1
|
van de Kamp G, Heemskerk T, Kanaar R, Essers J. Synergistic Roles of Non-Homologous End Joining and Homologous Recombination in Repair of Ionizing Radiation-Induced DNA Double Strand Breaks in Mouse Embryonic Stem Cells. Cells 2024; 13:1462. [PMID: 39273031 PMCID: PMC11393957 DOI: 10.3390/cells13171462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
DNA double strand breaks (DSBs) are critical for the efficacy of radiotherapy as they lead to cell death if not repaired. DSBs caused by ionizing radiation (IR) initiate histone modifications and accumulate DNA repair proteins, including 53BP1, which forms distinct foci at damage sites and serves as a marker for DSBs. DSB repair primarily occurs through Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). NHEJ directly ligates DNA ends, employing proteins such as DNA-PKcs, while HR, involving proteins such as Rad54, uses a sister chromatid template for accurate repair and functions in the S and G2 phases of the cell cycle. Both pathways are crucial, as illustrated by the IR sensitivity in cells lacking DNA-PKcs or Rad54. We generated mouse embryonic stem (mES) cells which are knockout (KO) for DNA-PKcs and Rad54 to explore the combined role of HR and NHEJ in DSB repair. We found that cells lacking both DNA-PKcs and Rad54 are hypersensitive to X-ray radiation, coinciding with impaired 53BP1 focus resolution and a more persistent G2 phase cell cycle block. Additionally, mES cells deficient in DNA-PKcs or both DNA-PKcs and Rad54 exhibit an increased nuclear size approximately 18-24 h post-irradiation. To further explore the role of Rad54 in the absence of DNA-PKcs, we generated DNA-PKcs KO mES cells expressing GFP-tagged wild-type (WT) or ATPase-defective Rad54 to track the Rad54 foci over time post-irradiation. Cells lacking DNA-PKcs and expressing ATPase-defective Rad54 exhibited a similar phenotypic response to IR as those lacking both DNA-PKcs and Rad54. Despite a strong G2 phase arrest, live-cell imaging showed these cells eventually progress through mitosis, forming micronuclei. Additionally, mES cells lacking DNA-PKcs showed increased Rad54 foci over time post-irradiation, indicating an enhanced reliance on HR for DSB repair without DNA-PKcs. Our findings underscore the essential roles of HR and NHEJ in maintaining genomic stability post-IR in mES cells. The interplay between these pathways is crucial for effective DSB repair and cell cycle progression, highlighting potential targets for enhancing radiotherapy outcomes.
Collapse
Affiliation(s)
- Gerarda van de Kamp
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Tim Heemskerk
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jeroen Essers
- Oncode Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
2
|
Xiong J, Deng C, Fu Y, Tang J, Xie J, Chen Y. Prognostic and Potential Therapeutic Roles of PRKDC Expression in Lung Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01209-3. [PMID: 39044064 DOI: 10.1007/s12033-024-01209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/06/2024] [Indexed: 07/25/2024]
Abstract
PRKDC is a key factor involved in the ligation step of the non-homologous end joining pathway. Its dysfunction has proven to be a biomarker for radiosensitivity of cancer cells. However, the prognostic value of PRKDC and its underlying mechanisms have not been clarified yet. In this study, we found that PRKDC overexpressed in lung adenocarcinoma (LUAD) and is significantly related to unfavorable survival, while downregulation of PRKDC is link to inflamed tumor immune signature. Our further in vitro results also showed a potent antitumor efficacy of PRKDC inhibitors alone or combined with cisplatin in human lung cancer cells. This study demonstrated that PRKDC is a potential prognostic biomarker, immunotherapy target, and promising combination candidate for chemotherapy for lung cancer, and highlighted the potential of PRKDC-targeted inhibitors for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Cuimin Deng
- Department of Pharmacy, QuanZhou Women's and Children's Hospital, Quanzhou, Fujian Province, People's Republic of China
| | - YunRong Fu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingji Tang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jieming Xie
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
3
|
Li P, Gai X, Li Q, Yang Q, Yu X. DNA-PK participates in pre-rRNA biogenesis independent of DNA double-strand break repair. Nucleic Acids Res 2024; 52:6360-6375. [PMID: 38682589 PMCID: PMC11194077 DOI: 10.1093/nar/gkae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Although DNA-PK inhibitors (DNA-PK-i) have been applied in clinical trials for cancer treatment, the biomarkers and mechanism of action of DNA-PK-i in tumor cell suppression remain unclear. Here, we observed that a low dose of DNA-PK-i and PARP inhibitor (PARP-i) synthetically suppresses BRCA-deficient tumor cells without inducing DNA double-strand breaks (DSBs). Instead, we found that a fraction of DNA-PK localized inside of nucleoli, where we did not observe obvious DSBs. Moreover, the Ku proteins recognize pre-rRNA that facilitates DNA-PKcs autophosphorylation independent of DNA damage. Ribosomal proteins are also phosphorylated by DNA-PK, which regulates pre-rRNA biogenesis. In addition, DNA-PK-i acts together with PARP-i to suppress pre-rRNA biogenesis and tumor cell growth. Collectively, our studies reveal a DNA damage repair-independent role of DNA-PK-i in tumor suppression.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochen Gai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qilin Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qianqian Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Adamson B, Brittain N, Walker L, Duncan R, Luzzi S, Rescigno P, Smith G, McGill S, Burchmore RJ, Willmore E, Hickson I, Robson CN, Bogdan D, Jimenez-Vacas JM, Paschalis A, Welti J, Yuan W, McCracken SR, Heer R, Sharp A, de Bono JS, Gaughan L. The catalytic subunit of DNA-PK regulates transcription and splicing of AR in advanced prostate cancer. J Clin Invest 2023; 133:e169200. [PMID: 37751307 PMCID: PMC10645393 DOI: 10.1172/jci169200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023] Open
Abstract
Aberrant androgen receptor (AR) signaling drives prostate cancer (PC), and it is a key therapeutic target. Although initially effective, the generation of alternatively spliced AR variants (AR-Vs) compromises efficacy of treatments. In contrast to full-length AR (AR-FL), AR-Vs constitutively activate androgenic signaling and are refractory to the current repertoire of AR-targeting therapies, which together drive disease progression. There is an unmet clinical need, therefore, to develop more durable PC therapies that can attenuate AR-V function. Exploiting the requirement of coregulatory proteins for AR-V function has the capacity to furnish tractable routes for attenuating persistent oncogenic AR signaling in advanced PC. DNA-PKcs regulates AR-FL transcriptional activity and is upregulated in both early and advanced PC. We hypothesized that DNA-PKcs is critical for AR-V function. Using a proximity biotinylation approach, we demonstrated that the DNA-PK holoenzyme is part of the AR-V7 interactome and is a key regulator of AR-V-mediated transcription and cell growth in models of advanced PC. Crucially, we provide evidence that DNA-PKcs controls global splicing and, via RBMX, regulates the maturation of AR-V and AR-FL transcripts. Ultimately, our data indicate that targeting DNA-PKcs attenuates AR-V signaling and provide evidence that DNA-PKcs blockade is an effective therapeutic option in advanced AR-V-positive patients with PC.
Collapse
Affiliation(s)
- Beth Adamson
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Nicholas Brittain
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Laura Walker
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Ruaridh Duncan
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Sara Luzzi
- Newcastle University Biosciences Institute, International Centre for Life, Newcastle Upon Tyne, United Kingdom
| | - Pasquale Rescigno
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Graham Smith
- Newcastle University Bioinformatics Support Unit, Medical School, Newcastle Upon Tyne, United Kingdom
| | - Suzanne McGill
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Richard J.S. Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elaine Willmore
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Ian Hickson
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Craig N. Robson
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Denisa Bogdan
- The Institute for Cancer Research, London, United Kingdom
| | | | - Alec Paschalis
- The Institute for Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jonathan Welti
- The Institute for Cancer Research, London, United Kingdom
| | - Wei Yuan
- The Institute for Cancer Research, London, United Kingdom
| | - Stuart R. McCracken
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
- Division of Surgery, Imperial College London, London, United Kingdom
| | - Adam Sharp
- The Institute for Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Johann S. de Bono
- The Institute for Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Luke Gaughan
- Newcastle University Centre for Cancer, Paul O’Gorman Building, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
5
|
Vogt A, He Y, Lees-Miller SP. How to fix DNA breaks: new insights into the mechanism of non-homologous end joining. Biochem Soc Trans 2023; 51:1789-1800. [PMID: 37787023 PMCID: PMC10657183 DOI: 10.1042/bst20220741] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 08/26/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
Non-homologous end joining (NHEJ) is the major pathway for the repair of ionizing radiation-induced DNA double-strand breaks (DSBs) in human cells and is essential for the generation of mature T and B cells in the adaptive immune system via the process of V(D)J recombination. Here, we review how recently determined structures shed light on how NHEJ complexes function at DNA DSBs, emphasizing how multiple structures containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) may function in NHEJ. Together, these studies provide an explanation for how NHEJ proteins assemble to detect and protect DSB ends, then proceed, through DNA-PKcs-dependent autophosphorylation, to a ligation-competent complex.
Collapse
Affiliation(s)
- Alex Vogt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, U.S.A
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, U.S.A
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, U.S.A
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, U.S.A
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, U.S.A
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, U.S.A
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
6
|
Tan J, Sun X, Zhao H, Guan H, Gao S, Zhou P. Double-strand DNA break repair: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e388. [PMID: 37808268 PMCID: PMC10556206 DOI: 10.1002/mco2.388] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Double-strand break (DSB), a significant DNA damage brought on by ionizing radiation, acts as an initiating signal in tumor radiotherapy, causing cancer cells death. The two primary pathways for DNA DSB repair in mammalian cells are nonhomologous end joining (NHEJ) and homologous recombination (HR), which cooperate and compete with one another to achieve effective repair. The DSB repair mechanism depends on numerous regulatory variables. DSB recognition and the recruitment of DNA repair components, for instance, depend on the MRE11-RAD50-NBS1 (MRN) complex and the Ku70/80 heterodimer/DNA-PKcs (DNA-PK) complex, whose control is crucial in determining the DSB repair pathway choice and efficiency of HR and NHEJ. In-depth elucidation on the DSB repair pathway's molecular mechanisms has greatly facilitated for creation of repair proteins or pathways-specific inhibitors to advance precise cancer therapy and boost the effectiveness of cancer radiotherapy. The architectures, roles, molecular processes, and inhibitors of significant target proteins in the DSB repair pathways are reviewed in this article. The strategy and application in cancer therapy are also discussed based on the advancement of inhibitors targeted DSB damage response and repair proteins.
Collapse
Affiliation(s)
- Jinpeng Tan
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingyao Sun
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hongling Zhao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hua Guan
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
7
|
Krishnan V. The RUNX Family of Proteins, DNA Repair, and Cancer. Cells 2023; 12:cells12081106. [PMID: 37190015 DOI: 10.3390/cells12081106] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The RUNX family of transcription factors, including RUNX1, RUNX2, and RUNX3, are key regulators of development and can function as either tumor suppressors or oncogenes in cancer. Emerging evidence suggests that the dysregulation of RUNX genes can promote genomic instability in both leukemia and solid cancers by impairing DNA repair mechanisms. RUNX proteins control the cellular response to DNA damage by regulating the p53, Fanconi anemia, and oxidative stress repair pathways through transcriptional or non-transcriptional mechanisms. This review highlights the importance of RUNX-dependent DNA repair regulation in human cancers.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
8
|
Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed Pharmacother 2023; 158:114126. [PMID: 36521246 DOI: 10.1016/j.biopha.2022.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is a standard cytotoxic therapy against solid cancers. It uses ionizing radiation to kill tumor cells through damage to DNA, either directly or indirectly. Radioresistance is often associated with dysregulated DNA damage repair processes. Most radiosensitizers enhance radiation-mediated DNA damage and reduce the rate of DNA repair ultimately leading to accumulation of DNA damages, cell-cycle arrest, and cell death. Recently, agents targeting key signals in DNA damage response such as DNA repair pathways and cell-cycle have been developed. This new class of molecularly targeted radiosensitizing agents is being evaluated in preclinical and clinical studies to monitor their activity in potentiating radiation cytotoxicity of tumors and reducing normal tissue toxicity. The molecular pathways of DNA damage response are reviewed with a focus on the repair mechanisms, therapeutic targets under current clinical evaluation including ATM, ATR, CDK1, CDK4/6, CHK1, DNA-PKcs, PARP-1, Wee1, & MPS1/TTK and potential new targets (BUB1, and DNA LIG4) for radiation sensitization.
Collapse
|
9
|
Ulahannan N, Cutler R, Doña-Termine R, Simões-Pires CA, Wijetunga NA, Croken MM, Johnston AD, Kong Y, Maqbool SB, Suzuki M, Greally JM. Genomic insights into host and parasite interactions during intracellular infection by Toxoplasma gondii. PLoS One 2022; 17:e0275226. [PMID: 36178892 PMCID: PMC9524707 DOI: 10.1371/journal.pone.0275226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
To gain insights into the molecular interactions of an intracellular pathogen and its host cell, we studied the gene expression and chromatin states of human fibroblasts infected with the Apicomplexan parasite Toxoplasma gondii. We show a striking activation of host cell genes that regulate a number of cellular processes, some of which are protective of the host cell, others likely to be advantageous to the pathogen. The simultaneous capture of host and parasite genomic information allowed us to gain insights into the regulation of the T. gondii genome. We show how chromatin accessibility and transcriptional profiling together permit novel annotation of the parasite's genome, including more accurate mapping of known genes and the identification of new genes and cis-regulatory elements. Motif analysis reveals not only the known T. gondii AP2 transcription factor-binding site but also a previously-undiscovered candidate TATA box-containing motif at one-quarter of promoters. By inferring the transcription factor and upstream cell signaling responses involved in the host cell, we can use genomic information to gain insights into T. gondii's perturbation of host cell physiology. Our resulting model builds on previously-described human host cell signalling responses to T. gondii infection, linked to induction of specific transcription factors, some of which appear to be solely protective of the host cell, others of which appear to be co-opted by the pathogen to enhance its own survival.
Collapse
Affiliation(s)
- Netha Ulahannan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Ronald Cutler
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Reanna Doña-Termine
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Claudia A. Simões-Pires
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - N. Ari Wijetunga
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Matthew McKnight Croken
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Andrew D. Johnston
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Yu Kong
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Shahina B. Maqbool
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - John M. Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| |
Collapse
|
10
|
Black Phosphorus Quantum Dots Enhance the Radiosensitivity of Human Renal Cell Carcinoma Cells through Inhibition of DNA-PKcs Kinase. Cells 2022; 11:cells11101651. [PMID: 35626687 PMCID: PMC9139844 DOI: 10.3390/cells11101651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most aggressive urological malignancies and has a poor prognosis, especially in patients with metastasis. Although RCC is traditionally considered to be radioresistant, radiotherapy (RT) is still a common treatment for palliative management of metastatic RCC. Novel approaches are urgently needed to overcome radioresistance of RCC. Black phosphorus quantum dots (BPQDs) have recently received great attention due to their unique physicochemical properties and good biocompatibility. In the present study, we found that BPQDs enhance ionizing radiation (IR)-induced apoptotic cell death of RCC cells. BPQDs treatment significantly increases IR-induced DNA double-strand breaks (DSBs), as indicated by the neutral comet assay and the DSBs biomarkers γH2AX and 53BP1. Mechanistically, BPQDs can interact with purified DNA–protein kinase catalytic subunit (DNA-PKcs) and promote its kinase activity in vitro. BPQDs impair the autophosphorylation of DNA-PKcs at S2056, and this site phosphorylation is essential for efficient DNA DSBs repair and the release of DNA-PKcs from the damage sites. Consistent with this, BPQDs suppress nonhomologous end-joining (NHEJ) repair and lead to sustained high levels of autophosphorylated DNA-PKcs on the damaged sites. Moreover, animal experiments indicate that the combined approach with both BPQDs and IR displays better efficacy than monotreatment. These findings demonstrate that BPQDs have potential applications in radiosensitizing RCC cells.
Collapse
|
11
|
Sui JD, Tang Z, Chen BPC, Huang P, Yang MQ, Wang NH, Yang HN, Tu HL, Jiang QM, Zhang J, Wang Y, Wu YZ. Protein phosphatase 2A-dependent mitotic hnRNPA1 dephosphorylation and TERRA formation facilitate telomere capping. Mol Cancer Res 2021; 20:583-595. [PMID: 34933911 DOI: 10.1158/1541-7786.mcr-21-0581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Jiang-Dong Sui
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zheng Tang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ping Huang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Meng-Qi Yang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Nuo-Han Wang
- School of Medicine, Chongqing University, Chongqing, China
| | - Hao-Nan Yang
- School of Medicine, Chongqing University, Chongqing, China
| | - Hong-Lei Tu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Qing-Ming Jiang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jing Zhang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Wang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong-Zhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
12
|
Chen Y, Li Y, Xiong J, Lan B, Wang X, Liu J, Lin J, Fei Z, Zheng X, Chen C. Role of PRKDC in cancer initiation, progression, and treatment. Cancer Cell Int 2021; 21:563. [PMID: 34702253 PMCID: PMC8547028 DOI: 10.1186/s12935-021-02229-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/24/2021] [Indexed: 01/29/2023] Open
Abstract
The PRKDC gene encodes the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) protein. DNA-PKcs plays an important role in nonhomologous end joining (NHEJ) of DNA double-strand breaks (DSBs) and is also closely related to the establishment of central immune tolerance and the maintenance of chromosome stability. The occurrence and development of different types of tumors and the results of their treatment are also influenced by DNA-PKcs, and it may also predict the results of radiotherapy, chemotherapy, and therapy with immune checkpoint inhibitors (ICIs). Here, we discuss and review the structure and mechanism of action of PRKDC and DNA-PKcs and their relationship with cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yi Li
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jiani Xiong
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Bin Lan
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Shanghai Center for Systems Biomedicine Research, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Jun Liu
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Zhaodong Fei
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Xiaobin Zheng
- Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Chuanben Chen
- Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China. .,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China. .,Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
13
|
Chao OS, Goodman OB. DNA-PKc inhibition overcomes taxane resistance by promoting taxane-induced DNA damage in prostate cancer cells. Prostate 2021; 81:1032-1048. [PMID: 34297853 DOI: 10.1002/pros.24200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/15/2021] [Accepted: 07/09/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Overcoming taxane resistance remains a major clinical challenge in metastatic castrate-resistant prostate cancer (mCRPC). Loss of DNA repair proteins is associated with resistance to anti-microtubule agents. We propose that alterations in DNA damage response (DDR) pathway contribute to taxane resistance, and identification of these alterations may provide a potential therapeutic target to resensitize docetaxel-refractory mCRPC to taxane-based therapy. METHODS Alterations in DDR gene expression in our prostate cancer cell line model of docetaxel-resistance (DU145-DxR) derived from DU-145 cells were determined by DDR pathway-specific polymerase chain reaction array and immunoblotting. The PRKDC gene encoding DNA-PKc (DNA-dependent protein kinase catalytic unit), was noted to be overexpressed and evaluated for its role in docetaxel resistance. Cell viability and clonogenic survival of docetaxel-treated DU145-DxR cells were assessed after pharmacologic inhibition of DNA-PKc with three different inhibitors-NU7441, LTURM34, and M3814. Response to second-line cytotoxic agents, cabazitaxel and etoposide upon DNA-PKc inhibition was also tested. The impact of DNA-PKc upregulation on DNA damage repair was evaluated by comet assay and analysis of double-strand breaks marker, γH2AX and Rad51. Lastly, DNA-PKc inhibitor's effect on MDR1 activity was assessed by rhodamine 123 efflux assay. RESULTS DDR pathway-specific gene profiling revealed significant upregulation of PRKDC and CDK7, and downregulation of MSH3 in DU145-DxR cells. Compared to parental DU145, DU145-DxR cells sustained significantly less DNA damage when exposed to etoposide and docetaxel. Pharmacologic inhibition of DNA-PKc, a component of NHEJ repair machinery, with all three inhibitors, significantly resensitized DU145-DxR cells to docetaxel. Furthermore, DNA-PKc inhibition also resensitized DU145-DxR to cabazitaxel and etoposide, which demonstrated cross-resistance. Inhibition of DNA-PKc led to increased DNA damage in etoposide- and docetaxel-treated DU145-DxR cells. Finally, DNA-PKc inhibition did not affect MDR1 activity, indicating that DNA-PKc inhibitors resensitized taxane-resistant cells via an MDR1-independent mechanism. CONCLUSION This study supports a role of DDR genes, particularly, DNA-PKc in promoting resistance to taxanes in mCRPC. Targeting prostatic DNA-PKc may provide a novel strategy to restore taxane sensitivity in taxane-refractory mCRPC.
Collapse
Affiliation(s)
- Olivia S Chao
- College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, USA
| | - Oscar B Goodman
- College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, USA
- Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA
| |
Collapse
|
14
|
Autophosphorylation and Self-Activation of DNA-Dependent Protein Kinase. Genes (Basel) 2021; 12:genes12071091. [PMID: 34356107 PMCID: PMC8305690 DOI: 10.3390/genes12071091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 11/28/2022] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related kinase family, phosphorylates serine and threonine residues of substrate proteins in the presence of the Ku complex and double-stranded DNA. Although it has been established that DNA-PKcs is involved in non-homologous end-joining, a DNA double-strand break repair pathway, the mechanisms underlying DNA-PKcs activation are not fully understood. Nevertheless, the findings of numerous in vitro and in vivo studies have indicated that DNA-PKcs contains two autophosphorylation clusters, PQR and ABCDE, as well as several autophosphorylation sites and conformational changes associated with autophosphorylation of DNA-PKcs are important for self-activation. Consistent with these features, an analysis of transgenic mice has shown that the phenotypes of DNA-PKcs autophosphorylation mutations are significantly different from those of DNA-PKcs kinase-dead mutations, thereby indicating the importance of DNA-PKcs autophosphorylation in differentiation and development. Furthermore, there has been notable progress in the high-resolution analysis of the conformation of DNA-PKcs, which has enabled us to gain a visual insight into the steps leading to DNA-PKcs activation. This review summarizes the current progress in the activation of DNA-PKcs, focusing in particular on autophosphorylation of this kinase.
Collapse
|
15
|
Yu L, Lang Y, Guo J, Cai J, Shang ZF, Chen BPC. DNA-PKcs inhibition impairs HDAC6-mediated HSP90 chaperone function on Aurora A and enhances HDACs inhibitor-induced cell killing by increasing mitotic aberrant spindle assembly. Cell Cycle 2021; 20:211-224. [PMID: 33404279 DOI: 10.1080/15384101.2020.1867790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Combining targeted therapeutic agents is an attractive cancer treatment strategy associated with high efficacy and low toxicity. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is an essential factor in DNA damage repair. Studies from us and others have revealed that DNA-PKcs also plays an important role in normal mitosis progression. Histone deacetylase (HDACs) inhibitors commonly lead to mitotic aberration and have been approved for treating various cancers in the clinic. We showed that DNA-PKcs depletion or kinase activity inhibition increases cancer cells' sensitivity to HDACs inhibitors in vitro and in vivo. DNA-PKcs deficiency significantly enhances HDACs inhibitors (HDACi)-induced mitotic arrest and is followed by apoptotic cell death. Mechanistically, we found that DNA-PKcs binds to HDAC6 and facilitates its acetylase activity. HDACi is more likely to impair HDAC6-induced deacetylation of HSP90 and abrogate HSP90's chaperone function on Aurora A, a critical mitotic kinase that regulates centrosome separation and mitotic spindle assembly in DNA-PKcs-deficient cells. Our current work indicates crosstalk between DNA-PKcs and HDACs signaling pathways, and highlights that the combined targeting of DNA-PKcs and HDACs can be used in cancer therapy. Abbreviations: DNA-PKcs, DNA-dependent protein kinase catalytic subunit, HDACs, Histone deacetylases, DSBs, DNA double-strand breaks, ATM, ataxia telangiectasia mutated, ATR, ATM-Rad3-related.
Collapse
Affiliation(s)
- Lan Yu
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center , Dallas, TX, USA
| | - Yue Lang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou, China
| | - Jiaming Guo
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center , Dallas, TX, USA.,Department of Radiation Medicine, College of Naval Medicine, Naval Medical University , Shanghai, China
| | - Jianming Cai
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University , Shanghai, China
| | - Zeng-Fu Shang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou, China
| | - Benjamin P C Chen
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center , Dallas, TX, USA
| |
Collapse
|
16
|
Structural insights into the role of DNA-PK as a master regulator in NHEJ. GENOME INSTABILITY & DISEASE 2021; 2:195-210. [PMID: 34723130 PMCID: PMC8549938 DOI: 10.1007/s42764-021-00047-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
DNA-dependent protein kinase catalytic subunit DNA-PKcs/PRKDC is the largest serine/threonine protein kinase of the phosphatidyl inositol 3-kinase-like protein kinase (PIKK) family and is the most highly expressed PIKK in human cells. With its DNA-binding partner Ku70/80, DNA-PKcs is required for regulated and efficient repair of ionizing radiation-induced DNA double-strand breaks via the non-homologous end joining (NHEJ) pathway. Loss of DNA-PKcs or other NHEJ factors leads to radiation sensitivity and unrepaired DNA double-strand breaks (DSBs), as well as defects in V(D)J recombination and immune defects. In this review, we highlight the contributions of the late Dr. Carl W. Anderson to the discovery and early characterization of DNA-PK. We furthermore build upon his foundational work to provide recent insights into the structure of NHEJ synaptic complexes, an evolutionarily conserved and functionally important YRPD motif, and the role of DNA-PKcs and its phosphorylation in NHEJ. The combined results identify DNA-PKcs as a master regulator that is activated by its detection of two double-strand DNA ends for a cascade of phosphorylation events that provide specificity and efficiency in assembling the synaptic complex for NHEJ.
Collapse
|
17
|
Farhat T, Dudakovic A, Chung JH, van Wijnen AJ, St-Arnaud R. Inhibition of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) stimulates osteoblastogenesis by potentiating bone morphogenetic protein 2 (BMP2) responses. J Cell Physiol 2020; 236:1195-1213. [PMID: 32686190 DOI: 10.1002/jcp.29927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a pleiotropic enzyme involved in DNA repair, cell cycle control, and transcription regulation. A potential role for DNA-PKcs in the regulation of osteoblastogenesis remains to be established. We show that pharmacological inhibition of DNA-PKcs kinase activity or gene silencing of Prkdc (encoding DNA-PKcs) in murine osteoblastic MC3T3-E1 cells and human adipose-derived mesenchymal stromal cells markedly enhanced osteogenesis and the expression of osteoblast differentiation marker genes. Inhibition of DNA-PKcs inhibited cell cycle progression and increased osteogenesis by significantly enhancing the bone morphogenetic protein 2 response in osteoblasts and other mesenchymal cell types. Importantly, in vivo pharmacological inhibition of the kinase enhanced bone biomechanical properties. Bones from osteoblast-specific conditional Prkdc-knockout mice exhibited a similar phenotype of increased stiffness. In conclusion, DNA-PKcs negatively regulates osteoblast differentiation, and therefore DNA-PKcs inhibitors may have therapeutic potential for bone regeneration and metabolic bone diseases.
Collapse
Affiliation(s)
- Theresa Farhat
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jay H Chung
- Laboratory of Obesity & Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute (NIH), Bethesda, Maryland
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Surgery, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Douglas P, Ye R, Radhamani S, Cobban A, Jenkins NP, Bartlett E, Roveredo J, Kettenbach AN, Lees-Miller SP. Nocodazole-Induced Expression and Phosphorylation of Anillin and Other Mitotic Proteins Are Decreased in DNA-Dependent Protein Kinase Catalytic Subunit-Deficient Cells and Rescued by Inhibition of the Anaphase-Promoting Complex/Cyclosome with proTAME but Not Apcin. Mol Cell Biol 2020; 40:e00191-19. [PMID: 32284347 PMCID: PMC7296215 DOI: 10.1128/mcb.00191-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/15/2019] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has well-established roles in DNA double-strand break repair, and recently, nonrepair functions have also been reported. To better understand its cellular functions, we deleted DNA-PKcs from HeLa and A549 cells using CRISPR/Cas9. The resulting cells were radiation sensitive, had reduced expression of ataxia-telangiectasia mutated (ATM), and exhibited multiple mitotic defects. Mechanistically, nocodazole-induced upregulation of cyclin B1, anillin, and securin was decreased in DNA-PKcs-deficient cells, as were phosphorylation of Aurora A on threonine 288, phosphorylation of Polo-like kinase 1 (PLK1) on threonine 210, and phosphorylation of targeting protein for Xenopus Klp2 (TPX2) on serine 121. Moreover, reduced nocodazole-induced expression of anillin, securin, and cyclin B1 and phosphorylation of PLK1, Aurora A, and TPX2 were rescued by inhibition of the anaphase-promoting complex/cyclosome (APC/C) by proTAME, which prevents binding of the APC/C-activating proteins Cdc20 and Cdh1 to the APC/C. Altogether, our studies suggest that loss of DNA-PKcs prevents inactivation of the APC/C in nocodazole-treated cells.
Collapse
Affiliation(s)
- Pauline Douglas
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ruiqiong Ye
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Suraj Radhamani
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alexander Cobban
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole P Jenkins
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon Campus at Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Edward Bartlett
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan Roveredo
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arminja N Kettenbach
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon Campus at Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
DNA double strand break repair as cellular response to genotoxic asarone isomers considering phase I metabolism. Food Chem Toxicol 2020; 142:111484. [PMID: 32526244 DOI: 10.1016/j.fct.2020.111484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
The phenylpropenes α-asarone and β-asarone are widely spread in the marsh plant Acorus calamus. Both isomers are classified as carcinogenic in rodents. However, the respective genotoxic mechanisms are not elucidated so far. The present study gives deeper insights into the genotoxic effects of asarone isomers as well as their known oxidative phase I metabolites, (E)-3'-oxoasarone and asarone epoxide. We show that asarone metabolites highly increase DNA strand breaks after 1 h of incubation, markedly metabolic activation contributes to their carcinogenic mode of action. All test compounds act as aneugens and potently enhance the amounts of micronuclei in binuclear cells. However, a prolonged incubation time of 24 h results in a decrease of DNA damage. This work suggests that asarone metabolites also induce DNA double strand breaks , why we put a strong focus on homologous recombination and non-homologous end joining. The obtained results herein indicate that asarone epoxide-induced DNA strand breaks are repaired via a homologous repair pathway.
Collapse
|
20
|
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5:60. [PMID: 32355263 PMCID: PMC7192953 DOI: 10.1038/s41392-020-0150-x] [Citation(s) in RCA: 519] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Collapse
Affiliation(s)
- Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, People's Republic of China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850, Beijing, People's Republic of China.
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|
21
|
Sui J, Zhang S, Chen BPC. DNA-dependent protein kinase in telomere maintenance and protection. Cell Mol Biol Lett 2020; 25:2. [PMID: 31988640 PMCID: PMC6969447 DOI: 10.1186/s11658-020-0199-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on DNA-dependent protein kinase (DNA-PK), which is the key regulator of canonical non-homologous end-joining (NHEJ), the predominant mechanism of DNA double-strand break (DSB) repair in mammals. DNA-PK consists of the DNA-binding Ku70/80 heterodimer and the catalytic subunit DNA-PKcs. They assemble at DNA ends, forming the active DNA-PK complex, which initiates NHEJ-mediated DSB repair. Paradoxically, both Ku and DNA-PKcs are associated with telomeres, and they play crucial roles in protecting the telomere against fusions. Herein, we discuss possible mechanisms and contributions of Ku and DNA-PKcs in telomere regulation.
Collapse
Affiliation(s)
- Jiangdong Sui
- 1Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030 China
| | - Shichuan Zhang
- 2Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Benjamin P C Chen
- 3Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Rd., Dallas, TX 75390-9187 USA
| |
Collapse
|
22
|
Vanillin derivative VND3207 activates DNA-PKcs conferring protection against radiation-induced intestinal epithelial cells injury in vitro and in vivo. Toxicol Appl Pharmacol 2019; 387:114855. [PMID: 31830491 DOI: 10.1016/j.taap.2019.114855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022]
Abstract
Vanillin is a natural compound endowed with antioxidant and anti-mutagenic properties. We previously identified the vanillin derivative VND3207 with strong radio-protective and antioxidant effects and found that VND3207 confers survival benefit and protection against radiation-induced intestinal injury (RIII) in mice. We also observed that VND3207 treatment enhanced the expression level of the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) in human lymphoblastoid cells with or without γ-irradiation. DNA-PKcs is a critical component of DNA double strand break repair pathway and also regulates mitotic progression by stabilizing spindle formation and preventing mitotic catastrophe in response to DNA damage. In the present study, we found that VND3207 protected intestinal epithelial cells in vitro against ionizing radiation by promoting cell proliferation and inhibiting cell apoptosis. In addition, VND3207 promoted DNA-PKcs activity by increasing autophosphorylation at S2056 site. Consistent with this, VND3207 significantly decreased the number of γH2AX foci and mitotic catastrophe after radiation. DNA-PKcs deficiency abolished these VND3207 radio-protective effects, indicating that DNA-PKcs activation is essential for VND3207 activity. In conclusion, VND3207 promoted intestinal repair following radiation injury by regulating the DNA-PKcs pathway.
Collapse
|
23
|
Soleimani F, Babaei E, H Feizi MA, Fathi F. CRISPR-Cas9-mediated knockout of the Prkdc in mouse embryonic stem cells leads to the modulation of the expression of pluripotency genes. J Cell Physiol 2019; 235:3994-4000. [PMID: 31603250 DOI: 10.1002/jcp.29295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Prkdc encodes for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) playing a key role in nonhomologous end joining pathway during DNA double-strand break repair and also influencing the homologous recombination (HR) repair system by phosphorylation of proteins involved in HR. In addition, Prkdc has other critical functions in biological processes, such as transcriptional regulation, telomere stability, apoptosis, and metabolism. DNA-PKcs upregulates during in vitro differentiation of mouse embryonic stem cells (mESCs). To address the potential role of Prkdc in mESCs pluripotency and in vitro differentiation into ectoderm, mesoderm, and endoderm germ layers under normal physiological conditions, a bi-allelic Prkdc-knockout cell line was generated in the present study by employing CRISPR/Cas9 system, and subsequently, its potential role in stemness and development was studied. The results of the study showed that the expression of pluripotency-associated genes, including Nanog and Sox-2 were overexpressed in the bi-allelic Prkdc-knockout cell line. Also, bi-allelic Prkdc-knockout cell line was shown to have typical mESCs cell morphology, cell cycle distribution, and alkaline phosphatase activity. Furthermore, the results of the study revealed that the expression of several germ layer markers is modulated in Prkdc-knockout lines. In conclusion, the findings of our study demonstrated the role of Prkdc during differentiation and development of ESCs.
Collapse
Affiliation(s)
- Farzad Soleimani
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran.,Institute of Environment, University of Tabriz, Tabriz, Iran
| | - Mohammad A H Feizi
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
24
|
Zhang Y, Yang WK, Wen GM, Tang H, Wu CA, Wu YX, Jing ZL, Tang MS, Liu GL, Li DZ, Li YH, Deng YJ. High expression of PRKDC promotes breast cancer cell growth via p38 MAPK signaling and is associated with poor survival. Mol Genet Genomic Med 2019; 7:e908. [PMID: 31513357 PMCID: PMC6825841 DOI: 10.1002/mgg3.908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/14/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND DNA-Dependent Protein Kinase Catalytic Subunit (PRKDC), a key component of the DNA damage repair pathway, is associated with chemotherapy resistance and tumor progression. METHODS Here we analyzed transcriptome data of ~2,000 breast cancer patients and performed functional studies in vitro to investigate the function of PRKDC in breast cancer. RESULTS Our results revealed overexpression of PRKDC in multiple breast cancer subtypes. Consistent with patients' data, overexpression of PRKDC was also observed in breast cancer cell lines compared to normal breast epithelial cells. Knockdown of PRKDC in MCF-7 and T47D breast cancer cell lines resulted in proliferation inhibition, reduced colony formation and G2/M cell cycle arrest. Furthermore, we showed that PRKDC knockdown induced proliferation inhibition through activation of p38 MAPK, but not ERK MAPK, signaling pathway in breast cancer cells. Blockage of p38 MAPK signaling could largely rescue proliferation inhibition and cell cycle arrest induced by PRKDC knockdown. Moreover, we analyzed gene expression and clinical data from six independent breast cancer cohorts containing ~1,000 patients. In all cohorts, our results consistently showed that high expression of PRKDC was significantly associated with poor survival in both treated and untreated breast cancer patients. CONCLUSION Together, our results suggest that high expression of PRKDC facilitates breast cancer cell growth via regulation of p38 MAPK signaling, and is a prognostic marker for poor survival in breast cancer patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China.,Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Wei-Kang Yang
- Department of Prevention and Health Care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Guo-Ming Wen
- Department of Outpatient, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Hongping Tang
- Department of Pathology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Chuan-An Wu
- Department of Prevention and Health Care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Yan-Xia Wu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zhi-Liang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Min-Shan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Guang-Long Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Da-Zhou Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yan-Hua Li
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Yong-Jian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
25
|
Jette NR, Radhamani S, Arthur G, Ye R, Goutam S, Bolyos A, Petersen LF, Bose P, Bebb DG, Lees-Miller SP. Combined poly-ADP ribose polymerase and ataxia-telangiectasia mutated/Rad3-related inhibition targets ataxia-telangiectasia mutated-deficient lung cancer cells. Br J Cancer 2019; 121:600-610. [PMID: 31481733 PMCID: PMC6889280 DOI: 10.1038/s41416-019-0565-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background Up to 40% of lung adenocarcinoma have been reported to lack ataxia-telangiectasia mutated (ATM) protein expression. We asked whether ATM-deficient lung cancer cell lines are sensitive to poly-ADP ribose polymerase (PARP) inhibitors and determined the mechanism of action of olaparib in ATM-deficient A549 cells. Methods We analysed drug sensitivity data for olaparib and talazoparib in lung adenocarcinoma cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC) project. We deleted ATM from A549 lung adenocarcinoma cells using CRISPR/Cas9 and determined the effects of olaparib and the ATM/Rad3-related (ATR) inhibitor VE-821 on cell viability. Results IC50 values for both olaparib and talazoparib positively correlated with ATM mRNA levels and gene amplification status in lung adenocarcinoma cell lines. ATM mutation was associated with a significant decrease in the IC50 for olaparib while a similar trend was observed for talazoparib. A549 cells with deletion of ATM were sensitive to ionising radiation and olaparib. Olaparib induced phosphorylation of DNA damage markers and reversible G2 arrest in ATM-deficient cells, while the combination of olaparib and VE-821 induced cell death. Conclusions Patients with tumours characterised by ATM-deficiency may benefit from treatment with a PARP inhibitor in combination with an ATR inhibitor.
Collapse
Affiliation(s)
- Nicholas R Jette
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Suraj Radhamani
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Greydon Arthur
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Ruiqiong Ye
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Siddhartha Goutam
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Anthony Bolyos
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Lars F Petersen
- Department Oncology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Pinaki Bose
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada.,Department Oncology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - D Gwyn Bebb
- Department Oncology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Susan P Lees-Miller
- Departments of Biochemistry and Molecular Biology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada. .,Department Oncology, Robson DNA Science Centre and Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
26
|
Sak A, Groneberg M, Stuschke M. DNA-dependent protein kinase: effect on DSB repair, G2/M checkpoint and mode of cell death in NSCLC cell lines. Int J Radiat Biol 2019; 95:1205-1219. [PMID: 31287365 DOI: 10.1080/09553002.2019.1642536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: To evaluate the effect of NU7026, a specific inhibitor of DNA-PKcs, on DNA-double strand break (DSB) repair in a cell cycle specific manner, on the G2/M checkpoint, mitotic progression, apoptosis and clonogenic survival in non-small-cell lung carcinoma (NSCLC) cell lines with different p53 status. Material and methods: Cell cycle progression, and hyperploidy were evaluated using flow cytometry. Polynucleation as a measure for mitotic catastrophe (MC) was evaluated by fluorescence microscopy. DSB induction and repair were measured by constant-gel electrophoresis and γH2AX assay. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1 and G2/M phase cells on the basis of the DNA content in flow cytometry. The overall effect on cell death was determined by apoptosis and the surviving fraction after irradiation with 2 Gy (SF2) assessed by clonogenic survival. Results: DSB signaling upon treatment with NU7026, as measured by γH2AX signaling, was differently affected in G1 and G2/M cells. The background level of γH2AX was significantly higher in G2/M compared to G1 cells, whereas NU7026 had no effect on the background level. The steepness of the initial dose effect relation at 1 h after irradiation was less pronounced in G2/M compared to G1 cells. NU7026 had no significant effect on the initial dose-effect relation of γH2AX signaling. In comparison, NU7026 significantly slowed down the repair kinetics and increased the residual γH2AX signal at 24 h after irradiation in the G1 phase of all cell lines, but was less effective in G2/M cells. NU7026 significantly increased the fraction of G2/M phase cells upon irradiation. Moreover, NU7026 significantly increased mitotic catastrophe and hyperploidy, as a measure for mitotic failure after low irradiation doses of about 4 Gy, but decreased both at higher doses of 20 Gy. In addition, radiation induced apoptosis increased in A549, H520 and H460 but decreased in H661 upon NU7026 treatment, with a significant reduction of SF2 in all NSCLC cell lines. Conclusion: Overall, NU7026 significantly influences the cell cycle progression through the G2- and M-phases and thereby determines the fate of cells. The impairment of DNA-PK upon treatment with NU7026 affects the efficiency of the NHEJ system in a cell cycle dependent manner, which may be of relevance for a clinical application of DNA-PK inhibitors in tumor therapy.
Collapse
Affiliation(s)
- Ali Sak
- Department of Radiotherapy, University Hospital Essen , Essen , Germany
| | - Michael Groneberg
- Department of Radiotherapy, University Hospital Essen , Essen , Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen , Essen , Germany
| |
Collapse
|
27
|
Mohiuddin IS, Kang MH. DNA-PK as an Emerging Therapeutic Target in Cancer. Front Oncol 2019; 9:635. [PMID: 31380275 PMCID: PMC6650781 DOI: 10.3389/fonc.2019.00635] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) plays an instrumental role in the overall survival and proliferation of cells. As a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, DNA-PK is best known as a mediator of the cellular response to DNA damage. In this context, DNA-PK has emerged as an intriguing therapeutic target in the treatment of a variety of cancers, especially when used in conjunction with genotoxic chemotherapy or ionizing radiation. Beyond the DNA damage response, DNA-PK activity is necessary for multiple cellular functions, including the regulation of transcription, progression of the cell cycle, and in the maintenance of telomeres. Here, we review what is currently known about DNA-PK regarding its structure and established roles in DNA repair. We also discuss its lesser-known functions, the pharmacotherapies inhibiting its function in DNA repair, and its potential as a therapeutic target in a broader context.
Collapse
Affiliation(s)
- Ismail S Mohiuddin
- Cancer Center, Department of Pediatrics, Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Min H Kang
- Cancer Center, Department of Pediatrics, Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
28
|
Dylgjeri E, McNair C, Goodwin JF, Raymon HK, McCue PA, Shafi AA, Leiby BE, de Leeuw R, Kothari V, McCann JJ, Mandigo AC, Chand SN, Schiewer MJ, Brand LJ, Vasilevskaya I, Gordon N, Laufer TS, Gomella LG, Lallas CD, Trabulsi EJ, Feng FY, Filvaroff EH, Hege K, Rathkopf D, Knudsen KE. Pleiotropic Impact of DNA-PK in Cancer and Implications for Therapeutic Strategies. Clin Cancer Res 2019; 25:5623-5637. [PMID: 31266833 DOI: 10.1158/1078-0432.ccr-18-2207] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 03/05/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE DNA-dependent protein kinase catalytic subunit (DNA-PK) is a pleiotropic kinase involved in DNA repair and transcriptional regulation. DNA-PK is deregulated in selected cancer types and is strongly associated with poor outcome. The underlying mechanisms by which DNA-PK promotes aggressive tumor phenotypes are not well understood. Here, unbiased molecular investigation in clinically relevant tumor models reveals novel functions of DNA-PK in cancer.Experimental Design: DNA-PK function was modulated using both genetic and pharmacologic methods in a series of in vitro models, in vivo xenografts, and patient-derived explants (PDE), and the impact on the downstream signaling and cellular cancer phenotypes was discerned. Data obtained were used to develop novel strategies for combinatorial targeting of DNA-PK and hormone signaling pathways. RESULTS Key findings reveal that (i) DNA-PK regulates tumor cell proliferation; (ii) pharmacologic targeting of DNA-PK suppresses tumor growth both in vitro, in vivo, and ex vivo; (iii) DNA-PK transcriptionally regulates the known DNA-PK-mediated functions as well as novel cancer-related pathways that promote tumor growth; (iv) dual targeting of DNA-PK/TOR kinase (TORK) transcriptionally upregulates androgen signaling, which can be mitigated using the androgen receptor (AR) antagonist enzalutamide; (v) cotargeting AR and DNA-PK/TORK leads to the expansion of antitumor effects, uncovering the modulation of novel, highly relevant protumorigenic cancer pathways; and (viii) cotargeting DNA-PK/TORK and AR has cooperative growth inhibitory effects in vitro and in vivo. CONCLUSIONS These findings uncovered novel DNA-PK transcriptional regulatory functions and led to the development of a combinatorial therapeutic strategy for patients with advanced prostate cancer, currently being tested in the clinical setting.
Collapse
Affiliation(s)
- Emanuela Dylgjeri
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher McNair
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jonathan F Goodwin
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Peter A McCue
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ayesha A Shafi
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin E Leiby
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renée de Leeuw
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vishal Kothari
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jennifer J McCann
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amy C Mandigo
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saswati N Chand
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew J Schiewer
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lucas J Brand
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Irina Vasilevskaya
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicolas Gordon
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Talya S Laufer
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G Gomella
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D Lallas
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edouard J Trabulsi
- Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | | | - Dana Rathkopf
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Karen E Knudsen
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Urology, Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania.,Departments of Medical Oncology and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Zhang Y, Wen GM, Wu CA, Jing ZL, Li DZ, Liu GL, Wei XX, Tang MS, Li YH, Zhong Y, Deng YJ, Yang WK. PRKDC is a prognostic marker for poor survival in gastric cancer patients and regulates DNA damage response. Pathol Res Pract 2019; 215:152509. [PMID: 31255330 DOI: 10.1016/j.prp.2019.152509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023]
Abstract
A hallmark of gastric cancer is the high rate of genomic instability associated with deregulation of DNA damage repair pathways. DNA-Dependent Protein Kinase Catalytic Subunit (PRKDC) is a key component of the non-homologous end-joining (NHEJ) pathway. By reanalyzing transcriptome data of 80 pairs of gastric cancer tumors and the adjacent normal tissues from non-treated patients, we identified PRKDC as the top upregulated DNA damage repair genes in gastric cancer. High expression of PRKDC is associated with poor survival of gastric cancer patients, and genomic amplification of the gene is frequently observed across most gastric cancer subtypes. Knockdown of PRKDC in gastric cell lines resulted in reduced proliferation and cell cycle arrest. Furthermore, we showed that loss of PRKDC induced DNA damage and enhanced gastric cancer cell chemosensitivity to DNA-damaging reagents. Together, our results suggest that PRKDC is a prognostic marker of poor survival and is a putative target to overcome chemoresistance in gastric cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China.
| | - Guo-Ming Wen
- Department of Outpatient, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China
| | - Chuan-An Wu
- Department of Prevention and health care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China
| | - Zhi-Liang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Da-Zhou Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Guang-Long Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Xu-Xuan Wei
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Min-Shan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Yan-Hua Li
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China
| | - Yan Zhong
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China
| | - Yong-Jian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China.
| | - Wei-Kang Yang
- Department of Prevention and health care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China.
| |
Collapse
|
30
|
Payne EH, Ramalingam D, Fox DT, Klotman ME. Polyploidy and Mitotic Cell Death Are Two Distinct HIV-1 Vpr-Driven Outcomes in Renal Tubule Epithelial Cells. J Virol 2018; 92:e01718-17. [PMID: 29093088 PMCID: PMC5752950 DOI: 10.1128/jvi.01718-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 01/24/2023] Open
Abstract
Prior studies have found that HIV, through the Vpr protein, promotes genome reduplication (polyploidy) in infection-surviving epithelial cells within renal tissue. However, the temporal progression and molecular regulation through which Vpr promotes polyploidy have remained unclear. Here we define a sequential progression to Vpr-mediated polyploidy in human renal tubule epithelial cells (RTECs). We found that as in many cell types, Vpr first initiates G2 cell cycle arrest in RTECs. We then identified a previously unreported cascade of Vpr-dependent events that lead to renal cell survival and polyploidy. Specifically, we found that a fraction of G2-arrested RTECs reenter the cell cycle. Following this cell cycle reentry, two distinct outcomes occur. Cells that enter complete mitosis undergo mitotic cell death due to extra centrosomes and aberrant division. Conversely, cells that abort mitosis undergo endoreplication to become polyploid. We further show that multiple small-molecule inhibitors of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, including those that target ATR, ATM, and mTOR, indirectly prevent Vpr-mediated polyploidy by preventing G2 arrest. In contrast, an inhibitor that targets DNA-dependent protein kinase (DNA-PK) specifically blocks the Vpr-mediated transition from G2 arrest to polyploidy. These findings outline a temporal, molecularly regulated path to polyploidy in HIV-positive renal cells.IMPORTANCE Current cure-focused efforts in HIV research aim to elucidate the mechanisms of long-term persistence of HIV in compartments. The kidney is recognized as one such compartment, since viral DNA and mRNA persist in the renal tissues of HIV-positive patients. Further, renal disease is a long-term comorbidity in the setting of HIV. Thus, understanding the regulation and impact of HIV infection on renal cell biology will provide important insights into this unique HIV compartment. Our work identifies mechanisms that distinguish between HIV-positive cell survival and death in a known HIV compartment, as well as pharmacological agents that alter these outcomes.
Collapse
Affiliation(s)
- Emily H Payne
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Dhivya Ramalingam
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Mary E Klotman
- Department of Pathology, Duke University, Durham, North Carolina, USA
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
31
|
Cui FM, Sun XJ, Huang CC, Chen Q, He YM, Zhang SM, Guan H, Song M, Zhou PK, Hou J. Inhibition of c-Myc expression accounts for an increase in the number of multinucleated cells in human cervical epithelial cells. Oncol Lett 2017; 14:2878-2886. [PMID: 28928827 PMCID: PMC5588452 DOI: 10.3892/ol.2017.6554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/23/2017] [Indexed: 01/06/2023] Open
Abstract
The present study aimed to explore the mechanisms by which c-Myc is involved in mitotic catastrophe. HeLa-630 is a cell line stably silenced for c-Myc expression that was established in the laboratory of the School of Radiation Medicine and Protection. Multinucleated cells were observed in this line, and gene expression analysis was utilized to examine differences in gene expression in these cells compared with in the control cells transfected with the control plasmid. Gene ontology analysis was performed for differentially expressed genes. Expression profile analyses revealed that cells with silenced c-Myc exhibited abnormal expression patterns of genes involved in various functions, including the regulation of microtubule nucleation, centrosome duplication, the formation of pericentriolar material, DNA synthesis and metabolism, protein metabolism and the regulation of ion concentrations. Pathway analyses of differentially expressed genes demonstrated that these genes were primarily involved in diverse signal transduction pathways, including not only the adherens junction pathway, the transforming growth factor-β signaling pathway and the Wnt signaling pathway, among others, but also signaling pathways with roles in cytokine and immune regulation. The proportion of multinucleated cells with multipolar spindles was significantly higher in silenced c-Myc cells as compared with the control cells, and this discrepancy became more pronounced following cell irradiation. The inhibition of c-Myc in tumors may account for the radiosensitization of certain tumor cell types.
Collapse
Affiliation(s)
- Feng Mei Cui
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiu Jin Sun
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Cheng Cheng Huang
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Qiu Chen
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yong Ming He
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shi Meng Zhang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Man Song
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Ping Kun Zhou
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Jun Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
32
|
Gurley KE, Ashley AK, Moser RD, Kemp CJ. Synergy between Prkdc and Trp53 regulates stem cell proliferation and GI-ARS after irradiation. Cell Death Differ 2017; 24:1853-1860. [PMID: 28686579 DOI: 10.1038/cdd.2017.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/21/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) is one of the most widely used treatments for cancer. However, acute damage to the gastrointestinal tract or gastrointestinal acute radiation syndrome (GI-ARS) is a major dose-limiting side effect, and the mechanisms that underlie this remain unclear. Here we use mouse models to explore the relative roles of DNA repair, apoptosis, and cell cycle arrest in radiation response. IR induces DNA double strand breaks and DNA-PK mutant Prkdcscid/scid mice are sensitive to GI-ARS due to an inability to repair these breaks. IR also activates the tumor suppressor p53 to trigger apoptotic cell death within intestinal crypt cells and p53 deficient mice are resistant to apoptosis. To determine if DNA-PK and p53 interact to govern radiosensitivity, we compared the response of single and compound mutant mice to 8 Gy IR. Compound mutant Prkdcscid/scid/Trp53-/-mice died earliest due to severe GI-ARS. While both Prkdcscid/scid and Prkdcscid/scid/Trp53-/-mutant mice had higher levels of IR-induced DNA damage, particularly within the stem cell compartment of the intestinal crypt, in Prkdcscid/scid/Trp53-/-mice these damaged cells abnormally progressed through the cell cycle resulting in mitotic cell death. This led to a loss of Paneth cells and a failure to regenerate the differentiated epithelial cells required for intestinal function. IR-induced apoptosis did not correlate with radiosensitivity. Overall, these data reveal that DNA repair, mediated by DNA-PK, and cell cycle arrest, mediated by p53, cooperate to protect the stem cell niche after DNA damage, suggesting combination approaches to modulate both pathways may be beneficial to reduce GI-ARS. As many cancers harbor p53 mutations, this also suggests targeting DNA-PK may be effective to enhance sensitivity of p53 mutant tumors to radiation.
Collapse
Affiliation(s)
- Kay E Gurley
- Division of Human Biology Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle WA 98109, USA
| | - Amanda K Ashley
- Department of Chemistry and Biochemistry New Mexico State University, 1780 East University Avenue, Las Cruces, NM 88003, USA
| | - Russell D Moser
- Division of Human Biology Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle WA 98109, USA
| | - Christopher J Kemp
- Division of Human Biology Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle WA 98109, USA
| |
Collapse
|
33
|
Sun G, Yang L, Dong C, Ma B, Shan M, Ma B. PRKDC regulates chemosensitivity and is a potential prognostic and predictive marker of response to adjuvant chemotherapy in breast cancer patients. Oncol Rep 2017; 37:3536-3542. [DOI: 10.3892/or.2017.5634] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/05/2017] [Indexed: 11/06/2022] Open
|
34
|
Li M, Li S, Liu B, Gu MM, Zou S, Xiao BB, Yu L, Ding WQ, Zhou PK, Zhou J, Shang ZF. PIG3 promotes NSCLC cell mitotic progression and is associated with poor prognosis of NSCLC patients. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:39. [PMID: 28259183 PMCID: PMC5336678 DOI: 10.1186/s13046-017-0508-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/21/2017] [Indexed: 02/07/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is the most commonly diagnosed type of lung cancer that is associated with poor prognosis. In this study we explored the potential role of p53-induced gene 3 (PIG3) in the progression of NSCLC. Methods Immunohistochemistry was used to determine the expression levels of PIG3 in 201 NSCLC patients. We performed in vitro studies and silenced endogenous PIG3 by using specific siRNAs that specific target PIG3. Immunofluorescent staining was performed to determine the effect of PIG3 on mitotic progression in NSCLC cells. The growth rates of microtubules were determined by microtubule nucleation analysis. Cell proliferation and chemosensitivity were analyzed by CCK8 assays. Annexin V staining and β-galactosidase activity analysis were used to evaluate PIG3 deficiency-related apoptosis and senescence, respectively. Results PIG3 expression levels negatively correlated with overall survival and disease-free survival of NSCLC patients. Knock down of PIG3 resulted in repressed proliferation of NSCLC cells and increased aberrant mitosis, which included misaligning and lagging chromosomes, and bi- or multi-nucleated giant cells. In addition, PIG3 contributed to mitotic spindle assembly by promoting microtubule growth. Furthermore, loss of PIG3 sensitized NSCLC cells to docetaxel by enhancing docetaxel-induced apoptosis and senescence. Conclusions Our results indicate that PIG3 promotes NSCLC progression and therefore suggest that PIG3 may be a potential prognostic biomarker and novel therapeutic target for the treatment of NSCLC. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0508-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming Li
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Shanhu Li
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, People's Republic of China
| | - Biao Liu
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, 215001, People's Republic of China
| | - Meng-Meng Gu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, 215001, People's Republic of China
| | - Bei-Bei Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Lan Yu
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center, Dallas, 75390, TX, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, 215001, People's Republic of China.
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, 215123, People's Republic of China. .,Department of Radiation Oncology, Simmons Comprehensive Cancer Center at UT Southwestern Medical Center, Dallas, 75390, TX, USA.
| |
Collapse
|
35
|
Zhou Y, Lee JH, Jiang W, Crowe JL, Zha S, Paull TT. Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM. Mol Cell 2017; 65:91-104. [PMID: 27939942 PMCID: PMC5724035 DOI: 10.1016/j.molcel.2016.11.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/29/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice.
Collapse
Affiliation(s)
- Yi Zhou
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ji-Hoon Lee
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Jennie L Crowe
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Tanya T Paull
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
36
|
Down-regulation of protein kinase, DNA-activated, catalytic polypeptide attenuates tumor progression and is an independent prognostic predictor of survival in prostate cancer. Urol Oncol 2016; 35:111.e15-111.e23. [PMID: 27856181 DOI: 10.1016/j.urolonc.2016.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/27/2016] [Accepted: 10/13/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Protein kinase, DNA-activated, catalytic polypeptide (PRKDC) is a critical component of DNA repair machinery and its dysregulated expression has been observed in various cancer types or premalignant cells. However, its role in prostate cancer (PCa) development and its prognostic significance in PCa is unknown. METHODS The mRNA and protein levels of PRKDC were analyzed in 15 pairs of PCa and benign prostatic hyperplasia tissues as well as PCa cell lines by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA and short hairpin RNA-mediated knockdown of PRKDC, followed by cell proliferation, colony formation, and soft agar assays were performed. Xenograft mouse model was used to evaluate in vivo effects of PRKDC knockdown. The association between PRKDC expression and clinicopathologic features was assessed by χ2 tests. Kaplan-Meier analysis was performed to investigate the association between PRKDC expression and overall survival. Cox proportional hazards regression models were used to examine the prognostic significance of PRKDC. RESULTS Expression of PRKDC mRNA and protein was notably higher in PCa tissues and PCa cell lines. Knockdown of PRKDC markedly reduced cell proliferation, colony formation efficiency, and soft agar growth in DU145 cells. Down-regulation of PRKDC inhibited tumor growth of DU145 xenografts and enhance mice survival. In addition, PRKDC expression in PCa was significantly associated with Gleason score (P = 0.01), tumor stage (P = 0.028), and distant metastasis (P = 0.025). Patients with PCa having higher PRKDC expression had substantially shorter survival than patients with lower PRKDC expression. CONCLUSION Down-regulation of PRKDC attenuates tumor progression in PCa. PRKDC may potentially be a prognostic biomarker in PCa.
Collapse
|
37
|
Kotula E, Berthault N, Agrario C, Lienafa MC, Simon A, Dingli F, Loew D, Sibut V, Saule S, Dutreix M. DNA-PKcs plays role in cancer metastasis through regulation of secreted proteins involved in migration and invasion. Cell Cycle 2016; 14:1961-72. [PMID: 26017556 DOI: 10.1080/15384101.2015.1026522] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a major role in DNA damage signaling and repair and is also frequently overexpressed in tumor metastasis. We used isogenic cell lines expressing different levels of DNA-PKcs to investigate the role of DNA-PKcs in metastatic development. We found that DNA-PKcs participates in melanoma primary tumor and metastasis development by stimulating angiogenesis, migration and invasion. Comparison of conditioned medium content from DNA-PKcs-proficient and deficient cells reveals that DNA-PKcs controls secretion of at least 103 proteins (including 44 metastasis-associated with FBLN1, SERPINA3, MMP-8, HSPG2 and the inhibitors of matrix metalloproteinases, such as α-2M and TIMP-2). High throughput analysis of secretomes, proteomes and transcriptomes, indicate that DNA-PKcs regulates the secretion of 85 proteins without affecting their gene expression. Our data demonstrate that DNA-PKcs has a pro-metastatic activity via the modification of the tumor microenvironment. This study shows for the first time a direct link between DNA damage repair and cancer metastasis and highlights the importance of DNA-PKcs as a potential target for anti-metastatic treatment.
Collapse
Key Words
- CM, conditioned media
- DNA damage
- DNA-PK
- DNA-PK, DNA-dependent protein kinase
- DNA-PKcs, DNA-PK catalytic subunit
- DSB, double-strand break
- ECM, extracellular matrix
- MMP inhibition
- MMP, matrix metalloproteinase
- MS, mass spectrometry
- NHEJ, non-homologous end joining
- SILAC, stable isotope labeling by amino acids in cell culture
- TIMP, tissue inhibitor of metalloproteinase.
- metastasis
- secretion
- α-2M, α-2-macroglobulin
Collapse
Affiliation(s)
- Ewa Kotula
- a Centre National de Recherche Scientifique (CNRS) UMR3347; Institut National de la Santé et de Recherche Médicale (INSERM) U1021; Institut Curie ; Orsay , France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cristini A, Park JH, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res 2016; 44:1161-78. [PMID: 26578593 PMCID: PMC4756817 DOI: 10.1093/nar/gkv1196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, the processes underlying their production and signaling in non-replicating cells are largely unknown. Stabilized topoisomerase I cleavage complexes (Top1cc) by natural compounds or common DNA alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and excision by tyrosyl-DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc produce transcription-dependent DSBs that activate ATM in neurons. Here, we use camptothecin (CPT)-treated serum-starved quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM into nuclear foci. Inhibition of DNA-PK also reduces Top1 ubiquitination and proteolysis as well as resumption of RNA synthesis suggesting that DSB signaling further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and ATM deficiency, respectively.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| | - Joon-Hyung Park
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Gaëlle Legube
- Université de Toulouse, UPS, LBCMCP, 31062 Toulouse, France CNRS, LBCMCP, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| |
Collapse
|
39
|
Solovjeva L, Firsanov D, Vasilishina A, Chagin V, Pleskach N, Kropotov A, Svetlova M. DNA double-strand break repair is impaired in presenescent Syrian hamster fibroblasts. BMC Mol Biol 2015; 16:18. [PMID: 26458748 PMCID: PMC4601148 DOI: 10.1186/s12867-015-0046-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 09/28/2015] [Indexed: 12/21/2022] Open
Abstract
Background Studies of DNA damage response are critical for the comprehensive understanding of age-related changes in cells, tissues and organisms. Syrian hamster cells halt proliferation and become presenescent after several passages in standard conditions of cultivation due to what is known as «culture stress». Using proliferating young and non-dividing presenescent cells in primary cultures of Syrian hamster fibroblasts, we defined their response to the action of radiomimetic drug bleomycin (BL) that induces DNA double-strand breaks (DSBs). Results The effect of the drug was estimated by immunoblotting and immunofluorescence microscopy using the antibody to phosphorylated histone H2AX (gH2AX), which is generally accepted as a DSB marker. At all stages of the cell cycle, both presenescent and young cells demonstrated variability of the number of gH2AX foci per nucleus. gH2AX focus induction was found to be independent from BL-hydrolase expression. Some differences in DSB repair process between BL-treated young and presenescent Syrian hamster cells were observed: (1) the kinetics of gH2AX focus loss in G0 fibroblasts of young culture was faster than in cells that prematurely stopped dividing; (2) presenescent cells were characterized by a slower recruitment of DSB repair proteins 53BP1, phospho-DNA-PK and phospho-ATM to gH2AX focal sites, while the rate of phosphorylated ATM/ATR substrate accumulation was the same as that in young cells. Conclusions Our results demonstrate an impairment of DSB repair in prematurely aged Syrian hamster fibroblasts in comparison with young fibroblasts, suggesting age-related differences in response to BL therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0046-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ljudmila Solovjeva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Denis Firsanov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia. .,Saint-Petersburg's State Pediatric Medical University, Ministry of Health of Russian Federation, 2 Litovskaya st., Saint Petersburg, 194100, Russia.
| | - Anastasia Vasilishina
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Vadim Chagin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Nadezhda Pleskach
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Andrey Kropotov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| | - Maria Svetlova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretski ave., Saint Petersburg, 194064, Russia.
| |
Collapse
|
40
|
Douglas P, Ye R, Morrice N, Britton S, Trinkle-Mulcahy L, Lees-Miller SP. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis. Mol Cell Biol 2015; 35:2699-713. [PMID: 25986610 PMCID: PMC4524121 DOI: 10.1128/mcb.01312-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 05/12/2015] [Indexed: 02/03/2023] Open
Abstract
Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis.
Collapse
Affiliation(s)
- Pauline Douglas
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ruiqiong Ye
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas Morrice
- Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse-Université Paul Sabatier, Equipe Labellisée Ligue contre le Cancer, Toulouse, France
| | - Laura Trinkle-Mulcahy
- Department of Cellular & Molecular Medicine and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Susan P Lees-Miller
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Xue L, Furusawa Y, Yu D. ATR signaling cooperates with ATM in the mechanism of low dose hypersensitivity induced by carbon ion beam. DNA Repair (Amst) 2015; 34:1-8. [PMID: 26246317 DOI: 10.1016/j.dnarep.2015.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/04/2015] [Accepted: 07/14/2015] [Indexed: 02/04/2023]
Abstract
Little work has been done on the mechanism of low dose hyper-radiosensitivity (HRS) and later appeared radioresistance (termed induced radioresistance (IRR)) after irradiation with medium and high linear energy transfer (LET) particles. The aim of this study was to find out whether ATR pathway is involved in the mechanism of HRS induced by high LET radiation. GM0639 cells and two ATM deficient/mutant cells, AT5BIVA and AT2KY were irradiated by carbon ion beam. Thymidine block technique was developed to enrich the G2-phase population. Radiation induced early G2/M checkpoint was quantitatively assess with dual-parameter flow cytometry by detecting the cells positive for phospho-histone H3. The involvement of ATR pathway in HRS/IRR response was detected with pretreatment of specific inhibitors prior to carbon ion beam. The link between the early G2/M checkpoint and HRS/IRR under carbon ion beam was first confirmed in GM0639 cells, through the enrichment of cell population in G2-phase or with Aurora kinase inhibitor that attenuates the transition from G2 to M phase. Interestingly, the early G2/M arrest could still be observed in ATM deficient/mutant cells with an effect of ATR signaling, which was discovered to function in an LET-dependent manner, even as low as 0.2Gy for carbon ion radiation. The involvement of ATR pathway in heavy particles induced HRS/IRR was determined with the specific ATR inhibitor in GM0639 cells, which affected the HRS/IRR occurrence similarly as ATM inhibitor. These data demonstrate that ATR pathway may cooperate with ATM in the mechanism of low dose hypersensitivity induced by carbon ion beam.
Collapse
Affiliation(s)
- Lian Xue
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yoshiya Furusawa
- Microbeam Development Office, Research/Development/Support Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Dong Yu
- School of Radiological Medicine and Protection, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
42
|
Shang ZF, Tan W, Liu XD, Yu L, Li B, Li M, Song M, Wang Y, Xiao BB, Zhong CG, Guan H, Zhou PK. DNA-PKcs Negatively Regulates Cyclin B1 Protein Stability through Facilitating Its Ubiquitination Mediated by Cdh1-APC/C Pathway. Int J Biol Sci 2015. [PMID: 26221070 PMCID: PMC4515814 DOI: 10.7150/ijbs.12443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair. DNA-PKcs has also been shown recently functioning in mitotic regulation. Here, we report that DNA-PKcs negatively regulates the stability of Cyclin B1 protein through facilitating its ubiquitination mediated by Cdh1 / E 3 ubiquitin ligase APC/C pathway. Loss of DNA-PKcs causes abnormal accumulation of Cyclin B1 protein. Cyclin B1 degradation is delayed in DNA-PKcs-deficient cells as result of attenuated ubiquitination. The impact of DNA-PKcs on Cyclin B1 stability relies on its kinase activity. Our study further reveals that DNA-PKcs interacts with APC/C core component APC2 and its co-activator Cdh1. The destruction of Cdh1 is accelerated in the absence of DNA-PKcs. Moreover, overexpression of exogenous Cdh1 can reverse the increase of Cyclin B1 protein in DNA-PKcs-deficient cells. Thus, DNA-PKcs, in addition to its direct role in DNA damage repair, functions in mitotic progression at least partially through regulating the stability of Cyclin B1 protein.
Collapse
Affiliation(s)
- Zeng-Fu Shang
- 1. School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P. R. China ; 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Wei Tan
- 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China ; 3. School of Public Heath, Central South University, Changsha, Hunan Province, Changsha, Hunan 410078, P. R. China
| | - Xiao-Dan Liu
- 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Lan Yu
- 4. Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Bing Li
- 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Ming Li
- 1. School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P. R. China
| | - Man Song
- 1. School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P. R. China ; 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Yu Wang
- 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Bei-Bei Xiao
- 1. School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P. R. China
| | - Cai-Gao Zhong
- 3. School of Public Heath, Central South University, Changsha, Hunan Province, Changsha, Hunan 410078, P. R. China
| | - Hua Guan
- 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Ping-Kun Zhou
- 1. School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P. R. China ; 2. Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| |
Collapse
|
43
|
Li S, Payne S, Wang F, Claus P, Su Z, Groth J, Geradts J, de Ridder G, Alvarez R, Marcom PK, Pizzo SV, Bachelder RE. Nuclear basic fibroblast growth factor regulates triple-negative breast cancer chemo-resistance. Breast Cancer Res 2015; 17:91. [PMID: 26141457 PMCID: PMC4491247 DOI: 10.1186/s13058-015-0590-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/19/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Chemotherapy remains the only available treatment for triple-negative (TN) breast cancer, and most patients exhibit an incomplete pathologic response. Half of patients exhibiting an incomplete pathologic response die within five years of treatment due to chemo-resistant, recurrent tumor growth. Defining molecules responsible for TN breast cancer chemo-resistance is crucial for developing effective combination therapies blocking tumor recurrence. Historically, chemo-resistance studies have relied on long-term chemotherapy selection models that drive genetic mutations conferring cell survival. Other models suggest that tumors are heterogeneous, being composed of both chemo-sensitive and chemo-resistant tumor cell populations. We previously described a short-term chemotherapy treatment model that enriches for chemo-residual TN tumor cells. In the current work, we use this enrichment strategy to identify a novel determinant of TN breast cancer chemotherapy resistance [a nuclear isoform of basic fibroblast growth factor (bFGF)]. METHODS Studies are conducted using our in vitro model of chemotherapy resistance. Short-term chemotherapy treatment enriches for a chemo-residual TN subpopulation that over time resumes proliferation. By western blotting and real-time polymerase chain reaction, we show that this chemotherapy-enriched tumor cell subpopulation expresses nuclear bFGF. The importance of bFGF for survival of these chemo-residual cells is interrogated using short hairpin knockdown strategies. DNA repair capability is assessed by comet assay. Immunohistochemistry (IHC) is used to determine nuclear bFGF expression in TN breast cancer cases pre- and post- neoadjuvant chemotherapy. RESULTS TN tumor cells surviving short-term chemotherapy treatment express increased nuclear bFGF. bFGF knockdown reduces the number of chemo-residual TN tumor cells. Adding back a nuclear bFGF construct to bFGF knockdown cells restores their chemo-resistance. Nuclear bFGF-mediated chemo-resistance is associated with increased DNA-dependent protein kinase (DNA-PK) expression and accelerated DNA repair. In fifty-six percent of matched TN breast cancer cases, percent nuclear bFGF-positive tumor cells either increases or remains the same post- neoadjuvant chemotherapy treatment (compared to pre-treatment). These data indicate that in a subset of TN breast cancers, chemotherapy enriches for nuclear bFGF-expressing tumor cells. CONCLUSION These studies identify nuclear bFGF as a protein in a subset of TN breast cancers that likely contributes to drug resistance following standard chemotherapy treatment.
Collapse
Affiliation(s)
- Shenduo Li
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Sturgis Payne
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Fang Wang
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany.
| | - Zuowei Su
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Jeffrey Groth
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Joseph Geradts
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Gustaaf de Ridder
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Rebeca Alvarez
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | | | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| | - Robin E Bachelder
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, N.C., 27710, USA.
| |
Collapse
|
44
|
Sui J, Lin YF, Xu K, Lee KJ, Wang D, Chen BPC. DNA-PKcs phosphorylates hnRNP-A1 to facilitate the RPA-to-POT1 switch and telomere capping after replication. Nucleic Acids Res 2015; 43:5971-83. [PMID: 25999341 PMCID: PMC4499152 DOI: 10.1093/nar/gkv539] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/12/2015] [Indexed: 11/13/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP-A1) has been implicated in telomere protection and telomerase activation. Recent evidence has further demonstrated that hnRNP-A1 plays a crucial role in maintaining newly replicated telomeric 3' overhangs and facilitating the switch from replication protein A (RPA) to protection of telomeres 1 (POT1). The role of hnRNP-A1 in telomere protection also involves DNA-dependent protein kinase catalytic subunit (DNA-PKcs), although the detailed regulation mechanism has not been clear. Here we report that hnRNP-A1 is phosphorylated by DNA-PKcs during the G2 and M phases and that DNA-PK-dependent hnRNP-A1 phosphorylation promotes the RPA-to-POT1 switch on telomeric single-stranded 3' overhangs. Consequently, in cells lacking hnRNP-A1 or DNA-PKcs-dependent hnRNP-A1 phosphorylation, impairment of the RPA-to-POT1 switch results in DNA damage response at telomeres during mitosis as well as induction of fragile telomeres. Taken together, our results indicate that DNA-PKcs-dependent hnRNP-A1 phosphorylation is critical for capping of the newly replicated telomeres and prevention of telomeric aberrations.
Collapse
Affiliation(s)
- Jiangdong Sui
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Cancer Center, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yu-Fen Lin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kangling Xu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kyung-Jong Lee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dong Wang
- Cancer Center, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
45
|
Medunjanin S, Daniel JM, Weinert S, Dutzmann J, Burgbacher F, Brecht S, Bruemmer D, Kahne T, Naumann M, Sedding DG, Zuschratter W, Braun-Dullaeus RC. DNA-dependent protein kinase (DNA-PK) permits vascular smooth muscle cell proliferation through phosphorylation of the orphan nuclear receptor NOR1. Cardiovasc Res 2015; 106:488-97. [DOI: 10.1093/cvr/cvv126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 03/31/2015] [Indexed: 11/14/2022] Open
|
46
|
Lee KJ, Shang ZF, Lin YF, Sun J, Morotomi-Yano K, Saha D, Chen BPC. The Catalytic Subunit of DNA-Dependent Protein Kinase Coordinates with Polo-Like Kinase 1 to Facilitate Mitotic Entry. Neoplasia 2015; 17:329-38. [PMID: 25925375 PMCID: PMC4415140 DOI: 10.1016/j.neo.2015.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/21/2015] [Accepted: 02/27/2015] [Indexed: 01/09/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is the key regulator of the non-homologous end joining pathway of DNA double-strand break repair. We have previously reported that DNA-PKcs is required for maintaining chromosomal stability and mitosis progression. Our further investigations reveal that deficiency in DNA-PKcs activity caused a delay in mitotic entry due to dysregulation of cyclin-dependent kinase 1 (Cdk1), the key driving force for cell cycle progression through G2/M transition. Timely activation of Cdk1 requires polo-like kinase 1 (Plk1), which affects modulators of Cdk1. We found that DNA-PKcs physically interacts with Plk1 and could facilitate Plk1 activation both in vitro and in vivo. Further, DNA-PKcs-deficient cells are highly sensitive to Plk1 inhibitor BI2536, suggesting that the coordination between DNA-PKcs and Plk1 is not only crucial to ensure normal cell cycle progression through G2/M phases but also required for cellular resistance to mitotic stress. On the basis of the current study, it is predictable that combined inhibition of DNA-PKcs and Plk1 can be employed in cancer therapy strategy for synthetic lethality.
Collapse
Affiliation(s)
- Kyung-Jong Lee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zeng-Fu Shang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Suzhou, Jiangsu, China
| | - Yu-Fen Lin
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jingxin Sun
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Keiko Morotomi-Yano
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Debabrata Saha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P C Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
47
|
Maachani UB, Kramp T, Hanson R, Zhao S, Celiku O, Shankavaram U, Colombo R, Caplen NJ, Camphausen K, Tandle A. Targeting MPS1 Enhances Radiosensitization of Human Glioblastoma by Modulating DNA Repair Proteins. Mol Cancer Res 2015; 13:852-62. [PMID: 25722303 DOI: 10.1158/1541-7786.mcr-14-0462-t] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/16/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED To ensure faithful chromosome segregation, cells use the spindle assembly checkpoint (SAC), which can be activated in aneuploid cancer cells. Targeting the components of SAC machinery required for the growth of aneuploid cells may offer a cancer cell-specific therapeutic approach. In this study, the effects of inhibiting Monopolar spindle 1, MPS1 (TTK), an essential SAC kinase, on the radiosensitization of glioblastoma (GBM) cells were analyzed. Clonogenic survival was used to determine the effects of the MPS1 inhibitor NMS-P715 on radiosensitivity in multiple model systems, including GBM cell lines, a normal astrocyte, and a normal fibroblast cell line. DNA double-strand breaks (DSB) were evaluated using γH2AX foci, and cell death was measured by mitotic catastrophe evaluation. Transcriptome analysis was performed via unbiased microarray expression profiling. Tumor xenografts grown from GBM cells were used in tumor growth delay studies. Inhibition of MPS1 activity resulted in reduced GBM cell proliferation. Furthermore, NMS-P715 enhanced the radiosensitivity of GBM cells by decreased repair of DSBs and induction of postradiation mitotic catastrophe. NMS-P715 in combination with fractionated doses of radiation significantly enhanced the tumor growth delay. Molecular profiling of MPS1-silenced GBM cells showed an altered expression of transcripts associated with DNA damage, repair, and replication, including the DNA-dependent protein kinase (PRKDC/DNAPK). Next, inhibition of MPS1 blocked two important DNA repair pathways. In conclusion, these results not only highlight a role for MPS1 kinase in DNA repair and as prognostic marker but also indicate it as a viable option in glioblastoma therapy. IMPLICATIONS Inhibition of MPS1 kinase in combination with radiation represents a promising new approach for glioblastoma and for other cancer therapies.
Collapse
Affiliation(s)
- Uday Bhanu Maachani
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tamalee Kramp
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Ryan Hanson
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Shuping Zhao
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Orieta Celiku
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | | | - Natasha J Caplen
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Anita Tandle
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
48
|
Graml V, Studera X, Lawson JLD, Chessel A, Geymonat M, Bortfeld-Miller M, Walter T, Wagstaff L, Piddini E, Carazo Salas RE. A genomic Multiprocess survey of machineries that control and link cell shape, microtubule organization, and cell-cycle progression. Dev Cell 2015; 31:227-239. [PMID: 25373780 DOI: 10.1016/j.devcel.2014.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 04/21/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022]
Abstract
Understanding cells as integrated systems requires that we systematically decipher how single genes affect multiple biological processes and how processes are functionally linked. Here, we used multiprocess phenotypic profiling, combining high-resolution 3D confocal microscopy and multiparametric image analysis, to simultaneously survey the fission yeast genome with respect to three key cellular processes: cell shape, microtubule organization, and cell-cycle progression. We identify, validate, and functionally annotate 262 genes controlling specific aspects of those processes. Of these, 62% had not been linked to these processes before and 35% are implicated in multiple processes. Importantly, we identify a conserved role for DNA-damage responses in controlling microtubule stability. In addition, we investigate how the processes are functionally linked. We show unexpectedly that disruption of cell-cycle progression does not necessarily affect cell size control and that distinct aspects of cell shape regulate microtubules and vice versa, identifying important systems-level links across these processes.
Collapse
Affiliation(s)
- Veronika Graml
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom.,Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, HPM G16.2, Zurich, CH-8093, Switzerland
| | - Xenia Studera
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom.,Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, HPM G16.2, Zurich, CH-8093, Switzerland
| | - Jonathan L D Lawson
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom
| | - Anatole Chessel
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom
| | - Marco Geymonat
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom
| | - Miriam Bortfeld-Miller
- Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, HPM G16.2, Zurich, CH-8093, Switzerland
| | - Thomas Walter
- Institut Curie, Centre for Computational Biology, Centre de Recherche Unité 900, 26 Rue d'Ulm, 75248 Paris, France
| | - Laura Wagstaff
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Zoology Department, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| | - Eugenia Piddini
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Zoology Department, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| | - Rafael E Carazo Salas
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom.,Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, HPM G16.2, Zurich, CH-8093, Switzerland
| |
Collapse
|
49
|
The DNA-dependent protein kinase: A multifunctional protein kinase with roles in DNA double strand break repair and mitosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:194-205. [PMID: 25550082 DOI: 10.1016/j.pbiomolbio.2014.12.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 11/21/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes.
Collapse
|
50
|
Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, Hirayama R, Matsumoto Y, Yajima H, Yu D. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair (Amst) 2014; 25:72-83. [PMID: 25497328 DOI: 10.1016/j.dnarep.2014.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 11/17/2022]
Abstract
DNA double strand break (DSB) repair pathway choice following ionizing radiation (IR) is currently an appealing research topic, which is still largely unclear. Our recent paper indicated that the complexity of DSBs is a critical factor that enhances DNA end resection. It has been well accepted that the RPA-coated single strand DNA produced by resection is a signaling structure for ATR activation. Therefore, taking advantage of high linear energy transfer (LET) radiation to effectively produce complex DSBs, we investigated how the complexity of DSB influences the function of ATR pathway on the G2/M checkpoint regulation. Human skin fibroblast cells with or without ATM were irradiated with X rays or heavy ion particles, and dual-parameter flow cytometry was used to quantitatively assess the mitotic entry at early period post radiation by detecting the cells positive for phosphor histone H3. In ATM-deficient cells, ATR pathway played a pivotal role and functioned in a dose- and LET-dependent way to regulate the early G2/M arrest even as low as 0.2Gy for heavy ion radiation, which indicated that ATR pathway could be rapidly activated and functioned in an ATM-independent, but DSB complexity-dependent manner following exposure to IR. Furthermore, ATR pathway also functioned more efficiently in ATM-proficient cells to block G2 to M transition at early period of particle radiation exposure. Accordingly, in contrast to ATM inhibitor, ATR inhibitor had a more effective radiosensitizing effect on survival fraction following heavy ion beams as compared with X ray radiation. Taken together, our results reveal that the complexity of DSBs is a crucial factor for the activation of ATR pathway for G2/M checkpoint regulation, and ATM-dependent end resection is not essential for the activation.
Collapse
Affiliation(s)
- Lian Xue
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Ryuichi Okayasu
- International Open Laboratory, National Institute of Radiological Sciences, Chiba, Japan
| | - Masahiko Miura
- Oral Radiation Oncology, Department of Oral Restitution, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Xing Cui
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Cuihua Liu
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Ryoichi Hirayama
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Yoshitaka Matsumoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Hirohiko Yajima
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan.
| | - Dong Yu
- School of Radiological Medicine and Protection, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|