1
|
Imran H, Lee HJ, Alam A, An J, Ko M, Lim S. Ultrasensitive detection of 5-hydroxymethylcytosine in genomic DNA using a graphene-based sensor modified with biotin and gold nanoparticles. Mater Today Bio 2024; 27:101123. [PMID: 38988817 PMCID: PMC11234158 DOI: 10.1016/j.mtbio.2024.101123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Ten-eleven translocation (TET) proteins orchestrate deoxyribonucleic acid (DNA) methylation-demethylation dynamics by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and are frequently inactivated in various cancers. Due to the significance of 5hmC as an epigenetic biomarker for cancer diagnosis, pathogenesis, and treatment, its rapid and precise quantification is essential. Here, we report a highly sensitive electrochemical method for quantifying genomic 5hmC using graphene sheets that were electrochemically exfoliated and functionalized with biotin and gold nanoparticles (Bt-AuNPs) through a single-step electrical method. The attachment of Bt-AuNPs to graphene enhances the specificity of 5hmC-containing DNA and augments the oxidation of 5hmC to 5-formylcytosine in DNA. When coupled to a gold electrode, the Bt-AuNP-graphene-based sensor exhibits exceptional sensitivity and specificity for detecting 5hmC, with a detection limit of 63.2 fM. Furthermore, our sensor exhibits a remarkable capacity to measure 5hmC levels across a range of biological samples, including preclinical mouse tissues with varying 5hmC levels due to either TET gene disruption or oncogenic transformation, as well as human prostate cancer cell lines. Therefore, our sensing strategy has substantial potential for cancer diagnostics and prognosis.
Collapse
Affiliation(s)
- Habibulla Imran
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyun-Ji Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Asrar Alam
- Mycronic AB, Nytorpsvägen 9, Täby, 183 53 Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Republic of Korea
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Latchney SE, Cadney MD, Hopkins A, Garland T. Maternal upbringing and selective breeding for voluntary exercise behavior modify patterns of DNA methylation and expression of genes in the mouse brain. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12858. [PMID: 37519068 PMCID: PMC10733581 DOI: 10.1111/gbb.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex-specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non-selected control (C) line. Through cross-fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes. Here, we identify an additional set of genes in which DNA methylation patterns and gene expression may be altered by selection for increased wheel-running activity and maternal upbringing. We performed bisulfite sequencing and gene expression assays of 14 genes in the brain and found alterations in DNA methylation and gene expression for Bdnf, Pde4d and Grin2b. Decreases in Bdnf methylation correlated with significant increases in Bdnf gene expression in the hippocampus of HR compared to C mice. Cross-fostering also influenced the DNA methylation patterns for Pde4d in the cortex and Grin2b in the hippocampus, with associated changes in gene expression. We also found that the DNA methylation patterns for Atrx and Oxtr in the cortex and Atrx and Bdnf in the hippocampus were further modified by sex. Together with our previous study, these results suggest that DNA methylation and the resulting change in gene expression may interact with early-life influences to shape adult exercise behavior.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of BiologySt. Mary's College of MarylandSt. Mary's CityMarylandUSA
| | - Marcell D. Cadney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
- Neuroscience Research Institute, University of CaliforniaSanta BarbaraCaliforniaUSA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
3
|
Jiang S, Shi H, Zhang Q, Wang ZY, Zhang Y, Zhang CY. Rolling circle transcription amplification-directed construction of tandem spinach-based fluorescent light-up biosensor for label-free sensing of β-glucosyltransferase activity. Biosens Bioelectron 2023; 237:115513. [PMID: 37419074 DOI: 10.1016/j.bios.2023.115513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
β-glucosyltransferase (β-GT) can specifically catalyze the conversion of 5-hydroxymethylcytosine (5-hmC) to 5-glucosylhydroxy methylcytosine (5-ghmC), and it is associated with the control of phage-specific gene expression by affecting transcription process in vivo and in vitro. The current strategies for β-GT assay usually involve expensive equipment, laborious treatment, radioactive hazard, and poor sensitivity. Here, we report a Spinach-based fluorescent light-up biosensor for label-free measurement of β-GT activity by utilizing 5-hmC glucosylation-initiated rolling circle transcription amplification (RCTA). We design a 5-hmC-modified multifunctional circular detection probe (5-hmC-MCDP) that integrates the functions of target-recognition, signal transduction, and transcription amplification in one probe. The introduction of β-GT catalyzes 5-hmC glucosylation of 5-hmC-MCDP probe, protecting the glucosylated 5-mC-MCDP probe from the cleavage by MspI. The remaining 5-hmC-MCDP probe can initiate RCTA reaction with the aid of T7 RNA polymerase, generating tandem Spinach RNA aptamers. The tandem Spinach RNA aptamers can be lightened up by fluorophore 3,5-difluoro-4-hydroxybenzylidene imidazolinone, facilitating label-free measurement of β-GT activity. Notably, the high specificity of MspI-catalyzed cleavage of nonglucosylated probe can efficiently inhibit nonspecific amplification, endowing this assay with a low background. Due to the higher efficiency of RCTA than the canonical promoter-initiated RNA synthesis, the signal-to-noise ratio of RCTA is 4.6-fold higher than that of linear template-based transcription amplification. This method is capable of sensitively detecting β-GT activity with a limit of detection of 2.03 × 10-5 U/mL, and it can be used for the screening of inhibitors and determination of kinetic parameters, with great potential in epigenetic research and drug discovery.
Collapse
Affiliation(s)
- Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Huanhuan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Viswanathan R, Cheruba E, Wong PM, Yi Y, Ngang S, Chong DQ, Loh YH, Tan IB, Cheow LF. DARESOME enables concurrent profiling of multiple DNA modifications with restriction enzymes in single cells and cell-free DNA. SCIENCE ADVANCES 2023; 9:eadi0197. [PMID: 37713482 PMCID: PMC10881072 DOI: 10.1126/sciadv.adi0197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the most abundant DNA modifications that have important roles in gene regulation. Detailed studies of these different epigenetic marks aimed at understanding their combined effects and dynamic interconversion are, however, hampered by the inability of current methods to simultaneously measure both modifications, particularly in samples with limited quantities. We present DNA analysis by restriction enzyme for simultaneous detection of multiple epigenomic states (DARESOME), an assay based on modification-sensitive restriction digest and sequential tag ligation that can concurrently perform quantitative profiling of unmodified cytosine, 5mC, and 5hmC in CCGG sites genome-wide. DARESOME reveals the opposing roles of 5mC and 5hmC in gene expression regulation as well as their interconversion during aging in mouse brain. Implementation of DARESOME in single cells demonstrates pronounced 5hmC strand bias that reflects the semiconservative replication of DNA. Last, we showed that DARESOME enables integrative genomic, 5mC, and 5hmC profiling of cell-free DNA that uncovered multiomics cancer signatures in liquid biopsy.
Collapse
Affiliation(s)
- Ramya Viswanathan
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Elsie Cheruba
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Pui-Mun Wong
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Yao Yi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Shaun Ngang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Dawn Qingqing Chong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Iain Beehuat Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
5
|
Nickel GA, Diehl KL. Chemical Biology Approaches to Identify and Profile Interactors of Chromatin Modifications. ACS Chem Biol 2023; 18:1014-1026. [PMID: 35238546 PMCID: PMC9440160 DOI: 10.1021/acschembio.1c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In eukaryotes, DNA is packaged with histone proteins in a complex known as chromatin. Both the DNA and histone components of chromatin can be chemically modified in a wide variety of ways, resulting in a complex landscape often referred to as the "epigenetic code". These modifications are recognized by effector proteins that remodel chromatin and modulate transcription, translation, and repair of the underlying DNA. In this Review, we examine the development of methods for characterizing proteins that interact with these histone and DNA modifications. "Mark first" approaches utilize chemical, peptide, nucleosome, or oligonucleotide probes to discover interactors of a specific modification. "Reader first" approaches employ arrays of peptides, nucleosomes, or oligonucleotides to profile the binding preferences of interactors. These complementary strategies have greatly enhanced our understanding of how chromatin modifications effect changes in genomic regulation, bringing us ever closer to deciphering this complex language.
Collapse
Affiliation(s)
- Garrison A. Nickel
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Katharine L. Diehl
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
6
|
Kumar A, Kos MZ, Roybal D, Carless MA. A pilot investigation of differential hydroxymethylation levels in patient-derived neural stem cells implicates altered cortical development in bipolar disorder. Front Psychiatry 2023; 14:1077415. [PMID: 37139321 PMCID: PMC10150707 DOI: 10.3389/fpsyt.2023.1077415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Bipolar disorder (BD) is a chronic mental illness characterized by recurrent episodes of mania and depression and associated with social and cognitive disturbances. Environmental factors, such as maternal smoking and childhood trauma, are believed to modulate risk genotypes and contribute to the pathogenesis of BD, suggesting a key role in epigenetic regulation during neurodevelopment. 5-hydroxymethylcytosine (5hmC) is an epigenetic variant of particular interest, as it is highly expressed in the brain and is implicated in neurodevelopment, and psychiatric and neurological disorders. Methods Induced pluripotent stem cells (iPSCs) were generated from the white blood cells of two adolescent patients with bipolar disorder and their same-sex age-matched unaffected siblings (n = 4). Further, iPSCs were differentiated into neuronal stem cells (NSCs) and characterized for purity using immuno-fluorescence. We used reduced representation hydroxymethylation profiling (RRHP) to perform genome-wide 5hmC profiling of iPSCs and NSCs, to model 5hmC changes during neuronal differentiation and assess their impact on BD risk. Functional annotation and enrichment testing of genes harboring differentiated 5hmC loci were performed with the online tool DAVID. Results Approximately 2 million sites were mapped and quantified, with the majority (68.8%) located in genic regions, with elevated 5hmC levels per site observed for 3' UTRs, exons, and 2-kb shorelines of CpG islands. Paired t-tests of normalized 5hmC counts between iPSC and NSC cell lines revealed global hypo-hydroxymethylation in NSCs and enrichment of differentially hydroxymethylated sites within genes associated with plasma membrane (FDR = 9.1 × 10-12) and axon guidance (FDR = 2.1 × 10-6), among other neuronal processes. The most significant difference was observed for a transcription factor binding site for the KCNK9 gene (p = 8.8 × 10-6), encoding a potassium channel protein involved in neuronal activity and migration. Protein-protein-interaction (PPI) networking showed significant connectivity (p = 3.2 × 10-10) between proteins encoded by genes harboring highly differentiated 5hmC sites, with genes involved in axon guidance and ion transmembrane transport forming distinct sub-clusters. Comparison of NSCs of BD cases and unaffected siblings revealed additional patterns of differentiation in hydroxymethylation levels, including sites in genes with functions related to synapse formation and regulation, such as CUX2 (p = 2.4 × 10-5) and DOK-7 (p = 3.6 × 10-3), as well as an enrichment of genes involved in the extracellular matrix (FDR = 1.0 × 10-8). Discussion Together, these preliminary results lend evidence toward a potential role for 5hmC in both early neuronal differentiation and BD risk, with validation and more comprehensive characterization to be achieved through follow-up study.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Mark Z. Kos
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, San Antonio, TX, United States
| | - Donna Roybal
- Traditions Behavioral Health, Larkspur, CA, United States
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Melanie A. Carless
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
7
|
Tung PW, Kennedy EM, Burt A, Hermetz K, Karagas M, Marsit CJ. Prenatal lead (Pb) exposure is associated with differential placental DNA methylation and hydroxymethylation in a human population. Epigenetics 2022; 17:2404-2420. [PMID: 36148884 PMCID: PMC9665158 DOI: 10.1080/15592294.2022.2126087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022] Open
Abstract
Prenatal lead (Pb) exposure is associated with adverse developmental outcomes and to epigenetic alterations such as DNA methylation and hydroxymethylation in animal models and in newborn blood. Given the importance of the placenta in foetal development, we sought to examine how prenatal Pb exposure was associated with differential placental DNA methylation and hydroxymethylation and to identify affected biological pathways linked to developmental outcomes. Maternal (n = 167) and infant (n = 172) toenail and placenta (n = 115) samples for prenatal Pb exposure were obtained from participants in a US birth cohort, and methylation and hydroxymethylation data were quantified using the Illumina Infinium MethylationEPIC BeadChip. An epigenome-wide association study was applied to identify differential methylation and hydroxymethylation associated with Pb exposure. Biological functions of the Pb-associated genes were determined by overrepresentation analysis through ConsensusPathDB. Prenatal Pb quantified from maternal toenail, infant toenail, and placenta was associated with 480, 27, and 2 differentially methylated sites (q < 0.05), respectively, with both increases and decreases associated with exposure. Alternatively, we identified 2, 1, and 14 differentially hydroxymethylated site(s) associated with maternal toenail, infant toenail, and placental Pb, respectively, with most showing increases in hydroxymethylation with exposure. Significantly overrepresented pathways amongst genes associated with differential methylation and hydroxymethylation (q < 0.10) included mechanisms pertaining to nervous system and organ development, calcium transport and regulation, and signalling activities. Our results suggest that both methylation and hydroxymethylation in the placenta can be variable based on Pb exposure and that the pathways impacted could affect placental function.
Collapse
Affiliation(s)
- Pei Wen Tung
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Elizabeth M. Kennedy
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Margaret Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, Lebanon
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Latchney SE, Cadney MD, Hopkins A, Garland T. DNA Methylation Analysis of Imprinted Genes in the Cortex and Hippocampus of Cross-Fostered Mice Selectively Bred for Increased Voluntary Wheel-Running. Behav Genet 2022; 52:281-297. [PMID: 35988119 PMCID: PMC9463359 DOI: 10.1007/s10519-022-10112-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
We have previously shown that high runner (HR) mice (from a line genetically selected for increased wheel-running behavior) have distinct, genetically based, neurobiological phenotypes as compared with non-selected control (C) mice. However, developmental programming effects during early life, including maternal care and parent-of-origin-dependent expression of imprinted genes, can also contribute to variation in physical activity. Here, we used cross-fostering to address two questions. First, do HR mice have altered DNA methylation profiles of imprinted genes in the brain compared to C mice? Second, does maternal upbringing further modify the DNA methylation status of these imprinted genes? To address these questions, we cross-fostered all offspring at birth to create four experimental groups: C pups to other C dams, HR pups to other HR dams, C pups to HR dams, and HR pups to C dams. Bisulfite sequencing of 16 imprinted genes in the cortex and hippocampus revealed that the HR line had altered DNA methylation patterns of the paternally imprinted genes, Rasgrf1 and Zdbf2, as compared with the C line. Both fostering between the HR and C lines and sex modified the DNA methylation profiles for the paternally expressed genes Mest, Peg3, Igf2, Snrpn, and Impact. Ig-DMR, a gene with multiple paternal and maternal imprinted clusters, was also affected by maternal upbringing and sex. Our results suggest that differential methylation patterns of imprinted genes in the brain could contribute to evolutionary increases in wheel-running behavior and are also dependent on maternal upbringing and sex.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, 18952 E. Fisher Rd, Saint Mary's City, MD, 20686, USA.
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
9
|
Wang ZY, Yuan H, Li DL, Hu J, Qiu JG, Zhang CY. Hydroxymethylation-Specific Ligation-Mediated Single Quantum Dot-Based Nanosensors for Sensitive Detection of 5-Hydroxymethylcytosine in Cancer Cells. Anal Chem 2022; 94:9785-9792. [PMID: 35749235 DOI: 10.1021/acs.analchem.2c01495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Hydroxymethylcytosine (5hmC) modification is a key epigenetic regulator of cellular processes in mammalian cells, and its misregulation may lead to various diseases. Herein, we develop a hydroxymethylation-specific ligation-mediated single quantum dot (QD)-based fluorescence resonance energy transfer (FRET) nanosensor for sensitive quantification of 5hmC modification in cancer cells. We design a Cy5-modified signal probe and a biotinylated capture probe for the recognition of specific 5hmC-containing genes. 5hmC in target DNA can be selectively converted by T4 β-glucosyltransferase to produce a glycosyl-modified 5hmC, which cannot be cleaved by methylation-insensitive restriction enzyme MspI. The glycosylated 5hmC DNA may act as a template to ligate a signal probe and a capture probe, initiating hydroxymethylation-specific ligation to generate large amounts of biotin-/Cy5-modified single-stranded DNAs (ssDNAs). The assembly of biotin-/Cy5-modified ssDNAs onto a single QD through streptavidin-biotin interaction results in FRET and consequently the generation of a Cy5 signal. The nanosensor is very simple without the need for bisulfite treatment, radioactive reagents, and 5hmC-specific antibodies. Owing to excellent specificity and high amplification efficiency of hydroxymethylation-specific ligation and near-zero background of a single QD-based FRET, this nanosensor can quantify 5hmC DNA with a limit of detection of 33.61 aM and a wider linear range of 7 orders of magnitude, and it may discriminate the single-nucleotide difference among 5hmC, 5-methylcytosine, and unmodified cytosine. Moreover, this nanosensor can distinguish as low as a 0.001% 5hmC DNA in complex mixtures, and it can monitor the cellular 5hmC level and discriminate cancer cells from normal cells, holding great potential in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Huimin Yuan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
10
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Sideeq Bhat K, Kim H, Alam A, Ko M, An J, Lim S. Rapid and Label-Free Detection of 5-Hydroxymethylcytosine in Genomic DNA Using an Au/ZnO Nanorods Hybrid Nanostructure-Based Electrochemical Sensor. Adv Healthc Mater 2021; 10:e2101193. [PMID: 34558229 DOI: 10.1002/adhm.202101193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/08/2021] [Indexed: 02/06/2023]
Abstract
Ten-eleven-translocation (TET) proteins modify DNA methylation by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Loss of 5hmC, a widely accepted epigenetic hallmark of cancers, is proposed as a biomarker for early cancer diagnosis and prognosis. Thus, precise quantification of 5hmC holds great potential for diverse clinical applications. DNAs containing 5mC or 5hmC display different adsorption affinity toward the gold surface, thus producing different electrochemical responses. Here a novel, label-free electrochemical sensor based on gold nanoparticles (Au NPs)/zinc oxide nanorods (ZnO NRs) nanostructure for the facile and real-time detection of 5hmC-enriched DNAs is reported. The hybrid structure is fabricated by the vertical hydrothermal growth of ZnO NRs onto indium tin oxide glass substrate, followed by the decoration of ZnO NRs with Au NPs via sputtering. Successful fabrication is confirmed by analyzing the morphology and chemical composition of the sensor. By coupling the fabricated sensor with cyclic voltammetry, its functionality in distinguishing genomic DNAs containing different levels of 5hmC is validated. Notably, the sensor device successfully and consistently detects 5hmC loss in primary hepatocellular carcinoma, compared to the normal tissues. Thus, the novel sensing strategy to assess DNA hydroxymethylation will likely find broad applications in early cancer diagnosis and prognosis evaluation.
Collapse
Affiliation(s)
- Kiesar Sideeq Bhat
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyejin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Asrar Alam
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
12
|
Aba-Seq: High-Resolution Enzymatic Mapping of Genomic 5-Hydroxymethylcytosine. Methods Mol Biol 2021. [PMID: 34009606 DOI: 10.1007/978-1-0716-1294-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Aba-Seq (DNA modification-dependent restriction endonuclease AbaSI coupled with sequencing) provides a cost-effective and non-chemical based method for the high-resolution mapping of genomic 5-hydroxymethylcytosine (5hmC). The high specificity of the AbaSI enzyme allows sensitive detection of 5hmC in the genome. Here, we describe the Aba-Seq technique that was used for the high-resolution mapping of 5hmC in the genome of mouse embryonic stem cells (E14).
Collapse
|
13
|
Sun Z, Vaisvila R, Hussong LM, Yan B, Baum C, Saleh L, Samaranayake M, Guan S, Dai N, Corrêa IR, Pradhan S, Davis TB, Evans TC, Ettwiller LM. Nondestructive enzymatic deamination enables single-molecule long-read amplicon sequencing for the determination of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Genome Res 2021; 31:291-300. [PMID: 33468551 PMCID: PMC7849414 DOI: 10.1101/gr.265306.120] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
The predominant methodology for DNA methylation analysis relies on the chemical deamination by sodium bisulfite of unmodified cytosine to uracil to permit the differential readout of methylated cytosines. Bisulfite treatment damages the DNA, leading to fragmentation and loss of long-range methylation information. To overcome this limitation of bisulfite-treated DNA, we applied a new enzymatic deamination approach, termed enzymatic methyl-seq (EM-seq), to long-range sequencing technologies. Our methodology, named long-read enzymatic modification sequencing (LR-EM-seq), preserves the integrity of DNA, allowing long-range methylation profiling of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) over multikilobase length of genomic DNA. When applied to known differentially methylated regions (DMRs), LR-EM-seq achieves phasing of >5 kb, resulting in broader and better defined DMRs compared with that previously reported. This result showed the importance of phasing methylation for biologically relevant questions and the applicability of LR-EM-seq for long-range epigenetic analysis at single-molecule and single-nucleotide resolution.
Collapse
Affiliation(s)
- Zhiyi Sun
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | | | | | - Bo Yan
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Chloé Baum
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91000 Évry, France
| | - Lana Saleh
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Mala Samaranayake
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Shengxi Guan
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Nan Dai
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Sriharsa Pradhan
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Theodore B Davis
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Thomas C Evans
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | | |
Collapse
|
14
|
Liu M, Li CC, Luo X, Ma F, Zhang CY. 5-Hydroxymethylcytosine Glucosylation-Triggered Helicase-Dependent Amplification-Based Fluorescent Biosensor for Sensitive Detection of β-Glucosyltransferase with Zero Background Signal. Anal Chem 2020; 92:16307-16313. [DOI: 10.1021/acs.analchem.0c04382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chen-chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
15
|
Gatta E, Saudagar V, Auta J, Grayson DR, Guidotti A. Epigenetic landscape of stress surfeit disorders: Key role for DNA methylation dynamics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:127-183. [PMID: 33461662 PMCID: PMC7942223 DOI: 10.1016/bs.irn.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic exposure to stress throughout lifespan alters brain structure and function, inducing a maladaptive response to environmental stimuli, that can contribute to the development of a pathological phenotype. Studies have shown that hypothalamic-pituitary-adrenal (HPA) axis dysfunction is associated with various neuropsychiatric disorders, including major depressive, alcohol use and post-traumatic stress disorders. Downstream actors of the HPA axis, glucocorticoids are critical mediators of the stress response and exert their function through specific receptors, i.e., the glucocorticoid receptor (GR), highly expressed in stress/reward-integrative pathways. GRs are ligand-activated transcription factors that recruit epigenetic actors to regulate gene expression via DNA methylation, altering chromatin structure and thus shaping the response to stress. The dynamic interplay between stress response and epigenetic modifiers suggest DNA methylation plays a key role in the development of stress surfeit disorders.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
16
|
Dzobo K. Epigenomics-Guided Drug Development: Recent Advances in Solving the Cancer Treatment "jigsaw puzzle". OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:70-85. [PMID: 30767728 DOI: 10.1089/omi.2018.0206] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human epigenome plays a key role in determining cellular identity and eventually function. Drug discovery undertakings have focused mainly on the role of genomics in carcinogenesis, with the focus turning to the epigenome recently. Drugs targeting DNA and histone modifications are under development with some such as 5-azacytidine, decitabine, vorinostat, and panobinostat already approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA). This expert review offers a critical analysis of the epigenomics-guided drug discovery and development and the opportunities and challenges for the next decade. Importantly, the coupling of epigenetic editing techniques, such as clustered regularly interspersed short palindromic repeat (CRISPR)-CRISPR-associated protein-9 (Cas9) and APOBEC-coupled epigenetic sequencing (ACE-seq) with epigenetic drug screens, will allow the identification of small-molecule inhibitors or drugs able to reverse epigenetic changes responsible for many diseases. In addition, concrete and sustainable innovation in cancer treatment ought to integrate epigenome targeting drugs with classic therapies such as chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Kevin Dzobo
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Mahajan V, Farquhar C, Ponnampalam AP. Could DNA hydroxymethylation be crucial in influencing steroid hormone signaling in endometrial biology and endometriosis? Mol Reprod Dev 2019; 87:7-16. [PMID: 31749216 DOI: 10.1002/mrd.23299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Endometriosis affects 10% of reproductive-aged women. It is characterized by the growth of the endometrium, outside the uterus and is associated with infertility and chronic abdominal pain. Lack of noninvasive diagnostic tools and early screening tests results in delayed treatment and subsequently increased disease severity. Endometriosis is a disease associated with a deregulated hormonal response, therefore, understanding the molecular mechanisms that govern this hormonal interplay is of paramount importance. DNA methylation is an epigenetic mark that regulates gene expression and is often associated with genes that code for steroid receptors and enzymes associated with estrogen synthesis and metabolism in endometriosis. DNA hydroxymethylation, which is structurally similar to methylation but functionally different, is a biologically critical mechanism that is also known to regulate gene expression. Ten Eleven Translocation (TET) proteins mediate hydroxymethylation. However, the role of DNA hydroxymethylation or TETs in the endometrium remains relatively unexplored. Currently, the "gold standard" technique used to study methylation patterns is bisulfite genomic sequencing. This technique also detects hydroxymethylation but fails to distinguish between the two, thereby limiting our understanding of these two processes. The presence of TETs in the male and female reproductive tract and its contribution to endometrial cancer makes it an important factor to study in endometriosis. This review summarizes the role of DNA methylation in aberrant steroid hormone signaling and hypothesizes that hydroxymethylation could be a factor influencing hormonal instability seen in endometriosis.
Collapse
Affiliation(s)
- Vishakha Mahajan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Cynthia Farquhar
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Anna P Ponnampalam
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Çelik-Uzuner S. Enhanced immunological detection of epigenetic modifications of DNA in healthy and cancerous cells by fluorescence microscopy. Microsc Res Tech 2019; 82:1962-1972. [PMID: 31429164 DOI: 10.1002/jemt.23365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Epigenetic modifications of DNA, including methylation, hydroxymethylation, formylation, and carboxylation of cytosines, are proposed to function in gene regulation during reproduction and development. Changes in cytosine methylation are associated with a range of diseases, such as cancer. Immunofluorescence uses specific antibodies to quantitatively detect the global amount of cytosine modifications by fluorescence microscopy. The most critical stage of immunofluorescence is the antigen retrieval to remove the protein content around the DNA, allowing specific antibodies to bind to DNA epitopes. Acid treatments have commonly been used for antigen retrieval. Previously, trypsin was added after acid in the protocol, which increased the amount of detectable DNA methylation. In this study, the protocol was further enhanced by the addition of pepsin, which is able to target charged hydrophobic amino acids in proteins, unlike trypsin, which breaks positive hydrophilic amino acids. The global levels of cytosine modifications in CF-1, HeLa, and AR42J cells were compared using this protocol. In all cells, the sequential treatment of trypsin and pepsin increased the specificity of the staining. With the synergistic effect of the two enzymes, it is possible to target different protein groups packaging DNA molecules and removing them effectively. The findings suggest that this revised protocol can be conveniently used for each cytosine modification in the cells examined, and should be optimized for other cells. These new antigen retrieval conditions may more accurately detect the changes in cytosine modifications during development and in diseases.
Collapse
Affiliation(s)
- Selcen Çelik-Uzuner
- Faculty of Science, Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
19
|
Laubach ZM, Faulk CD, Dolinoy DC, Montrose L, Jones TR, Ray D, Pioon MO, Holekamp KE. Early life social and ecological determinants of global DNA methylation in wild spotted hyenas. Mol Ecol 2019; 28:3799-3812. [PMID: 31291495 DOI: 10.1111/mec.15174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022]
Abstract
Environmental factors early in life can have lasting influence on the development and phenotypes of animals, but the underlying molecular modifications remain poorly understood. We examined cross-sectional associations among early life socioecological factors and global DNA methylation in 293 wild spotted hyenas (Crocuta crocuta) in the Masai Mara National Reserve, Kenya, grouped according to three age classes (cub, subadult and adult). Explanatory variables of interest included annual maternal rank based on outcomes of dyadic agonistic interactions, litter size, wild ungulate prey density and anthropogenic disturbance in the year each hyena was born based on counts of illegal livestock in the Reserve. The dependent variable of interest was global DNA methylation, assessed via the LUminometric Methylation Assay, which provides a percentage methylation value calculated at CCGG sites across the genome. Among cubs, we observed approximately 2.75% higher CCGG methylation in offspring born to high- than low-ranking mothers. Among cubs and subadults, higher anthropogenic disturbance corresponded with greater %CCGG methylation. In both cubs and adults, we found an inverse association between prey density measured before a hyena was 3 months old and %CCGG methylation. Our results suggest that maternal rank, anthropogenic disturbance and prey availability early in life are associated with later life global DNA methylation. Future studies are required to understand the extent to which these DNA methylation patterns relate to adult phenotypes and fitness outcomes.
Collapse
Affiliation(s)
- Zachary M Laubach
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA.,BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.,Mara Hyena Project, Michigan State University, Masai Mara National Reserve, Talek, Kenya
| | | | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.,Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Luke Montrose
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Donna Ray
- Divisions of Geriatric Medicine and Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Malit O Pioon
- Mara Hyena Project, Michigan State University, Masai Mara National Reserve, Talek, Kenya
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA.,BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.,Mara Hyena Project, Michigan State University, Masai Mara National Reserve, Talek, Kenya
| |
Collapse
|
20
|
Koller G, Zill P, Soyka M, Adorjan K, Weiss C, Kern A, Nguyen-Thien ML, Kamp F, Proebstl L, Krause D, Ruhdorfer S, Bergmann W, Preuss UW. Short-term changes in global methylation and hydroxymethylation during alcohol detoxification. Eur Neuropsychopharmacol 2019; 29:897-903. [PMID: 31133368 DOI: 10.1016/j.euroneuro.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 12/21/2022]
Abstract
Alcohol dependence is a common public health problem and epigenetics may offer new aspects in understanding the biological and genetic underpinnings and improve treatment of this complex disease. Supposedly, methylation and hydroxymethylation are altered in brain tissues and in synapse-related genes due to chronic alcohol intake and during withdrawal. To assess potential epigenetic changes after cessation of chronic alcohol intake, we compared 23 alcohol-dependent individuals during inpatient alcohol detoxification with 13 carefully matched controls. Blood samples were taken on the day of admission, after one and after two weeks at the end of inpatient treatment. Genome-wide global methylation and global DNA hydroxymethylation were compared across groups. There were significant differences in global methylation across time from admission to one and two weeks of inpatient withdrawal (p < 0.001). These findings were paralleled to changes in global DNA hydroxymethylation across time when age was employed as a cofactor (p < 0.001). Several potentially influencing variables like severity of withdrawal, dose of withdrawal medication and alcohol intake before admission did not yield significant influence on epigenetic changes. The results confirm previous findings of significant alterations of epigenetic patterns during alcohol intoxication and present for the first time hydroxymethylation changes in these individuals.
Collapse
Affiliation(s)
- Gabriele Koller
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany.
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Michael Soyka
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany; Medical Park Chiemseeblick, Bernau am Chiemsee, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Claudia Weiss
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Antonia Kern
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Mai-Ly Nguyen-Thien
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Felicia Kamp
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Lisa Proebstl
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Daniela Krause
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Sarah Ruhdorfer
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Wilhelm Bergmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, D - 80336 Munich, Germany
| | - Ulrich W Preuss
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Vitos-Klinik Psychiatrie und Psychotherapie Herborn, Herborn, Germany
| |
Collapse
|
21
|
Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int J Mol Sci 2019; 20:ijms20133140. [PMID: 31252610 PMCID: PMC6651274 DOI: 10.3390/ijms20133140] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) exerts a wide range of biological effects and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Although mechanisms of HHcy toxicity are not fully uncovered, there has been a significant progress in their understanding. The picture emerging from the studies of homocysteine (Hcy) metabolism and pathophysiology is a complex one, as Hcy and its metabolites affect biomolecules and processes in a tissue- and sex-specific manner. Because of their connection to one carbon metabolism and editing mechanisms in protein biosynthesis, Hcy and its metabolites impair epigenetic control of gene expression mediated by DNA methylation, histone modifications, and non-coding RNA, which underlies the pathology of human disease. In this review we summarize the recent evidence showing that epigenetic dysregulation of gene expression, mediated by changes in DNA methylation and histone N-homocysteinylation, is a pathogenic consequence of HHcy in many human diseases. These findings provide new insights into the mechanisms of human disease induced by Hcy and its metabolites, and suggest therapeutic targets for the prevention and/or treatment.
Collapse
|
22
|
Hernández-Saavedra D, Moody L, Xu GB, Chen H, Pan YX. Epigenetic Regulation of Metabolism and Inflammation by Calorie Restriction. Adv Nutr 2019; 10:520-536. [PMID: 30915465 PMCID: PMC6520046 DOI: 10.1093/advances/nmy129] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic caloric restriction (CR) without malnutrition is known to affect different cellular processes such as stem cell function, cell senescence, inflammation, and metabolism. Despite the differences in the implementation of CR, the reduction of calories produces a widespread beneficial effect in noncommunicable chronic diseases, which can be explained by improvements in immuno-metabolic adaptation. Cellular adaptation that occurs in response to dietary patterns can be explained by alterations in epigenetic mechanisms such as DNA methylation, histone modifications, and microRNA. In this review, we define these modifications and systematically summarize the current evidence related to CR and the epigenome. We then explain the significance of genome-wide epigenetic modifications in the context of disease development. Although substantial evidence exists for the widespread effect of CR on longevity, there is no consensus regarding the epigenetic regulations of the underlying cellular mechanisms that lead to improved health. We provide compelling evidence that CR produces long-lasting epigenetic effects that mediate expression of genes related to immuno-metabolic processes. Epigenetic reprogramming of the underlying chronic low-grade inflammation by CR can lead to immuno-metabolic adaptations that enhance quality of life, extend lifespan, and delay chronic disease onset.
Collapse
Affiliation(s)
| | | | - Guanying Bianca Xu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Hong Chen
- Division of Nutritional Sciences,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL,Address correspondence to Y-XP (e-mail: )
| |
Collapse
|
23
|
Arab K, Karaulanov E, Musheev M, Trnka P, Schäfer A, Grummt I, Niehrs C. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat Genet 2019; 51:217-223. [PMID: 30617255 PMCID: PMC6420098 DOI: 10.1038/s41588-018-0306-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 11/06/2018] [Indexed: 12/20/2022]
Abstract
R-loops are DNA:RNA hybrids enriched at CpG islands (CGIs), which can regulate chromatin states1–8. How R-loops are recognized and interpreted by specific epigenetic readers is unknown. Here we show that GADD45A (Growth Arrest and DNA Damage Protein 45A) directly binds to R-loops and mediates local DNA demethylation by recruiting TET1 (Ten-Eleven Translocation). Studying the tumor suppressor TCF219, we find that antisense lncRNA TARID forms an R-loop at the TCF21 promoter. Binding of GADD45A to the R-loop triggers local DNA demethylation and TCF21 expression. TARID transcription, R-loop formation, DNA demethylation, and TCF21 expression proceed sequentially during the cell cycle. Oxidized DNA demethylation intermediates are enriched at genomic R-loops and their levels increase upon RNase H1 depletion. Genomic profiling in embryonic stem cells identifies thousands of R-loop-dependent TET1 binding sites at CGIs. We propose that GADD45A is an epigenetic R-loop reader, which recruits the demethylation machinery to promoter CGIs.
Collapse
Affiliation(s)
- Khelifa Arab
- Institute of Molecular Biology (IMB), Mainz, Germany. .,Division of Molecular Biology of the Cell II, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany. .,Division of Molecular Embryology, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | | | | - Philipp Trnka
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany. .,Division of Molecular Embryology, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
24
|
Ogneva IV, Loktev SS, Sychev VN. Cytoskeleton structure and total methylation of mouse cardiac and lung tissue during space flight. PLoS One 2018; 13:e0192643. [PMID: 29768411 PMCID: PMC5955502 DOI: 10.1371/journal.pone.0192643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
The purpose of this work was to evaluate the protein and mRNA expression levels of multiple cytoskeletal proteins in the cardiac and lung tissue of mice that were euthanized onboard the United States Orbital Segment of the International Space Station 37 days after the start of the SpaceX-4 mission (September 2014, USA). The results showed no changes in the cytoskeletal protein content in the cardiac and lung tissue of the mice, but there were significant changes in the mRNA expression levels of the associated genes, which may be due to an increase in total genome methylation. The mRNA expression levels of DNA methylases, the cytosine demethylases Tet1 and Tet3, histone acetylase and histone deacetylase did not change, and the mRNA expression level of cytosine demethylase Tet2 was significantly decreased.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- * E-mail:
| | - Sergey S. Loktev
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir N. Sychev
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Silva MBD, Melo ARDS, Costa LDA, Barroso H, Oliveira NFPD. Global and gene-specific DNA methylation and hydroxymethylation in human skin exposed and not exposed to sun radiation. An Bras Dermatol 2018; 92:793-800. [PMID: 29364434 PMCID: PMC5786392 DOI: 10.1590/abd1806-4841.20175875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/07/2016] [Indexed: 12/19/2022] Open
Abstract
Background epigenomes can be influenced by environmental factors leading to the
development of diseases. Objective To investigate the influence of sun exposure on global DNA methylation and
hydroxymethylation status and at specific sites of the miR-9-1, miR-9-3 and
MTHFR genes in skin samples of subjects with no history of skin
diseases. Methods Skin samples were obtained by punch on sun-exposed and sun-protected arm
areas from 24 corpses of 16-89 years of age. Genomic DNA was extracted from
skin samples that were ranked according to Fitzpatrick's criteria as light,
moderate, and dark brown. Global DNA methylation and hydroxymethylation and
DNA methylation analyses at specific sites were performed using ELISA and
MSP, respectively. Results No significant differences in global DNA methylation and hydroxymethylation
levels were found among the skin areas, skin types, or age. However,
gender-related differences were detected, where women showed higher
methylation levels. Global DNA methylation levels were higher than
hydroxymethylation levels, and the levels of these DNA modifications
correlated in skin tissue. For specific sites, no differences among the
areas were detected. Additional analyses showed no differences in the
methylation status when age, gender, and skin type were considered; however,
the methylation status of the miR-9-1 gene seems to be gender related. Study limitations there was no separation of dermis and epidermis and low sample size. Conclusion sun exposure does not induce changes in the DNA methylation and
hydroxymethylation status or in miR-9-1, miR-9-3 and MTHFR genes for the
studied skin types.
Collapse
Affiliation(s)
- Mikaelly Batista da Silva
- Center for Exact Sciences and Nature, Post-graduate Program in Cellular and Molecular Biology, Universidade Federal da Paraíba (UFPB) -Paraíba, (PB), Brazil
| | - Alanne Rayssa da Silva Melo
- Center for Exact Sciences and Nature, Post-graduate Program in Cellular and Molecular Biology, Universidade Federal da Paraíba (UFPB) -Paraíba, (PB), Brazil
| | - Ludimila de Araújo Costa
- Center for Exact Sciences and Nature, Post-graduate Program in Cellular and Molecular Biology, Universidade Federal da Paraíba (UFPB) -Paraíba, (PB), Brazil
| | - Haline Barroso
- Center for Exact Sciences and Nature, Post-graduate Program in Cellular and Molecular Biology, Universidade Federal da Paraíba (UFPB) -Paraíba, (PB), Brazil
| | - Naila Francis Paulo de Oliveira
- Center for Exact Sciences and Nature, Post-graduate Program in Cellular and Molecular Biology, Universidade Federal da Paraíba (UFPB) -Paraíba, (PB), Brazil
| |
Collapse
|
26
|
Liu C, Jiao C, Wang K, Yuan N. DNA Methylation and Psychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:175-232. [PMID: 29933950 DOI: 10.1016/bs.pmbts.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA methylation has been an important area of research in the study of molecular mechanism to psychiatric disorders. Recent evidence has suggested that abnormalities in global methylation, methylation of genes, and pathways could play a role in the etiology of many forms of mental illness. In this article, we review the mechanisms of DNA methylation, including the genetic and environmental factors affecting methylation changes. We report and discuss major findings regarding DNA methylation in psychiatric patients, both within the context of global methylation studies and gene-specific methylation studies. Finally, we discuss issues surrounding data quality improvement, the limitations of current methylation analysis methods, and the possibility of using DNA methylation-based treatment for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Chunyu Liu
- University of Illinois, Chicago, IL, United States; School of Life Science, Central South University, Changsha, China.
| | - Chuan Jiao
- School of Life Science, Central South University, Changsha, China
| | - Kangli Wang
- School of Life Science, Central South University, Changsha, China
| | - Ning Yuan
- Hunan Brain Hospital, Changsha, China
| |
Collapse
|
27
|
Efimova OA, Pendina AA, Tikhonov AV, Baranov VS. The Evolution of Ideas on the Biological Role of 5-methylcytosine Oxidative Derivatives in the Mammalian Genome. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s2079059718010069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Abstract
The TET (Ten-eleven translocation) 1, 2 and 3 proteins have been shown to function as DNA hydroxymethylases in vertebrates and their requirements have been documented extensively. Recently, the Tet proteins have been shown to also hydroxylate 5-methylcytosine in RNA. 5-hydroxymethylcytosine (5hmrC) is enriched in messenger RNA but the function of this modification has yet to be elucidated. Because Cytosine methylation in DNA is barely detectable in Drosophila, it serves as an ideal model to study the biological function of 5hmrC. Here, we characterized the temporal and spatial expression and requirement of Tet throughout Drosophila development. We show that Tet is essential for viability as Tet complete loss-of-function animals die at the late pupal stage. Tet is highly expressed in neuronal tissues and at more moderate levels in somatic muscle precursors in embryos and larvae. Depletion of Tet in muscle precursors at early embryonic stages leads to defects in larval locomotion and late pupal lethality. Although Tet knock-down in neuronal tissue does not cause lethality, it is essential for neuronal function during development through its affects upon locomotion in larvae and the circadian rhythm of adult flies. Further, we report the function of Tet in ovarian morphogenesis. Together, our findings provide basic insights into the biological function of Tet in Drosophila, and may illuminate observed neuronal and muscle phenotypes observed in vertebrates.
Collapse
|
29
|
Ravichandran M, Jurkowska RZ, Jurkowski TP. Target specificity of mammalian DNA methylation and demethylation machinery. Org Biomol Chem 2018; 16:1419-1435. [DOI: 10.1039/c7ob02574b] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review here the molecular mechanisms employed by DNMTs and TET enzymes that are responsible for shaping the DNA methylation pattern of a mammalian cell.
Collapse
Affiliation(s)
| | | | - T. P. Jurkowski
- Universität Stuttgart
- Abteilung Biochemie
- Institute für Biochemie und Technische Biochemie
- Stuttgart D-70569
- Germany
| |
Collapse
|
30
|
Barnett Burns S, Almeida D, Turecki G. The Epigenetics of Early Life Adversity: Current Limitations and Possible Solutions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:343-425. [DOI: 10.1016/bs.pmbts.2018.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Kader F, Ghai M, Maharaj L. The effects of DNA methylation on human psychology. Behav Brain Res 2017; 346:47-65. [PMID: 29237550 DOI: 10.1016/j.bbr.2017.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/01/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023]
Abstract
DNA methylation is a fundamental epigenetic modification in the human genome; pivotal in development, genomic imprinting, X inactivation, chromosome stability, gene expression and methylation aberrations are involved in an array of human diseases. Methylation at promoters is associated with transcriptional repression, whereas gene body methylation is generally associated with gene expression. Extrinsic factors such as age, diets and lifestyle affect DNA methylation which consequently alters gene expression. Stress, anxiety, depression, life satisfaction, emotion among numerous other psychological factors also modify DNA methylation patterns. This correlation is frequently investigated in four candidate genes; NR3C1, SLC6A4, BDNF and OXTR, since regulation of these genes directly impact responses to social situations, stress, threats, behaviour and neural functions. Such studies underpin the hypothesis that DNA methylation is involved in deviant human behaviour, psychological and psychiatric conditions. These candidate genes may be targeted in future to assess the correlation between methylation, social experiences and long-term behavioural phenotypes in humans; and may potentially serve as biomarkers for therapeutic intervention.
Collapse
Affiliation(s)
- Farzeen Kader
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| | - Meenu Ghai
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| | - Leah Maharaj
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| |
Collapse
|
32
|
Abstract
Epigenetic modes of gene regulation are important for physiological conditions and its aberrant changes can lead to disease like cancer. 5-hydroxymethylcytosine (5hmC) is an oxidized form of 5-methylcytosine (5mC) catalyzed by Ten Eleven Translocation (TET) enzymes. 5hmC is considered to be a demethylation intermediate and is emerging as a stable and functional base modification. The global loss of 5hmC level is commonly observed in cancers and tumorigenic germline mutations in IDH, SDH and FH are found to be inhibiting TET activity. Although a global loss of 5hmC is characteristic in cancers, locus-specific 5hmC gain implicates selective gene expression control. The definitive role of 5hmC as a tumor suppressing or promoting modification can be deduced by identifying locus-specific 5hmC modification in different types of cancer. Determining the genes carrying 5hmC modifications and its selective variation will open up new therapeutic targets. This review outlines the role of global and locus-specific changes of 5hmC in cancers and the possible mechanisms underlying such changes. We have described major cellular factors that influence 5hmC levels and highlighted the significance of 5hmC in tumor micro environmental condition like hypoxia.
Collapse
|
33
|
Murata Y, Bundo M, Ueda J, Kubota-Sakashita M, Kasai K, Kato T, Iwamoto K. DNA methylation and hydroxymethylation analyses of the active LINE-1 subfamilies in mice. Sci Rep 2017; 7:13624. [PMID: 29051587 PMCID: PMC5648895 DOI: 10.1038/s41598-017-14165-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/06/2017] [Indexed: 11/17/2022] Open
Abstract
Retrotransposon long interspersed nuclear element-1 (LINE-1) occupies a large proportion of the mammalian genome, comprising approximately 100,000 genomic copies in mice. Epigenetic status of the 5′ untranslated region (5′-UTR) of LINE-1 is critical for its promoter activity. DNA methylation levels in the 5′-UTR of human active LINE-1 subfamily can be measured by well-established methods, such as a pyrosequencing-based assay. However, because of the considerable sequence and structural diversity in LINE-1 among species, methods for such assays should be adapted for the species of interest. Here we developed pyrosequencing-based assays to examine methylcytosine (mC) and hydroxymethylcytosine (hmC) levels of the three active LINE-1 subfamilies in mice (TfI, A, and GfII). Using these assays, we quantified mC and hmC levels in four brain regions and four nonbrain tissues including tail, heart, testis, and ovary. We observed tissue- and subfamily-specific mC and hmC differences. We also found that mC levels were strongly correlated among different brain regions, but mC levels of the testis showed a poor correlation with those of other tissues. Interestingly, mC levels in the A and GfII subfamilies were highly correlated, possibly reflecting their close evolutionary relationship. Our assays will be useful for exploring the epigenetic regulation of the active LINE-1 subfamilies in mice.
Collapse
Affiliation(s)
- Yui Murata
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi City, Saitama, 332-0012, Japan
| | - Junko Ueda
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Mie Kubota-Sakashita
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.
| |
Collapse
|
34
|
A C9ORF72 BAC mouse model recapitulates key epigenetic perturbations of ALS/FTD. Mol Neurodegener 2017; 12:46. [PMID: 28606110 PMCID: PMC5468954 DOI: 10.1186/s13024-017-0185-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a fatal and progressive neurodegenerative disorder with identified genetic causes representing a significant minority of all cases. A GGGGCC hexanucleotide repeat expansion (HRE) mutation within the C9ORF72 gene has recently been identified as the most frequent known cause of ALS. The expansion leads to partial heterochromatinization of the locus, yet mutant RNAs and dipeptide repeat proteins (DPRs) are still produced in sufficient quantities to confer neurotoxicity. The levels of these toxic HRE products positively correlate with cellular toxicity and phenotypic severity across multiple disease models. Moreover, the degree of epigenetic repression inversely correlates with some facets of clinical presentation in C9-ALS patients. Recently, bacterial artificial chromosomes (BAC) have been used to generate transgenic mice that harbor the HRE mutation, complementing other relevant model systems such as patient-derived induced pluripotent stem cells (iPSCs). While epigenetic features of the HRE have been investigated in various model systems and post-mortem tissues, epigenetic dysregulation at the expanded locus in C9-BAC mice remains unexplored. METHODS AND RESULTS Here, we sought to determine whether clinically relevant epigenetic perturbations caused by the HRE are mirrored in a C9-BAC mouse model. We used complementary DNA methylation assessment and immunoprecipitation methods to demonstrate that epigenetic aberrations caused by the HRE, such as DNA and histone methylation, are recapitulated in the C9-BAC mice. Strikingly, we found that cytosine hypermethylation within the promoter region of the human transgene occurred in a subset of C9-BAC mice similar to what is observed in patient populations. Moreover, we show that partial heterochromatinization of the C9 HRE occurs during the first weeks of the mouse lifespan, indicating age-dependent epigenetic repression. Using iPSC neurons, we found that preventing R-loop formation did not impede heterochromatinization of the HRE. CONCLUSIONS Taken together, these observations provide further insight into mechanism and developmental time-course of epigenetic perturbations conferred by the C9ORF72 HRE. Finally, we suggest that epigenetic repression of the C9ORF72 HRE and nearby gene promoter could impede or delay motor neuron degeneration in C9-BAC mouse models of ALS/FTD.
Collapse
|
35
|
Abstract
In mammals, DNA methylation in the form of 5-methylcytosine (5mC) can be actively reversed to unmodified cytosine (C) through TET dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), followed by replication-dependent dilution or thymine DNA glycosylase (TDG)-dependent base excision repair. In the past few years, biochemical and structural studies have revealed mechanistic insights into how TET and TDG mediate active DNA demethylation. Additionally, many regulatory mechanisms of this process have been identified. Technological advances in mapping and tracing the oxidized forms of 5mC allow further dissection of their functions. Furthermore, the biological functions of active DNA demethylation in various biological contexts have also been revealed. In this Review, we summarize the recent advances and highlight key unanswered questions.
Collapse
|
36
|
Analysis of global DNA methylation changes in primary human fibroblasts in the early phase following X-ray irradiation. PLoS One 2017; 12:e0177442. [PMID: 28489894 PMCID: PMC5425224 DOI: 10.1371/journal.pone.0177442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/27/2017] [Indexed: 01/09/2023] Open
Abstract
Epigenetic alterations may contribute to the generation of cancer cells in a multi-step process of tumorigenesis following irradiation of normal body cells. Primary human fibroblasts with intact cell cycle checkpoints were used as a model to test whether X-ray irradiation with 2 and 4 Gray induces direct epigenetic effects (within the first cell cycle) in the exposed cells. ELISA-based fluorometric assays were consistent with slightly reduced global DNA methylation and hydroxymethylation, however the observed between-group differences were usually not significant. Similarly, bisulfite pyrosequencing of interspersed LINE-1 repeats and centromeric α-satellite DNA did not detect significant methylation differences between irradiated and non-irradiated cultures. Methylation of interspersed ALU repeats appeared to be slightly increased (one percentage point; p = 0.01) at 6 h after irradiation with 4 Gy. Single-cell analysis showed comparable variations in repeat methylation among individual cells in both irradiated and control cultures. Radiation-induced changes in global repeat methylation, if any, were much smaller than methylation variation between different fibroblast strains. Interestingly, α-satellite DNA methylation positively correlated with gestational age. Finally, 450K methylation arrays mainly targeting genes and CpG islands were used for global DNA methylation analysis. There were no detectable methylation differences in genic (promoter, 5' UTR, first exon, gene body, 3' UTR) and intergenic regions between irradiated and control fibroblast cultures. Although we cannot exclude minor effects, i.e. on individual CpG sites, collectively our data suggest that global DNA methylation remains rather stable in irradiated normal body cells in the early phase of DNA damage response.
Collapse
|
37
|
Gene-body 5-hydroxymethylation is associated with gene expression changes in the prefrontal cortex of depressed individuals. Transl Psychiatry 2017; 7:e1119. [PMID: 28485726 PMCID: PMC5534961 DOI: 10.1038/tp.2017.93] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
5-Hydroxymethylcytosine (5hmC) is a recently characterized epigenetic mark that is particularly abundant in brain tissue and that regulates gene transcription. We have recently begun to understand the important role of 5hmC in brain development, plasticity and disease, but there are currently little data on 5hmC alterations in psychiatric illnesses. Here we report what we believe to be the first genome-wide analysis of 5hmC in the depressed brain. Using AbaSI sequencing, we investigated 5hmC in the prefrontal cortex of depressed (N=19) and psychiatrically healthy controls (N=19). Consistent with previous global 5hmC analyses in other phenotypes, and likely owing to the inter-individual variability in 5hmC content, the distribution of 5hmC across chromosomes and genomic features was not different between groups. We did, however, find 550 CpGs with suggestive evidence of differential hydroxymethylation. Of these, we validated CpGs in the gene body of myosin XVI (MYO16) and insulin-degrading enzyme using targeted oxidative bisulfite sequencing. Furthermore, the enrichment of 5hmC was also associated with changes in the expression of these two genes in depressed suicides. Together, our results present a novel mechanism linking increased 5hmC to depression and provide a framework for future research in this field.
Collapse
|
38
|
Bouschet T, Dubois E, Reynès C, Kota SK, Rialle S, Maupetit-Méhouas S, Pezet M, Le Digarcher A, Nidelet S, Demolombe V, Cavelier P, Meusnier C, Maurizy C, Sabatier R, Feil R, Arnaud P, Journot L, Varrault A. In Vitro Corticogenesis from Embryonic Stem Cells Recapitulates the In Vivo Epigenetic Control of Imprinted Gene Expression. Cereb Cortex 2017; 27:2418-2433. [PMID: 27095822 DOI: 10.1093/cercor/bhw102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In vitro corticogenesis from embryonic stem cells (ESCs) is an attractive model of cortical development and a promising tool for cortical therapy. It is unknown to which extent epigenetic mechanisms crucial for cortex development and function, such as parental genomic imprinting, are recapitulated by in vitro corticogenesis. Here, using genome-wide transcriptomic and methylation analyses on hybrid mouse tissues and cells, we find a high concordance of imprinting status between in vivo and ESC-derived cortices. Notably, in vitro corticogenesis strictly reproduced the in vivo parent-of-origin-dependent expression of 41 imprinted genes (IGs), including Mest and Cdkn1c known to control corticogenesis. Parent-of-origin-dependent DNA methylation was also conserved at 14 of 18 imprinted differentially methylated regions. The least concordant imprinted locus was Gpr1-Zdbf2, where the aberrant bi-allelic expression of Zdbf2 and Adam23 was concomitant with a gain of methylation on the maternal allele in vitro. Combined, our data argue for a broad conservation of the epigenetic mechanisms at imprinted loci in cortical cells derived from ESCs. We propose that in vitro corticogenesis helps to define the still poorly understood mechanisms that regulate imprinting in the brain and the roles of IGs in cortical development.
Collapse
Affiliation(s)
- Tristan Bouschet
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Emeric Dubois
- Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Christelle Reynès
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Satya K Kota
- Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Stéphanie Rialle
- Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Stéphanie Maupetit-Méhouas
- GReD (Genetics, Reproduction and Development), CNRS UMR6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mikael Pezet
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Sabine Nidelet
- Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Vincent Demolombe
- Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Patricia Cavelier
- Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Céline Meusnier
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Chloé Maurizy
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France.,Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Robert Sabatier
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Philippe Arnaud
- GReD (Genetics, Reproduction and Development), CNRS UMR6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France.,Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Annie Varrault
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| |
Collapse
|
39
|
Deng M, Ren C, Liu Z, Zhang G, Wang F, Wan Y. Epigenetic Status of H19-Igf2 Imprinted Genes and Loss of 5-Hydroxymethylcytosine in the Brain of Cloned Goats. Cell Reprogram 2017; 19:199-207. [PMID: 28350187 DOI: 10.1089/cell.2016.0049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In mammals, the imprinted genes play vital roles in development and are generally controlled by DNA methylation at imprinting control regions (ICRs). Recently, it was discovered that 5-hydroxymethylcytosine (5-hmC) is a stable epigenetic modification; however, its functions in cloned animal genomes have not yet been fully elucidated. In this study, we interrogated and quantified the 5-hmC levels in the brain of cloned goats and discovered upregulation of Uhrf1 (p < 0.001), Dnmt1 (p < 0.05), Dnmt3a (p < 0.05), Igf2 (p < 0.01), and H19 (p < 0.05) and downregulation of Dnmt3b (p < 0.001), Tet1 (p < 0.001), Tet2 (p < 0.05), Tet3 (p < 0.001), Mecp2 (p < 0.05), and Igf2r (p < 0.05) in deceased cloned goat tissues compared with the normal controls. We demonstrated that DNA methylation was increased at H19 ICR (51.33% ± 2.03% vs. 93.07% ± 3.06%; p < 0.01) and that DNA was hypomethylated at Igf2 ICR (4.57% ± 1.48% vs. 7.63% ± 1.83%; p > 0.05) in the brain of deceased cloned goats. Finally, we showed that within the cloned goat brain genome, the amount of genome-wide 5-hmC was significantly decreased (0.083% ± 0.026% vs. 0.024% ± 0.007%; p < 0.05), whereas the 5-hmC levels within H19 and Igf2 CCGG sites were not significantly altered (0.17% ± 0.09% vs. 0.03% ± 0.01%; p > 0.05) in the brain of deceased cloned goats. Our data bring further experimental evidence regarding the abnormalities in 5-hmC and advance our current understanding of the role of 5-hmC in cloned animals.
Collapse
Affiliation(s)
- Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Caifang Ren
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| |
Collapse
|
40
|
Qing Y, Tian Z, Bi Y, Wang Y, Long J, Song CX, Diao J. Quantitation and mapping of the epigenetic marker 5-hydroxymethylcytosine. Bioessays 2017; 39. [DOI: 10.1002/bies.201700010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ying Qing
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH USA
| | - Zhiqi Tian
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH USA
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an China
| | - Ying Bi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine; University of Oxford; Oxford UK
| | - Yongyao Wang
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH USA
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology Xi'an Jiaotong University; Xi'an China
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine; University of Oxford; Oxford UK
- Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Oxford UK
| | - Jiajie Diao
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH USA
| |
Collapse
|
41
|
|
42
|
Venegas D, Marmolejo-Valencia A, Valdes-Quezada C, Govenzensky T, Recillas-Targa F, Merchant-Larios H. Dimorphic DNA methylation during temperature-dependent sex determination in the sea turtle Lepidochelys olivacea. Gen Comp Endocrinol 2016; 236:35-41. [PMID: 27342379 DOI: 10.1016/j.ygcen.2016.06.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/13/2016] [Accepted: 06/19/2016] [Indexed: 11/22/2022]
Abstract
Sex determination in vertebrates depends on the expression of a conserved network of genes. Sea turtles such as Lepidochelys olivacea have temperature-dependent sex determination. The present work analyses some of the epigenetic processes involved in this. We describe sexual dimorphism in global DNA methylation patterns between ovaries and testes of L. olivacea and show that the differences may arise from a combination of DNA methylation and demethylation events that occur during sex determination. Irrespective of incubation temperature, 5-hydroxymethylcytosine was abundant in the bipotential gonad; however, following sex determination, this modification was no longer found in pre-Sertoli cells in the testes. These changes correlate with the establishment of the sexually dimorphic DNA methylation patterns, down regulation of Sox9 gene expression in ovaries and irreversible gonadal commitment towards a male or female differentiation pathway. Thus, DNA methylation changes may be necessary for the stabilization of the gene expression networks that drive the differentiation of the bipotential gonad to form either an ovary or a testis in L. olivacea and probably among other species that manifest temperature-dependent sex determination.
Collapse
Affiliation(s)
- Daniela Venegas
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, México DF, México City, Mexico
| | - Alejandro Marmolejo-Valencia
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, México DF, México City, Mexico
| | - Christian Valdes-Quezada
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, México DF, México City, Mexico
| | - Tzipe Govenzensky
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, México DF, México City, Mexico; Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, México DF, México City, Mexico
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, México DF, México City, Mexico
| | - Horacio Merchant-Larios
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, México DF, México City, Mexico.
| |
Collapse
|
43
|
Ciccarone F, Valentini E, Zampieri M, Caiafa P. 5mC-hydroxylase activity is influenced by the PARylation of TET1 enzyme. Oncotarget 2016; 6:24333-47. [PMID: 26136340 PMCID: PMC4695189 DOI: 10.18632/oncotarget.4476] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/30/2015] [Indexed: 12/15/2022] Open
Abstract
5-hydroxymethylcytosine is a new epigenetic modification deriving from the oxidation of 5-methylcytosine by the TET hydroxylase enzymes. DNA hydroxymethylation drives DNA demethylation events and is involved in the control of gene expression. Deregulation of TET enzymes causes developmental defects and is associated with pathological conditions such as cancer. Little information thus far is available on the regulation of TET activity by post-translational modifications. Here we show that TET1 protein is able to interact with PARP-1/ARTD1 enzyme and is target of both noncovalent and covalent PARylation. In particular, we have demonstrated that the noncovalent binding of ADP-ribose polymers with TET1 catalytic domain decreases TET1 hydroxylase activity while the covalent PARylation stimulates TET1 enzyme. In addition, TET1 activates PARP-1/ARTD1 independently of DNA breaks. Collectively, our results highlight a complex interplay between PARylation and TET1 which may be helpful in coordinating the multiple biological roles played by 5-hydroxymethylcytosine and TET proteins.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome and Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Elisabetta Valentini
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome and Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome and Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome and Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
44
|
Electrogenerated chemiluminescence biosensing method for the discrimination of DNA hydroxymethylation and assay of the β-glucosyltransferase activity. Biosens Bioelectron 2016; 79:92-7. [DOI: 10.1016/j.bios.2015.11.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 11/19/2022]
|
45
|
Ivanov M, Kals M, Lauschke V, Barragan I, Ewels P, Käller M, Axelsson T, Lehtiö J, Milani L, Ingelman-Sundberg M. Single base resolution analysis of 5-hydroxymethylcytosine in 188 human genes: implications for hepatic gene expression. Nucleic Acids Res 2016; 44:6756-69. [PMID: 27131363 PMCID: PMC5001587 DOI: 10.1093/nar/gkw316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 04/13/2016] [Indexed: 01/31/2023] Open
Abstract
To improve the epigenomic analysis of tissues rich in 5-hydroxymethylcytosine (hmC), we developed a novel protocol called TAB-Methyl-SEQ, which allows for single base resolution profiling of both hmC and 5-methylcytosine by targeted next-generation sequencing. TAB-Methyl-SEQ data were extensively validated by a set of five methodologically different protocols. Importantly, these extensive cross-comparisons revealed that protocols based on Tet1-assisted bisulfite conversion provided more precise hmC values than TrueMethyl-based methods. A total of 109 454 CpG sites were analyzed by TAB-Methyl-SEQ for mC and hmC in 188 genes from 20 different adult human livers. We describe three types of variability of hepatic hmC profiles: (i) sample-specific variability at 40.8% of CpG sites analyzed, where the local hmC values correlate to the global hmC content of livers (measured by LC-MS), (ii) gene-specific variability, where hmC levels in the coding regions positively correlate to expression of the respective gene and (iii) site-specific variability, where prominent hmC peaks span only 1 to 3 neighboring CpG sites. Our data suggest that both the gene- and site-specific components of hmC variability might contribute to the epigenetic control of hepatic genes. The protocol described here should be useful for targeted DNA analysis in a variety of applications.
Collapse
Affiliation(s)
- Maxim Ivanov
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz väg 2, 17177 Stockholm, Sweden
| | - Mart Kals
- Estonian Genome Center, University of Tartu, Riia 23b, 51010 Tartu, Estonia Institute of Mathematics and Statistics, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Volker Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz väg 2, 17177 Stockholm, Sweden
| | - Isabel Barragan
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Von Eulers väg 8 IV, 17177 Stockholm, Sweden
| | - Philip Ewels
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Max Käller
- Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Royal Institute of Technology, 17121 Stockholm, Sweden
| | - Tomas Axelsson
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, 75144 Uppsala, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory, Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, 17121 Stockholm, Sweden
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz väg 2, 17177 Stockholm, Sweden
| |
Collapse
|
46
|
Impey S, Pelz C, Tafessu A, Marzulla T, Turker MS, Raber J. Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus. BMC Genomics 2016; 17:273. [PMID: 27036964 PMCID: PMC4815246 DOI: 10.1186/s12864-016-2581-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
Background Proton irradiation poses a potential hazard to astronauts during and following a mission, with post-mitotic cells at most risk because they cannot dilute resultant epigenetic changes via cell division. Persistent epigenetic changes that result from environmental exposures include gains or losses of DNA methylation of cytosine, which can impact gene expression. In the present study, we compared the long-term epigenetic effects of whole body proton irradiation in the mouse hippocampus and left ventricle. We used an unbiased genome-wide DNA methylation study, involving ChIP-seq with antibodies to 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) to identify DNA regions in which methylation levels have changed 22 weeks after a single exposure to proton irradiation. We used DIP-Seq to profile changes in genome-wide DNA methylation and hydroxymethylation following proton irradiation. In addition, we used published RNAseq data to assess whether differentially methylated regions were linked to changes in gene expression. Results The DNA methylation data showed tissue-dependent effects of proton irradiation and revealed significant major pathway changes in response to irradiation that are related to known pathophysiologic processes. Many regions affected in the ventricle mapped to genes involved in cardiovascular function pathways, whereas many regions affected in the hippocampus mapped to genes involved in neuronal functions. In the ventricle, increases in 5hmC were associated with decreases in 5mC. We also observed spatial overlap for regions where both epigenetic marks decreased in the ventricle. In hippocampus, increases in 5hmC were most significantly correlated (spatially) with regions that had increased 5mC, suggesting that deposition of hippocampal 5mC and 5hmC may be mechanistically coupled. Conclusions The results demonstrate long-term changes in DNA methylation patterns following a single proton irradiation, that these changes are tissue specific, and that they map to pathways consistent with tissue specific responses to proton irradiation. Further, the results suggest novel relationships between changes in 5mC and 5hmC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2581-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soren Impey
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA. .,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, 97239, USA. .,Department of Pediatric, L321, Oregon Health and Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Carl Pelz
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Amanuel Tafessu
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Mitchell S Turker
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA. .,Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health and Science University, Portland, OR, 97239, USA. .,Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
47
|
Chen S, Dou Y, Zhao Z, Li F, Su J, Fan C, Song S. High-Sensitivity and High-Efficiency Detection of DNA Hydroxymethylation in Genomic DNA by Multiplexing Electrochemical Biosensing. Anal Chem 2016; 88:3476-80. [DOI: 10.1021/acs.analchem.6b00230] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shixing Chen
- Division
of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation
Facility, CAS Key Laboratory of Interfacial Physics and Technology,
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yanzhi Dou
- Division
of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation
Facility, CAS Key Laboratory of Interfacial Physics and Technology,
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhihan Zhao
- Division
of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation
Facility, CAS Key Laboratory of Interfacial Physics and Technology,
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- College
of Sciences, Shanghai University, Shanghai 200444, China
| | - Fuwu Li
- Division
of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation
Facility, CAS Key Laboratory of Interfacial Physics and Technology,
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jing Su
- Division
of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation
Facility, CAS Key Laboratory of Interfacial Physics and Technology,
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- Division
of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation
Facility, CAS Key Laboratory of Interfacial Physics and Technology,
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shiping Song
- Division
of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation
Facility, CAS Key Laboratory of Interfacial Physics and Technology,
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
48
|
Gross JA, Lefebvre F, Lutz PE, Bacot F, Vincent D, Bourque G, Turecki G. Variations in 5-methylcytosine and 5-hydroxymethylcytosine among human brain, blood, and saliva using oxBS and the Infinium MethylationEPIC array. Biol Methods Protoc 2016; 1:1-8. [PMID: 32328532 PMCID: PMC7164292 DOI: 10.1093/biomethods/bpw002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Investigating 5-methylcytosine (5mC) has led to many hypotheses regarding molecular mechanism underlying human diseases and disorders. Many of these studies, however, utilize bisulfite conversion alone, which cannot distinguish 5mC from its recently discovered oxidative product, 5-hydroxymethylcytosine (5hmC). Furthermore, previous array-based technologies do not have the necessary probes to adequately investigate both modifications simultaneously. In this manuscript, we used technical replicates of DNA from human brain, human blood, and human saliva, in combination with oxidative bisulfite conversion and Illumina's Infinium MethylationEPIC array, to analyze 5mC and 5hmC at more than 650 000 and 450 000 relevant loci, respectively, in the human genome. We show the presence of loci with detectable 5mC and 5hmC to be equally distributed across chromosomes and genomic features, while also being present in genomic regions with transcriptional regulatory properties. We also describe 2528 5hmC sites common across tissue types that show a strong association with immune-related functions. Lastly, in human brain, we show that 5hmC accounts for one-third of the total signal from bisulfite-converted data. As such, not only do our results confirm the efficacy and sensitivity of pairing oxidative bisulfite conversion and the EPIC array to detect 5mC and 5hmC in all three tissue types, but they also highlight the importance of dissociating 5hmC from 5mC in future studies related to cytosine modifications.
Collapse
Affiliation(s)
- Jeffrey A. Gross
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - François Lefebvre
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - François Bacot
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Daniel Vincent
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Taylor SEB, Li YH, Smeriglio P, Rath M, Wong WH, Bhutani N. Stable 5-Hydroxymethylcytosine (5hmC) Acquisition Marks Gene Activation During Chondrogenic Differentiation. J Bone Miner Res 2016; 31:524-34. [PMID: 26363184 PMCID: PMC4860191 DOI: 10.1002/jbmr.2711] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/05/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022]
Abstract
Regulation of gene expression changes during chondrogenic differentiation by DNA methylation and demethylation is little understood. Methylated cytosines (5mC) are oxidized by the ten-eleven-translocation (TET) proteins to 5-hydroxymethylcytosines (5hmC), 5-formylcytosines (5fC), and 5-carboxylcytosines (5caC), eventually leading to a replacement by unmethylated cytosines (C), ie, DNA demethylation. Additionally, 5hmC is stable and acts as an epigenetic mark by itself. Here, we report that global changes in 5hmC mark chondrogenic differentiation in vivo and in vitro. Tibia anlagen and growth plate analyses during limb development at mouse embryonic days E 11.5, 13.5, and 17.5 showed dynamic changes in 5hmC levels in the differentiating chondrocytes. A similar increase in 5hmC levels was observed in the ATDC5 chondroprogenitor cell line accompanied by increased expression of the TET proteins during in vitro differentiation. Loss of TET1 in ATDC5 decreased 5hmC levels and impaired differentiation, demonstrating a functional role for TET1-mediated 5hmC dynamics in chondrogenic differentiation. Global analyses of the 5hmC-enriched sequences during early and late chondrogenic differentiation identified 5hmC distribution to be enriched in the regulatory regions of genes preceding the transcription start site (TSS), as well as in the gene bodies. Stable gains in 5hmC were observed in specific subsets of genes, including genes associated with cartilage development and in chondrogenic lineage-specific genes. 5hmC gains in regulatory promoter and enhancer regions as well as in gene bodies were strongly associated with activated but not repressed genes, indicating a potential regulatory role for DNA hydroxymethylation in chondrogenic gene expression.
Collapse
Affiliation(s)
- Sarah E. B. Taylor
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ye Henry Li
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Piera Smeriglio
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Madhusikta Rath
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wing H. Wong
- Department of Statistics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Ruiz MA, Rivers A, Ibanez V, Vaitkus K, Mahmud N, DeSimone J, Lavelle D. Hydroxymethylcytosine and demethylation of the γ-globin gene promoter during erythroid differentiation. Epigenetics 2016; 10:397-407. [PMID: 25932923 PMCID: PMC4622718 DOI: 10.1080/15592294.2015.1039220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The mechanism responsible for developmental stage-specific regulation of γ-globin gene expression involves DNA methylation. Previous results have shown that the γ-globin promoter is nearly fully demethylated during fetal liver erythroid differentiation and partially demethylated during adult bone marrow erythroid differentiation. The hypothesis that 5-hydroxymethylcytosine (5hmC), a known intermediate in DNA demethylation pathways, is involved in demethylation of the γ-globin gene promoter during erythroid differentiation was investigated by analyzing levels of 5-methylcytosine (5mC) and 5hmC at a CCGG site within the 5′ γ-globin gene promoter region in FACS-purified cells from baboon bone marrow and fetal liver enriched for different stages of erythroid differentiation. Our results show that 5mC and 5hmC levels at the γ-globin promoter are dynamically modulated during erythroid differentiation with peak levels of 5hmC preceding and/or coinciding with demethylation. The Tet2 and Tet3 dioxygenases that catalyze formation of 5hmC are expressed during early stages of erythroid differentiation and Tet3 expression increases as differentiation proceeds. In baboon CD34+ bone marrow-derived erythroid progenitor cell cultures, γ-globin expression was positively correlated with 5hmC and negatively correlated with 5mC at the γ-globin promoter. Supplementation of culture media with Vitamin C, a cofactor of the Tet dioxygenases, reduced γ-globin promoter DNA methylation and increased γ-globin expression when added alone and in an additive manner in combination with either DNA methyltransferase or LSD1 inhibitors. These results strongly support the hypothesis that the Tet-mediated 5hmC pathway is involved in developmental stage-specific regulation of γ-globin expression by mediating demethylation of the γ-globin promoter.
Collapse
|