1
|
Yokomizo-Goto M, Takenaka-Ninagawa N, Zhao C, Bourgeois Yoshioka CK, Miki M, Motoike S, Inada Y, Zujur D, Theoputra W, Jin Y, Toguchida J, Ikeya M, Sakurai H. Distinct muscle regenerative capacity of human induced pluripotent stem cell-derived mesenchymal stromal cells in Ullrich congenital muscular dystrophy model mice. Stem Cell Res Ther 2024; 15:340. [PMID: 39370505 PMCID: PMC11457425 DOI: 10.1186/s13287-024-03951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Ullrich congenital muscular dystrophy (UCMD) is caused by a deficiency in type 6 collagen (COL6) due to mutations in COL6A1, COL6A2, or COL6A3. COL6 deficiency alters the extracellular matrix structure and biomechanical properties, leading to mitochondrial defects and impaired muscle regeneration. Therefore, mesenchymal stromal cells (MSCs) that secrete COL6 have attracted attention as potential therapeutic targets. Various tissue-derived MSCs exert therapeutic effects in various diseases. However, no reports have compared the effects of MSCs of different origins on UCMD pathology. METHODS To evaluate which MSC population has the highest therapeutic efficacy for UCMD, in vivo (transplantation of MSCs to Col6a1-KO/NSG mice) and in vitro experiments (muscle stem cell [MuSCs] co-culture with MSCs) were conducted using adipose tissue-derived MSCs, bone marrow-derived MSCs, and xeno-free-induced iPSC-derived MSCs (XF-iMSCs). RESULTS In transplantation experiments on Col6a1-KO/NSG mice, the group transplanted with XF-iMSCs showed significantly enhanced muscle fiber regeneration compared to the other groups 1 week after transplantation. At 12 weeks after transplantation, only the XF-iMSCs transplantation group showed a significantly larger muscle fiber diameter than the other groups without inducing fibrosis, which was observed in the other transplantation groups. Similarly, in co-culture experiments, XF-iMSCs were found to more effectively promote the fusion and differentiation of MuSCs derived from Col6a1-KO/NSG mice than the other primary MSCs investigated in this study. Additionally, in vitro knockdown and supplementation experiments suggested that the IGF2 secreted by XF-iMSCs promoted MuSC differentiation. CONCLUSION XF-iMSCs are promising candidates for promoting muscle regeneration while avoiding fibrosis, offering a safer and more effective therapeutic approach for UCMD than other potential therapies.
Collapse
Affiliation(s)
- Megumi Yokomizo-Goto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Chengzhu Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Clémence Kiho Bourgeois Yoshioka
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Mayuho Miki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Souta Motoike
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yoshiko Inada
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Denise Zujur
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - William Theoputra
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yonghui Jin
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Junya Toguchida
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
2
|
Gregory CA, Ma J, Lomeli S. The coordinated activities of collagen VI and XII in maintenance of tissue structure, function and repair: evidence for a physical interaction. Front Mol Biosci 2024; 11:1376091. [PMID: 38606288 PMCID: PMC11007232 DOI: 10.3389/fmolb.2024.1376091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
Collagen VI and collagen XII are structurally complex collagens of the extracellular matrix (ECM). Like all collagens, type VI and XII both possess triple-helical components that facilitate participation in the ECM network, but collagen VI and XII are distinct from the more abundant fibrillar collagens in that they also possess arrays of structurally globular modules with the capacity to propagate signaling to attached cells. Cell attachment to collagen VI and XII is known to regulate protective, proliferative or developmental processes through a variety of mechanisms, but a growing body of genetic and biochemical evidence suggests that at least some of these phenomena may be potentiated through mechanisms that require coordinated interaction between the two collagens. For example, genetic studies in humans have identified forms of myopathic Ehlers-Danlos syndrome with overlapping phenotypes that result from mutations in either collagen VI or XII, and biochemical and cell-based studies have identified accessory molecules that could form bridging interactions between the two collagens. However, the demonstration of a direct or ternary structural interaction between collagen VI or XII has not yet been reported. This Hypothesis and Theory review article examines the evidence that supports the existence of a functional complex between type VI and XII collagen in the ECM and discusses potential biological implications.
Collapse
Affiliation(s)
- Carl A. Gregory
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX, United States
| | | | | |
Collapse
|
3
|
Wolf CL, Pruett C, Lighter D, Jorcyk CL. The clinical relevance of OSM in inflammatory diseases: a comprehensive review. Front Immunol 2023; 14:1239732. [PMID: 37841259 PMCID: PMC10570509 DOI: 10.3389/fimmu.2023.1239732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine involved in a variety of inflammatory responses such as wound healing, liver regeneration, and bone remodeling. As a member of the interleukin-6 (IL-6) family of cytokines, OSM binds the shared receptor gp130, recruits either OSMRβ or LIFRβ, and activates a variety of signaling pathways including the JAK/STAT, MAPK, JNK, and PI3K/AKT pathways. Since its discovery in 1986, OSM has been identified as a significant contributor to a multitude of inflammatory diseases, including arthritis, inflammatory bowel disease, lung and skin disease, cardiovascular disease, and most recently, COVID-19. Additionally, OSM has also been extensively studied in the context of several cancer types including breast, cervical, ovarian, testicular, colon and gastrointestinal, brain,lung, skin, as well as other cancers. While OSM has been recognized as a significant contributor for each of these diseases, and studies have shown OSM inhibition is effective at treating or reducing symptoms, very few therapeutics have succeeded into clinical trials, and none have yet been approved by the FDA for treatment. In this review, we outline the role OSM plays in a variety of inflammatory diseases, including cancer, and outline the previous and current strategies for developing an inhibitor for OSM signaling.
Collapse
Affiliation(s)
- Cody L. Wolf
- Department of Biomolecular Sciences, Boise State University, Boise, ID, United States
| | - Clyde Pruett
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Darren Lighter
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Cheryl L. Jorcyk
- Department of Biomolecular Sciences, Boise State University, Boise, ID, United States
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| |
Collapse
|
4
|
Impact of Liver Inflammation on Bile Acid Side Chain Shortening and Amidation. Cells 2022; 11:cells11243983. [PMID: 36552746 PMCID: PMC9777420 DOI: 10.3390/cells11243983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Bile acid (BA) synthesis from cholesterol by hepatocytes is inhibited by inflammatory cytokines. Whether liver inflammation also affects BA side chain shortening and conjugation was investigated. In human liver cell lines (IHH, HepG2, and HepaRG), agonists of nuclear receptors including the farnesoid X receptor (FXR), liver X receptor (LXR), and peroxisome proliferator-activated receptors (PPARs) did not affect the expression of BA-related peroxisomal enzymes. In contrast, hepatocyte nuclear factor 4α (HNF4α) inhibition down-regulated acyl-CoA oxidase 2 (ACOX2). ACOX2 was repressed by fibroblast growth factor 19 (FGF19), which was prevented by extracellular signal-regulated kinase (ERK) pathway inhibition. These changes were paralleled by altered BA synthesis (HPLC-MS/MS). Cytokines able to down-regulate cholesterol-7α-hydroxylase (CYP7A1) had little effect on peroxisomal enzymes involved in BA synthesis except for ACOX2 and bile acid-CoA:amino acid N-acyltransferase (BAAT), which were down-regulated, mainly by oncostatin M (OSM). This effect was prevented by Janus kinase (JAK) inhibition, which restored BA side chain shortening and conjugation. The binding of OSM to the extracellular matrix accounted for a persistent effect after culture medium replacement. In silico analysis of four databases (n = 201) and a validation cohort (n = 90) revealed an inverse relationship between liver inflammation and ACOX2/BAAT expression which was associated with changes in HNF4α levels. In conclusion, BA side chain shortening and conjugation are inhibited by inflammatory effectors. However, other mechanisms involved in BA homeostasis counterbalance any significant impact on the serum BA profile.
Collapse
|
5
|
Takenaka-Ninagawa N, Kim J, Zhao M, Sato M, Jonouchi T, Goto M, Yoshioka CKB, Ikeda R, Harada A, Sato T, Ikeya M, Uezumi A, Nakatani M, Noguchi S, Sakurai H. Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice. Stem Cell Res Ther 2021; 12:446. [PMID: 34372931 PMCID: PMC8351132 DOI: 10.1186/s13287-021-02514-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) function as supportive cells on skeletal muscle homeostasis through several secretory factors including type 6 collagen (COL6). Several mutations of COL6A1, 2, and 3 genes cause Ullrich congenital muscular dystrophy (UCMD). Skeletal muscle regeneration deficiency has been reported as a characteristic phenotype in muscle biopsy samples of human UCMD patients and UCMD model mice. However, little is known about the COL6-dependent mechanism for the occurrence and progression of the deficiency. The purpose of this study was to clarify the pathological mechanism of UCMD by supplementing COL6 through cell transplantation. Methods To test whether COL6 supplementation has a therapeutic effect for UCMD, in vivo and in vitro experiments were conducted using four types of MSCs: (1) healthy donors derived-primary MSCs (pMSCs), (2) MSCs derived from healthy donor induced pluripotent stem cell (iMSCs), (3) COL6-knockout iMSCs (COL6KO-iMSCs), and (4) UCMD patient-derived iMSCs (UCMD-iMSCs). Results All four MSC types could engraft for at least 12 weeks when transplanted into the tibialis anterior muscles of immunodeficient UCMD model (Col6a1KO) mice. COL6 protein was restored by the MSC transplantation if the MSCs were not COL6-deficient (types 1 and 2). Moreover, muscle regeneration and maturation in Col6a1KO mice were promoted with the transplantation of the COL6-producing MSCs only in the region supplemented with COL6. Skeletal muscle satellite cells derived from UCMD model mice (Col6a1KO-MuSCs) co-cultured with type 1 or 2 MSCs showed improved proliferation, differentiation, and maturation, whereas those co-cultured with type 3 or 4 MSCs did not. Conclusions These findings indicate that COL6 supplementation improves muscle regeneration and maturation in UCMD model mice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02514-3.
Collapse
Affiliation(s)
- Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Jinsol Kim
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mingming Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masae Sato
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuya Jonouchi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Megumi Goto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Clémence Kiho Bourgeois Yoshioka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Rukia Ikeda
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Aya Harada
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takahiko Sato
- Department of Anatomy, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, Department of Clinical Development, Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8551, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
6
|
Pramanik D, Jolly MK, Bhat R. Matrix adhesion and remodeling diversifies modes of cancer invasion across spatial scales. J Theor Biol 2021; 524:110733. [PMID: 33933478 DOI: 10.1016/j.jtbi.2021.110733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
The metastasis of malignant epithelial tumors begins with the egress of transformed cells from the confines of their basement membrane (BM) to their surrounding collagen-rich stroma. Invasion can be morphologically diverse: when breast cancer cells are separately cultured within BM-like matrix, collagen I (Coll I), or a combination of both, they exhibit collective-, dispersed mesenchymal-, and a mixed collective-dispersed (multimodal)- invasion, respectively. In this paper, we asked how distinct these invasive modes are with respect to the cellular and microenvironmental cues that drive them. A rigorous computational exploration of invasion was performed within an experimentally motivated Cellular Potts-based modeling environment. The model comprised of adhesive interactions between cancer cells, BM- and Coll I-like extracellular matrix (ECM), and reaction-diffusion-based remodeling of ECM. The model outputs were parameters cognate to dispersed- and collective- invasion. A clustering analysis of the output distribution curated through a careful examination of subsumed phenotypes suggested at least four distinct invasive states: dispersed, papillary-collective, bulk-collective, and multimodal, in addition to an indolent/non-invasive state. Mapping input values to specific output clusters suggested that each of these invasive states are specified by distinct input signatures of proliferation, adhesion and ECM remodeling. In addition, specific input perturbations allowed transitions between the clusters and revealed the variation in the robustness between the invasive states. Our systems-level approach proffers quantitative insights into how the diversity in ECM microenvironments may steer invasion into diverse phenotypic modes during early dissemination of breast cancer and contributes to tumor heterogeneity.
Collapse
Affiliation(s)
- D Pramanik
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India; Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - M K Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - R Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
7
|
Kim YH, Lee JS, Seo EJ, Park JK, Yea K, Shin J, Jang IH, Jeong T. Oncostatin M enhances osteogenic differentiation of dental pulp stem cells derived from supernumerary teeth. Biochem Biophys Res Commun 2020; 529:169-174. [PMID: 32703406 DOI: 10.1016/j.bbrc.2020.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/03/2020] [Indexed: 01/09/2023]
Abstract
Supernumerary tooth (ST) may arise from uncertain developmental abnormalities or underlying genetic causes, and the extraction at the early age is recommended. Dental pulp stem cells (DPSCs) are the valuable resource for the regeneration of tooth and related craniofacial structures. DPSCs isolated from ST (sDPSCs) have not been fully characterized despite the potential in the applications. The objectives of this study are the efficient isolation of sDPSCs and the analysis of the properties as stem cells. sDPSCs were established by hammer-cracking and separation of the intact pulp from ST. sDPSCs in the culture were examined by light microscope and flow cytometer for the morphology and the surface marker expression. sDPSCs exhibited the cellular morphology of typical mesenchymal stem cells and expressed CD44, CD73, CD90, CD105 and CD166, but not CD14, CD34 or CD45. sDPSCs showed the differentiation potential toward osteogenic, chondrogenic and adipogenic lineages. During osteogenic differentiation, the stimulation by Oncostatin M enhanced the differentiation and significantly increased the expression of genes involved in the hard tissue repair, such as BMP2, BMP4, BMP6 and RUNX2. sDPSCs can be effectively derived from ST and displays the characteristics of mesenchymal stem cells in the maintenance and the differentiation. sDPSCs satisfies the quality as DPSCs thus provide the valuable resource to the regenerative therapy.
Collapse
Affiliation(s)
- Young Hwan Kim
- Department of Oral Biochemistry, Republic of Korea; Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, 50612, Republic of Korea
| | - Jeong Sang Lee
- Department of Pediatric Dentistry, Republic of Korea; Dental Research Institute, Pusan National University Dental Hospital, Yangsan, 50612, Republic of Korea
| | - Eun Jin Seo
- Department of Oral Biochemistry, Republic of Korea; Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, 50612, Republic of Korea
| | - Jae Kyung Park
- Department of Oral Biochemistry, Republic of Korea; Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, 50612, Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jonghyun Shin
- Department of Pediatric Dentistry, Republic of Korea; Dental Research Institute, Pusan National University Dental Hospital, Yangsan, 50612, Republic of Korea
| | - Il Ho Jang
- Department of Oral Biochemistry, Republic of Korea; Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, 50612, Republic of Korea.
| | - Taesung Jeong
- Department of Pediatric Dentistry, Republic of Korea; Dental Research Institute, Pusan National University Dental Hospital, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
8
|
Abstract
As the crucial non-cellular component of tissues, the extracellular matrix (ECM) provides both physical support and signaling regulation to cells. Some ECM molecules provide a fibrillar environment around cells, while others provide a sheet-like basement membrane scaffold beneath epithelial cells. In this Review, we focus on recent studies investigating the mechanical, biophysical and signaling cues provided to developing tissues by different types of ECM in a variety of developing organisms. In addition, we discuss how the ECM helps to regulate tissue morphology during embryonic development by governing key elements of cell shape, adhesion, migration and differentiation. Summary: This Review discusses our current understanding of how the extracellular matrix helps guide developing tissues by influencing cell adhesion, migration, shape and differentiation, emphasizing the biophysical cues it provides.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
9
|
Dieterich W, Neurath MF, Zopf Y. Intestinal ex vivo organoid culture reveals altered programmed crypt stem cells in patients with celiac disease. Sci Rep 2020; 10:3535. [PMID: 32103108 PMCID: PMC7044285 DOI: 10.1038/s41598-020-60521-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/12/2020] [Indexed: 11/30/2022] Open
Abstract
The ex vivo generation of gastrointestinal organoids from crypt stem cells opens up the possibility of new research approaches investigating gastrointestinal diseases. We used this technology to study differences between healthy controls and patients with celiac disease (CD). We noticed distinct dissimilarities in the phenotypes of organoids between our study groups and found considerable variations in their gene expression. Extracellular matrix genes involved in epithelial-mesenchymal transition are expressed most differently. In addition, we demonstrated epigenetic modifications that might be responsible for the different organoid gene expression thus accounting for a deranged crypt/villus axis development in CD. The organoids have proven valuable to demonstrate fundamental differences in duodenal derived organoids between healthy controls and patients with CD and thus are a suitable tool to gain new insights in pathogenesis of CD.
Collapse
Affiliation(s)
- Walburga Dieterich
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany. .,Hector Center of Excellence for Nutrition, Exercise, and Sports, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yurdagül Zopf
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Hector Center of Excellence for Nutrition, Exercise, and Sports, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
West NR, Owens BMJ, Hegazy AN. The oncostatin M-stromal cell axis in health and disease. Scand J Immunol 2018; 88:e12694. [DOI: 10.1111/sji.12694] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Nathaniel R. West
- Department of Cancer Immunology; Genentech; South San Francisco California
| | - Benjamin M. J. Owens
- Somerville College; University of Oxford; Oxford UK
- EUSA Pharma; Hemel Hempstead UK
| | - Ahmed N. Hegazy
- Division of Gastroenterology, Infectiology, and Rheumatology; Charité Universitätsmedizin; Berlin Germany
- Deutsches Rheuma-Forschungszentrum; ein Institut der Leibniz-Gemeinschaft; Berlin Germany
| |
Collapse
|
11
|
Theocharidis G, Connelly JT. Minor collagens of the skin with not so minor functions. J Anat 2017; 235:418-429. [PMID: 31318053 DOI: 10.1111/joa.12584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 11/30/2022] Open
Abstract
The structure and function of the skin relies on the complex expression pattern and organisation of extracellular matrix macromolecules, of which collagens are a principal component. The fibrillar collagens, types I and III, constitute over 90% of the collagen content within the skin and are the major determinants of the strength and stiffness of the tissue. However, the minor collagens also play a crucial regulatory role in a variety of processes, including cell anchorage, matrix assembly, and growth factor signalling. In this article, we review the expression patterns, key functions and involvement in disease pathogenesis of the minor collagens found in the skin. While it is clear that the minor collagens are important mediators of normal tissue function, homeostasis and repair, further insight into the molecular level structure and activity of these proteins is required for translation into clinical therapies.
Collapse
Affiliation(s)
- Georgios Theocharidis
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John T Connelly
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
The Extracellular Matrix, Basement Membrane, and Glycocalyx. Protein Sci 2016. [DOI: 10.1201/9781315374307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility. J Invest Dermatol 2016; 136:74-83. [DOI: 10.1038/jid.2015.352] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/16/2015] [Accepted: 08/17/2015] [Indexed: 11/08/2022]
|
14
|
Hermanns HM. Oncostatin M and interleukin-31: Cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev 2015. [DOI: 10.1016/j.cytogfr.2015.07.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JMB, Hansen NUB, Bay-Jensen AC, Bager CL, Krag A, Blanchard A, Krarup H, Leeming DJ, Schuppan D. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G807-30. [PMID: 25767261 PMCID: PMC4437019 DOI: 10.1152/ajpgi.00447.2014] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that altered components and posttranslational modifications of proteins in the extracellular matrix (ECM) may both initiate and drive disease progression. The ECM is a complex grid consisting of multiple proteins, most of which play a vital role in containing the essential information needed for maintenance of a sophisticated structure anchoring the cells and sustaining normal function of tissues. Therefore, the matrix itself may be considered as a paracrine/endocrine entity, with more complex functions than previously appreciated. The aims of this review are to 1) explore key structural and functional components of the ECM as exemplified by monogenetic disorders leading to severe pathologies, 2) discuss selected pathological posttranslational modifications of ECM proteins resulting in altered functional (signaling) properties from the original structural proteins, and 3) discuss how these findings support the novel concept that an increasing number of components of the ECM harbor signaling functions that can modulate fibrotic liver disease. The ECM entails functions in addition to anchoring cells and modulating their migratory behavior. Key ECM components and their posttranslational modifications often harbor multiple domains with different signaling potential, in particular when modified during inflammation or wound healing. This signaling by the ECM should be considered a paracrine/endocrine function, as it affects cell phenotype, function, fate, and finally tissue homeostasis. These properties should be exploited to establish novel biochemical markers and antifibrotic treatment strategies for liver fibrosis as well as other fibrotic diseases.
Collapse
Affiliation(s)
- Morten A. Karsdal
- 1Nordic Bioscience A/S, Herlev Hovedgade, Herlev, Denmark; ,2University of Southern Denmark, SDU, Odense, Denmark;
| | | | | | | | | | | | | | | | | | - Aleksander Krag
- 3Department of Gastroenterology and Hepatology, Odense University Hospital, University of Southern Denmark, Odense, Denmark;
| | - Andy Blanchard
- 4GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom;
| | - Henrik Krarup
- 5Section of Molecular Biology, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark;
| | | | - Detlef Schuppan
- 6Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; ,7Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Ryan RE, Martin B, Mellor L, Jacob RB, Tawara K, McDougal OM, Oxford JT, Jorcyk CL. Oncostatin M binds to extracellular matrix in a bioactive conformation: implications for inflammation and metastasis. Cytokine 2015; 72:71-85. [PMID: 25622278 DOI: 10.1016/j.cyto.2014.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 09/25/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022]
Abstract
Oncostatin M (OSM) is an interleukin-6-like inflammatory cytokine reported to play a role in a number of pathological processes including cancer. Full-length OSM is expressed as a 26 kDa protein that can be proteolytically processed into 24 kDa and 22 kDa forms via removal of C-terminal peptides. In this study, we examined both the ability of OSM to bind to the extracellular matrix (ECM) and the activity of immobilized OSM on human breast carcinoma cells. OSM was observed to bind to ECM proteins collagen types I and XI, laminin, and fibronectin in a pH-dependent fashion, suggesting a role for electrostatic bonds that involves charged amino acids of both the ECM and OSM. The C-terminal extensions of 24 kDa and 26 kDa OSM, which contains six and thirteen basic amino acids, respectively, enhanced electrostatic binding to ECM at pH 6.5-7.5 when compared to 22 kDa OSM. The highest levels of OSM binding to ECM, though, were observed at acidic pH 5.5, where all forms of OSM bound to ECM proteins to a similar extent. This indicates additional electrostatic binding properties independent of the OSM C-terminal extensions. The reducing agent dithiothreitol also inhibited the binding of OSM to ECM suggesting a role for disulfide bonds in OSM immobilization. OSM immobilized to ECM was protected from cleavage by tumor-associated proteases and maintained activity following incubation at acidic pH for extended periods of time. Importantly, immobilized OSM remained biologically active and was able to induce and sustain the phosphorylation of STAT3 in T47D and ZR-75-1 human breast cancer cells over prolonged periods, as well as increase levels of STAT1 and STAT3 protein expression. Immobilized OSM also induced epithelial-mesenchymal transition-associated morphological changes in T47D cells. Taken together, these data indicate that OSM binds to ECM in a bioactive state that may have important implications for the development of chronic inflammation and tumor metastasis.
Collapse
Affiliation(s)
- Randall E Ryan
- Department of Biological Sciences, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States
| | - Bryan Martin
- Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States; Department of Chemistry and Biochemistry, 1910 University Drive, Boise, ID 83725, United States
| | - Liliana Mellor
- Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States
| | - Reed B Jacob
- Department of Chemistry and Biochemistry, 1910 University Drive, Boise, ID 83725, United States
| | - Ken Tawara
- Department of Biological Sciences, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States
| | - Owen M McDougal
- Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States; Department of Chemistry and Biochemistry, 1910 University Drive, Boise, ID 83725, United States
| | - Julia Thom Oxford
- Department of Biological Sciences, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States
| | - Cheryl L Jorcyk
- Department of Biological Sciences, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States.
| |
Collapse
|
17
|
Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN INFLAMMATION 2013; 2013:512103. [PMID: 24381786 PMCID: PMC3870656 DOI: 10.1155/2013/512103] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/29/2013] [Indexed: 12/11/2022]
Abstract
Oncostatin M is a secreted cytokine involved in homeostasis and in diseases involving chronic inflammation. It is a member of the gp130 family of cytokines that have pleiotropic functions in differentiation, cell proliferation, and hematopoetic, immunologic, and inflammatory networks. However, Oncostatin M also has activities novel to mediators of this cytokine family and others and may have fundamental roles in mechanisms of inflammation in pathology. Studies have explored Oncostatin M functions in cancer, bone metabolism, liver regeneration, and conditions with chronic inflammation including rheumatoid arthritis, lung and skin inflammatory disease, atherosclerosis, and cardiovascular disease. This paper will review Oncostatin M biology in a historical fashion and focus on its unique activities, in vitro and in vivo, that differentiate it from other cytokines and inspire further study or consideration in therapeutic approaches.
Collapse
Affiliation(s)
- Carl D. Richards
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street, West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
18
|
Parkin JD, San Antonio JD, Pedchenko V, Hudson B, Jensen ST, Savige J. Mapping structural landmarks, ligand binding sites, and missense mutations to the collagen IV heterotrimers predicts major functional domains, novel interactions, and variation in phenotypes in inherited diseases affecting basement membranes. Hum Mutat 2011; 32:127-43. [PMID: 21280145 DOI: 10.1002/humu.21401] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Collagen IV is the major protein found in basement membranes. It comprises three heterotrimers (α1α1α2, α3α4α5, and α5α5α6) that form distinct networks, and are responsible for membrane strength and integrity.We constructed linear maps of the collagen IV heterotrimers ("interactomes") that indicated major structural landmarks, known and predicted ligand-binding sites, and missense mutations, in order to identify functional and disease-associated domains, potential interactions between ligands, and genotype–phenotype relationships. The maps documented more than 30 known ligand-binding sites as well as motifs for integrins, heparin, von Willebrand factor (VWF), decorin, and bone morphogenetic protein (BMP). They predicted functional domains for angiogenesis and haemostasis, and disease domains for autoimmunity, tumor growth and inhibition, infection, and glycation. Cooperative ligand interactions were indicated by binding site proximity, for example, between integrins, matrix metalloproteinases, and heparin. The maps indicated that mutations affecting major ligand-binding sites, for example, for Von Hippel Lindau (VHL) protein in the α1 chain or integrins in the α5 chain, resulted in distinctive phenotypes (Hereditary Angiopathy, Nephropathy, Aneurysms, and muscle Cramps [HANAC] syndrome, and early-onset Alport syndrome, respectively). These maps further our understanding of basement membrane biology and disease, and suggest novel membrane interactions, functions, and therapeutic targets.
Collapse
Affiliation(s)
- J Des Parkin
- Department of Medicine (Northern Health), The University of Melbourne, Northern Health, Epping VIC 3076, Australia
| | | | | | | | | | | |
Collapse
|
19
|
166th ENMC International Workshop on Collagen type VI-related Myopathies, 22–24 May 2009, Naarden, The Netherlands. Neuromuscul Disord 2010; 20:346-54. [DOI: 10.1016/j.nmd.2010.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 02/11/2010] [Indexed: 01/05/2023]
|
20
|
Freise C, Erben U, Muche M, Farndale R, Zeitz M, Somasundaram R, Ruehl M. The alpha 2 chain of collagen type VI sequesters latent proforms of matrix-metalloproteinases and modulates their activation and activity. Matrix Biol 2009; 28:480-9. [DOI: 10.1016/j.matbio.2009.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/22/2009] [Accepted: 08/10/2009] [Indexed: 11/25/2022]
|
21
|
Benton JA, Fairbanks BD, Anseth KS. Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials 2009; 30:6593-603. [PMID: 19747725 DOI: 10.1016/j.biomaterials.2009.08.031] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 08/08/2009] [Indexed: 01/21/2023]
Abstract
Valvular interstitial cells (VICs) maintain functional heart valve structure and display transient fibroblast and myofibroblast properties. Most cell characterization studies have been performed on plastic dishes; while insightful, these systems are limited. Thus, a matrix metalloproteinase (MMP) degradable poly(ethylene glycol) (PEG) hydrogel system is proposed in this communication as a useful tool for characterizing VIC function in 3D. When encapsulated, VICs attained spread morphology, and proliferated and migrated as shown through real-time cell microscopy. Additionally, fibronectin derived pendant RGD was incorporated into the system to promote integrin binding. As RGD concentration increased from 0 to 2000 microM, VIC process extension and integrin alpha(v)beta(3) binding increased within two days. By day 10, integrin binding was equalized between conditions. VIC morphology and rate of process extension were also increased through decreasing the hydrogel matrix density presented to the cells. VIC differentiation in response to exogenously delivered transforming growth factor-beta1 (TGF-beta1) was also examined within the hydrogel networks. TGF-beta1 increased expression of alpha smooth muscle actin (alphaSMA) and collagen-1 at both the mRNA and protein level by day 2 of culture, indicating myofibroblast differentiation, and was sustained over the course of the study (2 weeks). These studies demonstrate the utility, flexibility, and biological activity of this MMP-degradable system for the characterization of VICs, an important cell population for tissue engineering viable valve replacements and understanding valvular pathobiology.
Collapse
Affiliation(s)
- Julie A Benton
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424, USA
| | | | | |
Collapse
|
22
|
Ushizawa K, Takahashi T, Hosoe M, Kizaki K, Hashizume K. Characterization and expression analysis of SOLD1, a novel member of the retrotransposon-derived Ly-6 superfamily, in bovine placental villi. PLoS One 2009; 4:e5814. [PMID: 19503832 PMCID: PMC2686098 DOI: 10.1371/journal.pone.0005814] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 05/11/2009] [Indexed: 11/23/2022] Open
Abstract
Background Ly-6 superfamily members have a conserved Ly-6 domain that is defined by a distinct disulfide bonding pattern between eight or ten cysteine residues. These members are divided into membrane-type and secretory-type proteins. In the present study, we report the identification of a novel Ly-6 domain protein, secreted protein of Ly-6 domain 1 (SOLD1), from bovine placenta. Principal Findings SOLD1 mRNA was expressed in trophoblast mononucleate cells and the protein was secreted into and localized in the extracellular matrix of the mesenchyme in cotyledonary villi. SOLD1 bound mainly with type I collagen telopeptide. We confirmed secretion of SOLD1 from the basolateral surface of a bovine trophoblast cell line (BT-1). It may be related to the organization of the extra-cellular matrix in the mesenchyme of fetal villi. Since trophoblast mononucleate cells are epithelial cells, their polar organization is expected to have a crucial role in the SOLD1 secretion system. We established that SOLD1 is an intronless bovine gene containing the Alu retrotransposon, which was integrated via cytoplasmic reverse transcription. Conclusion We identified a novel retrotransposon-like Ly-6 domain protein in bovine placenta. SOLD1 is a crucial secreted protein that is involved in the organization of the mesenchyme of the cotyledonary villi. Furthermore, the gene encoding SOLD1 has an interesting genomic structure.
Collapse
Affiliation(s)
- Koichi Ushizawa
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Toru Takahashi
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Misa Hosoe
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Keiichiro Kizaki
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Kazuyoshi Hashizume
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
23
|
Fischer P, Hilfiker-Kleiner D. Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 2007; 102:279-97. [PMID: 17530315 DOI: 10.1007/s00395-007-0658-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 12/26/2022]
Abstract
Circulating levels of interleukin (IL)-6 and related cytokines are elevated in patients with congestive heart failure and after myocardial infarction. Serum IL-6 concentrations are related to decreasing functional status of these patients and provide important prognostic information.Moreover, in the failing human heart, multiple components of the IL-6- glycoprotein (gp)130 receptor system are impaired, implicating an important role of this system in cardiac pathophysiology.Experimental studies have shown that the common receptor subunit of IL-6 cytokines is phosphorylated in response to pressure overload and myocardial infarction and that it subsequently activates at least three different downstream signaling pathways, the signal transducers and activators of transcription 1 and 3 (STAT1/3), the Src-homology tyrosine phosphatase 2 (SHP2)-Ras-ERK, and the PI3K-Akt system. Gp130 receptor mediated signaling promotes cardiomyocyte survival, induces hypertrophy, modulates cardiac extracellular matrix and cardiac function. In this regard, the gp130 receptor system and its main downstream mediator STAT3 play a key role in cardioprotection. This review summarizes the current knowledge of IL-6 cytokines, gp130 receptor and STAT3 signaling in the heart exposed to physiological (aging, pregnancy) and pathophysiological stress (ischemia, pressure overload, inflammation and cardiotoxic agents) with a special focus on the potential role of individual IL-6 cytokines.
Collapse
Affiliation(s)
- P Fischer
- Dept. of Cardiology & Angiology, Medical School Hannover, Hannover, Germany
| | | |
Collapse
|
24
|
|
25
|
Weng H, Mertens PR, Gressner AM, Dooley S. IFN-gamma abrogates profibrogenic TGF-beta signaling in liver by targeting expression of inhibitory and receptor Smads. J Hepatol 2007; 46:295-303. [PMID: 17125875 DOI: 10.1016/j.jhep.2006.09.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 08/29/2006] [Accepted: 09/09/2006] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIMS In a randomized open-labeled multicenter trial with patients suffering from chronic HBV infection, we recently identified a benefit of 9-month IFN-gamma treatment resulting in decreased fibrosis scores and a reduced number of alpha-smooth muscle actin-positive hepatic stellate cells (HSCs). Approaches opposing profibrogenic activities of TGF-beta may be amenable in chronic liver disease. According to experimental models, IFN-gamma counteracts several TGF-beta effects. METHODS The crosstalk of IFN-gamma and TGF-beta signaling relevant for fibrogenesis was investigated in primary cultured rat HSCs and a cell line representing activated HSCs. RESULTS In vitro studies with HSCs demonstrate that TGF-beta-dependent activation of (CAGA)9-MLP-Luc, a Smad3/4 responsive reporter construct, was significantly decreased by IFN-gamma, indicating a TGF-beta antagonizing function. IFN-gamma induced the activity of the Smad7 promoter and Smad7 protein expression via STAT-1 signaling. In contrast to TGF-beta, IFN-gamma was able to induce Smad7 expression in activated HSCs providing increased protein levels for at least 12h. In addition, expression of Smad2/3 was reduced by IFN-gamma and activation of Smads2/3 was abrogated. CONCLUSIONS IFN-gamma displays antifibrotic effects in liver cells via STAT-1 phosphorylation, upregulation of Smad7 expression and impaired TGF-beta signaling.
Collapse
Affiliation(s)
- Honglei Weng
- Institute of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, People's Republic of China
| | | | | | | |
Collapse
|
26
|
El Mabrouk M, Sylvester J, Zafarullah M. Signaling pathways implicated in oncostatin M-induced aggrecanase-1 and matrix metalloproteinase-13 expression in human articular chondrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:309-20. [PMID: 17208315 DOI: 10.1016/j.bbamcr.2006.11.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 11/04/2006] [Accepted: 11/27/2006] [Indexed: 11/26/2022]
Abstract
Molecular mechanisms of oncostatin M (OSM)-stimulated cartilage extracellular matrix catabolism and signaling pathways were investigated in human arthritic chondrocytes. OSM, alone or with Interleukin-1 (IL-1beta), increased glycosaminoglycan release and induced ADAMTS-4 and MMP-13 protein expression in human cartilage explants. OSM dose- and time-dependently increased ADAMTS-4 mRNA and MMP-13 protein expression in human femoral head chondrocytes. Extracellular signal-regulated kinases (ERK1/2)-MAPK pathway inhibitor, U0126, down-regulated ADAMTS-4 and MMP-13 induction by OSM. Janus kinase 2 (JAK2) inhibitor, AG490, suppressed OSM-induced ADAMTS-4 mRNA expression but did not affect MMP-13 levels while JAK3 pharmacological inhibitor and siRNA transfection suppressed both. Parthenolide, a signal transducer and activator of transcription (STAT1 and STAT3) phosphorylation inhibitor, reduced OSM-induced ADAMTS-4 and MMP-13 gene expression and prevented STAT1/3 DNA binding activity. Additionally, OSM-enhanced ADAMTS-4 mRNA and MMP-13 expression was down-regulated by phosphatidylinositol 3-kinase (PI3K) and Akt/PKB inhibitors, LY294002 and NL-71-101. Furthermore, JAK3 inhibition time-dependently down-regulated Akt but not ERK1/2 phosphorylation suggesting that Akt is a downstream target of JAK3. These results suggest that OSM-stimulated ADAMTS-4 and MMP-13 expression is mediated by ERK1/2, JAK3/STAT1/3 and PI3K/Akt and by cross talk between these pathways. The inhibitors of these cascades could block OSM-evoked degeneration of cartilage by ADAMTS-4 and MMP-13.
Collapse
Affiliation(s)
- Mohammed El Mabrouk
- Department of Medicine and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), K-5255 Mailloux, Notre-Dame Hospital, 1560 Sherbrooke E. Montreal, Quebec, Canada H2L 4M1
| | | | | |
Collapse
|
27
|
Abstract
Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), two conditions which were previously believed to be completely separate entities. BM is a relatively mild dominantly inherited disorder characterised by proximal weakness and distal joint contractures. UCMD was originally described as an autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity. Here we review the clinical phenotypes of BM and UCMD and their diagnosis and management, and provide an overview of the current knowledge of the pathogenesis of collagen VI related disorders.
Collapse
Affiliation(s)
- A K Lampe
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ.
| | | |
Collapse
|
28
|
Znoyko I, Sohara N, Spicer SS, Trojanowska M, Reuben A. Expression of oncostatin M and its receptors in normal and cirrhotic human liver. J Hepatol 2005; 43:893-900. [PMID: 16169119 DOI: 10.1016/j.jhep.2005.04.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/15/2005] [Accepted: 04/18/2005] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS In the cirrhotic liver, gene expression of the multifunctional cytokine oncostatin M (OSM) is up-regulated, but its cellular origin is unknown. Therefore, we investigated the expression of OSM protein and its specific receptor subunits, OSMRbeta and LIFRbeta in normal and cirrhotic human liver using immunohistochemical and Western blot analysis. RESULTS OSM protein was expressed in Kupffer cells, variably in normal liver but consistently in cirrhosis. OSMRbeta was expressed at low level in hepatocytes of all normal livers examined, but in no cirrhotic sample. In contrast, LIFRbeta receptor was expressed weakly in normal livers, but much more intensely in cirrhosis, in reactive ductules, bile duct epithelial cells and perisinusoidal areas. Double immunostaining showed co-localization of LIFRbeta with cytokeratin 7, proliferating cell nuclear antigen (PCNA) and leukemia inhibitory factor (LIF), in bile duct epithelial cells, but not with alpha-smooth muscle actin, a myofibroblast marker. CONCLUSIONS In human liver, OSM protein is expressed in Kupffer cells, variably in normals but universally in cirrhosis. The differential expression pattern of OSM and its receptors could allow for differential OSM signaling by alternative utilization of receptors to promote hepatocyte proliferation in acute injury and, with its homologue LIF, for the bile ductular reaction in cirrhosis.
Collapse
Affiliation(s)
- Iya Znoyko
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
29
|
Finkelman FD, Yang M, Perkins C, Schleifer K, Sproles A, Santeliz J, Bernstein JA, Rothenberg ME, Morris SC, Wills-Karp M. Suppressive effect of IL-4 on IL-13-induced genes in mouse lung. THE JOURNAL OF IMMUNOLOGY 2005; 174:4630-8. [PMID: 15814686 DOI: 10.4049/jimmunol.174.8.4630] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although IL-4 signals through two receptors, IL-4R alpha/common gamma-chain (gamma(c)) and IL-4R alpha/IL-13R alpha1, and only the latter is also activated by IL-13, IL-13 contributes more than IL-4 to goblet cell hyperplasia and airway hyperresponsiveness in murine asthma. To determine whether unique gene induction by IL-13 might contribute to its greater proasthmatic effects, mice were inoculated intratracheally with IL-4 or IL-13, and pulmonary gene induction was compared by gene microarray and real-time PCR. Only the collagen alpha2 type VI (Ca2T6) gene and three small proline-rich protein (SPRR) genes were reproducibly induced > 4-fold more by IL-13 than by IL-4. Preferential IL-13 gene induction was not attributable to B cells, T cells, or differences in cytokine potency. IL-4 signaling through IL-4R alpha/gamma(c) suppresses Ca2T6 and SPRR gene expression in normal mice and induces these genes in RAG2/gamma(c)-deficient mice. Although IL-4, but not IL-13, induces IL-12 and IFN-gamma, which suppress many effects of IL-4, IL-12 suppresses only the Ca2T6 gene, and IL-4-induced IFN-gamma production does not suppress the Ca2T6 or SPRR genes. Thus, IL-4 induces genes in addition to IL-12 that suppress STAT6-mediated SPRR gene induction. These results provide a potential explanation for the dominant role of IL-13 in induction of goblet cell hyperplasia and airway hyperresponsiveness in asthma.
Collapse
Affiliation(s)
- Fred D Finkelman
- Division of Immunology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Young AA, Smith MM, Smith SM, Cake MA, Ghosh P, Read RA, Melrose J, Sonnabend DH, Roughley PJ, Little CB. Regional assessment of articular cartilage gene expression and small proteoglycan metabolism in an animal model of osteoarthritis. Arthritis Res Ther 2005; 7:R852-61. [PMID: 15987487 PMCID: PMC1175037 DOI: 10.1186/ar1756] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 04/09/2005] [Accepted: 04/14/2005] [Indexed: 12/01/2022] Open
Abstract
Osteoarthritis (OA), the commonest form of arthritis and a major cause of morbidity, is characterized by progressive degeneration of the articular cartilage. Along with increased production and activation of degradative enzymes, altered synthesis of cartilage matrix molecules and growth factors by resident chondrocytes is believed to play a central role in this pathological process. We used an ovine meniscectomy model of OA to evaluate changes in chondrocyte expression of types I, II and III collagen; aggrecan; the small leucine-rich proteoglycans (SLRPs) biglycan, decorin, lumican and fibromodulin; transforming growth factor-β; and connective tissue growth factor. Changes were evaluated separately in the medial and lateral tibial plateaux, and were confirmed for selected molecules using immunohistochemistry and Western blotting. Significant changes in mRNA levels were confined to the lateral compartment, where active cartilage degeneration was observed. In this region there was significant upregulation in expession of types I, II and III collagen, aggrecan, biglycan and lumican, concomitant with downregulation of decorin and connective tissue growth factor. The increases in type I and III collagen mRNA were accompanied by increased immunostaining for these proteins in cartilage. The upregulated lumican expression in degenerative cartilage was associated with increased lumican core protein deficient in keratan sulphate side-chains. Furthermore, there was evidence of significant fragmentation of SLRPs in both normal and arthritic tissue, with specific catabolites of biglycan and fibromodulin identified only in the cartilage from meniscectomized joints. This study highlights the focal nature of the degenerative changes that occur in OA cartilage and suggests that altered synthesis and proteolysis of SLRPs may play an important role in cartilage destruction in arthritis.
Collapse
Affiliation(s)
- Allan A Young
- Raymond Purves Research Laboratory, Institute of Bone and Joint Research, Royal North Shore Hospital, University of Sydney, St Leonards, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Knight DA, Ernst M, Anderson GP, Moodley YP, Mutsaers SE. The role of gp130/IL-6 cytokines in the development of pulmonary fibrosis: critical determinants of disease susceptibility and progression? Pharmacol Ther 2003; 99:327-38. [PMID: 12951164 DOI: 10.1016/s0163-7258(03)00095-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cryptogenic fibrosing alveolitis (CFA), also known as idiopathic pulmonary fibrosis (IPF), is the end stage of a heterogeneous group of disorders in which the deposition of excessive amounts of collagen results in the loss of lung function and premature death. The molecular mechanisms underlying the disease are unknown. Accordingly, there is much debate as to whether pulmonary fibrosis is the end result of (1) a chronic inflammatory process or (2) a disturbance in normal epithelium-fibroblast cross talk, or both. In addition, it appears increasingly likely that there is a genetic component in the development of pulmonary fibrosis. The IL-6 cytokine family is a group of pleiotropic mediators produced by a variety of cells in response to a inflammatory stimuli. These cytokines are grouped together on the basis of weak structural homology, overlapping functions, and shared use of the transmembrane glycoprotein beta-subunit gp130 as part of their multimeric receptor complexes. Activation of these receptor complexes results in the recruitment and phosphorylation of specific transcription factors. In addition, membrane-proximal tyrosine residues act as docking sites for molecules involved in the activation of extracellular signal-related kinase (ERK). However, studies in genetically engineered mice that overexpress members of this family have shown that while overlapping biological activities exist, there are effects specific to individual cytokines. Data from both human and animal studies are now emerging to suggest that members of this cytokine family play an important role in the pathogenesis of fibroproliferative diseases and thus represent a novel group of cytokines implicated in pulmonary fibrosis. Importantly, manipulation of signaling pathways activated by these cytokines may suppress fibrosis but leave innate cellular mechanisms necessary for host defense largely untouched. This may provide guides for the development of novel pharmacological treatment for fibroproliferative diseases.
Collapse
Affiliation(s)
- Darryl A Knight
- Asthma and Allergy Research Institute, Sir Charles Gairdner Hospital, Ground Floor, E Block, Verdun Street, Nedlands, Western Australia, 6009, Australia.
| | | | | | | | | |
Collapse
|
32
|
Yasui N, Mori T, Morito D, Matsushita O, Kourai H, Nagata K, Koide T. Dual-site recognition of different extracellular matrix components by anti-angiogenic/neurotrophic serpin, PEDF. Biochemistry 2003; 42:3160-7. [PMID: 12641447 DOI: 10.1021/bi0206558] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (serpin) superfamily, possesses anti-angiogenic and neurotrophic activities. PEDF has been reported to bind to extracellular matrix (ECM) components such as collagens and glycosaminoglycans (GAGs). In this study, to determine the binding sites for collagens and GAGs, we analyzed the interaction of recombinant mouse PEDF (rPEDF) with collagen I and heparin. By utilizing residue-specific chemical modification and site-directed mutagenesis techniques, we revealed that the acidic amino acid residues on PEDF (Asp(255), Asp(257), and Asp(299)) are critical to collagen binding, and three clustered basic amino acid residues (Arg(145), Lys(146), and Arg(148)) are necessary for heparin binding. Mapping of these residues on the crystal structure of human PEDF (Simonovic, M., Gettins, P. G. W., and Volz, K. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 11131-11135) demonstrated that the collagen-binding site is oriented toward the opposite side of the highly basic surface where the heparin-binding site is localized. These results indicate that PEDF possesses dual binding sites for different ECM components, and this unique localization of ECM-binding sites implies that the binding to ECM components could regulate PEDF activities.
Collapse
Affiliation(s)
- Norihisa Yasui
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima 770-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Schuppan D, Krebs A, Bauer M, Hahn EG. Hepatitis C and liver fibrosis. Cell Death Differ 2003; 10 Suppl 1:S59-67. [PMID: 12655347 DOI: 10.1038/sj.cdd.4401163] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Revised: 10/14/2002] [Accepted: 10/17/2002] [Indexed: 01/18/2023] Open
Abstract
Chronic hepatitis C progresses to cirrhosis within 20 years in an estimated 20-30% of patients, while running a relatively uneventful course in most others. Certain HCV proteins, such as core and NS5A, can induce derangement of lipid metabolism or alter signal transduction of infected hepatocytes which leads to the production of reactive oxygen radicals and profibrogenic mediators, in particular TGF-beta1. TGF-beta1 is the strongest known inducer of fibrogenesis in the effector cells of hepatic fibrosis, i.e. activated hepatic stellate cells and myofibroblasts. However, fibrogenesis proceeds only when additional profibrogenic stimuli are present, e.g. alcohol exposure, metabolic disorders such as non-alcoholic steatohepatitis, or coinfections with HIV or Schistosoma mansoni that skew the immune response towards a Th2 T cell reaction. Furthermore, profibrogenic polymorphisms in genes that are relevant during fibrogenesis have been disclosed. This knowledge will make it possible to identify those patients who are most likely to progress and who need antiviral or antifibrotic therapies most urgently. However, even the best available treatment, the combination of pegylated interferon and ribavirin, which is costly and fraught with side effects, eradicates HCV in only 50% of patients. While the suggestive antifibrotic effect of interferons (IF-gamma>alpha,beta), irrespective of viral elimination, has to be proven in randomised prospective studies, additional, well tolerated and cost-effective antifibrotic therapies have to be developed. The combination of cytokine strategies, e.g. inhibition of the key profibrogenic mediator TGF-beta, with other potential antifibrotic agents appears promising. Such adjunctive agents could be silymarin, sho-saiko-to, halofuginone, phosphodiesterase inhibitors, and endothelin-A-receptor or angiotensin antagonists. Furthermore, drug targeting to the fibrogenic effector cells appears feasible. Together with the evolving validation of serological markers of hepatic fibrogenesis and fibrolysis an effective and individualised treatment of liver fibrosis is anticipated.
Collapse
Affiliation(s)
- D Schuppan
- Department of Medicine I, University of Erlangen-Nuernberg, Germany.
| | | | | | | |
Collapse
|
34
|
Ruehl M, Somasundaram R, Schoenfelder I, Farndale RW, Knight CG, Schmid M, Ackermann R, Riecken EO, Zeitz M, Schuppan D. The epithelial mitogen keratinocyte growth factor binds to collagens via the consensus sequence glycine-proline-hydroxyproline. J Biol Chem 2002; 277:26872-8. [PMID: 11973338 DOI: 10.1074/jbc.m202335200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of certain growth factors and cytokines to components of the extracellular matrix can regulate their local availability and modulate their biological activities. We show that mesenchymal cell-derived keratinocyte growth factor (KGF), a key stimulator of epithelial cell proliferation during wound healing, preferentially binds to collagens I, III, and VI. Binding is inhibited in a dose-dependent manner by denatured single collagen chains and collagen cyanogen bromide peptides. This interaction is saturable with dissociation constants of approximately 10(-8) to 10(-9) m and estimated molar ratios of up to three molecules of KGF bound to one molecule of triple helical collagen. Furthermore, collagen-bound KGF stimulated the proliferation of transformed keratinocyte or HaCaT cells. Ligand blotting of collagen-derived peptides points to a limited set of collagenous consensus sequences that bind KGF. By using synthetic collagen peptides, we defined the consensus sequence (Gly-Pro-Hyp)(n) as the collagen binding motif. We conclude that the preferential binding of KGF to the abundant collagens leads to a spatial pattern of bioavailable KGF that is dictated by the local organization of the collagenous extracellular matrix. The defined collagenous consensus peptide or its analogue may be useful in wound healing by increasing KGF bioactivity and thus modulating local epithelial remodeling and regeneration.
Collapse
Affiliation(s)
- Martin Ruehl
- Department of Medicine I, Klinikum Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|