tumor size (p < 0.001), tumor number (p < 0.001), PVTT (p < 0.001), EHM (p < 0.001) and Child-Pugh stage in the HCC cohort. In addition, the levels of plasma HSP90α showed an upward trend along with the progression of the BCLC stage. ROC curve analysis showed that compared to AFP (AUC 0.922, 95%CI 0.902-0.938) or HSP90α (AUC 0.836, 95%CI 0.810-0.860), the combination of HSP90α and AFP (AUC0.943, 95%CI 0.925-0.957) significantly improved the diagnostic efficiency for HCC patients. CONCLUSION The results suggest that plasma Hsp90 α levels can be used as an initial diagnosis for patients with HCC in both rural and cosmopolitan settings.
Collapse
Affiliation(s)
- Wene Wei
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Mengshu Liu
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Shufang Ning
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Jing Wei
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Jianhong Zhong
- Department of Hepatological Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Jilin Li
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhengmin Cai
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
39
|
The Role of HSF1 and the Chaperone Network in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:101-111. [PMID: 32297214 DOI: 10.1007/978-3-030-40204-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tumors are stressful environments. As tumors evolve from single mutated cancer cells into invasive malignancies they must overcome various constraints and barriers imposed by a hostile microenvironment. To achieve this, cancer cells recruit and rewire cells in their microenvironment to become pro-tumorigenic. We propose that chaperones are vital players in this process, and that activation of stress responses helps tumors adapt and evolve into aggressive malignancies, by enabling phenotypic plasticity in the tumor microenvironment (TME). In this chapter we will review evidence supporting non-cancer-cell-autonomous activity of chaperones in human patients and mouse models of cancer, discuss the mechanisms by which this non-cell-autonomous activity is mediated and provide an evolutionary perspective on the basis of this phenomenon.
Collapse
|
40
|
Liu W, Li J, Zhang P, Hou Q, Feng S, Liu L, Cui D, Shi H, Fu Y, Luo Y. A novel pan-cancer biomarker plasma heat shock protein 90alpha and its diagnosis determinants in clinic. Cancer Sci 2019; 110:2941-2959. [PMID: 31343810 PMCID: PMC6726694 DOI: 10.1111/cas.14143] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 02/05/2023] Open
Abstract
A sensitive and specific diagnosis biomarker, in principle scalable to most cancer types, is needed to reduce the prevalent cancer mortality. Meanwhile, the investigation of diagnosis determinants of a biomarker will facilitate the interpretation of its screening results in clinic. Here we design a large-scale (1558 enrollments), multicenter (multiple hospitals), and cross-validation (two datasets) clinic study to validate plasma Hsp90α quantified by ELISA as a pan-cancer biomarker. ROC curve shows the optimum diagnostic cutoff is 69.19 ng/mL in discriminating various cancer patients from all controls (AUC 0.895, sensitivity 81.33% and specificity 81.65% in test cohort; AUC 0.893, sensitivity 81.72% and specificity 81.03% in validation cohort). Similar results are noted in detecting early-stage cancer patients. Plasma Hsp90α maintains also broad-spectrum for cancer subtypes, especially with 91.78% sensitivity and 91.96% specificity in patients with AFP-limited liver cancer. In addition, we demonstrate levels of plasma Hsp90α are determined by ADAM10 expression, which will affect Hsp90α content in exosomes. Furthermore, Western blotting and PRM-based quantitative proteomics identify that partial false ELISA-negative patients secret high levels of plasma Hsp90α. Mechanism analysis reveal that TGFβ-PKCγ gene signature defines a distinct pool of hyperphosphorylated Hsp90α at Theronine residue. In clinic, a mechanistically relevant population of false ELISA-negative patients express also higher levels of PKCγ. In sum, plasma Hsp90α is a novel pan-cancer diagnosis biomarker, and cancer diagnosis with plasma Hsp90α is particularly effective in those patients with high expression of ADAM10, but may be insufficient to detect the patients with low ADAM10 and those with hyperphosphorylated Hsp90α.
Collapse
Affiliation(s)
- Wei Liu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ping Zhang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China
| | - Qiaoyun Hou
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shi Feng
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lisheng Liu
- Clinical Laboratory, Shandong Cancer Hospital, Jinan, China
| | - Dawei Cui
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
41
|
Tian Y, Wang C, Chen S, Liu J, Fu Y, Luo Y. Extracellular Hsp90α and clusterin synergistically promote breast cancer epithelial-to-mesenchymal transition and metastasis via LRP1. J Cell Sci 2019; 132:jcs.228213. [PMID: 31273033 DOI: 10.1242/jcs.228213] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular heat shock protein 90 alpha (eHsp90α, also known as HSP90AA1) has been widely reported to promote tumor cell motility and tumor metastasis in various types of cancer. Several extracellular proteins and membrane receptors have been identified as interacting proteins of eHsp90α and mediate its pro-metastasis function. However, the regulatory mechanism of eHsp90α activity remains largely unknown. Here, we report that clusterin, a protein newly demonstrated to interact with eHsp90α, modulates eHsp90α signaling. We found that clusterin potentiated the effects of eHsp90α on activation of the AKT, ERK and NF-κB protein families, epithelial-to-mesenchymal transition (EMT) and migration in breast cancer cells. Furthermore, in vivo investigations demonstrated similar synergistic effects of eHsp90α and clusterin on tumor metastasis. Notably, the effects of eHsp90α and clusterin were mediated by low-density lipoprotein receptor-related protein 1 (LRP1). Proximity ligation assay and co-immunoprecipitation experiments demonstrated that clusterin participated in eHsp90α-LRP1 complex formation, which enhanced the binding affinity of eHsp90α to LRP1. Collectively, our data establish a role of clusterin as a newly discovered modulator of eHsp90α, and unravel detailed molecular mechanisms underlying the synergistic metastasis-promoting effects of clusterin and eHsp90α.
Collapse
Affiliation(s)
- Yang Tian
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China
| | - Chunying Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China
| | - Shuohua Chen
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China
| | - Jie Liu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Beijing, Haidian district, 100084, China .,Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China
| |
Collapse
|
42
|
Henriet P, Emonard H. Matrix metalloproteinase-2: Not (just) a "hero" of the past. Biochimie 2019; 166:223-232. [PMID: 31362036 DOI: 10.1016/j.biochi.2019.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023]
Abstract
The 72-kDa type IV collagenase or gelatinase A is the second member of the matrix metalloproteinase family, MMP-2. Since the discovery of its first two substrates within components of the extracellular matrix, denatured interstitial type I collagen and native type IV collagen, the roles and various levels of regulation of MMP-2 have been intensively studied, mainly in vitro. Its (over)expression in most if not all tumors was considered a hallmark of cancer aggressiveness and boosted investigations aiming at its inhibition. Unfortunately, the enthusiasm subsided like a soufflé after clinical trial failures, mostly because of insufficient knowledge of in vivo MMP-2 activities and detrimental side effects of broad-spectrum MMP inhibition. Nowadays, MMP-2 remains a major topic of interest in research, the second in the MMP family after MMP-9. This review presents a broad overview of the major features of this protease. This knowledge is crucial to identify diagnostic or therapeutic strategies focusing on MMP-2. In this sense, recent publications and clinical trials underline the potential value of measuring circulating or tissular MMP-2 levels as diagnostic or prognostic tools, or as a useful secondary outcome for therapies against other primary targets. Direct MMP-2 inhibition has benefited from substantial progress in the design of more specific inhibitors but their in vivo application remains challenging but certainly worth the efforts it receives.
Collapse
Affiliation(s)
- Patrick Henriet
- de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Hervé Emonard
- CNRS and Université de Reims Champagne-Ardenne, UMR 7369, 51100, Reims, France.
| |
Collapse
|
43
|
Cho TM, Kim JY, Kim YJ, Sung D, Oh E, Jang S, Farrand L, Hoang VH, Nguyen CT, Ann J, Lee J, Seo JH. C-terminal HSP90 inhibitor L80 elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Cancer Lett 2019; 447:141-153. [DOI: 10.1016/j.canlet.2019.01.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/28/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
|
44
|
Snigireva AV, Vrublevskaya VV, Skarga YY, Morenkov OS. Cell surface heparan sulfate proteoglycans are involved in the extracellular Hsp90-stimulated migration and invasion of cancer cells. Cell Stress Chaperones 2019; 24:309-322. [PMID: 30659446 PMCID: PMC6439002 DOI: 10.1007/s12192-018-0955-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022] Open
Abstract
The extracellular heat shock protein 90 (Hsp90) is known to participate in cell migration and invasion. Recently, we have shown that cell surface heparan sulfate proteoglycans (HSPGs) are involved in the binding and anchoring of extracellular Hsp90 to the plasma membrane, but the biological relevance of this finding was unclear. Here, we demonstrated that the digestion of heparan sulfate (HS) moieties of HSPGs with a heparinase I/III blend and the metabolic inhibition of the sulfation of HS chains by sodium chlorate considerably impair the migration and invasion of human glioblastoma A-172 and fibrosarcoma HT1080 cells stimulated by extracellular native Hsp90. Heparin, a polysaccharide closely related to HS, also reduced the Hsp90-stimulated migration and invasion of cells. Phorbol 12-myristate 13-acetate, an intracellular inducer of cell motility bypassing the ligand activation of receptors, restored the basal migration of heparinase- and chlorate-treated cells almost to the control level, suggesting that the cell motility machinery was insignificantly affected in cells with degraded and undersulfated HS chains. On the other hand, the downstream phosphorylation of AKT in response to extracellular Hsp90 was substantially impaired in heparinase- and chlorate-treated cells as compared to untreated cells. Taken together, our results demonstrated for the first time that cell surface HSPGs play an important role in the migration and invasion of cancer cells stimulated by extracellular Hsp90 and that plasma membrane-associated HSPGs are required for the efficient transmission of signal from extracellular Hsp90 into the cell.
Collapse
Affiliation(s)
- Anastasiya V Snigireva
- Laboratory of Cell Culture and Cell Engineering, Institute of Cell Biophysics, Russian Academy of Sciences, Moscow region, Institutskaya St. 3, Pushchino, 142290, Russia
| | - Veronika V Vrublevskaya
- Laboratory of Cell Culture and Cell Engineering, Institute of Cell Biophysics, Russian Academy of Sciences, Moscow region, Institutskaya St. 3, Pushchino, 142290, Russia
| | - Yuri Y Skarga
- Laboratory of Cell Culture and Cell Engineering, Institute of Cell Biophysics, Russian Academy of Sciences, Moscow region, Institutskaya St. 3, Pushchino, 142290, Russia
| | - Oleg S Morenkov
- Laboratory of Cell Culture and Cell Engineering, Institute of Cell Biophysics, Russian Academy of Sciences, Moscow region, Institutskaya St. 3, Pushchino, 142290, Russia.
| |
Collapse
|
45
|
Wang X, An D, Wang X, Liu X, Li B. Extracellular Hsp90α clinically correlates with tumor malignancy and promotes migration and invasion in esophageal squamous cell carcinoma. Onco Targets Ther 2019; 12:1119-1128. [PMID: 30809093 PMCID: PMC6376885 DOI: 10.2147/ott.s195529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Extracellular Hsp90α (eHsp90α) is known to be involved in tumor invasiveness and metastasis, and its prognostic value in many kinds of tumors has been identified. We aimed to evaluate the clinical and functional role of eHsp90α in esophageal squamous cell carcinoma (ESCC). Patients and methods A total of 193 patients with newly diagnosed ESCC were retrospectively evaluated. The relationship between serum Hsp90α levels before treatment and ESCC malignancy of the patients was analyzed. To test the role of eHsp90α in migration and invasion of ESCC cell lines, transwell assay was performed. Western blotting was used to explore the possible mechanism in which eHsp90α promotes ESCC migration and invasion. Results We found that the serum Hsp90α level before treatment is positively correlated with ESCC malignancy. Moreover, high serum Hsp90α level before treatment was significantly correlated with positive lymph node (LN) metastasis, which is the main prognostic factor for ESCC patients. Meanwhile, we demonstrated that eHsp90α promoted migration and invasion of ECA109 and ECA9706 in vitro. Further investigations revealed that eHsp90α stabilized MMP-2 and promoted epithelial-to-mesenchymal transition evidenced by downregulation of E-cadherin and upregulation of N-cadherin. On the other hand, Hsp90α neutralizing antibody functionally blocked the secreted Hsp90α and reversed those effects. Conclusion Our findings prove the critical role of eHsp90α in promoting ESCC migration and invasion, indicating it can be not only a promising predictor for ESCC LN status, but also an effective target in ESCC therapeutics, especially in preventing LN metastasis.
Collapse
Affiliation(s)
- Xintong Wang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, People's Republic of China,
| | - Dianzheng An
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, People's Republic of China,
| | - Xinlei Wang
- Department of Gastroenterology, Qingdao Hiser Medical Center, Qingdao, Shandong, People's Republic of China
| | - Xiaomeng Liu
- University of Jinan, School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, People's Republic of China,
| |
Collapse
|
46
|
Tumour cell blebbing and extracellular vesicle shedding: key role of matrikines and ribosomal protein SA. Br J Cancer 2019; 120:453-465. [PMID: 30739912 PMCID: PMC6461924 DOI: 10.1038/s41416-019-0382-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Carcinogenesis occurs in elastin-rich tissues and leads to local inflammation and elastolytic proteinase release. This contributes to bioactive matrix fragment (Matrikine) accumulation like elastin degradation products (EDP) stimulating tumour cell invasive and metastatic properties. We previously demonstrate that EDPs exert protumoural activities through Hsp90 secretion to stabilised extracellular proteinases. METHODS EDP influence on cancer cell blebbing and extracellular vesicle shedding were examined with a videomicroscope coupled with confocal Yokogawa spinning disk, by transmission electron microscopy, scanning electron microscopy and confocal microscopy. The ribosomal protein SA (RPSA) elastin receptor was identified after affinity chromatography by western blotting and cell immunolocalisation. mRNA expression was studied using real-time PCR. SiRNA were used to confirm the essential role of RPSA. RESULTS We demonstrate that extracellular matrix degradation products like EDPs induce tumour amoeboid phenotype with cell membrane blebbing and shedding of extracellular vesicle containing Hsp90 and proteinases in the extracellular space. EDPs influence intracellular calcium influx and cytoskeleton reorganisation. Among matrikines, VGVAPG and AGVPGLGVG peptides reproduced EDP effects through RPSA binding. CONCLUSIONS Our data suggests that matrikines induce cancer cell blebbing and extracellular vesicle release through RPSA binding, favouring dissemination, cell-to-cell communication and growth of cancer cells in metastatic sites.
Collapse
|
47
|
Ghosh A, Stuehr DJ. Hsp90 and Its Role in Heme-Maturation of Client Proteins: Implications for Human Diseases. HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-23158-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Manissorn J, Singhto N, Thongboonkerd V. Characterizations of HSP90-Interacting Complex in Renal Cells Using Tandem Affinity Purification and Its Potential Role in Kidney Stone Formation. Proteomics 2018; 18:e1800004. [DOI: 10.1002/pmic.201800004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 10/22/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Juthatip Manissorn
- Medical Proteomics Unit; Office for Research and Development; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| | - Nilubon Singhto
- Medical Proteomics Unit; Office for Research and Development; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit; Office for Research and Development; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| |
Collapse
|
49
|
Snigireva AV, Vrublevskaya VV, Zhmurina MA, Skarga YY, Morenkov OS. The Mechanisms of Stimulation of Migration and Invasion of Tumor Cells by Extracellular Heat Shock Protein 90 (eHsp90) in vitro. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918060258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Calderwood SK. Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands? Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0524. [PMID: 29203709 DOI: 10.1098/rstb.2016.0524] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Heat shock proteins (HSPs) are found at elevated concentrations in tumour cells, and this increase reflects the proteotoxic stress experienced by the cells due to expanding levels of the mutated oncoproteins that drive tumorigenesis. The protection of oncogenic proteins by HSPs offers a window of vulnerability in tumour metabolism that has been exploited using Hsp90-targeting drugs. Such compounds have been shown to cause inhibition and degradation of a wide range of proteins essential for oncogenesis. Recently, Hsp90 has also been shown to be secreted by tumour cells and to interact in autocrine or paracrine manners with the surfaces of adjacent cells, leading to increased growth and metastasis. Future studies will address a number of key questions associated with these findings, including the relative importance of intracellular versus extracellular HSPs in tumorigenesis, as well as overcoming potential problems with normal tissue toxicity associated with Hsp90 drugs. Targeting individual members of HSP families and inactivating extracellular HSPs may be desirable future approaches that offer increased selectivity in targeting HSPs in cancer.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences 610, Boston, MA 02115, USA
| |
Collapse
|