1
|
Lamson DR, Tarpley M, Addo K, Ji X, Abu Rabe D, Ehe B, Hughes M, Smith GR, Daye LR, Musso DL, Zheng W, Williams KP. Identification of small molecule antagonists of sonic hedgehog/heparin binding with activity in hedgehog functional assays. Biochim Biophys Acta Gen Subj 2024; 1868:130692. [PMID: 39151833 PMCID: PMC11486593 DOI: 10.1016/j.bbagen.2024.130692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Sonic hedgehog (Shh) is a morphogen with important roles in embryonic development and in the development of a number of cancers. Its activity is modulated by interactions with binding partners and co-receptors including heparin and heparin sulfate proteoglycans (HSPG). To identify antagonists of Shh/heparin binding, a diverse collection of 34,560 chemicals was screened in single point 384-well format. We identified and confirmed twenty six novel small molecule antagonists with diverse structures including four scaffolds that gave rise to multiple hits. Nineteen of the confirmed hits blocked binding of the N-terminal fragment of Shh (ShhN) to heparin with IC50 values < 50 μM. In the Shh-responsive C3H10T1/2 cell model, four of the compounds demonstrated the ability to block ShhN-induced alkaline phosphatase activity. To demonstrate a direct and selective effect on ShhN ligand mediated activity, two of the compounds were able to block induction of Gli1 mRNA, a primary downstream marker for Shh signaling activity, in Shh-mediated but not Smoothened agonist (SAG)-mediated C3H10T1/2 cells. Direct binding of the two compounds to ShhN was confirmed by thermal shift assay and molecular docking simulations, with both compounds docking with the N-terminal heparin binding domain of Shh. Overall, our findings indicate that small molecule compounds that block ShhN binding to heparin and act to inhibit Shh mediated activity in vitro can be identified. We propose that the interaction between Shh and HSPGs provides a novel target for identifying small molecules that bind Shh, potentially leading to novel tool compounds to probe Shh ligand function.
Collapse
Affiliation(s)
- David R Lamson
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Kezia Addo
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Xiaojia Ji
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Dina Abu Rabe
- Biomanufacturing Research Institute and Technology Enterprise, USA; INBS PhD Program, USA
| | - Ben Ehe
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Mark Hughes
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Ginger R Smith
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Laura R Daye
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - David L Musso
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, USA; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, USA; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
2
|
Hedgehog is relayed through dynamic heparan sulfate interactions to shape its gradient. Nat Commun 2023; 14:758. [PMID: 36765094 PMCID: PMC9918555 DOI: 10.1038/s41467-023-36450-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Cellular differentiation is directly determined by concentration gradients of morphogens. As a central model for gradient formation during development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in Drosophila wing and eye discs. What is not known is how extracellular Hh spread is achieved and how it translates into precise gradients. Here we show that two separate binding areas located on opposite sides of the Hh molecule can interact directly and simultaneously with two heparan sulfate (HS) chains to temporarily cross-link the chains. Mutated Hh lacking one fully functional binding site still binds HS but shows reduced HS cross-linking. This, in turn, impairs Hhs ability to switch between both chains in vitro and results in striking Hh gradient hypomorphs in vivo. The speed and propensity of direct Hh switching between HS therefore shapes the Hh gradient, revealing a scalable design principle in morphogen-patterned tissues.
Collapse
|
3
|
Douceau S, Deutsch Guerrero T, Ferent J. Establishing Hedgehog Gradients during Neural Development. Cells 2023; 12:225. [PMID: 36672161 PMCID: PMC9856818 DOI: 10.3390/cells12020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
A morphogen is a signaling molecule that induces specific cellular responses depending on its local concentration. The concept of morphogenic gradients has been a central paradigm of developmental biology for decades. Sonic Hedgehog (Shh) is one of the most important morphogens that displays pleiotropic functions during embryonic development, ranging from neuronal patterning to axon guidance. It is commonly accepted that Shh is distributed in a gradient in several tissues from different origins during development; however, how these gradients are formed and maintained at the cellular and molecular levels is still the center of a great deal of research. In this review, we first explored all of the different sources of Shh during the development of the nervous system. Then, we detailed how these sources can distribute Shh in the surrounding tissues via a variety of mechanisms. Finally, we addressed how disrupting Shh distribution and gradients can induce severe neurodevelopmental disorders and cancers. Although the concept of gradient has been central in the field of neurodevelopment since the fifties, we also describe how contemporary leading-edge techniques, such as organoids, can revisit this classical model.
Collapse
Affiliation(s)
- Sara Douceau
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Tanya Deutsch Guerrero
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Julien Ferent
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| |
Collapse
|
4
|
Spanou CES, Wohl AP, Doherr S, Correns A, Sonntag N, Lütke S, Mörgelin M, Imhof T, Gebauer JM, Baumann U, Grobe K, Koch M, Sengle G. Targeting of bone morphogenetic protein complexes to heparin/heparan sulfate glycosaminoglycans in bioactive conformation. FASEB J 2023; 37:e22717. [PMID: 36563024 DOI: 10.1096/fj.202200904r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Bone morphogenetic proteins (BMP) are powerful regulators of cellular processes such as proliferation, differentiation, and apoptosis. However, the specific molecular requirements controlling the bioavailability of BMPs in the extracellular matrix (ECM) are not yet fully understood. Our previous work showed that BMPs are targeted to the ECM as growth factor-prodomain (GF-PD) complexes (CPLXs) via specific interactions of their PDs. We showed that BMP-7 PD binding to the extracellular microfibril component fibrillin-1 renders the CPLXs from an open, bioactive V-shape into a closed, latent ring shape. Here, we show that specific PD interactions with heparin/heparan sulfate glycosaminoglycans (GAGs) allow to target and spatially concentrate BMP-7 and BMP-9 CPLXs in bioactive V-shape conformation. However, targeting to GAGs may be BMP specific, since BMP-10 GF and CPLX do not interact with heparin. Bioactivity assays on solid phase in combination with interaction studies showed that the BMP-7 PD protects the BMP-7 GF from inactivation by heparin. By using transmission electron microscopy, molecular docking, and site-directed mutagenesis, we determined the BMP-7 PD-binding site for heparin. Further, fine-mapping of the fibrillin-1-binding site within the BMP-7 PD and molecular modeling showed that both binding sites are mutually exclusive in the open V- versus closed ring-shape conformation. Together, our data suggest that targeting exquisite BMP PD-binding sites by extracellular protein and GAG scaffolds integrates BMP GF bioavailability in a contextual manner in development, postnatal life, and connective tissue disease.
Collapse
Affiliation(s)
- Chara E S Spanou
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander P Wohl
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Doherr
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Annkatrin Correns
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Niklas Sonntag
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Colzyx AB, Lund, Sweden
| | - Thomas Imhof
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Jan M Gebauer
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Manuel Koch
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
5
|
Manikowski D, Steffes G, Froese J, Exner S, Ehring K, Gude F, Di Iorio D, Wegner SV, Grobe K. Drosophila hedgehog signaling range and robustness depend on direct and sustained heparan sulfate interactions. Front Mol Biosci 2023; 10:1130064. [PMID: 36911531 PMCID: PMC9992881 DOI: 10.3389/fmolb.2023.1130064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Morphogens determine cellular differentiation in many developing tissues in a concentration dependent manner. As a central model for gradient formation during animal development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in the Drosophila wing disc. Although heparan sulfate (HS) expression in the disc is essential for this process, it is not known whether HS regulates Hh signaling and spread in a direct or in an indirect manner. To answer this question, we systematically screened two composite Hh binding areas for HS in vitro and expressed mutated proteins in the Drosophila wing disc. We found that selectively impaired HS binding of the second site reduced Hh signaling close to the source and caused striking wing mispatterning phenotypes more distant from the source. These observations suggest that HS constrains Hh to the wing disc epithelium in a direct manner, and that interfering with this constriction converts Hh into freely diffusing forms with altered signaling ranges and impaired gradient robustness.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Georg Steffes
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Sebastian Exner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Fabian Gude
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Daniele Di Iorio
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
6
|
de la Rosa A, Metzendorf NG, Morrison JI, Faresjö R, Rofo F, Petrovic A, O’Callaghan P, Syvänen S, Hultqvist G. Introducing or removing heparan sulfate binding sites does not alter brain uptake of the blood-brain barrier shuttle scFv8D3. Sci Rep 2022; 12:21479. [PMID: 36509864 PMCID: PMC9744743 DOI: 10.1038/s41598-022-25965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The blood-brain barrier (BBB) greatly limits the delivery of protein-based drugs into the brain and is a major obstacle for the treatment of brain disorders. Targeting the transferrin receptor (TfR) is a strategy for transporting protein-based drugs into the brain, which can be utilized by using TfR-binding BBB transporters, such as the TfR-binding antibody 8D3. In this current study, we investigated if binding to heparan sulfate (HS) contributes to the brain uptake of a single chain fragment variable of 8D3 (scFv8D3). We designed and produced a scFv8D3 mutant, engineered with additional HS binding sites, HS(+)scFv8D3, to assess whether increased HS binding would improve brain uptake. Additionally, a mutant with a reduced number of HS binding sites, HS(-)scFv8D3, was also engineered to see if reducing the HS binding sites could also affect brain uptake. Heparin column chromatography showed that only the HS(+)scFv8D3 mutant bound HS in the experimental conditions. Ex vivo results showed that the brain uptake was unaffected by the introduction or removal of HS binding sites, which indicates that scFv8D3 is not dependent on the HS binding sites for brain uptake. Conversely, introducing HS binding sites to scFv8D3 decreased its renal excretion while removing them had the opposite effect.
Collapse
Affiliation(s)
- Andrés de la Rosa
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Nicole G. Metzendorf
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jamie I. Morrison
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Rebecca Faresjö
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Fadi Rofo
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Alex Petrovic
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Paul O’Callaghan
- grid.8993.b0000 0004 1936 9457Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Zhu Y, Gandy L, Zhang F, Liu J, Wang C, Blair LJ, Linhardt RJ, Wang L. Heparan Sulfate Proteoglycans in Tauopathy. Biomolecules 2022; 12:1792. [PMID: 36551220 PMCID: PMC9776397 DOI: 10.3390/biom12121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases, including Alzheimer's disease, and are characterized by intraneuronal tau inclusion in the brain and the patient's cognitive decline with obscure pathogenesis. Heparan sulfate proteoglycans, a major type of extracellular matrix, have been believed to involve in tauopathies. The heparan sulfate proteoglycans co-deposit with tau in Alzheimer's patient brain, directly bind to tau and modulate tau secretion, internalization, and aggregation. This review summarizes the current understanding of the functions and the modulated molecular pathways of heparan sulfate proteoglycans in tauopathies, as well as the implication of dysregulated heparan sulfate proteoglycan expression in tau pathology and the potential of targeting heparan sulfate proteoglycan-tau interaction as a novel therapeutic option.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lauren Gandy
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Liu
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Laura J. Blair
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Juretić D. Designed Multifunctional Peptides for Intracellular Targets. Antibiotics (Basel) 2022; 11:antibiotics11091196. [PMID: 36139975 PMCID: PMC9495127 DOI: 10.3390/antibiotics11091196] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Nature’s way for bioactive peptides is to provide them with several related functions and the ability to cooperate in performing their job. Natural cell-penetrating peptides (CPP), such as penetratins, inspired the design of multifunctional constructs with CPP ability. This review focuses on known and novel peptides that can easily reach intracellular targets with little or no toxicity to mammalian cells. All peptide candidates were evaluated and ranked according to the predictions of low toxicity to mammalian cells and broad-spectrum activity. The final set of the 20 best peptide candidates contains the peptides optimized for cell-penetrating, antimicrobial, anticancer, antiviral, antifungal, and anti-inflammatory activity. Their predicted features are intrinsic disorder and the ability to acquire an amphipathic structure upon contact with membranes or nucleic acids. In conclusion, the review argues for exploring wide-spectrum multifunctionality for novel nontoxic hybrids with cell-penetrating peptides.
Collapse
Affiliation(s)
- Davor Juretić
- Mediterranean Institute for Life Sciences, 21000 Split, Croatia;
- Faculty of Science, University of Split, 21000 Split, Croatia;
| |
Collapse
|
9
|
A SURF4-to-proteoglycan relay mechanism that mediates the sorting and secretion of a tagged variant of sonic hedgehog. Proc Natl Acad Sci U S A 2022; 119:e2113991119. [PMID: 35271396 PMCID: PMC8931250 DOI: 10.1073/pnas.2113991119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SignificanceSonic Hedgehog (Shh) is a key signaling molecule that plays important roles in embryonic patterning, cell differentiation, and organ development. Although fundamentally important, the molecular mechanisms that regulate secretion of newly synthesized Shh are still unclear. Our study reveals a role for the cargo receptor, SURF4, in facilitating export of Shh from the endoplasmic reticulum (ER) via a ER export signal. In addition, our study provides evidence suggesting that proteoglycans promote the dissociation of SURF4 from Shh at the Golgi, suggesting a SURF4-to-proteoglycan relay mechanism. These analyses provide insight into an important question in cell biology: how do cargo receptors capture their clients in one compartment, then disengage at their destination?
Collapse
|
10
|
Mang D, Roy SR, Zhang Q, Hu X, Zhang Y. Heparan Sulfate-Instructed Self-Assembly Selectively Inhibits Cancer Cell Migration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17236-17242. [PMID: 33830729 DOI: 10.1021/acsami.1c00934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heparan sulfate (HS) has important emerging roles in oncogenesis, which represents potential therapeutic strategies for human cancers. However, due to the complexity of the HS signaling network, HS-targeted synthetic cancer therapeutics has never been successfully devised. To conquer the challenge, we developed HS-instructed self-assembling peptides by decorating the "Cardin-Weintraub" sequence with aromatic amino acids. The HS-binding interactions induce localized accumulation of synthetic peptides triggering molecular self-assembly in the vicinity of highly expressed Heparan sulfate proteoglycans (HSPGs) on the cancer cell membrane. The nanostructures hinder the binding of HSPG with metastasis promoting protein-heparin-binding EGF-like growth factor (HBEGF) inhibiting the activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Our study proved that HS-instructed self-assembly is a promising synthetic therapeutic strategy for targeted cancer migration inhibition.
Collapse
Affiliation(s)
- Dingze Mang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Sona Rani Roy
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Qizheng Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| |
Collapse
|
11
|
Association of Sonic Hedgehog with the extracellular matrix requires its zinc-coordination center. BMC Mol Cell Biol 2021; 22:22. [PMID: 33863273 PMCID: PMC8052667 DOI: 10.1186/s12860-021-00359-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Sonic Hedgehog (Shh) has a catalytic cleft characteristic for zinc metallopeptidases and has significant sequence similarities with some bacterial peptidoglycan metallopeptidases defining a subgroup within the M15A family that, besides having the characteristic zinc coordination motif, can bind two calcium ions. Extracellular matrix (ECM) components in animals include heparan-sulfate proteoglycans, which are analogs of bacterial peptidoglycan and are involved in the extracellular distribution of Shh. Results We found that the zinc-coordination center of Shh is required for its association to the ECM as well as for non-cell autonomous signaling. Association with the ECM requires the presence of at least 0.1 μM zinc and is prevented by mutations affecting critical conserved catalytical residues. Consistent with the presence of a conserved calcium binding domain, we find that extracellular calcium inhibits ECM association of Shh. Conclusions Our results indicate that the putative intrinsic peptidase activity of Shh is required for non-cell autonomous signaling, possibly by enzymatically altering ECM characteristics. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00359-5.
Collapse
|
12
|
Manikowski D, Kastl P, Schürmann S, Ehring K, Steffes G, Jakobs P, Grobe K. C-Terminal Peptide Modifications Reveal Direct and Indirect Roles of Hedgehog Morphogen Cholesteroylation. Front Cell Dev Biol 2021; 8:615698. [PMID: 33511123 PMCID: PMC7835520 DOI: 10.3389/fcell.2020.615698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 01/20/2023] Open
Abstract
Hedgehog (Hh) morphogens are involved in embryonic development and stem cell biology and, if misregulated, can contribute to cancer. One important post-translational modification with profound impact on Hh biofunction is its C-terminal cholesteroylation during biosynthesis. The current hypothesis is that the cholesterol moiety is a decisive factor in Hh association with the outer plasma membrane leaflet of producing cells, cell-surface Hh multimerization, and its transport and signaling. Yet, it is not decided whether the cholesterol moiety is directly involved in all of these processes, because their functional interdependency raises the alternative possibility that the cholesterol initiates early processes directly and that these processes can then steer later stages of Hh signaling independent of the lipid. We generated variants of the C-terminal Hh peptide and observed that these cholesteroylated peptides variably impaired several post-translational processes in producing cells and Hh biofunction in Drosophila melanogaster eye and wing development. We also found that substantial Hh amounts separated from cholesteroylated peptide tags in vitro and in vivo and that tagged and untagged Hh variants lacking their C-cholesterol moieties remained bioactive. Our approach thus confirms that Hh cholesteroylation is essential during the early steps of Hh production and maturation but also suggests that it is dispensable for Hh signal reception at receiving cells.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and the Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry and the Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry and the Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry and the Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Georg Steffes
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry and the Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and the Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| |
Collapse
|
13
|
Hong S, Hu P, Jang JH, Carrington B, Sood R, Berger SI, Roessler E, Muenke M. Functional analysis of Sonic Hedgehog variants associated with holoprosencephaly in humans using a CRISPR/Cas9 zebrafish model. Hum Mutat 2020; 41:2155-2166. [PMID: 32939873 DOI: 10.1002/humu.24119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/17/2020] [Accepted: 09/12/2020] [Indexed: 01/20/2023]
Abstract
Genetic variation in the highly conserved Sonic Hedgehog (SHH) gene is one of the most common genetic causes for the malformations of the brain and face in humans described as the holoprosencephaly clinical spectrum. However, only a minor fraction of known SHH variants have been experimentally proven to lead to abnormal function. Employing a phenotypic rescue assay with synthetic human messenger RNA variant constructs in shha-/- knockout zebrafish, we evaluated 104 clinically reported in-frame and missense SHH variants. Our data helped us to classify them into loss of function variants (31), hypomorphic variants (33), and nonpathogenic variants (40). We discuss the strengths and weaknesses of currently accepted predictors of variant deleteriousness and the American College of Medical Genetics and Genomics guidelines for variant interpretation in the context of this functional model; furthermore, we demonstrate the robustness of model systems such as zebrafish as a rapid method to resolve variants of uncertain significance.
Collapse
Affiliation(s)
- Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jae Hee Jang
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.,College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, USA
| | - Blake Carrington
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raman Sood
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Seth I Berger
- Children's National Hospital, Center for Genetic Medicine Research and Rare Disease Institute, Washington DC, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.,American College of Medical Genetics and Genomics, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Mathematical modeling of chondrogenic pattern formation during limb development: Recent advances in continuous models. Math Biosci 2020; 322:108319. [PMID: 32001201 DOI: 10.1016/j.mbs.2020.108319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/20/2022]
Abstract
The phenomenon of chondrogenic pattern formation in the vertebrate limb is one of the best studied examples of organogenesis. Many different models, mathematical as well as conceptual, have been proposed for it in the last fifty years or so. In this review, we give a brief overview of the fundamental biological background, then describe in detail several models which aim to describe qualitatively and quantitatively the corresponding biological phenomena. We concentrate on several new models that have been proposed in recent years, taking into account recent experimental progress. The major mathematical tools in these approaches are ordinary and partial differential equations. Moreover, we discuss models with non-local flux terms used to account for cell-cell adhesion forces and a structured population model with diffusion. We also include a detailed list of gene products and potential morphogens which have been identified to play a role in the process of limb formation and its growth.
Collapse
|
15
|
Guo W, Roelink H. Loss of the Heparan Sulfate Proteoglycan Glypican5 Facilitates Long-Range Sonic Hedgehog Signaling. Stem Cells 2019; 37:899-909. [PMID: 30977233 PMCID: PMC8491322 DOI: 10.1002/stem.3018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
As a morphogen, Sonic Hedgehog (Shh) mediates signaling at a distance from its sites of synthesis. After secretion, Shh must traverse a distance through the extracellular matrix (ECM) to reach the target cells and activate the Hh response. ECM proteins, in particular, the heparan sulfate proteoglycans (HSPGs) of the glypican family, have both negative and positive effects on Shh signaling, all attributed to their ability to bind Shh. Using mouse embryonic stem cell-derived mosaic tissues with compartments that lack the glycosyltransferases Exostosin1 and Exostosin2, or the HSPG core protein Glypican5, we show that Shh accumulates around its source cells when they are surrounded by cells that have a mutated ECM. This accumulation of Shh is correlated with an increased noncell autonomous Shh response. Our results support a model in which Shh presented on the cell surface accumulates at or near ECM that lacks HSPGs, possibly due to the absence of these Shh sequestering molecules. Stem Cells 2019;37:899-909.
Collapse
Affiliation(s)
- Wei Guo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | - Henk Roelink
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
16
|
Inhibition of tetrameric Patched1 by Sonic Hedgehog through an asymmetric paradigm. Nat Commun 2019; 10:2320. [PMID: 31127104 PMCID: PMC6534611 DOI: 10.1038/s41467-019-10234-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/28/2019] [Indexed: 12/16/2022] Open
Abstract
The Hedgehog (Hh) pathway controls embryonic development and postnatal tissue maintenance and regeneration. Inhibition of Hh receptor Patched (Ptch) by the Hh ligands relieves suppression of signaling cascades. Here, we report the cryo-EM structure of tetrameric Ptch1 in complex with the palmitoylated N-terminal signaling domain of human Sonic hedgehog (ShhNp) at a 4:2 stoichiometric ratio. The structure shows that four Ptch1 protomers are organized as a loose dimer of dimers. Each dimer binds to one ShhNp through two distinct inhibitory interfaces, one mainly through the N-terminal peptide and the palmitoyl moiety of ShhNp and the other through the Ca2+-mediated interface on ShhNp. Map comparison reveals that the cholesteryl moiety of native ShhN occupies a recently identified extracellular steroid binding pocket in Ptch1. Our structure elucidates the tetrameric assembly of Ptch1 and suggests an asymmetric mode of action of the Hh ligands for inhibiting the potential cholesterol transport activity of Ptch1. Hedgehog (Hh) controls embryonic development via interaction with its receptor Patched (Ptch). Here the authors report the cryo-EM structure of tetrameric Ptch1 in complex with the palmitoylated N-terminal signaling domain of human Sonic hedgehog (ShhNp) at a 4:2 stoichiometric ratio.
Collapse
|
17
|
Manikowski D, Jakobs P, Jboor H, Grobe K. Soluble Heparin and Heparan Sulfate Glycosaminoglycans Interfere with Sonic Hedgehog Solubilization and Receptor Binding. Molecules 2019; 24:molecules24081607. [PMID: 31018591 PMCID: PMC6526471 DOI: 10.3390/molecules24081607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/24/2022] Open
Abstract
Sonic hedgehog (Shh) signaling plays a tumor-promoting role in many epithelial cancers. Cancer cells produce soluble a Shh that signals to distant stromal cells that express the receptor Patched (Ptc). These receiving cells respond by producing other soluble factors that promote cancer cell growth, generating a positive feedback loop. To interfere with reinforced Shh signaling, we examined the potential of defined heparin and heparan sulfate (HS) polysaccharides to block Shh solubilization and Ptc receptor binding. We confirm in vitro and in vivo that proteolytic cleavage of the N-terminal Cardin-Weintraub (CW) amino acid motif is a prerequisite for Shh solubilization and function. Consistent with the established binding of soluble heparin or HS to the Shh CW target motif, both polysaccharides impaired proteolytic Shh processing and release from source cells. We also show that HS and heparin bind to, and block, another set of basic amino acids required for unimpaired Shh binding to Ptc receptors on receiving cells. Both modes of Shh activity downregulation depend more on HS size and overall charge than on specific HS sulfation modifications. We conclude that heparin oligosaccharide interference in the physiological roles of HS in Shh release and reception may be used to expand the field of investigation to pharmaceutical intervention of tumor-promoting Shh functions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Binding, Competitive
- Cell Line, Tumor
- Drosophila Proteins/antagonists & inhibitors
- Drosophila Proteins/chemistry
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/metabolism
- Embryo, Nonmammalian
- Feedback, Physiological
- Gene Expression Regulation, Developmental
- HeLa Cells
- Hedgehog Proteins/antagonists & inhibitors
- Hedgehog Proteins/chemistry
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Heparin/chemistry
- Heparin/pharmacology
- Heparitin Sulfate/chemistry
- Heparitin Sulfate/pharmacology
- Humans
- Models, Molecular
- Patched-1 Receptor/genetics
- Patched-1 Receptor/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
- Solubility
- Wings, Animal/growth & development
- Wings, Animal/metabolism
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| | - Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| | - Hamodah Jboor
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
18
|
Kastl P, Manikowski D, Steffes G, Schürmann S, Bandari S, Klämbt C, Grobe K. Disrupting Hedgehog Cardin-Weintraub sequence and positioning changes cellular differentiation and compartmentalization in vivo. Development 2018; 145:145/18/dev167221. [PMID: 30242104 DOI: 10.1242/dev.167221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022]
Abstract
Metazoan Hedgehog (Hh) morphogens are essential regulators of growth and patterning at significant distances from their source, despite being produced as N-terminally palmitoylated and C-terminally cholesteroylated proteins, which firmly tethers them to the outer plasma membrane leaflet of producing cells and limits their spread. One mechanism to overcome this limitation is proteolytic processing of both lipidated terminal peptides, called shedding, but molecular target site requirements for effective Hh shedding remained undefined. In this work, by using Drosophila melanogaster as a model, we show that mutagenesis of the N-terminal Cardin-Weintraub (CW) motif inactivates recombinant Hh proteins to variable degrees and, if overexpressed in the same compartment, converts them into suppressors of endogenous Hh function. In vivo, additional removal of N-palmitate membrane anchors largely restored endogenous Hh function, supporting the hypothesis that proteolytic CW processing controls Hh solubilization. Importantly, we also observed that CW repositioning impairs anterior/posterior compartmental boundary maintenance in the third instar wing disc. This demonstrates that Hh shedding not only controls the differentiation of anterior cells, but also maintains the sharp physical segregation between these receiving cells and posterior Hh-producing cells.
Collapse
Affiliation(s)
- Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Georg Steffes
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Shyam Bandari
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Christian Klämbt
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
19
|
Gong X, Qian H, Cao P, Zhao X, Zhou Q, Lei J, Yan N. Structural basis for the recognition of Sonic Hedgehog by human Patched1. Science 2018; 361:science.aas8935. [DOI: 10.1126/science.aas8935] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022]
|
20
|
Jakobs P, Schulz P, Schürmann S, Niland S, Exner S, Rebollido-Rios R, Manikowski D, Hoffmann D, Seidler DG, Grobe K. Ca 2+ coordination controls sonic hedgehog structure and its Scube2-regulated release. J Cell Sci 2017; 130:3261-3271. [PMID: 28778988 DOI: 10.1242/jcs.205872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Proteolytic processing of cell-surface-bound ligands, called shedding, is a fundamental system to control cell-cell signaling. Yet, our understanding of how shedding is regulated is still incomplete. One way to increase the processing of dual-lipidated membrane-associated Sonic hedgehog (Shh) is to increase the density of substrate and sheddase. This releases and also activates Shh by the removal of lipidated inhibitory N-terminal peptides from Shh receptor binding sites. Shh release and activation is enhanced by Scube2 [signal sequence, cubulin (CUB) domain, epidermal growth factor (EGF)-like protein 2], raising the question of how this is achieved. Here, we show that Scube2 EGF domains are responsible for specific proteolysis of the inhibitory Shh N-terminus, and that CUB domains complete the process by reversing steric masking of this peptide. Steric masking, in turn, depends on Ca2+ occupancy of Shh ectodomains, unveiling a new mode of shedding regulation at the substrate level. Importantly, Scube2 uncouples processing of Shh peptides from their lipid-mediated juxtamembrane positioning, and thereby explains the long-standing conundrum that N-terminally unlipidated Shh shows patterning activity in Scube2-expressing vertebrates, but not in invertebrates that lack Scube orthologs.
Collapse
Affiliation(s)
- Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Philipp Schulz
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sebastian Exner
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Rocio Rebollido-Rios
- Center for Medical Biotechnology, University of Duisburg-Essen, D-45117 Essen, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Daniel Hoffmann
- Center for Medical Biotechnology, University of Duisburg-Essen, D-45117 Essen, Germany
| | - Daniela G Seidler
- Centre for Internal Medicine, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School I3, EB2/R3110, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
21
|
Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of Heparin and Related Drugs. Pharmacol Rev 2016; 68:76-141. [PMID: 26672027 DOI: 10.1124/pr.115.011247] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
22
|
Abstract
Stem cells hold great promise in treating many diseases either through promoting endogenous cell repair or through direct cell transplants. In order to maximize their potential, understanding the fundamental signals and mechanisms that regulate their behavior is essential. The extracellular matrix (ECM) is one such component involved in mediating stem cell fate. Recent studies have made significant progress in understanding stem cell-ECM interactions. Technological developments have provided greater clarity in how cells may sense and respond to the ECM, in particular the physical properties of the matrix. This review summarizes recent developments, providing illustrative examples of the different modes with which the ECM controls both embryonic and adult stem cell behavior.
Collapse
|
23
|
Jakobs P, Schulz P, Ortmann C, Schürmann S, Exner S, Rebollido-Rios R, Dreier R, Seidler DG, Grobe K. Bridging the gap: heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells. Sci Rep 2016; 6:26435. [PMID: 27199253 PMCID: PMC4873810 DOI: 10.1038/srep26435] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022] Open
Abstract
Decision making in cellular ensembles requires the dynamic release of signaling molecules from the producing cells into the extracellular compartment. One important example of molecules that require regulated release in order to signal over several cell diameters is the Hedgehog (Hh) family, because all Hhs are synthesized as dual-lipidated proteins that firmly tether to the outer membrane leaflet of the cell that produces them. Factors for the release of the vertebrate Hh family member Sonic Hedgehog (Shh) include cell-surface sheddases that remove the lipidated terminal peptides, as well as the soluble glycoprotein Scube2 that cell-nonautonomously enhances this process. This raises the question of how soluble Scube2 is recruited to cell-bound Shh substrates to regulate their turnover. We hypothesized that heparan sulfate (HS) proteoglycans (HSPGs) on the producing cell surface may play this role. In this work, we confirm that HSPGs enrich Scube2 at the surface of Shh-producing cells and that Scube2-regulated proteolytic Shh processing and release depends on specific HS. This finding indicates that HSPGs act as cell-surface assembly and storage platforms for Shh substrates and for protein factors required for their release, making HSPGs critical decision makers for Scube2-dependent Shh signaling from the surface of producing cells.
Collapse
Affiliation(s)
- P Jakobs
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - P Schulz
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - C Ortmann
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - S Schürmann
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - S Exner
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - R Rebollido-Rios
- Center for Medical Biotechnology#, University of Duisburg-Essen, 45117 Essen, Germany
| | - R Dreier
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - D G Seidler
- Centre for Internal Medicine, Hannover Medical School I3, EB2/R3110, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - K Grobe
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| |
Collapse
|
24
|
Keratan Sulfate Regulates the Switch from Motor Neuron to Oligodendrocyte Generation During Development of the Mouse Spinal Cord. Neurochem Res 2016; 41:450-62. [DOI: 10.1007/s11064-016-1861-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
25
|
Koleva MV, Rothery S, Spitaler M, Neil MAA, Magee AI. Sonic hedgehog multimerization: a self-organizing event driven by post-translational modifications? Mol Membr Biol 2015; 32:65-74. [PMID: 26312641 DOI: 10.3109/09687688.2015.1066895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 06/02/2015] [Indexed: 01/05/2023]
Abstract
Sonic hedgehog (Shh) is a morphogen active during vertebrate development and tissue homeostasis in adulthood. Dysregulation of the Shh signalling pathway is known to incite carcinogenesis. Due to the highly lipophilic nature of this protein imparted by two post-translational modifications, Shh's method of transit through the aqueous extracellular milieu has been a long-standing conundrum, prompting the proposition of numerous hypotheses to explain the manner of its displacement from the surface of the producing cell. Detection of high molecular-weight complexes of Shh in the intercellular environment has indicated that the protein achieves this by accumulating into multimeric structures prior to release from producing cells. The mechanism of assembly of the multimers, however, has hitherto remained mysterious and contentious. Here, with the aid of high-resolution optical imaging and post-translational modification mutants of Shh, we show that the C-terminal cholesterol and the N-terminal palmitate adducts contribute to the assembly of large multimers and regulate their shape. Moreover, we show that small Shh multimers are produced in the absence of any lipid modifications. Based on an assessment of the distribution of various dimensional characteristics of individual Shh clusters, in parallel with deductions about the kinetics of release of the protein from the producing cells, we conclude that multimerization is driven by self-assembly underpinned by the law of mass action. We speculate that the lipid modifications augment the size of the multimolecular complexes through prolonging their association with the exoplasmic membrane.
Collapse
Affiliation(s)
- Mirella V Koleva
- a Department of Chemistry
- b Institute of Chemical Biology
- c Photonics Group, Department of Physics
- d Molecular Medicine Section, National Heart & Lung Institute , and
| | - Stephen Rothery
- e Facility for Imaging by Light Microscopy, Imperial College London , London , UK
| | - Martin Spitaler
- e Facility for Imaging by Light Microscopy, Imperial College London , London , UK
| | - Mark A A Neil
- b Institute of Chemical Biology
- c Photonics Group, Department of Physics
| | - Anthony I Magee
- b Institute of Chemical Biology
- d Molecular Medicine Section, National Heart & Lung Institute , and
| |
Collapse
|
26
|
Gallagher J. Fell-Muir Lecture: Heparan sulphate and the art of cell regulation: a polymer chain conducts the protein orchestra. Int J Exp Pathol 2015; 96:203-31. [PMID: 26173450 PMCID: PMC4561558 DOI: 10.1111/iep.12135] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Heparan sulphate (HS) sits at the interface of the cell and the extracellular matrix. It is a member of the glycosaminoglycan family of anionic polysaccharides with unique structural features designed for protein interaction and regulation. Its client proteins include soluble effectors (e.g. growth factors, morphogens, chemokines), membrane receptors and cell adhesion proteins such as fibronectin, fibrillin and various types of collagen. The protein-binding properties of HS, together with its strategic positioning in the pericellular domain, are indicative of key roles in mediating the flow of regulatory signals between cells and their microenvironment. The control of transmembrane signalling is a fundamental element in the complex biology of HS. It seems likely that, in some way, HS orchestrates diverse signalling pathways to facilitate information processing inside the cell. A dictionary definition of an orchestra is 'a large group of musicians who play together on various instruments …' to paraphrase, the HS orchestra is 'a large group of proteins that play together on various receptors'. HS conducts this orchestra to ensure that proteins hit the right notes on their receptors but, in the manner of a true conductor, does it also set 'the musical pulse' and create rhythm and harmony attractive to the cell? This is too big a question to answer but fun to think about as you read this review.
Collapse
Affiliation(s)
- John Gallagher
- Cancer Research UK Manchester Institute, Institute of Cancer Sciences, Paterson Building, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Ortmann C, Pickhinke U, Exner S, Ohlig S, Lawrence R, Jboor H, Dreier R, Grobe K. Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans. J Cell Sci 2015; 128:2374-85. [PMID: 25967551 DOI: 10.1242/jcs.170670] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
All Hedgehog morphogens are released from producing cells, despite being synthesized as N- and C-terminally lipidated molecules, a modification that firmly tethers them to the cell membrane. We have previously shown that proteolytic removal of both lipidated peptides, called shedding, releases bioactive Sonic hedgehog (Shh) morphogens from the surface of transfected Bosc23 cells. Using in vivo knockdown together with in vitro cell culture studies, we now show that glypican heparan sulfate proteoglycans regulate this process, through their heparan sulfate chains, in a cell autonomous manner. Heparan sulfate specifically modifies Shh processing at the cell surface, and purified glycosaminoglycans enhance the proteolytic removal of N- and C-terminal Shh peptides under cell-free conditions. The most likely explanation for these observations is direct Shh processing in the extracellular compartment, suggesting that heparan sulfate acts as a scaffold or activator for Shh ligands and the factors required for their turnover. We also show that purified heparan sulfate isolated from specific cell types and tissues mediates the release of bioactive Shh from pancreatic cancer cells, revealing a previously unknown regulatory role for these versatile molecules in a pathological context.
Collapse
Affiliation(s)
- Corinna Ortmann
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Ute Pickhinke
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Sebastian Exner
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Stefanie Ohlig
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hamodah Jboor
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Rita Dreier
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| | - Kay Grobe
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| |
Collapse
|
28
|
House AJ, Daye LR, Tarpley M, Addo K, Lamson DS, Parker MK, Bealer WE, Williams KP. Design and characterization of a photo-activatable hedgehog probe that mimics the natural lipidated form. Arch Biochem Biophys 2014; 567:66-74. [PMID: 25529135 DOI: 10.1016/j.abb.2014.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022]
Abstract
We have generated a photoactivatable form of sonic hedgehog protein by modifying the N-terminal cysteine with the heterobifunctional photocrosslinker 4-maleimidobenzophenone (Bzm). The Bzm modification on ShhN imparted a significant increase in activity as assessed in the C3H10T1/2 functional assay with potency comparable to that of the endogenous dual-lipidated form of ShhN (ShhNp). Reversed-phase HPLC analysis indicated that the increase in activity compared to unmodified ShhN may be due in part to the hydrophobic nature of the benzophenone group. In contrast to the fully processed ShhNp, Bzm-ShhN is monomeric as assessed by analytical SEC and does not require detergent to be soluble. Further, we demonstrated that the Bzm-ShhN was able to crosslink in vitro in the presence of a known binding partner, heparin. We suggest that Bzm-ShhN can serve as a relatively facile and preferred source of ShhNp for in vitro assays and as a probe to identify novel Hh protein interactions.
Collapse
Affiliation(s)
- Alan J House
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Laura R Daye
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Michael Tarpley
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Kezia Addo
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - David S Lamson
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Margie K Parker
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Warren E Bealer
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Kevin P Williams
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
29
|
Al Oustah A, Danesin C, Khouri-Farah N, Farreny MA, Escalas N, Cochard P, Glise B, Soula C. Dynamics of sonic hedgehog signaling in the ventral spinal cord are controlled by intrinsic changes in source cells requiring sulfatase 1. Development 2014; 141:1392-403. [PMID: 24595292 DOI: 10.1242/dev.101717] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the ventral spinal cord, generation of neuronal and glial cell subtypes is controlled by Sonic hedgehog (Shh). This morphogen contributes to cell diversity by regulating spatial and temporal sequences of gene expression during development. Here, we report that establishing Shh source cells is not sufficient to induce the high-threshold response required to specify sequential generation of ventral interneurons and oligodendroglial cells at the right time and place in zebrafish. Instead, we show that Shh-producing cells must repeatedly upregulate the secreted enzyme Sulfatase1 (Sulf1) at two critical time points of development to reach their full inductive capacity. We provide evidence that Sulf1 triggers Shh signaling activity to establish and, later on, modify the spatial arrangement of gene expression in ventral neural progenitors. We further present arguments in favor of Sulf1 controlling Shh temporal activity by stimulating production of active forms of Shh from its source. Our work, by pointing out the key role of Sulf1 in regulating Shh-dependent neural cell diversity, highlights a novel level of regulation, which involves temporal evolution of Shh source properties.
Collapse
Affiliation(s)
- Amir Al Oustah
- University of Toulouse, Center for Developmental Biology, UMR 5547 CNRS, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ramsbottom SA, Maguire RJ, Fellgett SW, Pownall ME. Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis. Dev Biol 2014; 391:207-18. [PMID: 24768893 DOI: 10.1016/j.ydbio.2014.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 11/17/2022]
Abstract
Genetic studies have established that heparan sulphate proteoglycans (HSPGs) are required for signalling by key developmental regulators, including Hedgehog, Wnt/Wg, FGF, and BMP/Dpp. Post-synthetic remodelling of heparan sulphate (HS) by Sulf1 has been shown to modulate these same signalling pathways. Sulf1 codes for an N-acetylglucosamine 6-O-endosulfatase, an enzyme that specifically removes the 6-O sulphate group from glucosamine in highly sulfated regions of HS chains. One striking aspect of Sulf1 expression in all vertebrates is its co-localisation with that of Sonic hedgehog in the floor plate of the neural tube. We show here that Sulf1 is required for normal specification of neural progenitors in the ventral neural tube, a process known to require a gradient of Shh activity. We use single-cell injection of mRNA coding for GFP-tagged Shh in early Xenopus embryos and find that Sulf1 restricts ligand diffusion. Moreover, we find that the endogenous distribution of Shh protein in Sulf1 knockdown embryos is altered, where a less steep ventral to dorsal gradient forms in the absence of Sulf1, resulting in more a diffuse distribution of Shh. These data point to an important role for Sulf1 in the ventral neural tube, and suggests a mechanism whereby Sulf1 activity shapes the Shh morphogen gradient by promoting ventral accumulation of high levels of Shh protein.
Collapse
Affiliation(s)
| | - Richard J Maguire
- Biology Department, University of York, York YO10 5YW, United Kingdom
| | - Simon W Fellgett
- Biology Department, University of York, York YO10 5YW, United Kingdom
| | | |
Collapse
|
31
|
Jochmann K, Bachvarova V, Vortkamp A. Reprint of: Heparan sulfate as a regulator of endochondral ossification and osteochondroma development. Matrix Biol 2014; 35:239-47. [PMID: 24726293 DOI: 10.1016/j.matbio.2014.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/17/2013] [Accepted: 11/17/2013] [Indexed: 12/19/2022]
Abstract
Most elements of the vertebrate skeleton are formed by endochondral ossification. This process is initiated with mesenchymal cells that condense and differentiate into chondrocytes. These undergo several steps of differentiation from proliferating into hypertrophic chondrocytes, which are subsequently replaced by bone. Chondrocyte proliferation and differentiation are tightly controlled by a complex network of signaling molecules. During recent years, it has become increasingly clear that heparan sulfate (HS) carrying proteoglycans play a critical role in controlling the distribution and activity of these secreted factors. In this review we summarize the current understanding of the role of HS in regulating bone formation. In human, mutations in the HS synthetizing enzymes Ext1 and Ext2 induce the Multiple Osteochondroma syndrome, a skeletal disorder characterized by short stature and the formation of benign cartilage-capped tumors. We review the current insight into the origin of the disease and discuss its possible molecular basis. In addition, we summarize the existing insight into the role of HS as a regulator of signal propagation and signaling strength in the developing skeleton.
Collapse
Affiliation(s)
- Katja Jochmann
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.
| | - Velina Bachvarova
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.
| | - Andrea Vortkamp
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
32
|
Jakobs P, Exner S, Schürmann S, Pickhinke U, Bandari S, Ortmann C, Kupich S, Schulz P, Hansen U, Seidler DG, Grobe K. Scube2 enhances proteolytic Shh processing from the surface of Shh-producing cells. J Cell Sci 2014; 127:1726-37. [PMID: 24522195 DOI: 10.1242/jcs.137695] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
All morphogens of the Hedgehog (Hh) family are synthesized as dual-lipidated proteins, which results in their firm attachment to the surface of the cell in which they were produced. Thus, Hh release into the extracellular space requires accessory protein activities. We suggested previously that the proteolytic removal of N- and C-terminal lipidated peptides (shedding) could be one such activity. More recently, the secreted glycoprotein Scube2 (signal peptide, cubulin domain, epidermal-growth-factor-like protein 2) was also implicated in the release of Shh from the cell membrane. This activity strictly depended on the CUB domains of Scube2, which derive their name from the complement serine proteases and from bone morphogenetic protein-1/tolloid metalloproteinases (C1r/C1s, Uegf and Bmp1). CUB domains function as regulators of proteolytic activity in these proteins. This suggested that sheddases and Scube2 might cooperate in Shh release. Here, we confirm that sheddases and Scube2 act cooperatively to increase the pool of soluble bioactive Shh, and that Scube2-dependent morphogen release is unequivocally linked to the proteolytic processing of lipidated Shh termini, resulting in truncated soluble Shh. Thus, Scube2 proteins act as protease enhancers in this setting, revealing newly identified Scube2 functions in Hh signaling regulation.
Collapse
Affiliation(s)
- Petra Jakobs
- The Institute for Physiological Chemistry and Pathobiochemistry, Westfälische Wilhelms Universität Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jochmann K, Bachvarova V, Vortkamp A. Heparan sulfate as a regulator of endochondral ossification and osteochondroma development. Matrix Biol 2013; 34:55-63. [PMID: 24370655 DOI: 10.1016/j.matbio.2013.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/17/2013] [Accepted: 11/17/2013] [Indexed: 12/18/2022]
Abstract
Most elements of the vertebrate skeleton are formed by endochondral ossification. This process is initiated with mesenchymal cells that condense and differentiate into chondrocytes. These undergo several steps of differentiation from proliferating into hypertrophic chondrocytes, which are subsequently replaced by bone. Chondrocyte proliferation and differentiation are tightly controlled by a complex network of signaling molecules. During recent years, it has become increasingly clear that heparan sulfate (HS) carrying proteoglycans play a critical role in controlling the distribution and activity of these secreted factors. In this review we summarize the current understanding of the role of HS in regulating bone formation. In human, mutations in the HS synthetizing enzymes Ext1 and Ext2 induce the Multiple Osteochondroma syndrome, a skeletal disorder characterized by short stature and the formation of benign cartilage-capped tumors. We review the current insight into the origin of the disease and discuss its possible molecular basis. In addition, we summarize the existing insight into the role of HS as a regulator of signal propagation and signaling strength in the developing skeleton.
Collapse
Affiliation(s)
- Katja Jochmann
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany.
| | - Velina Bachvarova
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany.
| | - Andrea Vortkamp
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
34
|
Green JV, Orsborn KI, Zhang M, Tan QKG, Greis KD, Porollo A, Andes DR, Long Lu J, Hostetter MK. Heparin-binding motifs and biofilm formation by Candida albicans. J Infect Dis 2013; 208:1695-704. [PMID: 23904295 PMCID: PMC4038792 DOI: 10.1093/infdis/jit391] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/30/2013] [Indexed: 01/02/2023] Open
Abstract
Candida albicans is a leading pathogen in infections of central venous catheters, which are frequently infused with heparin. Binding of C. albicans to medically relevant concentrations of soluble and plate-bound heparin was demonstrable by confocal microscopy and enzyme-linked immunosorbent assay (ELISA). A sequence-based search identified 34 C. albicans surface proteins containing ≥1 match to linear heparin-binding motifs. The virulence factor Int1 contained the most putative heparin-binding motifs (n = 5); peptides encompassing 2 of 5 motifs bound to heparin-Sepharose. Alanine substitution of lysine residues K805/K806 in 804QKKHQIHK811 (motif 1 of Int1) markedly attenuated biofilm formation in central venous catheters in rats, whereas alanine substitution of K1595/R1596 in 1593FKKRFFKL1600 (motif 4 of Int1) did not impair biofilm formation. Affinity-purified immunoglobulin G (IgG) recognizing motif 1 abolished biofilm formation in central venous catheters; preimmune IgG had no effect. After heparin treatment of C. albicans, soluble peptides from multiple C. albicans surface proteins were detected, such as Eno1, Pgk1, Tdh3, and Ssa1/2 but not Int1, suggesting that heparin changes candidal surface structures and may modify some antigens critical for immune recognition. These studies define a new mechanism of biofilm formation for C. albicans and a novel strategy for inhibiting catheter-associated biofilms.
Collapse
|
35
|
Whalen DM, Malinauskas T, Gilbert RJC, Siebold C. Structural insights into proteoglycan-shaped Hedgehog signaling. Proc Natl Acad Sci U S A 2013; 110:16420-5. [PMID: 24062467 PMCID: PMC3799379 DOI: 10.1073/pnas.1310097110] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hedgehog (Hh) morphogens play fundamental roles during embryogenesis and adulthood, in health and disease. Multiple cell surface receptors regulate the Hh signaling pathway. Among these, the glycosaminoglycan (GAG) chains of proteoglycans shape Hh gradients and signal transduction. We have determined crystal structures of Sonic Hh complexes with two GAGs, heparin and chondroitin sulfate. The interaction determinants, confirmed by site-directed mutagenesis and binding studies, reveal a previously not identified Hh site for GAG binding, common to all Hh proteins. The majority of Hh residues forming this GAG-binding site have been previously implicated in developmental diseases. Crystal packing analysis, combined with analytical ultracentrifugation of Sonic Hh-GAG complexes, suggests a potential mechanism for GAG-dependent Hh multimerization. Taken together, these results provide a direct mechanistic explanation of the observed correlation between disease and impaired Hh gradient formation. Moreover, GAG binding partially overlaps with the site of Hh interactions with an array of protein partners including Patched, hedgehog interacting protein, and the interference hedgehog protein family, suggesting a unique mechanism of Hh signaling modulation.
Collapse
Affiliation(s)
- Daniel M. Whalen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Robert J. C. Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
36
|
Witt RM, Hecht ML, Pazyra-Murphy MF, Cohen SM, Noti C, van Kuppevelt TH, Fuller M, Chan JA, Hopwood JJ, Seeberger PH, Segal RA. Heparan sulfate proteoglycans containing a glypican 5 core and 2-O-sulfo-iduronic acid function as Sonic Hedgehog co-receptors to promote proliferation. J Biol Chem 2013; 288:26275-26288. [PMID: 23867465 DOI: 10.1074/jbc.m112.438937] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sonic Hedgehog (Shh) signaling is crucial for growth, cell fate determination, and axonal guidance in the developing nervous system. Although the receptors Patched (Ptch1) and Smoothened (Smo) are required for Shh signaling, a number of distinct co-receptors contribute to these critical responses to Shh. Several membrane-embedded proteins such as Boc, Cdo, and Gas1 bind Shh and promote signaling. In addition, heparan sulfate proteoglycans (HSPGs) have also been implicated in the initiation of Shh responses. However, the attributes of HSPGs that function as co-receptors for Shh have not yet been defined. Here, we identify HSPGs containing a glypican 5 core protein and 2-O-sulfo-iduronic acid residues at the nonreducing ends of the glycans as co-receptors for Shh. These HSPG co-receptors are expressed by cerebellar granule cell precursors and promote Shh binding and signaling. At the subcellular level, these HSPG co-receptors are located adjacent to the primary cilia that act as Shh signaling organelles. Thus, Shh binds to HSPG co-receptors containing a glypican 5 core and 2-O-sulfo-iduronic acid to promote neural precursor proliferation.
Collapse
Affiliation(s)
- Rochelle M Witt
- From the Dana Farber Cancer Institute, Boston, Massachusetts 02215,; the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02215
| | - Marie-Lyn Hecht
- the Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1,14476 Potsdam, Germany,; the Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Str.10, CH-8093 Zürich, Switzerland
| | - Maria F Pazyra-Murphy
- From the Dana Farber Cancer Institute, Boston, Massachusetts 02215,; the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02215
| | - Samuel M Cohen
- From the Dana Farber Cancer Institute, Boston, Massachusetts 02215,; the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02215
| | - Christian Noti
- the Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Str.10, CH-8093 Zürich, Switzerland
| | - Toin H van Kuppevelt
- the Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen Medical Centre, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Maria Fuller
- the Lysosomal Diseases Research Unit, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia 5006, Australia
| | - Jennifer A Chan
- the Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, and
| | - John J Hopwood
- the Lysosomal Diseases Research Unit, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia 5006, Australia
| | - Peter H Seeberger
- the Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1,14476 Potsdam, Germany,; the Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| | - Rosalind A Segal
- From the Dana Farber Cancer Institute, Boston, Massachusetts 02215,; the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02215,.
| |
Collapse
|
37
|
Sulfatase 1 promotes the motor neuron-to-oligodendrocyte fate switch by activating Shh signaling in Olig2 progenitors of the embryonic ventral spinal cord. J Neurosci 2013; 32:18018-34. [PMID: 23238718 DOI: 10.1523/jneurosci.3553-12.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the developing ventral spinal cord, motor neurons (MNs) and oligodendrocyte precursor cells (OPCs) are sequentially generated from a common pool of neural progenitors included in the so-called pMN domain characterized by Olig2 expression. Here, we establish that the secreted Sulfatase 1 (Sulf1) is a major component of the mechanism that causes these progenitors to stop producing MNs and change their fate to generate OPCs. We show that specification of OPCs is severely affected in sulf1-deficient mouse embryos. This defect does not rely on abnormal patterning of the spinal cord or failure in maintenance of pMN progenitors at the onset of OPC specification. Instead, the efficiency of OPC induction is reduced, only few Olig2 progenitors are recruited to generate OPCs, meanwhile they continue to produce MNs beyond the normal timing of the neuroglial switch. Using the chicken embryo, we show that Sulf1 activity is required precisely at the stage of the MN-to-OPC fate switch. Finally, we bring arguments supporting the view that Sulf1 controls the level of Sonic Hedgehog (Shh) signaling activity, behaving as an enhancer rather than an obligatory component in the Shh pathway. Our study provides additional insights into the temporal control of Olig2 progenitor cell fate change by the identification of Sulf1 as an extracellular timing signal in the ventral spinal cord.
Collapse
|
38
|
Zhang YT, Alber MS, Newman SA. Mathematical modeling of vertebrate limb development. Math Biosci 2012; 243:1-17. [PMID: 23219575 DOI: 10.1016/j.mbs.2012.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/09/2012] [Accepted: 11/15/2012] [Indexed: 01/15/2023]
Abstract
In this paper, we review the major mathematical and computational models of vertebrate limb development and their roles in accounting for different aspects of this process. The main aspects of limb development that have been modeled include outgrowth and shaping of the limb bud, establishment of molecular gradients within the bud, and formation of the skeleton. These processes occur interdependently during development, although (as described in this review), there are various interpretations of the biological relationships among them. A wide range of mathematical and computational methods have been used to study these processes, including ordinary and partial differential equation systems, cellular automata and discrete, stochastic models, finite difference methods, finite element methods, the immersed boundary method, and various combinations of the above. Multiscale mathematical modeling and associated computational simulation have become integrated into the study of limb morphogenesis and pattern formation to an extent with few parallels in the field of developmental biology. These methods have contributed to the design and analysis of experiments employing microsurgical and genetic manipulations, evaluation of hypotheses for limb bud outgrowth, interpretation of the effects of natural mutations, and the formulation of scenarios for the origination and evolution of the limb skeleton.
Collapse
Affiliation(s)
- Yong-Tao Zhang
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
39
|
Ohlig S, Pickhinke U, Sirko S, Bandari S, Hoffmann D, Dreier R, Farshi P, Götz M, Grobe K. An emerging role of Sonic hedgehog shedding as a modulator of heparan sulfate interactions. J Biol Chem 2012; 287:43708-19. [PMID: 23118222 DOI: 10.1074/jbc.m112.356667] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major developmental morphogens of the Hedgehog (Hh) family act at short range and long range to direct cell fate decisions in vertebrate and invertebrate tissues. To this end, Hhs are released from local sources and act at a distance on target cells that express the Hh receptor Patched. However, morphogen secretion and spreading are not passive processes because all Hhs are synthesized as dually (N- and C-terminal) lipidated proteins that firmly tether to the surface of producing cells. On the cell surface, Hhs associate with each other and with heparan sulfate (HS) proteoglycans. This raises the question of how Hh solubilization and spreading is achieved. We recently discovered that Sonic hedgehog (Shh) is solubilized by proteolytic processing (shedding) of lipidated peptide termini in vitro. Because unprocessed N termini block Patched receptor binding sites in the cluster, we further suggested that their proteolytic removal is required for simultaneous Shh activation. In this work we confirm inactivity of unprocessed protein clusters and demonstrate restored biological Shh function upon distortion or removal of N-terminal amino acids and peptides. We further show that N-terminal Shh processing targets and inactivates the HS binding Cardin-Weintraub (CW) motif, resulting in soluble Shh clusters with their HS binding capacities strongly reduced. This may explain the ability of Shh to diffuse through the HS-containing extracellular matrix, whereas other HS-binding proteins are quickly immobilized. Our in vitro findings are supported by the presence of CW-processed Shh in murine brain samples, providing the first in vivo evidence for Shh shedding and subsequent solubilization of N-terminal-truncated proteins.
Collapse
Affiliation(s)
- Stefanie Ohlig
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|