1
|
Hu Y, Cai W, Hidaka Y, Hiraishi K, Cang J, Umemura M, Yokoyama U, Knollmann BC, Ishikawa Y, Fujita T. Translationally controlled tumor protein interacts with connexin 43 and facilitates intercellular coupling between cardiomyocytes. Front Cell Dev Biol 2025; 13:1549063. [PMID: 40181823 PMCID: PMC11965915 DOI: 10.3389/fcell.2025.1549063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Connexins are gap junction proteins that play pivotal roles in intercellular communication. Connexin 43 (Cx43) is one of the most ubiquitously expressed connexin isoforms in human. Cx43 has been demonstrated to be involved in the pathological process of various diseases, including arrhythmias. Recently, translationally controlled tumor protein (TCTP), a highly conserved anti-apoptotic protein, has been shown to play an important role in protecting against the development of heart failure. However, its role in arrhythmogenesis remains unclear. In this study, we aimed to examine the interaction between TCTP and Cx43 and investigate the roles of TCTP in the formation of Cx43 gap junction channels and gap junctional intercellular communication (GJIC) in cardiomyocytes. Methods and results We found that TCTP was predominantly expressed in the intercalated discs of mouse heart tissue. Cx43 in adult mouse hearts was coimmunoprecipitated using a TCTP-specific antibody. Additionally, co-localization of TCTP and Cx43 was demonstrated using a proximity ligation assay in iPS cell-derived human cardiomyocytes. TCTP silencing reduced the formation of Cx43 gap junction channels at the intercellular contacts between cardiomyocytes. Moreover, TCTP silencing significantly attenuated GJIC among cardiomyocytes. Interestingly, the development of ventricular arrhythmia was attenuated in cardiomyocyte-specific TCTP-overexpressing mice. Conclusion These findings indicate that TCTP regulates GJIC. Thus, TCTP may be a therapeutic target for preventing Cx43-related pathogenesis.
Collapse
Affiliation(s)
- Yaopeng Hu
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Wenqian Cai
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuko Hidaka
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Keizo Hiraishi
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Jiehui Cang
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Björn C. Knollmann
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takayuki Fujita
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
2
|
Nakashima M, Pinkaew D, Pal U, Miyao F, Huynh H, Tanaka L, Fujise K. Fortilin binds CTNNA3 and protects it against phosphorylation, ubiquitination, and proteasomal degradation to guard cells against apoptosis. Commun Biol 2025; 8:1. [PMID: 39747445 PMCID: PMC11695602 DOI: 10.1038/s42003-024-07399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Fortilin, a 172-amino acid polypeptide, is a multifunctional protein that interacts with various protein molecules to regulate their functions. Although fortilin has been shown to interact with cytoskeleton proteins such as tubulin and actin, its interactions with the components of adherens junctions remained unknown. Using co-immunoprecipitation western blot analyses, the proximity ligation assay, microscale thermophoresis, and biolayer interferometry, we here show that fortilin specifically interacts with CTNNA3 (α-T-catenin), but not with CTNNA1, CTNNA2, or CTNNB. The silencing of fortilin using small interfering RNA (siRNAfortilin) promotes the proteasome-mediated degradation of CTNNA3 in 293T cells. Using both fortilin-deficient THP1 cells and 293T cells that overexpress wild-type (WT), phospho-null (5A), and phospho-mimetic (5D) CTNNA3s, we also show that the absence of fortilin accelerates the phosphorylation of CTNNA3, leading to its ubiquitination and proteasome-mediated degradation. Further, the silencing of CTNNA3 using siRNACTNNA3 causes 293T cells to undergo apoptosis. These data suggest that fortilin guards the cells against apoptosis by positively regulating the pro-survival molecule CTNNA3 by protecting it against phosphorylation, ubiquitination, and proteasome-mediated degradation.
Collapse
Affiliation(s)
- Mari Nakashima
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Decha Pinkaew
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
- Division of Cardiology, Department of Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Uttariya Pal
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Fei Miyao
- Division of Cardiology, Department of Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hanna Huynh
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Lena Tanaka
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Ken Fujise
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA.
- Division of Cardiology, Department of Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
3
|
Malard F, Sizun C, Thureau A, Carlier L, Lescop E. Structural transitions in TCTP tumor protein upon binding to the anti-apoptotic protein family member Mcl-1. J Biol Chem 2023:104830. [PMID: 37201583 PMCID: PMC10333598 DOI: 10.1016/j.jbc.2023.104830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Translationally Controlled Tumor Protein (TCTP) serves as a pro-survival factor in tumor cells, inhibiting the mitochondrial apoptosis pathway by enhancing the function of anti-apoptotic Bcl-2 family members Mcl-1 and Bcl-xL. TCTP specifically binds to Bcl-xL, preventing Bax-dependent Bcl-xL-induced cytochrome c release, and it reduces Mcl-1 turnover by inhibiting its ubiquitination, thereby decreasing Mcl-1-mediated apoptosis. TCTP harbors a BH3-like motif that forms a β-strand buried in the globular domain of the protein. In contrast, the crystal structure of the TCTP BH3-like peptide in complex with the Bcl-2 family member Bcl-xL reveals an α-helical conformation for the BH3-like motif, suggesting significant structural changes upon complex formation. Employing biochemical and biophysical methods, including limited proteolysis, circular dichroism NMR, and SAXS, we describe the TCTP complex with the Bcl-2 homolog Mcl-1. Our findings demonstrate that full-length TCTP binds to the BH3 binding groove of Mcl-1 via its BH3-like motif, experiencing conformational exchange at the interface on a micro- to milli-second timescale. Concurrently, the TCTP globular domain becomes destabilized, transitioning into a molten-globule state. Furthermore, we establish that the non-canonical residue D16 within TCTP BH3-like motif reduces stability while enhancing the dynamics of the intermolecular interface. In conclusion, we detail the structural plasticity of TCTP and discuss its implications for partner interactions and future anticancer drug design strategies aimed at targeting TCTP complexes.
Collapse
Affiliation(s)
- Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | - Ludovic Carlier
- Laboratoire Des Biomolécules, LBM, Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Paris, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Chen L, Huan X, Jia F, Zhang Z, Bi M, Fu L, Du X, Chen X, Yan C, Jiao Q, Jiang H. Deubiquitylase OTUD3 Mediates Endoplasmic Reticulum Stress through Regulating Fortilin Stability to Restrain Dopaminergic Neurons Apoptosis. Antioxidants (Basel) 2023; 12:antiox12040809. [PMID: 37107185 PMCID: PMC10135230 DOI: 10.3390/antiox12040809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
OTU domain-containing protein 3 (OTUD3) knockout mice exhibited loss of nigral dopaminergic neurons and Parkinsonian symptoms. However, the underlying mechanisms are largely unknown. In this study, we observed that the inositol-requiring enzyme 1α (IRE1α)-induced endoplasmic reticulum (ER) stress was involved in this process. We found that the ER thickness and the expression of protein disulphide isomerase (PDI) were increased, and the apoptosis level was elevated in the dopaminergic neurons of OTUD3 knockout mice. These phenomena were ameliorated by ER stress inhibitor tauroursodeoxycholic acid (TUDCA) treatment. The ratio of p-IRE1α/IRE1α, and the expression of X-box binding protein 1-spliced (XBP1s) were remarkably increased after OTUD3 knockdown, which was inhibited by IRE1α inhibitor STF-083010 treatment. Moreover, OTUD3 regulated the ubiquitination level of Fortilin through binding with the OTU domain. OTUD3 knockdown resulted in a decrease in the interaction ability of IRE1α with Fortilin and finally enhanced the activity of IRE1α. Taken together, we revealed that OTUD3 knockout-induced injury of dopaminergic neurons might be caused by activating IRE1α signaling in ER stress. These findings demonstrated that OTUD3 played a critical role in dopaminergic neuron neurodegeneration, which provided new evidence for the multiple and tissue-dependent functions of OTUD3.
Collapse
Affiliation(s)
- Ling Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xuejie Huan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Fengju Jia
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zhen Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Lin Fu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.J.); (H.J.); Tel.: +86-532-8595-0188 (H.J.)
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- College of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Correspondence: (Q.J.); (H.J.); Tel.: +86-532-8595-0188 (H.J.)
| |
Collapse
|
5
|
Pinkaew D, Martinez-Hackert E, Jia W, King MD, Miao F, Enger NR, Silakit R, Ramana K, Chen SY, Fujise K. Fortilin interacts with TGF-β1 and prevents TGF-β receptor activation. Commun Biol 2022; 5:157. [PMID: 35197550 PMCID: PMC8866402 DOI: 10.1038/s42003-022-03112-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Fortilin is a 172-amino acid multifunctional protein present in both intra- and extracellular spaces. Although fortilin binds and regulates various cellular proteins, the biological role of extracellular fortilin remains unknown. Here we report that fortilin specifically interacts with TGF-β1 and prevents it from activating the TGF-β1 signaling pathway. In a standard immunoprecipitation-western blot assay, fortilin co-immunoprecipitates TGF-β1 and its isoforms. The modified ELISA assay shows that TGF-β1 remains complexed with fortilin in human serum. Both bio-layer interferometry and surface plasmon resonance (SPR) reveal that fortilin directly bind TGF-β1. The SPR analysis also reveals that fortilin and the TGF-β receptor II (TGFβRII) compete for TGF-β1. Both luciferase and secreted alkaline phosphatase reporter assays show that fortilin prevents TGF-β1 from activating Smad3 binding to Smad-binding element. Fortilin inhibits the phosphorylation of Smad3 in both quantitative western blot assays and ELISA. Finally, fortilin inhibits TGFβ-1-induced differentiation of C3H10T1/2 mesenchymal progenitor cells to smooth muscle cells. A computer-assisted virtual docking reveals that fortilin occupies the pocket of TGF-β1 that is normally occupied by TGFβRII and that TGF-β1 can bind either fortilin or TGFβRII at any given time. These data support the role of extracellular fortilin as a negative regulator of the TGF-β1 signaling pathway. Fortilin prevents the activation of the TGF-β1 receptor by occupying the pocket of TGF-β1 and competing with TGF-βRII to bind with TGF-β1. This inhibits Smad3 phosphorylation and the differentiation of C3H10T1/2 mesenchymal progenitor cells to smooth muscle cells.
Collapse
Affiliation(s)
- Decha Pinkaew
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Wei Jia
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA
| | - Matthew D King
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID, 83725, USA
| | - Fei Miao
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicole R Enger
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Runglawan Silakit
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Kota Ramana
- Department of Biochemistry, Noorda College of Osteopathic Medicine, Provo, UT, 84606, USA
| | - Shi-You Chen
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA
| | - Ken Fujise
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
6
|
Chunhacha P, Pinkaew D, Sinthujaroen P, Bowles DE, Fujise K. Fortilin inhibits p53, halts cardiomyocyte apoptosis, and protects the heart against heart failure. Cell Death Discov 2021; 7:310. [PMID: 34689154 PMCID: PMC8542040 DOI: 10.1038/s41420-021-00692-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/01/2023] Open
Abstract
Heart failure (HF) has reached epidemic proportions in developed countries, affecting over 20 million people worldwide. Despite modern medical and device therapies, 60–70% of HF patients still die within 5 years of diagnosis as it relentlessly progresses through pervasive apoptotic loss of cardiomyocytes. Although fortilin, a 172-amino-acid anti-p53 molecule, is one of the most expressed proteins in the heart, its precise role there has remained unknown. Also unclear is how cardiomyocytes are protected against apoptosis. Here, we report that failing human hearts express less fortilin than do non-failing hearts. We also found that mice lacking fortilin in the heart (fortilinKO-heart) die by 9 weeks of age due to extensive cardiomyocyte apoptosis and severe HF, which suggests that fortilin sustains cardiomyocyte viability. The lack of fortilin is also associated with drastic upregulation of p53 target genes in the hearts. The heart-specific deletion of p53 in fortilinKO-heart mice extends their life spans from 9 to 18 weeks by mitigating cardiomyocyte apoptosis. Our data suggest that fortilin is a novel cardiac p53 inhibitor and that its inadequate expression in failing hearts and subsequent overactivation of the p53 apoptosis pathway in cardiomyocytes exacerbates HF.
Collapse
Affiliation(s)
- Preedakorn Chunhacha
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Biochemistry and Microbiology, and Cell-based Drug and Health Product Development Research Unit (CDD), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Decha Pinkaew
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Patuma Sinthujaroen
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Dawn E Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Ken Fujise
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
7
|
Malard F, Jacquet E, Nhiri N, Sizun C, Chabrier A, Messaoudi S, Dejeu J, Betzi S, Zhang X, Thureau A, Lescop E. Revisiting the Molecular Interactions between the Tumor Protein TCTP and the Drugs Sertraline/Thioridazine. ChemMedChem 2021; 17:e202100528. [PMID: 34472703 DOI: 10.1002/cmdc.202100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/07/2022]
Abstract
TCTP protein is a pharmacological target in cancer and TCTP inhibitors such as sertraline have been evaluated in clinical trials. The direct interaction of TCTP with the drugs sertraline and thioridazine has been reported in vitro by SPR experiments to be in the ∼30-50 μM Kd range (Amson et al. Nature Med 2012), supporting a TCTP-dependent mode of action of the drugs on tumor cells. However, the molecular details of the interaction remain elusive although they are crucial to improve the efforts of on-going medicinal chemistry. In addition, TCTP can be phosphorylated by the Plk-1 kinase, which is indicative of poor prognosis in several cancers. The impact of phosphorylation on TCTP structure/dynamics and binding with therapeutical ligands remains unexplored. Here, we combined NMR, TSA, SPR, BLI and ITC techniques to probe the molecular interactions between TCTP with the drugs sertraline and thioridazine. We reveal that drug binding is much weaker than reported with an apparent ∼mM Kd and leads to protein destabilization that obscured the analysis of the published SPR data. We further demonstrate by NMR and SAXS that TCTP S46 phosphorylation does not promote tighter interaction between TCTP and sertraline. Accordingly, we question the supported model in which sertraline and thioridazine directly interact with isolated TCTP in tumor cells and discuss alternative modes of action for the drugs in light of current literature.
Collapse
Affiliation(s)
- Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Amélie Chabrier
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Samir Messaoudi
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Jérôme Dejeu
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Stéphane Betzi
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, Aix-Marseille Université, Inserm, Institut Paoli-Calmettes, 27 bd Lei Roure, 13273, Marseille CEDEX 9, France
| | - Xu Zhang
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, Aix-Marseille Université, Inserm, Institut Paoli-Calmettes, 27 bd Lei Roure, 13273, Marseille CEDEX 9, France
| | | | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Kedjarune-Leggat U, Saetan U, Khongsaengkaeo A, Suwannarat S, Deachamag P, Wonglapsuwan M, Pornprasit R, Thongkamwitoon W, Phumklai P, Chaichanan J, Chotigeat W. Biological activities of a recombinant fortilin from Fenneropenaeus merguiensis. PLoS One 2020; 15:e0239672. [PMID: 33002062 PMCID: PMC7529305 DOI: 10.1371/journal.pone.0239672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/11/2020] [Indexed: 01/27/2023] Open
Abstract
Human Fortilin, an antiapoptotic protein, has also been implicated in several diseases; however, several potential uses of fortilin have also been proposed. Bearing the implications of fortilin in mind, fortilin analog, which has no complication with diseases, is required. Since a recombinant full-length fortilin from Fenneropenaeus merguiensis (rFm-Fortilin (FL)) reported only 44% (3e-27) homologous to human fortilin, therefore the biological activities of the Fm-Fortilin (FL) and its fragments (F2, F12, and F23) were investigated for potential use against HEMA toxicity from filling cement to pulp cell. The rFm-Fortilin FL, F2, 12, and F23 were expressed and assayed for proliferation activity. The rFm-Fortilin (FL) showed proliferation activity on human dental pulp cells (HDPCs) and protected the cells from 2-hydroxy-ethyl methacrylate (HEMA) at 1-20 ng/ml. In contrast, none of the rFm-Fortilin fragments promoted HDPC growth that may be due to a lack of three conserved amino acid residues together for binding with the surface of Rab GTPase for proliferative activity. In addition, rFm-Fortilin (FL) activated mineralization and trend to suppressed production of proinflammatory cytokines, including histamine (at 10 ng/ml) and TNF-α (at 100 ng/ml). Besides, the rFm-Fortilin (FL) did not mutate the Chinese hamster ovary (CHO) cell. Therefore, the rFm-Fortilin (FL) has the potential use as a supplementary medical material to promote cell proliferation in patients suffering severe tooth decay and other conditions.
Collapse
Affiliation(s)
- Ureporn Kedjarune-Leggat
- Department of Oral Biology, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Uraipan Saetan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Anchana Khongsaengkaeo
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Sudarat Suwannarat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Panchalika Deachamag
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Monwadee Wonglapsuwan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Rawiwan Pornprasit
- Mahidol University-Bio Innovation Building, Mahidol University, Nakhon Pathom, Thailand
| | | | - Parujee Phumklai
- Mahidol University-Bio Innovation Building, Mahidol University, Nakhon Pathom, Thailand
| | - Jirapan Chaichanan
- Mahidol University-Bio Innovation Building, Mahidol University, Nakhon Pathom, Thailand
| | - Wilaiwan Chotigeat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
- * E-mail:
| |
Collapse
|
9
|
Translationally controlled tumor protein (TCTP) plays a pivotal role in cardiomyocyte survival through a Bnip3-dependent mechanism. Cell Death Dis 2019; 10:549. [PMID: 31320615 PMCID: PMC6639386 DOI: 10.1038/s41419-019-1787-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
Prevention of cardiomyocyte death is an important therapeutic strategy for heart failure. In this study, we focused on translationally controlled tumor protein (TCTP), a highly conserved protein that is expressed ubiquitously in mammalian tissues, including heart. TCTP plays pivotal roles in survival of certain cell types, but its function in cardiomyocytes has not been examined. We aimed to clarify the role of TCTP in cardiomyocyte survival and the underlying mechanism. Here, we demonstrated that downregulation of TCTP with siRNA induced cell death of cardiomyocytes with apoptotic and autophagic features, accompanied with mitochondrial permeability transition pore (mPTP) opening. TCTP loss did not induce cell death of cardiac fibroblasts. Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) was found to mediate the TCTP-loss-induced cardiomyocyte death. In exploring the clinical significance of the TCTP expression in the heart, we found that DOX treatment markedly downregulated the protein expression of TCTP in cultured cardiomyocytes and in mouse heart tissue. Exogenous rescue of TCTP expression attenuated DOX-induced cardiomyocyte death. In mice, cardiomyocyte-specific overexpression of TCTP resulted in decreased susceptibility to DOX-induced cardiac dysfunction, accompanied with attenuated induction of Bnip3. Dihydroartemisinin, a pharmacological TCTP inhibitor, induced development of heart failure and cardiomyocyte death in control mice, but not in mice with cardiomyocyte-specific TCTP overexpression. Our findings revealed TCTP has a pivotal role in cardiomyocyte survival, at least in part through a Bnip3-dependent mechanism. TCTP could be considered as a candidate therapeutic target to prevent DOX-induced heart failure.
Collapse
|
10
|
Ticagrelor induces paraoxonase-1 (PON1) and better protects hypercholesterolemic mice against atherosclerosis compared to clopidogrel. PLoS One 2019; 14:e0218934. [PMID: 31242230 PMCID: PMC6594647 DOI: 10.1371/journal.pone.0218934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
Ticagrelor (TIC), a P2Y purinoceptor 12 (P2Y12)-receptor antagonist, has been widely used to treat patients with acute coronary syndrome. Although animal studies suggest that TIC protects against atherosclerosis, it remains unknown whether it does so through its potent platelet inhibition or through other pathways. Here, we placed hypercholesterolemic Ldlr-/-Apobec1-/- mice on a high-fat diet and treated them with either 25 mg/kg/day of clopidogrel (CLO) or 180 mg/kg/day of TIC for 16 weeks and evaluated the extent of atherosclerosis. Both treatments equally inhibited platelets as determined by ex vivo platelet aggregation assays. The extent of atherosclerosis, however, was significantly less in the TIC group than in the CLO group. Immunohistochemical staining and ELISA showed that TIC treatment was associated with less macrophage infiltration to the atherosclerotic intima and lower serum levels of CCL4, CXCL10, and TNFα, respectively, than CLO treatment. Treatment with TIC, but not CLO, was associated with higher serum activity and tissue level of paraoxonase-1 (PON1), an anti-atherosclerotic molecule, suggesting that TIC might exert greater anti-atherosclerotic activity, compared with CLO, through its unique ability to induce PON1. Although further studies are needed, TIC may prove to be a viable strategy in the prevention and treatment of chronic stable human atherosclerosis.
Collapse
|
11
|
Some Biological Consequences of the Inhibition of Na,K-ATPase by Translationally Controlled Tumor Protein (TCTP). Int J Mol Sci 2018; 19:ijms19061657. [PMID: 29867020 PMCID: PMC6032315 DOI: 10.3390/ijms19061657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
Na,K-ATPase is an ionic pump that regulates the osmotic equilibrium and membrane potential of cells and also functions as a signal transducer. The interaction of Na,K-ATPase with translationally controlled tumor protein (TCTP) results, among others, in the inhibition of the former's pump activity and in the initiation of manifold biological and pathological phenomena. These phenomena include hypertension and cataract development in TCTP-overexpressing transgenic mice, as well as the induction of tumorigenesis signaling pathways and the activation of Src that ultimately leads to cell proliferation and migration. This review attempts to collate the biological effects of Na,K-ATPase and TCTP interaction and suggests that this interaction has the potential to serve as a possible therapeutic target for selected diseases.
Collapse
|
12
|
Pinkaew D, Fujise K. Fortilin: A Potential Target for the Prevention and Treatment of Human Diseases. Adv Clin Chem 2017; 82:265-300. [PMID: 28939212 DOI: 10.1016/bs.acc.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fortilin is a highly conserved 172-amino-acid polypeptide found in the cytosol, nucleus, mitochondria, extracellular space, and circulating blood. It is a multifunctional protein that protects cells against apoptosis, promotes cell growth and cell cycle progression, binds calcium (Ca2+) and has antipathogen activities. Its role in the pathogenesis of human and animal diseases is also diverse. Fortilin facilitates the development of atherosclerosis, contributes to both systemic and pulmonary arterial hypertension, participates in the development of cancers, and worsens diabetic nephropathy. It is important for the adaptive expansion of pancreatic β-cells in response to obesity and increased insulin requirement, for the regeneration of liver after hepatectomy, and for protection of the liver against alcohol- and ER stress-induced injury. Fortilin is a viable surrogate marker for in vivo apoptosis, and it plays a key role in embryo and organ development in vertebrates. In fish and shrimp, fortilin participates in host defense against bacterial and viral pathogens. Further translational research could prove fortilin to be a viable molecular target for treatment of various human diseases including and not limited to atherosclerosis, hypertension, certain tumors, diabetes mellitus, diabetic nephropathy, hepatic injury, and aberrant immunity and host defense.
Collapse
Affiliation(s)
- Decha Pinkaew
- University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ken Fujise
- University of Texas Medical Branch at Galveston, Galveston, TX, United States; The Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, United States.
| |
Collapse
|
13
|
Pinkaew D, Chattopadhyay A, King MD, Chunhacha P, Liu Z, Stevenson HL, Chen Y, Sinthujaroen P, McDougal OM, Fujise K. Fortilin binds IRE1α and prevents ER stress from signaling apoptotic cell death. Nat Commun 2017; 8:18. [PMID: 28550308 PMCID: PMC5446404 DOI: 10.1038/s41467-017-00029-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
The endoplasmic reticulum, the cytoplasmic organelle that matures a massive amount of nascent secretory polypeptides, is particularly sensitive to stress. Endoplasmic reticulum stress causes unfolded proteins to populate the organelle, eliciting the unfolded protein response. During the unfolded protein response, GRP78—an endoplasmic reticulum master stress regulator—detaches from three endoplasmic reticulum stress sensors (IRE1α, PERK, and ATF6) and allows them to activate the apoptotic signaling pathway. Fortilin, a pro-survival molecule, is known to inhibit apoptosis by binding and inhibiting p53, but its role in endoplasmic reticulum stress-induced apoptosis remains unknown. Here, we report that fortilin directly interacts with the cytoplasmic domain of IRE1α, inhibits both kinase and endoribonuclease (RNase) activities of the stress sensor, and protects cells against apoptotic cell death at both cellular and whole animal levels. Our data support a role of fortilin in the unfolded protein response and its potential participation in human diseases caused by unfolded protein response. IRE1α is an ER stress sensor, whose activity induces apoptosis. Here, the authors report that fortilin, a pro-survival factor, with yet unknown roles in ER stress, interacts with active IRE1α, inhibits both its kinase end RNase activities, and protects cells from apoptosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Decha Pinkaew
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA
| | - Abhijnan Chattopadhyay
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA
| | - Matthew D King
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho, 83725, USA
| | - Preedakorn Chunhacha
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA
| | - Zhihe Liu
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA
| | - Heather L Stevenson
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA.,The Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA
| | - Yanjie Chen
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA
| | - Patuma Sinthujaroen
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho, 83725, USA
| | - Ken Fujise
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA. .,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA. .,The Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA.
| |
Collapse
|
14
|
Function of translationally controlled tumor protein (TCTP) in Eudrilus eugeniae regeneration. PLoS One 2017; 12:e0175319. [PMID: 28403226 PMCID: PMC5389791 DOI: 10.1371/journal.pone.0175319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/23/2017] [Indexed: 01/07/2023] Open
Abstract
TCTP (Translationally Controlled Tumour Protein) is a multifunctional protein that plays a role in the development, immune system, tumour reversion, and maintenance of stem cells. The mRNA of the Tpt1 gene is over-expressed during liver regeneration. But, the function of the protein in regeneration is not known. To study the role of the protein in regeneration, the earthworm Eudrilus eugeniae was chosen. First, the full length cDNA of the Tpt1 gene was sequenced. The size of the cDNA is 504 bp and the protein has 167 amino acids. The highest level of TCTP expression was documented in the worm after three days of regeneration. The protein was found to be expressed specifically in the epithelial layer of the skin. During regeneration, the protein expression was found to be the highest at the tip of blastema. The pharmacological suppression of TCTP using nutlin-3 and TCTP RNAi experiments resulted in the failure of the regeneration process. The suppression of TCTP caused the arrest of proliferation in posterior amputated worms. The severe cell death was documented in the amputated region of nutlin-3 injected worm. The silencing of TCTP has blocked the modification of clitellar segments. The experiments confirm that TCTP has major functions in the upstream signalling of cell proliferation in the early regeneration process in E. eugeniae.
Collapse
|
15
|
Bommer UA, Vine KL, Puri P, Engel M, Belfiore L, Fildes K, Batterham M, Lochhead A, Aghmesheh M. Translationally controlled tumour protein TCTP is induced early in human colorectal tumours and contributes to the resistance of HCT116 colon cancer cells to 5-FU and oxaliplatin. Cell Commun Signal 2017; 15:9. [PMID: 28143584 PMCID: PMC5286767 DOI: 10.1186/s12964-017-0164-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background Translationally controlled tumour protein TCTP is an anti-apoptotic protein frequently overexpressed in cancers, where high levels are often associated with poor patient outcome. TCTP may be involved in protecting cancer cells against the cytotoxic action of anti-cancer drugs. Here we study the early increase of TCTP levels in human colorectal cancer (CRC) and the regulation of TCTP expression in HCT116 colon cancer cells, in response to treatment with the anti-cancer drugs 5-FU and oxaliplatin. Methods Using immunohistochemistry, we assessed TCTP levels in surgical samples from adenomas and adenocarcinomas of the colon, compared to normal colon tissue. We also studied the regulation of TCTP in HCT116 colon cancer cells in response to 5-FU and oxaliplatin by western blotting. TCTP mRNA levels were assessed by RT-qPCR. We used mTOR kinase inhibitors to demonstrate mTOR-dependent translational regulation of TCTP under these conditions. Employing the Real-Time Cell Analysis (RTCA) System and the MTS assay, we investigated the effect of TCTP-knockdown on the sensitivity of HCT116 cells to the anti-cancer drugs 5-FU and oxaliplatin. Results 1. TCTP levels are significantly increased in colon adenomas and adenocarcinomas, compared to normal colon tissue. 2. TCTP protein levels are about 4-fold upregulated in HCT116 colon cancer cells, in response to 5-FU and oxaliplatin treatment, whereas TCTP mRNA levels are down regulated. 3. mTOR kinase inhibitors prevented the up-regulation of TCTP protein, indicating that TCTP is translationally regulated through the mTOR complex 1 signalling pathway under these conditions. 4. Using two cellular assay systems, we demonstrated that TCTP-knockdown sensitises HCT116 cells to the cytotoxicity caused by 5-FU and oxaliplatin. Conclusions Our results demonstrate that TCTP levels increase significantly in the early stages of CRC development. In colon cancer cells, expression of this protein is largely upregulated during treatment with the DNA-damaging anti-cancer drugs 5-FU and oxaliplatin, as part of the cellular stress response. TCTP may thus contribute to the development of anti-cancer drug resistance. These findings indicate that TCTP might be suitable as a biomarker and that combinatorial treatment using 5-FU/oxaliplatin, together with mTOR kinase inhibitors, could be a route to preventing the development of resistance to these drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12964-017-0164-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia. .,Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - Kara L Vine
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Prianka Puri
- Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Present address: Southeast Sydney Illawarra Area Health Services, Sydney, NSW, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Lisa Belfiore
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Karen Fildes
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Marijka Batterham
- School of Mathematics and Applied Statistics, Faculty of Engineering and Information Sciences University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Alistair Lochhead
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Southern IML Pathology Wollongong, 2500, Wollongong, NSW, Australia.,Present address: Syd-Path, St. Vincent's Hospital Darlinghurst, Sydney, 2010, NSW, Australia
| | - Morteza Aghmesheh
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Illawarra Cancer Care Centre, The Wollongong Hospital, Wollongong, 2500, NSW, Australia
| |
Collapse
|
16
|
Assrir N, Malard F, Lescop E. Structural Insights into TCTP and Its Interactions with Ligands and Proteins. Results Probl Cell Differ 2017; 64:9-46. [PMID: 29149402 DOI: 10.1007/978-3-319-67591-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 19-24 kDa Translationally Controlled Tumor Protein (TCTP) is involved in a wide range of molecular interactions with biological and nonbiological partners of various chemical compositions such as proteins, peptides, nucleic acids, carbohydrates, or small molecules. TCTP is therefore an important and versatile binding platform. Many of these protein-protein interactions have been validated, albeit only few received an in-depth structural characterization. In this chapter, we will focus on the structural analysis of TCTP and we will review the available literature regarding its interaction network from a structural perspective.
Collapse
Affiliation(s)
- Nadine Assrir
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
17
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
18
|
Fortilin potentiates the peroxidase activity of Peroxiredoxin-1 and protects against alcohol-induced liver damage in mice. Sci Rep 2016; 6:18701. [PMID: 26726832 PMCID: PMC4698670 DOI: 10.1038/srep18701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/24/2015] [Indexed: 01/06/2023] Open
Abstract
Fortilin, a pro-survival molecule, inhibits p53-induced apoptosis by binding to the
sequence-specific DNA-binding domain of the tumor suppressor protein and preventing
it from transcriptionally activating Bax. Intriguingly, fortilin protects cells
against ROS-induced cell death, independent of p53. The signaling pathway through
which fortilin protects cells against ROS-induced cell death, however, is unknown.
Here we report that fortilin physically interacts with the antioxidant enzyme
peroxiredoxin-1 (PRX1), protects it from proteasome-mediated degradation, and keeps
it enzymatically active by blocking its deactivating phosphorylation by Mst1, a
serine/threonine kinase. At the whole animal level, the liver-specific
overexpression of fortilin reduced PRX1 phosphorylation in the liver, enhanced PRX1
activity, and protected the transgenic animals against alcohol-induced,
ROS-mediated, liver damage. These data suggest the presence of a novel
oxidative-stress-handling pathway where the anti-p53 molecule fortilin augments the
peroxidase PRX1 by protecting it against degradation and inactivation of the enzyme.
Fortilin-PRX1 interaction in the liver could be clinically exploited further to
prevent acute alcohol-induced liver damage in humans.
Collapse
|
19
|
Bommer UA, Iadevaia V, Chen J, Knoch B, Engel M, Proud CG. Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway. Cell Signal 2015; 27:1557-68. [PMID: 25936523 DOI: 10.1016/j.cellsig.2015.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/21/2022]
Abstract
Translationally controlled tumour protein TCTP (gene symbol: TPT1) is a highly-conserved, cyto-protective protein implicated in many physiological and disease processes, in particular cancer, where it is associated with poor patient outcomes. To understand the mechanisms underlying the accumulation of high TCTP levels in cancer cells, we studied the signalling pathways that control translation of TCTP mRNA, which contains a 5'-terminal oligopyrimidine tract (5'-TOP). In HT29 colon cancer cells and in HeLa cells, serum increases the expression of TCTP two- and four-fold, respectively, and this is inhibited by rapamycin or mTOR kinase inhibitors. Polysome profiling and mRNA quantification indicate that these effects occur at the level of mRNA translation. Blocking this pathway upstream of mTOR complex 1 (mTORC1) by inhibiting Akt also prevented increases in TCTP levels in both HeLa and HT29 colon cancer cells, whereas knockout of TSC2, a negative regulator of mTORC1, led to derepression of TCTP synthesis under serum starvation. Overexpression of eIF4E enhanced the polysomal association of the TCTP mRNA, although it did not protect its translation from inhibition by rapamycin. Conversely, expression of a constitutively-active mutant of the eIF4E inhibitor 4E-BP1, which is normally inactivated by mTORC1, inhibited TCTP mRNA translation in HEK293 cells. Our results demonstrate that TCTP mRNA translation is regulated by signalling through the PI3-K/Akt/mTORC1 pathway. This explains why TCTP levels are frequently increased in cancers, since mTORC1 signalling is hyperactive in ~80% of tumours.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia; Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522 NSW, Australia.
| | | | - Jiezhong Chen
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | - Bianca Knoch
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | | |
Collapse
|
20
|
Dixit U, Pandey AK, Liu Z, Kumar S, Neiditch MB, Klein KM, Pandey VN. FUSE Binding Protein 1 Facilitates Persistent Hepatitis C Virus Replication in Hepatoma Cells by Regulating Tumor Suppressor p53. J Virol 2015; 89:7905-7921. [PMID: 25995247 PMCID: PMC4505638 DOI: 10.1128/jvi.00729-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/14/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) is a leading cause of chronic hepatitis C (CHC), liver cirrhosis, and hepatocellular carcinoma (HCC). Immunohistochemistry of archived HCC tumors showed abundant FBP1 expression in HCC tumors with the CHC background. Oncomine data analysis of normal versus HCC tumors with the CHC background indicated a 4-fold increase in FBP1 expression with a concomitant 2.5-fold decrease in the expression of p53. We found that FBP1 promotes HCV replication by inhibiting p53 and regulating BCCIP and TCTP, which are positive and negative regulators of p53, respectively. The severe inhibition of HCV replication in FBP1-knockdown Huh7.5 cells was restored to a normal level by downregulation of either p53 or BCCIP. Although p53 in Huh7.5 cells is transcriptionally inactive as a result of Y220C mutation, we found that the activation and DNA binding ability of Y220C p53 were strongly suppressed by FBP1 but significantly activated upon knockdown of FBP1. Transient expression of FBP1 in FBP1 knockdown cells fully restored the control phenotype in which the DNA binding ability of p53 was strongly suppressed. Using electrophoretic mobility shift assay (EMSA) and isothermal titration calorimetry (ITC), we found no significant difference in in vitro target DNA binding affinity of recombinant wild-type p53 and its Y220C mutant p53. However, in the presence of recombinant FBP1, the DNA binding ability of p53 is strongly inhibited. We confirmed that FBP1 downregulates BCCIP, p21, and p53 and upregulates TCTP under radiation-induced stress. Since FBP1 is overexpressed in most HCC tumors with an HCV background, it may have a role in promoting persistent virus infection and tumorigenesis. IMPORTANCE It is our novel finding that FUSE binding protein 1 (FBP1) strongly inhibits the function of tumor suppressor p53 and is an essential host cell factor required for HCV replication. Oncomine data analysis of a large number of samples has revealed that overexpression of FBP1 in most HCC tumors with chronic hepatitis C is significantly linked with the decreased expression level of p53. The most significant finding is that FBP1 not only physically interacts with p53 and interferes with its binding to the target DNA but also functions as a negative regulator of p53 under cellular stress. FBP1 is barely detectable in normal differentiated cells; its overexpression in HCC tumors with the CHC background suggests that FBP1 has an important role in promoting HCV infection and HCC tumors by suppressing p53.
Collapse
Affiliation(s)
- Updesh Dixit
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, New Jersey, USA
| | - Ashutosh K Pandey
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, New Jersey, USA
| | - Zhihe Liu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, New Jersey, USA
| | - Sushil Kumar
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, New Jersey, USA
| | - Matthew B Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, New Jersey, USA
| | - Kenneth M Klein
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, New Jersey, USA
| | - Virendra N Pandey
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
21
|
Wu H, Gong W, Yao X, Wang J, Perrett S, Feng Y. Evolutionarily conserved binding of translationally controlled tumor protein to eukaryotic elongation factor 1B. J Biol Chem 2015; 290:8694-710. [PMID: 25635048 DOI: 10.1074/jbc.m114.628594] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 11/06/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP.
Collapse
Affiliation(s)
- Huiwen Wu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Gong
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Xingzhe Yao
- the University of Chinese Academy of Sciences, Beijing 100049, China the Qingdao Engineering Laboratory of Single Cell Oil and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, and
| | - Jinfeng Wang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101
| | - Sarah Perrett
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101,
| | - Yingang Feng
- the Qingdao Engineering Laboratory of Single Cell Oil and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, and
| |
Collapse
|
22
|
Dixit U, Liu Z, Pandey AK, Kothari R, Pandey VN. Fuse binding protein antagonizes the transcription activity of tumor suppressor protein p53. BMC Cancer 2014; 14:925. [PMID: 25487856 PMCID: PMC4295397 DOI: 10.1186/1471-2407-14-925] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/01/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND FUSE binding protein1 (FBP1) is a transactivator of transcription of human c-myc proto-oncogene and expressed mainly in undifferentiated cells. It is also present in differentiated normal cells albeit with very low background. FBP1 is abundantly expressed in the majority of hepatocellular carcinoma tumors and has been implicated in tumor development. Although it down-regulates the expression of proapoptotic p21 protein, it is not known whether FBP1 also interacts and antagonizes the function of tumor suppressor protein p53. METHODS Western blotting was carried out to detect the expression level of FBP1, p21 and p53, and also p53 regulatory factors, BCCIP and TCTP; real-time quantitative PCR was done to determine the fold change in mRNA levels of target proteins; immunoprecipitation was carried out to determine the interaction of FBP1 with p53, BCCIP and TCTP. Cells stably knockdown for either FBP1; p53 or BCCIP were examined for p53 reporter activity under normal and radiation-induced stress. RESULTS FBP1 physically interacted with p53, impairing its transcription activity and reducing p53-mediated sensitivity to cellular stress. Knockdown of FBP1 expression activated p53-mediated response to cellular stress while transient expression of FBP1 in FBP-knockdown cells restored the inhibition of p53 activity. FBP1 not only interacted with both BCCIP and TCTP, which, respectively, function as positive and negative regulators of p53, but also regulated their expression under cellular stress. In FBP knockdown cells, TCTP expression was down-regulated under radiation-induced stress whereas expression of BCCIP and p21 were significantly up-regulated suggesting FBP1 as a potential regulator of these proteins. We hypothesize that the FBP1-mediated suppression of p53 activity may occur via preventing the interaction of p53 with BCCIP as well as by FBP1-mediated regulation of p53 regulatory proteins, TCTP and BCCIP. Since FBP1 suppresses p53 activity and is overexpressed in most HCC tumors, it may have a possible role in tumorigenesis. CONCLUSION FBP1 physically interacts with p53, functions as a regulator of p53-regulatory proteins (TCTP and BCCIP), and suppresses p53 transactivation activity under radiation-induced cellular stress. Since it is abundantly expressed in most HCC tumors, it may have implication in tumorigenesis and thus may be a possible target for drug development.
Collapse
Affiliation(s)
- Updesh Dixit
- />Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Zhihe Liu
- />Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220 China
| | - Ashutosh K Pandey
- />Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Ramesh Kothari
- />Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Virendra N Pandey
- />Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103 USA
| |
Collapse
|
23
|
Sinthujaroen P, Wanachottrakul N, Pinkaew D, Petersen JR, Phongdara A, Sheffield-Moore M, Fujise K. Elevation of serum fortilin levels is specific for apoptosis and signifies cell death in vivo. BBA CLINICAL 2014; 2:103-111. [PMID: 25558447 PMCID: PMC4280861 DOI: 10.1016/j.bbacli.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Billions of cells undergo apoptosis each day in the average normal adult. The ability to readily assess the degree of apoptosis in human diseases is hampered by the lack of sensitive and specific serum biomarkers of apoptosis. Fortilin is a novel prosurvival molecule that protects cells against various noxious stimuli. While fortilin is secreted into the extracellular space under certain conditions, the relationship between the serum concentration of fortilin and the presence and extent of apoptosis in vivo remains unknown. Methods & results Using a newly developed fortilin ELISA system, we show here that fortilin exists in the normal human and mouse circulation. We further demonstrate that fortilin serum levels are significantly elevated in patients with solid cancer, in response to anti-cancer chemo- or radiation therapy. The elevation of fortilin serum levels is more robust and sensitive than that of such previously-reported serum biomarkers of apoptosis as fragmented cytokeratin-18, cytochrome c, and nucleosomal DNA. In addition, targeted apoptotic liver damage induced by Jo2 anti-Fas (CD95) antibody consistently and significantly increased serum fortilin levels in C57BL/6J mice. Finally, when challenged by anti-human-Fas IgM antibody, Jurkat leukemic T cells apoptosed and released fortilin into the medium before plasma membrane integrity was compromised. Conclusions Taken together, these data suggest that serum fortilin levels reflect the degree and extent of apoptosis occurring in vivo. General significance Fortilin is a viable serum biomarker of in vivo apoptosis and can be utilized to noninvasively assess the status of in vivo apoptosis in humans. Ultra-sensitive fortilin ELISA has been developed. Fortilin circulates in blood. Fortilin serum levels become highly elevated after apoptosis-inducing therapy. Fortilin is more robust and sensitive than other serum apoptosis markers. Fortilin is actively secreted before plasma membrane becomes disrupted. Fortilin is an excellent serum biomarker of in vivo apoptosis.
Collapse
Affiliation(s)
- Patuma Sinthujaroen
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, TX 77555, USA
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Thailand
| | - Nattaporn Wanachottrakul
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, TX 77555, USA
| | - Decha Pinkaew
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, TX 77555, USA
| | - John R. Petersen
- Department of Pathology, University of Texas Medical Branch at Galveston, TX 77555, USA
| | - Amornrat Phongdara
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Thailand
| | - Melinda Sheffield-Moore
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Medical Branch at Galveston, TX 77555, USA
| | - Ken Fujise
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, TX 77555, USA
- Corresponding author at: Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, Suite JSA5.106G, Galveston, TX 77555, USA. Tel.: + 1 409 772 4885; fax: + 1 409 419 1777.
| |
Collapse
|
24
|
Ashiru O, Howe JD, Butters TD. Nitazoxanide, an antiviral thiazolide, depletes ATP-sensitive intracellular Ca(2+) stores. Virology 2014; 462-463:135-48. [PMID: 24971706 DOI: 10.1016/j.virol.2014.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/01/2014] [Accepted: 05/14/2014] [Indexed: 12/31/2022]
Abstract
Nitazoxanide (NTZ) inhibits influenza, Japanese encephalitis, hepatitis B and hepatitis C virus replication but effects on the replication of other members of the Flaviviridae family has yet to be defined. The pestivirus bovine viral diarrhoea virus (BVDV) is a surrogate model for HCV infection and NTZ induced PKR and eIF2α phosphorylation in both uninfected and BVDV-infected cells. This led to the observation that NTZ depletes ATP-sensitive intracellular Ca(2+) stores. In addition to PKR and eIF2α phosphorylation, consequences of NTZ-mediated Ca(2+) mobilisation included induction of chronic sub-lethal ER stress as well as perturbation of viral protein N-linked glycosylation and trafficking. To adapt to NTZ-mediated ER stress, NTZ treated cells upregulated translation of Ca(2+)-binding proteins, including the ER chaperone Bip and the cytosolic pro-survival and anti-viral protein TCTP. Depletion of intracellular Ca(2+) stores is the primary consequence of NTZ treatment and is likely to underpin all antiviral mechanisms attributed to the thiazolide.
Collapse
Affiliation(s)
- Omodele Ashiru
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, UK.
| | - Jonathon D Howe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, UK.
| | - Terry D Butters
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, UK.
| |
Collapse
|
25
|
Acunzo J, Baylot V, So A, Rocchi P. TCTP as therapeutic target in cancers. Cancer Treat Rev 2014; 40:760-9. [PMID: 24650927 DOI: 10.1016/j.ctrv.2014.02.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/07/2023]
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved protein present in eukaryotic organisms. This protein, located both in the cytoplasmic and the nucleus, is expressed in various tissues and is regulated in response to a wide range of extracellular stimuli. TCTP interacts with itself and other protein including MCL1 and p53. TCTP has been shown to play an important role in physiological events, such as cell proliferation, cell death and immune responses but also in stress response and tumor reversion. Moreover, TCTP expression is associated with malignancy and chemoresistance. In this review, we will evaluate pathways regulated by TCTP and current inhibitory strategy to target TCTP in cancerous diseases.
Collapse
Affiliation(s)
- Julie Acunzo
- (a)Inserm, U1068, CRCM, Marseille F-13009, France; (b)Institut Paoli-Calmettes, Marseille F-13009, France; (c)Aix-Marseille Univ., Marseille F-13284, France; (d)CNRS, UMR7258, Marseille F-13009, France
| | - Virginie Baylot
- (a)Inserm, U1068, CRCM, Marseille F-13009, France; (b)Institut Paoli-Calmettes, Marseille F-13009, France; (c)Aix-Marseille Univ., Marseille F-13284, France; (d)CNRS, UMR7258, Marseille F-13009, France
| | - Alan So
- (e)University of British Columbia, The Vancouver Prostate Centre 2660- Oak St Vancouver, BC V6H3Z6, Canada
| | - Palma Rocchi
- (a)Inserm, U1068, CRCM, Marseille F-13009, France; (b)Institut Paoli-Calmettes, Marseille F-13009, France; (c)Aix-Marseille Univ., Marseille F-13284, France; (d)CNRS, UMR7258, Marseille F-13009, France.
| |
Collapse
|
26
|
Pinkaew D, Le RJ, Chen Y, Eltorky M, Teng BB, Fujise K. Fortilin reduces apoptosis in macrophages and promotes atherosclerosis. Am J Physiol Heart Circ Physiol 2013; 305:H1519-29. [PMID: 24043250 DOI: 10.1152/ajpheart.00570.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atherosclerosis, a deadly disease insufficiently addressed by cholesterol-lowering drugs, needs new therapeutic strategies. Fortilin, a 172-amino acid multifunctional polypeptide, binds p53 and blocks its transcriptional activation of Bax, thereby exerting potent antiapoptotic activity. Although fortilin-overexpressing mice reportedly exhibit hypertension and accelerated atherosclerosis, it remains unknown if fortilin, not hypertension, facilitates atherosclerosis. Our objective was to test the hypothesis that fortilin in and of itself facilitates atherosclerosis by protecting macrophages against apoptosis. We generated fortilin-deficient (fortilin(+/-)) mice and wild-type counterparts (fortilin(+/+)) on a LDL receptor (Ldlr)(-/-) apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (Apobec1)(-/-) hypercholesterolemic genetic background, incubated them for 10 mo on a normal chow diet, and assessed the degree and extent of atherosclerosis. Despite similar blood pressure and lipid profiles, fortilin(+/-) mice exhibited significantly less atherosclerosis in their aortae than their fortilin(+/+) littermate controls. Quantitative immunostaining and flow cytometry analyses showed that the atherosclerotic lesions of fortilin(+/-) mice contained fewer macrophages than those of fortilin(+/+) mice. In addition, there were more apoptotic cells in the intima of fortilin(+/-) mice than in the intima of fortilin(+/+) mice. Furthermore, peritoneal macrophages from fortilin(+/-) mice expressed more Bax and underwent increased apoptosis, both at the baseline level and in response to oxidized LDL. Finally, hypercholesterolemic sera from Ldlr(-/-)Apobec1(-/-) mice induced fortilin in peritoneal macrophages more robustly than sera from control mice. In conclusion, fortilin, induced in the proatherosclerotic microenvironment in macrophages, protects macrophages against Bax-induced apoptosis, allows them to propagate, and accelerates atherosclerosis. Anti-fortilin therapy thus may represent a promising next generation antiatherosclerotic therapeutic strategy.
Collapse
Affiliation(s)
- Decha Pinkaew
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | |
Collapse
|
27
|
Hong Q, Hsu LJ, Chou PY, Chou YT, Lu CY, Chen YA, Chang NS. Self-aggregating TIAF1 in lung cancer progression. TRANSLATIONAL RESPIRATORY MEDICINE 2013; 1:5. [PMID: 27234387 PMCID: PMC6733429 DOI: 10.1186/2213-0802-1-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 02/19/2013] [Indexed: 11/10/2022]
Abstract
Recent studies have demonstrated that transforming growth factor beta (TGF-β1)-induced antiapoptotic factor (TIAF1) is able to form aggregates in the hippocampi of middle-aged normal individuals. The aggregating TIAF1 induces generation of amyloid beta (Aβ) for causing neurodegeneration. Intriguingly, TIAF1 aggregates are shown, together with Smad4 and Aβ, in the cancer stroma and peritumor capsules of many solid tumors. During lung cancer progression, for example, TIAF1 and amyloid fibrils are significantly upregulated in the cancer stroma. Aggregates of TIAF1 and Aβ are shown on the interface between metastatic lung cancer cells and the brain tissues. Conceivably, these peritumor materials are needed for cancer cells to survive. In vitro experiments revealed that TIAF1 is a crucial component for tumor suppressors p53 and WWOX-mediated tumor suppression and apoptosis. While metastatic lung cancer cells are frequently devoid of WWOX and p53, we provide new perspectives regarding the role of TIAF1 in the pathogenesis of lung cancer development, and propose a therapeutic approach for targeting TIAF1.
Collapse
Affiliation(s)
- Qunying Hong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, Peoples' Republic China
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Pei-Yi Chou
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ying-Tsen Chou
- Institute of Basic Medical Science, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chen-Yu Lu
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yu-An Chen
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan. .,Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan. .,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, USA. .,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
28
|
Doan HQ, Gulati N, Levis WR. Ingenol mebutate: potential for further development of cancer immunotherapy. J Drugs Dermatol 2012; 11:1156-1157. [PMID: 23134979 PMCID: PMC4283592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ingenol mebutate is a diterpene ester derived from the plant Euphorbia peplus and is FDA approved for the topical treatment of actinic keratoses (AK). Shown to be efficacious with as little as a 3-day trial, this compound is being further tested for the topical treatment of other nonmelanoma skin cancers with promising preclinical data. In an effort to elucidate the molecular mechanism of this novel drug, Stahlhut et al. (2012) suggest a role for calcium and apoptosis. Further studies are needed to evaluate the intracellular mechanisms of ingenol mebutate-mediated cytotoxicity. Additionally, studies such as this not only shed light on the mechanism of ingenol mebutate and its derivatives, but also pave the way for evaluating the involvement of the immune system in eliminating drug-treated cells and tissues. This has important implications for the development of novel topical immune modulatory products and the field of topical immunotherapy.
Collapse
Affiliation(s)
- Hung Q Doan
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
29
|
Funston G, Goh W, Wei SJ, Tng QS, Brown C, Jiah Tong L, Verma C, Lane D, Ghadessy F. Binding of Translationally Controlled Tumour Protein to the N-terminal domain of HDM2 is inhibited by nutlin-3. PLoS One 2012; 7:e42642. [PMID: 22912717 PMCID: PMC3418249 DOI: 10.1371/journal.pone.0042642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/10/2012] [Indexed: 11/18/2022] Open
Abstract
Translationally Controlled Tumour Protein (TCTP), a highly conserved protein present in all eukaryotic organisms, has a number of intracellular and extracellular functions including an anti-apoptotic role. TCTP was recently shown to interact with both p53 and HDM2, inhibiting auto-ubiquitination of the latter and thereby promoting p53 degradation. In this study, we further investigated the interaction between TCTP and HDM2, mapping the reciprocal binding sites of TCTP and HDM2. TCTP primarily interacts with the N-terminal, p53-binding region of HDM2 through its highly basic domain 2. Furthermore, we discovered that Nutlin-3, a small molecule known to promote apoptosis and cell cycle arrest by blocking binding between HDM2 and p53, has a similar inhibitory effect on the interaction of HDM2 and TCTP. This result may provide an additional explanation of how Nutlin-derived compounds currently in clinical trials function to promote apoptosis in cancer cells.
Collapse
Affiliation(s)
- Garth Funston
- School of Clinical Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | | | | | | | | | - Loh Jiah Tong
- Bioinformatics Institute (A*STAR), Singapore, Singapore
| | - Chandra Verma
- Bioinformatics Institute (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|