1
|
Mapping the Prothrombin Binding Site of Pseutarin C by Site-directed PEGylation. Blood 2022; 139:2972-2982. [PMID: 35148539 PMCID: PMC9101250 DOI: 10.1182/blood.2021014878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Results support our previously published model and reveal the surprising role of the a1-loop in presenting Arg320 for initial cleavage. Using pseutarin C as model prothrombinase, the interaction site for prothrombin was probed by site-directed PEGylation and other mutations.
The prothrombinase complex processes prothrombin to thrombin through sequential cleavage at Arg320 followed by Arg271 when cofactor, factor (f) Va, protease, fXa, and substrate, prothrombin, are all bound to the same membrane surface. In the absence of the membrane or cofactor, cleavage occurs in the opposite order. For the less favorable cleavage site at Arg320 to be cleaved first, it is thought that prothrombin docks on fVa in a way that presents Arg320 and hides Arg271 from the active site of fXa. Based on the crystal structure of the prothrombinase complex from the venom of the Australian eastern brown snake, pseutarin C, we modeled an initial prothrombin docking mode, which involved an interaction with discrete portions of the A1 and A2 domains of fV and the loop connecting the 2 domains, known as the a1-loop. We interrogated the proposed interface by site-directed PEGylation and by swapping the a1-loop in pseutarin C with that of human fV and fVIII and measuring the effect on rate and pathway of thrombin generation. PEGylation of residues within our proposed binding site greatly reduced the rate of thrombin generation, without affecting the pathway, whereas those outside the proposed interface had no effect. PEGylation of residues within the a1-loop also reduced the rate of thrombin generation. The sequence of the a1-loop was found to play a critical role in prothrombin binding and in the presentation of Arg320 for initial cleavage.
Collapse
|
2
|
Stevic I, Chan HHW, Chander A, Berry LR, Chan AKC. Covalently linking heparin to antithrombin enhances prothrombinase inhibition on activated platelets. Thromb Haemost 2017; 109:1016-24. [DOI: 10.1160/th12-10-0766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/21/2013] [Indexed: 11/05/2022]
Abstract
SummaryFactor (F)Xa within the prothrombinase complex is protected from inhibition by unfractionated heparin (UFH), enoxaparin and fondaparinux. We have developed a covalent antithrombin-heparin complex (ATH) with enhanced anticoagulant activity. We have also demonstrated that ATH is superior at inhibiting coagulation factors when assembled on artificial surfaces. The objective of the present study is to determine the ability of ATH vs AT+UFH to inhibit FXa within the prothrombinase complex when the enzyme complex is assembled on the more native platelet system. Discontinuous inhibition assays were performed to determine final k 2-values for inhibition of FXa, FXa within the platelet-prothrombinase, or FXa within prothrombinase devoid of various components. Thrombin generation and plasma clotting was also assayed in the presence of resting/activated platelets ± inhibitors. Protection of FXa was not observed for ATH, whereas a moderate 60% protection was observed for AT+UFH. ATH inhibited platelet-prothrombinase ∼4-fold faster than AT+UFH. Relative to intact prothrombinase, rates for FXa inhibition by AT+UFH in prothrombinase complexes devoid of either prothrombin (II)/activated platelets/FVa were higher. However, inhibition by AT+UFH of prothrombinase devoid of FII yielded slightly lower rates compared to free FXa inhibition. Thrombin generation and plasma clotting was enhanced with activated platelets, while inhibition was better by ATH compared to AT+UFH, thus suggesting an overall enhanced anticoagulant activity of ATH against platelet-bound prothrombinase complexes.
Collapse
|
3
|
Baroni M, Pavani G, Pinotti M, Branchini A, Bernardi F, Camire RM. Asymmetric processing of mutant factor X Arg386Cys reveals differences between intrinsic and extrinsic pathway activation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1351-6. [PMID: 26012870 DOI: 10.1016/j.bbapap.2015.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 01/30/2023]
Abstract
Alterations in coagulation factor X (FX) activation, mediated by the extrinsic VIIa/tissue factor (FVIIa/TF) or the intrinsic factor IXa/factor VIIIa (FIXa/FVIIIa) complexes, can result in hemorrhagic/prothrombotic tendencies. However, the molecular determinants involved in substrate recognition by these enzymes are poorly defined. Here, we investigated the role of arginine 386 (chymotrypsin numbering c202), a surface-exposed residue on the FX catalytic domain. The naturally occurring FX386Cys mutant and FX386Ala variant were characterized. Despite the unpaired cysteine, recombinant (r)FX386Cys was efficiently secreted (88.6±21.3% of rFXwt) and possessed normal clearance in mice. rFX386Cys was also normally activated by FVIIa/TF and displayed intact amidolytic activity. In contrast, rFX386Cys activation by the FIXa/FVIIIa complex was 4.5-fold reduced, which was driven by a decrease in the kcat (1.6∗10(-4) s(-1) vs 5.8∗10(-4) s(-1), rFXwt). The virtually unaltered Km (70.6 nM vs 55.6nM, rFXwt) suggested no major alterations in the FX substrate exosite. Functional assays in plasma supplemented with rFX386Cys indicated a remarkable reduction in the thrombin generation rate and thus in coagulation efficiency. Consistently, the rFX386Ala variant displayed similar biochemical features suggesting that global changes at position 386 impact the intrinsic pathway activation. These data indicate that the FXArg386 is involved in FIXa/FVIIIa-mediated FX activation and help in elucidating the bleeding tendency associated with the FX386Cys in a rare FX deficiency case. Taking advantage of the unpaired cysteine, the rFX386Cys mutant may be efficiently targeted by thiol-specific ligands and represent a valuable tool to study FX structure-function relationships both in vitro and in vivo.
Collapse
Affiliation(s)
- M Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.
| | - G Pavani
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy; The Children's Hospital of Philadelphia, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; The Center for Cell and Molecular Therapeutics, and Division of Hematology, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - A Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - F Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - R M Camire
- The Children's Hospital of Philadelphia, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; The Center for Cell and Molecular Therapeutics, and Division of Hematology, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Structure-function relationships of factor Xa inhibitors: implications for the practicing clinician. J Thromb Thrombolysis 2014; 37:234-41. [PMID: 23996500 DOI: 10.1007/s11239-013-0991-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The recent development and approval of novel oral anticoagulants represents a significant success in the intelligent design of target-specific therapeutics. However, while these agents obviate many of the shortcomings of their predecessor (warfarin), they present novel challenges in pharmacologic management as well. Each was designed to have high oral bioavailability and high affinity for its target molecule, conveying significant anticoagulant effects. Yet, such unique drug-ligand binding, coupled with unfamiliar drug interactions and renal-based clearance, represent challenges to clinical management. The current review describes the development and pharmacokinetic properties of these agents, in the context of their clinical utility and pitfalls.
Collapse
|
5
|
Menegatti M, Vangone A, Palla R, Milano G, Cavallo L, Oliva R, De Cristofaro R, Peyvandi F. A recurrent Gly43Asp substitution in coagulation Factor X rigidifies its catalytic pocket and impairs catalytic activity and intracellular trafficking. Thromb Res 2014; 133:481-7. [DOI: 10.1016/j.thromres.2013.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/28/2013] [Accepted: 12/16/2013] [Indexed: 11/30/2022]
|
6
|
New anticoagulants and antiplatelet agents: a primer for the clinical gastroenterologist. Am J Gastroenterol 2014; 109:9-19. [PMID: 24402526 DOI: 10.1038/ajg.2013.228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/24/2013] [Indexed: 12/11/2022]
Abstract
The discovery of the first oral anticoagulant, warfarin, was a milestone in anticoagulation. Warfarin's well-known limitations, however, have led to the recent development of more effective anticoagulants. The rapidly growing list of these drugs, however, presents a challenge to endoscopists who must treat patients on these sundry medications. This review is intended to summarize the pharmacological highlights of new anticoagulants, with particular attention to suggested "best-practice" recommendations for the withholding of these drugs before endoscopic procedures.
Collapse
|
7
|
Huq NL, Seers CA, Toh ECY, Dashper SG, Slakeski N, Zhang L, Ward BR, Meuric V, Chen D, Cross KJ, Reynolds EC. Propeptide-mediated inhibition of cognate gingipain proteinases. PLoS One 2013; 8:e65447. [PMID: 23762374 PMCID: PMC3677877 DOI: 10.1371/journal.pone.0065447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis. The organism’s cell-surface cysteine proteinases, the Arg-specific proteinases (RgpA, RgpB) and the Lys-specific proteinase (Kgp), which are known as gingipains have been implicated as major virulence factors. All three gingipain precursors contain a propeptide of around 200 amino acids in length that is removed during maturation. The aim of this study was to characterize the inhibitory potential of the Kgp and RgpB propeptides against the mature cognate enzymes. Mature Kgp was obtained from P. gingivalis mutant ECR368, which produces a recombinant Kgp with an ABM1 motif deleted from the catalytic domain (rKgp) that enables the otherwise membrane bound enzyme to dissociate from adhesins and be released. Mature RgpB was obtained from P. gingivalis HG66. Recombinant propeptides of Kgp and RgpB were produced in Escherichia coli and purified using nickel-affinity chromatography. The Kgp and RgpB propeptides displayed non-competitive inhibition kinetics with Ki values of 2.04 µM and 12 nM, respectively. Both propeptides exhibited selectivity towards their cognate proteinase. The specificity of both propeptides was demonstrated by their inability to inhibit caspase-3, a closely related cysteine protease, and papain that also has a relatively long propeptide. Both propeptides at 100 mg/L caused a 50% reduction of P. gingivalis growth in a protein-based medium. In summary, this study demonstrates that gingipain propeptides are capable of inhibiting their mature cognate proteinases.
Collapse
Affiliation(s)
- N. Laila Huq
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Christine A. Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Elena C. Y. Toh
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Nada Slakeski
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Brent R. Ward
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Vincent Meuric
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Dina Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Keith J. Cross
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
8
|
Abstract
The proteolytic conversion of prothrombin to thrombin catalyzed by prothrombinase is one of the more extensively studied reactions of blood coagulation. Sophisticated biophysical and biochemical insights into the players of this reaction were developed in the early days of the field. Yet, many basic enzymological questions remained unanswered. I summarize new developments that uncover mechanisms by which high substrate specificity is achieved, and the impact of these strategies on enzymic function. Two principles emerge that deviate from conventional wisdom that has otherwise dominated thinking in the field. (i) Enzymic specificity is dominated by the contribution of exosite binding interactions between substrate and enzyme rather than by specific recognition of sequences flanking the scissile bond. Coupled with the regulation of substrate conformation as a result of the zymogen to proteinase transition, novel mechanistic insights result for numerous aspects of enzyme function. (ii) The transition of zymogen to proteinase following cleavage is not absolute and instead, thrombin can reversibly interconvert between zymogen-like and proteinase-like forms depending on the complement of ligands bound to it. This establishes new paradigms for considering proteinase allostery and how enzyme function may be modulated by ligand binding. These insights into the action of prothrombinase on prothrombin have wide-ranging implications for the understanding of function in blood coagulation.
Collapse
Affiliation(s)
- S Krishnaswamy
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Kroh HK, Panizzi P, Tchaikovski S, Baird TR, Wei N, Krishnaswamy S, Tans G, Rosing J, Furie B, Furie BC, Bock PE. Active site-labeled prothrombin inhibits prothrombinase in vitro and thrombosis in vivo. J Biol Chem 2011; 286:23345-56. [PMID: 21531712 DOI: 10.1074/jbc.m111.230292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse and human prothrombin (ProT) active site specifically labeled with D-Phe-Pro-Arg-CH(2)Cl (FPR-ProT) inhibited tissue factor-initiated thrombin generation in platelet-rich and platelet-poor mouse and human plasmas. FPR-prethrombin 1 (Pre 1), fragment 1 (F1), fragment 1.2 (F1.2), and FPR-thrombin produced no significant inhibition, demonstrating the requirement for all three ProT domains. Kinetics of inhibition of ProT activation by the inactive ProT(S195A) mutant were compatible with competitive inhibition as an alternate nonproductive substrate, although FPR-ProT deviated from this mechanism, implicating a more complex process. FPR-ProT exhibited ∼10-fold more potent anticoagulant activity compared with ProT(S195A) as a result of conformational changes in the ProT catalytic domain that induce a more proteinase-like conformation upon FPR labeling. Unlike ProT and ProT(S195A), the pathway of FPR-ProT cleavage by prothrombinase was redirected from meizothrombin toward formation of the FPR-prethrombin 2 (Pre 2)·F1.2 inhibitory intermediate. Localization of ProT labeled with Alexa Fluor® 660 tethered through FPR-CH(2)Cl ([AF660]FPR-ProT) during laser-induced thrombus formation in vivo in murine arterioles was examined in real time wide-field and confocal fluorescence microscopy. [AF660]FPR-ProT bound rapidly to the vessel wall at the site of injury, preceding platelet accumulation, and subsequently to the thrombus proximal, but not distal, to the vessel wall. [AF660]FPR-ProT inhibited thrombus growth, whereas [AF660]FPR-Pre 1, lacking the F1 membrane-binding domain did not bind or inhibit. Labeled F1.2 localized similarly to [AF660]FPR-ProT, indicating binding to phosphatidylserine-rich membranes, but did not inhibit thrombosis. The studies provide new insight into the mechanism of ProT activation in vivo and in vitro, and the properties of a unique exosite-directed prothrombinase inhibitor.
Collapse
Affiliation(s)
- Heather K Kroh
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Classical enzymology has been used for generations to understand the interactions of inhibitors with their enzyme targets. Enzymology tools enabled prediction of the biological impact of inhibitors as well as the development of novel, more potent, ones. Experiments designed to examine the competition between the tested inhibitor and the enzyme substrate(s) are the tool of choice to identify inhibitors that bind in the active site. Competition between an inhibitor and a substrate is considered a strong evidence for binding of the inhibitor in the active site, while the lack of competition suggests binding to an alternative site. Nevertheless, exceptions to this notion do exist. Active site-binding inhibitors can display non-competitive inhibition patterns. This unusual behavior has been observed with enzymes utilizing an exosite for substrate binding, isomechanism enzymes, enzymes with multiple substrates and/or products and two-step binding inhibitors. In many of these cases, the mechanisms underlying the lack of competition between the substrate and the inhibitor are well understood. Tools like alternative substrates, testing the enzyme reaction in the reverse direction and monitoring inhibition time dependence can be applied to enable distinction between 'badly behaving' active site binders and true exosite inhibitors.
Collapse
Affiliation(s)
- Yuval Blat
- Department of Mechanistic Biochemistry, Bristol-Myers Squibb Company, Rt. 206 and Provinceline Rd., Princeton, NJ 08543, USA.
| |
Collapse
|
11
|
Chattopadhyay R, Iacob R, Sen S, Majumder R, Tomer KB, Lentz BR. Functional and structural characterization of factor Xa dimer in solution. Biophys J 2009; 96:974-86. [PMID: 19186135 DOI: 10.1016/j.bpj.2008.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022] Open
Abstract
Previous studies showed that binding of water-soluble phosphatidylserine (C6PS) to bovine factor Xa (FXa) leads to Ca2+-dependent dimerization in solution. We report the effects of Ca2+, C6PS, and dimerization on the activity and structure of human and bovine FXa. Both human and bovine dimers are 10(6)- to 10(7)-fold less active toward prothrombin than the monomer, with the decrease being attributed mainly to a substantial decrease in k(cat). Dimerization appears not to block the active site, since amidolytic activity toward a synthetic substrate is largely unaffected. Circular dichroism reveals a substantial change in tertiary or quaternary structure with a concomitant decrease in alpha-helix upon dimerization. Mass spectrometry identifies a lysine (K(270)) in the catalytic domain that appears to be buried at the dimer interface and is part of a synthetic peptide sequence reported to interfere with factor Va (FVa) binding. C6PS binding exposes K(351) (part of a reported FVa binding region), K(242) (adjacent to the catalytic triad), and K(420) (part of a substrate exosite). We interpret our results to mean that C6PS-induced dimerization produces substantial conformational changes or domain rearrangements such that structural data on PS-activated FXa is required to understand the structure of the FXa dimer or the FXa-FVa complex.
Collapse
Affiliation(s)
- Rima Chattopadhyay
- Department of Biochemistry and Biophysics and Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
12
|
Fiore MM, Mackie IJ. Dual effect of Platelet Factor 4 on the activities of Factor Xa. Biochem Biophys Res Commun 2009; 379:1072-5. [PMID: 19150337 DOI: 10.1016/j.bbrc.2009.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 01/03/2009] [Indexed: 11/16/2022]
Abstract
Platelet Factor 4 (PF4) prevents inhibition of blood coagulation proteases by heparin via formation of a putative enzyme-PF4 complex. To investigate the contribution of the latter, the activity of factor Xa (fXa) was determined in chromogenic assays measuring hydrolysis of a peptide substrate S2765 or cleavage of the macromolecular substrate prothrombin in the activating complex, prothrombinase. Upon preincubation with fXa and heparin, PF4 at about 250 nM decreased the k(cat) of S2765 hydrolysis about fivefold and that of prothrombin activation about 25-fold. In the presence of saturating fVa, inhibition of fXa by PF4 was abolished, while in the presence of limiting fVa, PF4 altered the interaction of fXa with fVa. Interestingly, high concentrations of PF4 restored fXa activity toward S2765 and prothrombin, indicating a dual effect of PF4 on fXa activities. These findings suggest that PF4 in the presence of heparin is an allosteric effector of the prothrombinase complex.
Collapse
Affiliation(s)
- Martine M Fiore
- University College London, Haemostasis Research Unit, Department of Haematology, 51, Chenies Mews, London WC1E 6HX, United Kingdom.
| | | |
Collapse
|
13
|
Abstract
The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.
Collapse
Affiliation(s)
- P E Bock
- Department of Pathology, Vanderbilt University, Nashville, TN 37232-2561, USA.
| | | | | |
Collapse
|
14
|
Kroh HK, Tans G, Nicolaes GAF, Rosing J, Bock PE. Expression of allosteric linkage between the sodium ion binding site and exosite I of thrombin during prothrombin activation. J Biol Chem 2007; 282:16095-104. [PMID: 17430903 PMCID: PMC2292469 DOI: 10.1074/jbc.m610577200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The specificity of thrombin for procoagulant and anticoagulant substrates is regulated allosterically by Na+. Ordered cleavage of prothrombin (ProT) at Arg320 by the prothrombinase complex generates proteolytically active, meizothrombin (MzT), followed by cleavage at Arg271 to produce thrombin and fragment 1.2. The alternative pathway of initial cleavage at Arg271 produces the inactive zymogen form, the prethrombin 2 (Pre 2).fragment 1.2 complex, which is cleaved subsequently at Arg320. Cleavage at Arg320 of ProT or prethrombin 1 (Pre 1) activates the catalytic site and the precursor form of exosite I (proexosite I). To determine the pathway of expression of Na+-(pro)exosite I linkage during ProT activation, the effects of Na+ on the affinity of fluorescein-labeled hirudin-(54-65) ([5F]Hir-(54-65)(SO-3)) for the zymogens, ProT, Pre 1, and Pre 2, and for the proteinases, MzT and MzT-desfragment 1 (MzT(-F1)) were quantitated. The zymogens showed no significant linkage between proexosite I and Na+, whereas cleavage at Arg320 caused the affinities of MzT and MzT(-F1) for [5F]Hir-(54-65)(SO-3) to be enhanced by Na+ 8- to 10-fold and 5- to 6-fold, respectively. MzT and MzT(-F1) showed kinetically different mechanisms of Na+ enhancement of chromogenic substrate hydrolysis. The results demonstrate for the first time that MzT is regulated allosterically by Na+. The results suggest that the distinctive procoagulant substrate specificity of MzT, in activating factor V and factor VIII on membranes, and the anticoagulant, membrane-modulated activation of protein C by MzT bound to thrombomodulin are regulated by Na+-induced allosteric transition. Further, the Na+ enhancement in MzT activity and exosite I affinity may function in directing the sequential ProT activation pathway by accelerating thrombin formation from the MzT fast form.
Collapse
Affiliation(s)
- Heather K. Kroh
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232
| | - Guido Tans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht 6200MD, The Netherlands
| | - Gerry A. F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht 6200MD, The Netherlands
| | - Jan Rosing
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht 6200MD, The Netherlands
| | - Paul E. Bock
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232
- To whom correspondence should be addressed: Dept. of Pathology, Vanderbilt University School of Medicine, C3321A Medical Center North, Nashville, TN 37232-2561. Tel.: 615-343-9863; Fax: 615-322-1855; E-mail:
| |
Collapse
|
15
|
Nakagawa T, Akaki J, Satou R, Takaya M, Iwata H, Katsurada A, Nishiuchi K, Ohmura Y, Suzuki F, Nakamura Y. The His-Pro-Phe motif of angiotensinogen is a crucial determinant of the substrate specificity of renin. Biol Chem 2007; 388:237-46. [PMID: 17261087 DOI: 10.1515/bc.2007.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe amino acid sequence His-Pro-Phe as N-terminal residues 6–8 of the natural renin substrate, angiotensinogen, is conserved among species. We investigated whether this His-Pro-Phe motif functions as the determinant of the substrate specificity of renin. Mutant angiotensinogens in which the Ile-His-Pro-Phe-His-Leu sequence at positions 5–10 of wild-type angiotensinogen was replaced by either His-Pro-Phe-His-Leu-Leu or Ala-Ile-His-Pro-Phe-His were cleaved by renin at the C-terminal side of residues 9 and 11, respectively, while wild-type angiotensinogen was cleaved at residue 10. A triple Ala substitution for the His-Pro-Phe motif of angiotensinogen prevented its cleavage by renin. In contrast, triple Ala substitution for residues 9–11, including the natural site of cleavage by renin, allowed cleavage between the two Ala residues at positions 10 and 11. Furthermore, the 33-residue C-terminal peptide of human megsin, which carries a naturally occurring His-Pro-Phe sequence, was cleaved by renin at the C-terminal side of the His-Pro-Phe-Leu-Phe sequence. These results indicate that the His-Pro-Phe motif of angiotensinogen is a crucial determinant of the substrate specificity of renin. By binding to a corresponding pocket on renin, the His-Pro-Phe motif may act as a molecular anchor to recruit the scissile peptide bond to a favorable site for catalysis.
Collapse
Affiliation(s)
- Tsutomu Nakagawa
- Laboratory of Applied Biochemistry, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Monteiro R, Rezaie A, Ribeiro J, Francischetti I. Ixolaris: a factor Xa heparin-binding exosite inhibitor. Biochem J 2006; 387:871-7. [PMID: 15617517 PMCID: PMC1135020 DOI: 10.1042/bj20041738] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ixolaris is a two-Kunitz TFPI (tissue factor pathway inhibitor) from the tick salivary gland. In contrast with human TFPI, Ixolaris binds tightly to the zymogen FX (Factor X) and to dansyl-Glu-Gly-Arg-chloromethyl ketone-treated FXa (DEGR-FXa; active-site-blocked FXa), indicating that exosites are involved in the FX(a)-Ixolaris interaction. Here we provide evidence that Ixolaris binds specifically to the FXa HBE (heparin-binding exosite), since (i) it markedly decreases the inhibition of FXa by the antithrombin-heparin but not the antithrombin-pentasaccharide complex, (ii) it impairs FXa binding to Sepharose-immobilized heparin, and (iii) it allosterically modulates the catalytic activity of FXa for small chromogenic substrates (S-2765). By using a series of recombinant FXa mutants in which the HBE is mutated, we have identified the importance of amino acids involved in the enzyme-inhibitor interaction as being in the following order: Arg-93>>Arg-165> or =Lys-169>Lys-236>Lys-96>Arg-240>Arg-125. Ixolaris at appropriate concentrations also inhibits thrombin formation in vitro by the assembled prothrombinase complex, a process that is critically dependent on the FXa HBE. Ixolaris is the first inhibitor characterized to date that binds specifically to the FXa HBE.
Collapse
Affiliation(s)
- Robson Q. Monteiro
- *Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Alireza R. Rezaie
- †Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, U.S.A
| | - José M. C. Ribeiro
- ‡Section of Medical Entomology, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892–8132, U.S.A
| | - Ivo M. B. Francischetti
- ‡Section of Medical Entomology, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892–8132, U.S.A
- To whom correspondence should be addressed: LMVR, NIAID, NIH, 12735 Twinbrook Parkway, Twinbrook III Bldg, Room 2E-28, Rockville, MD 20892–8132, U.S.A. (email )
| |
Collapse
|
17
|
Toso R, Camire RM. Role of Hirudin-like factor Va heavy chain sequences in prothrombinase function. J Biol Chem 2006; 281:8773-9. [PMID: 16431918 DOI: 10.1074/jbc.m511419200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proexosite I on prothrombin has been implicated in providing a recognition site for factor Va within prothrombinase. To examine whether hirudin-like sequences (659-698) on the cofactor contribute to this interaction, we expressed and purified two-chain FVa derivatives that were intracellularly truncated at the C terminus of the heavy chain: FVa709 (des710-1545), FVa699 (des700-1545), FVa(692 (des693-1545), FVa678 (des679-1545), and FVa658 (des659-1545). We found that FVa709, FVa699, FVa692, and FVa678 exhibited specific clotting activities that were comparable with plasma-derived and recombinant FVa. Additionally, kinetic studies using prothrombin revealed that the Km and kcat values for these derivatives were unaltered. Fluorescent measurements and chromatography studies indicated that FVa709, FVa699, FVa692, and FVa678 bound to FXa membranes and thrombin-agarose in a manner that was comparable with the wild-type cofactors. In contrast, FVa658 had an approximately 1% clotting activity and reduced affinity for FXa membranes (approximately 20-fold) and did not bind to thrombin-agarose. Surprisingly, however, FVa(658) exhibited essentially normal kinetic parameters for prothrombin when the variant was fully saturated with FXa membranes. Overall our results are consistent with the interpretation that any possible binding interactions between prothrombin and the C-terminal region of the FVa heavy chain do not contribute in a detectable way to the enhanced function of prothrombinase.
Collapse
Affiliation(s)
- Raffaella Toso
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia and University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
18
|
Sheehan JP, Walke EN. Depolymerized holothurian glycosaminoglycan and heparin inhibit the intrinsic tenase complex by a common antithrombin-independent mechanism. Blood 2006; 107:3876-82. [PMID: 16672689 PMCID: PMC1895295 DOI: 10.1182/blood-2005-07-3043] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Depolymerized holothurian glycosaminoglycan (DHG) is a fucosylated chrondroitin sulfate that possesses antithrombin-independent antithrombotic properties and inhibits factor X activation by the intrinsic tenase complex (factor IXa-factor VIIIa). The mechanism and molecular target for intrinsic tenase inhibition were determined and compared with inhibition by low-molecular-weight heparin (LMWH). DHG inhibited factor X activation in a noncompetitive manner (reduced V(max(app))), with 50-fold higher apparent affinity than LMWH. DHG did not affect factor VIIIa half-life or chromogenic substrate cleavage by factor IXa-phospholipid but reduced the affinity of factor IXa for factor VIIIa. DHG competed factor IXa binding to immobilized LMWH with an EC(50) 35-fold lower than soluble LWMH. Analysis of intrinsic tenase inhibition, employing factor IXa with mutations in the heparin-binding exosite, demonstrated that relative affinity (K(i)) for DHG was as follows: wild type > K241A > H92A > R170A > > R233A, with partial rather than complete inhibition of the mutants. This rank order for DHG potency correlated with the effect of these mutations on factor IXa-LMWH affinity and the potency of LMWH for intrinsic tenase. DHG also accelerated decay of the intact intrinsic tenase complex. Thus, DHG binds to an exosite on factor IXa that overlaps with the binding sites for LMWH and factor VIIIa, disrupting critical factor IXa-factor VIIIa interactions.
Collapse
Affiliation(s)
- John P Sheehan
- Department of Medicine/Hematology, University of Wisconsin, Medical Sciences Center Rm. 4285, 1300 University Avenue, Madison, WI 53706, USA.
| | | |
Collapse
|
19
|
Manithody C, Rezaie AR. Functional mapping of charged residues of the 82-116 sequence in factor Xa: evidence that lysine 96 is a factor Va independent recognition site for prothrombin in the prothrombinase complex. Biochemistry 2005; 44:10063-70. [PMID: 16042383 DOI: 10.1021/bi0508791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been hypothesized that two antiparallel structures comprised of residues 82-91 and 102-116 in factor Xa (fXa) may harbor a factor Va- (fVa-) dependent prothrombin recognition site in the prothrombinase complex. There are 11 charged residues in the 82-116 loop of human fXa (Glu-84, Glu-86, Lys-90, Arg-93, Lys-96, Glu-97, Asp-100, Asp-102, Arg-107, Lys-109, and Arg-115). With the exception of Glu-84, which did not express, and Asp-102, which is a catalytic residue, we expressed the Ala substitution mutants of all other residues and evaluated their proteolytic and amidolytic activities in both the absence and presence of fVa. K96A and K109A activated prothrombin with 5-10-fold impaired catalytic efficiency in the absence of fVa. All mutants, however, exhibited normal activity toward the substrate in the presence of fVa. K109A also exhibited impaired amidolytic activity and affinity for Na(+); however, both fVa and higher Na(+) restored the catalytic defect caused by the mutation. Analysis of the X-ray crystal structure of fXa indicated that Glu-84 may interact by a salt bridge with Lys-109, explaining the lack of expression of E84A and the lower activity of K109A in the absence of fVa. These results suggest that none of the residues under study is a fVa-dependent recognition site for prothrombin in the prothrombinase complex; however, Lys-96 is a recognition site for the substrate independent of the cofactor. Moreover, the 82-116 loop is energetically linked to fVa and Na(+) binding sites of the protease.
Collapse
Affiliation(s)
- Chandrashekhara Manithody
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
20
|
Szafranska AE, Dalby KN. Kinetic mechanism for p38 MAP kinase alpha. A partial rapid-equilibrium random-order ternary-complex mechanism for the phosphorylation of a protein substrate. FEBS J 2005; 272:4631-45. [PMID: 16156785 DOI: 10.1111/j.1742-4658.2005.04827.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
p38 Mitogen-activated protein kinase alpha (p38 MAPKalpha) is a member of the MAPK family. It is activated by cellular stresses and has a number of cellular substrates whose coordinated regulation mediates inflammatory responses. In addition, it is a useful anti-inflammatory drug target that has a high specificity for Ser-Pro or Thr-Pro motifs in proteins and contains a number of transcription factors as well as protein kinases in its catalog of known substrates. Fundamental to signal transduction research is the understanding of the kinetic mechanisms of protein kinases and other protein modifying enzymes. To achieve this end, because peptides often make only a subset of the full range of interactions made by proteins, protein substrates must be utilized to fully elucidate kinetic mechanisms. We show using an untagged highly active form of p38 MAPKalpha, expressed and purified from Escherichia coli[Szafranska AE, Luo X & Dalby KN (2005) Anal Biochem336, 1-10) that at pH 7.5, 10 mm Mg2+ and 27 degrees C p38 MAPKalpha phosphorylates ATF2Delta115 through a partial rapid-equilibrium random-order ternary-complex mechanism. This mechanism is supported by a combination of steady-state substrate and inhibition kinetics, as well as microcalorimetry and published structural studies. The steady-state kinetic experiments suggest that magnesium adenosine triphosphate (MgATP), adenylyl (beta,gamma-methylene) diphosphonic acid (MgAMP-PCP) and magnesium adenosine diphosphate (MgADP) bind p38 MAPKalpha with dissociation constants of KA = 360 microm, KI = 240 microm, and KI > 2000 microm, respectively. Calorimetry experiments suggest that MgAMP-PCP and MgADP bind the p38 MAPKalpha-ATF2Delta115 binary complex slightly more tightly than they do the free enzyme, with a dissociation constant of Kd approximately 70 microm. Interestingly, MgAMP-PCP exhibits a mixed inhibition pattern with respect to ATF2Delta115, whereas MgADP exhibits an uncompetitive-like pattern. This discrepancy occurs because MgADP, unlike MgAMP-PCP, binds the free enzyme weakly. Intriguingly, no inhibition by 2 mm adenine or 2 mm MgAMP was detected, suggesting that the presence of a beta-phosphate is essential for significant binding of an ATP analog to the enzyme. Surprisingly, we found that inhibition by the well-known p38 MAPKalpha inhibitor SB 203580 does not follow classical linear inhibition kinetics at concentrations > 100 nm, as previously suggested, demonstrating that caution must be used when interpreting kinetic experiments using this inhibitor.
Collapse
Affiliation(s)
- Anna E Szafranska
- Division of Medicinal Chemistry, University of Texas at Austin, TX 78712, USA
| | | |
Collapse
|
21
|
Lu G, Chhum S, Krishnaswamy S. The affinity of protein C for the thrombin.thrombomodulin complex is determined in a primary way by active site-dependent interactions. J Biol Chem 2005; 280:15471-8. [PMID: 15705565 DOI: 10.1074/jbc.m500881200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of thrombin (IIa) with thrombomodulin (TM) is essential for the efficient activation of protein C (PC). Interactions between PC and extended surfaces, likely contributed by TM within the IIa.TM complex, have been proposed to play a key role in PC activation. Initial velocities of PC activation at different concentrations of PC and TM could be accounted for by a model that did not require consideration of direct binding interactions between PC and TM. Reversible inhibitors directed toward the active site of IIa within the IIa.TM complex behaved as classic competitive inhibitors of both peptidyl substrate cleavage as well as PC activation. The ability of these small molecule inhibitors to block PC binding to the enzyme points to a principal role for active site-dependent substrate recognition in determining the affinity of IIa.TM for its protein substrate. Selective abrogation of active site docking by mutation of the P1 Arg in PC to Gln yielded an uncleavable derivative (PC(R15Q)). PC(R15Q) was a poor inhibitor (K(i) >or= 30 microm) of PC activation as well as peptidyl substrate cleavage by IIa.TM. Thus, inhibition by PC(R15Q) most likely results from its ability to weakly interfere with active site function rather than by blocking extended interactions with the enzyme complex. The data suggest a primary role for active site-dependent substrate recognition in driving the affinity of the IIa.TM complex for its protein substrate. Interactions between PC and extended surfaces contributed by IIa and/or TM within the IIa.TM complex likely contribute in a secondary or minor way to protein substrate affinity.
Collapse
Affiliation(s)
- Genmin Lu
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
22
|
Abstract
Macromolecular substrate recognition and serine proteinase specificity lie at the heart of the tightly regulated hemostatic response. Mechanisms established for the less specific serine proteinases of digestion have played a dominant role in guiding investigations of the basis for the narrow specificities exhibited by the coagulation enzymes. These concepts have also dominated the development of specific inhibitors of coagulation for therapeutic purposes. Studies of the enzymology and physical biochemistry of prothrombinase challenge these prevailing ideas by establishing a principal role for exosites within the enzyme in determining substrate recognition and directing the action of the enzyme on its biological substrate. Mechanisms by which narrow protein substrate specificity is achieved by prothrombinase also apply to several other reactions of coagulation. These strategies are increasingly evident in the action of other families of enzymes that act with high specificity on protein substrates. Exosite-driven enzymic function probably represents a widely employed biological strategy for the achievement of high macromolecular substrate specificity.
Collapse
Affiliation(s)
- S Krishnaswamy
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia & Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Zivelin A, Ogawa T, Bulvik S, Landau M, Toomey JR, Lane J, Seligsohn U, Gailani D. Severe factor XI deficiency caused by a Gly555 to Glu mutation (factor XI-Glu555): a cross-reactive material positive variant defective in factor IX activation. J Thromb Haemost 2004; 2:1782-9. [PMID: 15456490 DOI: 10.1111/j.1538-7836.2004.00882.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
During normal hemostasis, the coagulation protease factor (F)XIa activates FIX. Hereditary deficiency of the FXIa precursor, FXI, is usually associated with reduced FXI protein in plasma, and circulating dysfunctional FXI variants are rare. We identified a patient with < 1% normal plasma FXI activity and normal levels of FXI antigen, who is homozygous for a FXI Gly555 to Glu substitution. Gly555 is two amino acids N-terminal to the protease active site serine residue, and is highly conserved among serine proteases. Recombinant FXI-Glu555 is activated normally by FXIIa and thrombin, and FXIa-Glu555 binds activated factor IX similarly to wild type FXIa (FXIa(WT)). When compared with FXIa(WT), FXIa-Glu555 activates factor IX at a greatly reduced rate ( approximately 400-fold), and is resistant to inhibition by antithrombin. Interestingly, FXIa(WT) and FXIa-Glu555 cleave the small tripeptide substrate S-2366 with comparable k(cat)s. Modeling indicates that the side chain of Glu555 significantly alters the electrostatic charge around the active site, and would sterically interfere with the interaction between the FXIa S2' site and the P2' residues on factor IX and antithrombin. FXI-Glu555 is the first reported example of a naturally occurring FXI variant with a significant defect in FIX activation.
Collapse
Affiliation(s)
- A Zivelin
- Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Boskovic DS, Troxler T, Krishnaswamy S. Active Site-independent Recognition of Substrates and Product by Bovine Prothrombinase. J Biol Chem 2004; 279:20786-93. [PMID: 14988397 DOI: 10.1074/jbc.m400469200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conversion of prothrombin to thrombin is catalyzed by prothrombinase, an enzyme complex composed of the serine proteinase factor Xa and a cofactor protein, factor Va, assembled on membranes. Kinetic studies indicate that interactions with extended macromolecular recognition sites (exosites) rather than the active site of prothrombinase are the principal determinants of binding affinity for substrate or product. We now provide a model-independent evaluation of such ideas by physical studies of the interaction of substrate derivatives and product with prothrombinase. The enzyme complex was assembled using Xa modified with a fluorescent peptidyl chloromethyl ketone to irreversibly occlude the active site. Binding was inferred by prethrombin 2-dependent perturbations in the fluorescence of Oregon Green(488) at the active site of prothrombinase. Active site-independent binding was also unequivocally established by fluorescence resonance energy transfer between 2,6-dansyl tethered to the active site of Xa and eosin tethered to the active sites of either thrombin or meizothrombin des fragment 1. Comparable interprobe distances obtained from these measurements suggest that substrate and product interact equivalently with the enzyme. Competition established the ability of a range of substrate or product derivatives to bind in a mutually exclusive fashion to prothrombinase. Equilibrium dissociation constants obtained for the active site-independent binding of prothrombin, prethrombin 2, meizothrombin des fragment 1 and thrombin to prothrombinase were comparable with their affinities inferred from kinetic studies using active enzyme. Our findings directly establish that binding affinity is principally determined by the exosite-mediated interaction of either the substrate, both possible intermediates, or product with prothrombinase. A single type of exosite binding interaction evidently drives affinity and binding specificity through the stepwise reactions necessary for the two cleavage reactions of prothrombin activation and product release.
Collapse
Affiliation(s)
- Danilo S Boskovic
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia, 310A Abramson, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
25
|
Beck DO, Bukys MA, Singh LS, Szabo KA, Kalafatis M. The Contribution of Amino Acid Region Asp695-Tyr698 of Factor V to Procofactor Activation and Factor Va Function. J Biol Chem 2004; 279:3084-95. [PMID: 14559913 DOI: 10.1074/jbc.m306850200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is strong evidence that a functionally important cluster of amino acids is located on the COOH-terminal portion of the heavy chain of factor Va, between amino acid residues 680 and 709. To ascertain the importance of this region for cofactor activity, we have synthesized five overlapping peptides representing this amino acid stretch (10 amino acids each, HC1-HC5) and tested them for inhibition of prothrombinase assembly and function. Two peptides, HC3 (spanning amino acid region 690-699) and HC4 (containing amino acid residues 695-704), were found to be potent inhibitors of prothrombinase activity with IC(50) values of approximately 12 and approximately 10 microm, respectively. The two peptides were unable to interfere with the binding of factor Va to active site fluorescently labeled Glu-Gly-Arg human factor Xa, and kinetic analyses showed that HC3 and HC4 are competitive inhibitors of prothrombinase with respect to prothrombin with K(i) values of approximately 6.3 and approximately 5.3 microm, respectively. These data suggest that the peptides inhibit prothrombinase because they interfere with the incorporation of prothrombin into prothrombinase. The shared amino acid motif between HC3 and HC4 is composed of Asp(695)-Tyr-Asp-Tyr-Gln(699) (DYDYQ). A pentapeptide with this sequence inhibited both prothrombinase function with an IC(50) of 1.6 microm (with a K(D) for prothrombin of 850 nm), and activation of factor V by thrombin. Peptides HC3, HC4, and DYDYQ were also found to interact with immobilized thrombin. A recombinant factor V molecule with the mutations Asp(695) --> Lys, Tyr(696) --> Phe, Asp(697) --> Lys, and Tyr(698) --> Phe (factor V(2K2F)) was partially resistant to activation by thrombin but could be readily activated by RVV-V activator (factor Va(RVV)(2K2F)) and factor Xa (factor Va(Xa)(2K2F)). Factor Va(RVV)(2K2F) and factor Va(Xa)(2K2F) had impaired cofactor activity within prothrombinase in a system using purified reagents. Our data demonstrate for the first time that amino acid sequence 695-698 of factor Va heavy chain is important for procofactor activation and is required for optimum prothrombinase function. These data provide functional evidence for an essential and productive contribution of factor Va to the activity of prothrombinase.
Collapse
Affiliation(s)
- Daniel O Beck
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | | | |
Collapse
|
26
|
Bianchini EP, Pike RN, Le Bonniec BF. The Elusive Role of the Potential Factor X Cation-binding Exosite-1 in Substrate and Inhibitor Interactions. J Biol Chem 2004; 279:3671-9. [PMID: 14583605 DOI: 10.1074/jbc.m309691200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of studies suggest that blood-clotting factor X (FX) uses secondary site(s) to interact (as a substrate) with its activators. Numerous pieces of evidence also imply that, within prothrombinase (as an enzyme), activated FX (FXa) uses exosite(s) for cofactor Va and/or prothrombin recognition. Similarly, FXa exosite(s) seem to govern interaction with inhibitors. An obvious difference between FXa and thrombin resides within a region called exosite-1: positively charged in thrombin and clearly of opposite polarity in FXa. To investigate the role of this potential cation-binding exosite, we prepared a series of mutants within loops 34-40 and 70-80 of FX. Overall, the mutations induced relatively subtle, non-synergistic modulation. The potential exosite was dispensable for FX activation and is unlikely to constitute a critical region for factor Va binding, albeit it is clearly important for prothrombin activation. Our data also implicate loop 34-40 of FXa in the interaction with the tissue factor pathway inhibitor, in prevention of plasminogen activator inhibitor-1 binding, and in tempering inhibition by heparin-activated antithrombin. Compared with FX, mutants with reduced electrostatic potential potentiated thrombin production in FX-depleted plasma, whereas mutants with inverted electrostatic potential impeded clotting. Despite the definite consequences observed, disruption of the potential cation-binding exosite of FX had rather weak effects, far from what would be expected if this region was as crucial as in thrombin.
Collapse
Affiliation(s)
- Elsa P Bianchini
- INSERM U428, Faculté de Pharmacie, Université Paris V, 75270 Paris Cedex 06, France
| | | | | |
Collapse
|
27
|
O'Brien LA, Stafford AR, Fredenburgh JC, Weitz JI. Glycosaminoglycans Bind Factor Xa in a Ca2+-Dependent Fashion and Modulate Its Catalytic Activity. Biochemistry 2003; 42:13091-8. [PMID: 14596625 DOI: 10.1021/bi0345586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have demonstrated the existence of a Ca(2+)-dependent heparin-binding site on factor Xa. To characterize this heparin-binding site, the extrinsic fluorescence of fluorescein-labeled, active site-blocked factor Xa was monitored as it was titrated with glycosaminoglycans of various sulfate content and chain length. The binding of glycosaminoglycans to factor Xa appears to be charge-dependent because affinity is correlated with degree of glycosaminoglycan sulfation. All glycosaminoglycans bind factor Xa with higher affinity in the presence of Ca(2+) than in its absence. In contrast, when Gla-domainless factor Xa was substituted for factor Xa, glycosaminoglycans bound with similar affinities in the absence and presence of Ca(2+). These results support the hypothesis that the anionic Gla domain impairs glycosaminoglycan binding in the absence of Ca(2+). The changes in fluorescence intensity of factor Xa when titrated with glycosaminoglycans suggest that glycosaminoglycans induce conformational changes in the active site environment of factor Xa. To explore the consequences of these conformational changes, the effect of glycosaminoglycans on the catalytic activity of factor Xa was examined. Glycosaminoglycans influenced the ability of factor Xa to cleave chromogenic substrates and attenuated the capacity of factor Xa to activate factor VII. The potency of glycosaminoglycans in these assays reflected their affinity for factor Xa. These studies suggest that glycosaminoglycan binding perturbs exosites on the surface of factor Xa, potentially modifying interactions with cofactors or substrates.
Collapse
Affiliation(s)
- Lee A O'Brien
- Henderson Research Centre and McMaster University, Hamilton, Ontario L8V 1C3, Canada
| | | | | | | |
Collapse
|
28
|
Sheehan JP, Kobbervig CE, Kirkpatrick HM. Heparin Inhibits the Intrinsic Tenase Complex by Interacting with an Exosite on Factor IXa. Biochemistry 2003; 42:11316-25. [PMID: 14503882 DOI: 10.1021/bi0342923] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The specific molecular target for direct heparin inhibition of factor X activation by intrinsic tenase (factor IXa-factor VIIIa) was investigated. Comparison of size-fractionated oligosaccharides demonstrated that an octasaccharide was sufficient to inhibit intrinsic tenase. Substitution of soluble dihexanoic phosphatidylserine (C6PS) for phospholipid (PL) vesicles demonstrated that inhibition by low-molecular weight heparin (LMWH) was independent of factor IXa-factor VIIIa membrane assembly. LMWH also inhibited factor X activation by the factor IXa-PL complex via a distinct mechanism that required longer oligosaccharides and was independent of substrate concentrations. The apparent affinity of LMWH for the factor IXa-PL complex was higher in the absence of factor VIIIa, suggesting that the cofactor adversely affected the interaction of heparin with factor IXa-phospholipid. LMWH did not interact directly with the active site, as it failed to inhibit chromogenic substrate cleavage by the factor IXa-PL complex. LMWH induced a modest decrease in factor IXa-factor VIIIa affinity [K(D(app))] on PL vesicles that did not account for the inhibition. In contrast, LMWH caused a substantial reduction in factor IXa-factor VIIIa affinity in the presence of C6PS that fully accounted for the inhibition. Factor IXa bound LMWH with significantly higher affinity than factor X by competition solution affinity analysis, and the K(D(app)) for the factor IXa-LMWH complex agreed with the K(I) for inhibition of the factor IXa-PL complex by LMWH. Thus, LMWH binds to an exosite on factor IXa that antagonizes cofactor activity without disrupting factor IXa-factor VIIIa assembly on the PL surface. This exosite may contribute to the clinical efficacy of heparin and represents a novel target for antithrombotic therapy.
Collapse
Affiliation(s)
- John P Sheehan
- Department of Medicine/Hematology, University of Wisconsin-Madison, 53706, USA.
| | | | | |
Collapse
|
29
|
Yegneswaran S, Mesters RM, Griffin JH. Identification of distinct sequences in human blood coagulation factor Xa and prothrombin essential for substrate and cofactor recognition in the prothrombinase complex. J Biol Chem 2003; 278:33312-8. [PMID: 12805370 DOI: 10.1074/jbc.m305906200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify amino acid sequences in factor Xa (fXa) and prothrombin (fII) that may be involved in prothrombinase complex (fXa.factor Va.fII.phospholipids) assembly, synthetic peptides based on fXa and fII sequences were prepared and screened for their ability to inhibit fXa-induced clotting of normal plasma. One fII peptide (PT557-571 homologous to chymotrypsin (CHT) residues 225-239) and two fXa peptides (X404-418, CHT231-244, and X415-429, CHT241-252C) potently inhibited plasma clotting and prothrombinase activity with 50% inhibition between 41 and 115 microM peptide. Inhibition of prothrombinase by PT557-571 and X415-429 was fVa-independent, whereas the inhibition by X404-418 was fVa-dependent. X404-418 inhibited the binding of fVa to fluorescein-labeled, inhibited fXai in the presence of phosphatidylcholine/phosphatidylserine vesicles, whereas X415-429 inhibited binding of fII to phospholipid-bound fluorescein-labeled, inhibited fXai. PT557-571 altered the fluorescence emission of fluorescein-labeled fXai, showing that PT557-571 binds to fXai. These data suggest that residues 404-418 in fXa provide fVa binding sites, whereas residues 557-571 in fII and 415-429 in fXa mediate interactions between fXa and fII in the prothrombinase complex.
Collapse
Affiliation(s)
- Subramanian Yegneswaran
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
30
|
Singh LS, Bukys MA, Beck DO, Kalafatis M. Amino acids Glu323, Tyr324, Glu330, and Val331 of factor Va heavy chain are essential for expression of cofactor activity. J Biol Chem 2003; 278:28335-45. [PMID: 12738785 DOI: 10.1074/jbc.m300233200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently demonstrated that amino acid region 323-331 of factor Va heavy chain (9 amino acids, AP4') contains a binding site for factor Xa (Kalafatis, M., and Beck, D. O. (2002) Biochemistry 41, 12715-12728). To ascertain which amino acids within this region are important for the effector and receptor properties of the cofactor with respect to factor Xa, we have synthesized three overlapping peptides (5 amino acids each) spanning the amino acid region 323-331 and tested them for their effect on prothrombinase complex assembly and function. Peptide containing amino acids 323EYFIA327 alone was found to increase the catalytic efficiency of factor Xa but had no effect on the fluorescent anisotropy of active site-labeled factor Xa (human factor Xa labeled in the active site with Oregon Green 488; [OG488]-EGR-hXa). In contrast, peptide containing the sequence 327AAEEV331 was found to interact with [OG488]-EGR-hXa with half-maximal saturation reached at approximately 150 microm, but it was unable to produce a cofactor effect on factor Xa. Peptide 325FIAAE329 inhibited prothrombinase activity and was able to partially decrease the fluorescent anisotropy of [OG488]-EGR-hXa but could not increase the catalytic efficiency of factor Xa with respect to prothrombin. A control peptide with the sequence FFFIA did not increase the catalytic efficiency of factor Xa, whereas a peptide with the sequence AAEMI was impaired in its capability to interact with [OG488]-EGR-hXa. Two mutant recombinant factor Va molecules (Glu323 --> Phe/Tyr324 --> Phe, factor VaFF; Glu330 --> Met/Val331 --> Ile, factor VaMI) showed impaired cofactor activity when used at limiting cofactor concentration, whereas the quadruple mutant (Glu323 --> Phe/Tyr324 --> Phe and Glu330 --> Met/Val331 --> Ile, factor VaFF/MI) had no cofactor activity under similar experimental conditions. Our data demonstrate that amino acid residues Glu323, Tyr324, Glu330, and Val331 of factor Va heavy chain are critical for expression of factor Va cofactor activity.
Collapse
Affiliation(s)
- Lisam S Singh
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | |
Collapse
|
31
|
Miller JA, Liu RQ, Davis GL, Pratta MA, Trzaskos JM, Copeland RA. A microplate assay specific for the enzyme aggrecanase. Anal Biochem 2003; 314:260-5. [PMID: 12654313 DOI: 10.1016/s0003-2697(02)00638-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have identified a 41-residue peptide, bracketing the aggrecanase cleavage site of aggrecan, that serves as a specific substrate for this enzyme family. Biotinylation of the peptide allowed its immobilization onto streptavidin-coated plates. Aggrecanase-mediated hydrolysis resulted in an immobilized product that reveals an N-terminal neoepitope, recognized by the specific antibody BC-3. This assay is highly specific for aggrecanases; MMPs were inactive in this assay. Reduction of the peptide size below 30 amino acids resulted in a significant diminution of activity. Using the immobilized 41-residue peptide as a substrate, we have developed a 96-well microplate-based assay that can be conveniently used for high-throughput screening of samples for aggrecanase activity and for discovery of inhibitors of aggrecanase activity.
Collapse
Affiliation(s)
- Jeffery A Miller
- The Bristol-Myers Squibb Company Pharmaceutical Research Institute, Experimental Station, Route 141 and Henry Clay Road, Wilmington, DE 19880, USA
| | | | | | | | | | | |
Collapse
|
32
|
Buddai SK, Toulokhonova L, Bergum PW, Vlasuk GP, Krishnaswamy S. Nematode anticoagulant protein c2 reveals a site on factor Xa that is important for macromolecular substrate binding to human prothrombinase. J Biol Chem 2002; 277:26689-98. [PMID: 12011050 DOI: 10.1074/jbc.m202507200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of recombinant nematode anticoagulant protein c2 (NAPc2) to either factor X or Xa is a requisite step in the pathway for the potent inhibition of VIIa tissue factor. We have used NAPc2 as a tight binding probe of human Xa to investigate protein substrate recognition by the human prothrombinase complex. NAPc2 binds with high affinity (K(d) approximately 1 nm) to both X and Xa in a way that does not require or occlude the active site of the enzyme. In contrast, NAPc2 is a tight binding, competitive inhibitor of protein substrate cleavage by human Xa incorporated into prothrombinase with saturating concentrations of membranes and Va. By fluorescence binding studies we show that NAPc2 does not interfere with the assembly of human prothrombinase. These are properties expected of an inhibitor that blocks protein substrate recognition by targeting extended macromolecular recognition sites (exosites) on the enzyme complex. A weaker interaction (K(d) = 260-500 nm) observed between NAPc2 and bovine X was restored to a high affinity one in a recombinant chimeric bovine X derivative containing 25 residues from the COOH terminus of the proteinase domain of human X. This region implicated in binding NAPc2 is spatially adjacent to a site previously identified as a potential exosite. Despite the weaker interaction with bovine Xa, NAPc2 was a tight binding competitive inhibitor of protein substrate cleavage by bovine prothrombinase as well. Extended enzymic surfaces elucidated with exosite-directed probes, such as NAPc2, may define a unique region of factor Xa that is modulated following its assembly into prothrombinase and in turn determines the binding specificity of the enzyme complex for its protein substrate.
Collapse
Affiliation(s)
- Sai K Buddai
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|