1
|
Chan YT, Wu J, Lu Y, Li Q, Feng Z, Xu L, Yuan H, Xing T, Zhang C, Tan HY, Feng Y, Wang N. Loss of lncRNA LINC01056 leads to sorafenib resistance in HCC. Mol Cancer 2024; 23:74. [PMID: 38582885 PMCID: PMC10998324 DOI: 10.1186/s12943-024-01988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND AND AIMS Sorafenib is a major nonsurgical option for patients with advanced hepatocellular carcinoma (HCC); however, its clinical efficacy is largely undermined by the acquisition of resistance. The aim of this study was to identify the key lncRNA involved in the regulation of the sorafenib response in HCC. MATERIALS AND METHODS A clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) single-guide RNA (sgRNA) synergistic activation mediator (SAM)-pooled lncRNA library was applied to screen for the key lncRNA regulated by sorafenib treatment. The role of the identified lncRNA in mediating the sorafenib response in HCC was examined in vitro and in vivo. The underlying mechanism was delineated by proteomic analysis. The clinical significance of the expression of the identified lncRNA was evaluated by multiplex immunostaining on a human HCC microtissue array. RESULTS CRISPR/Cas9 lncRNA library screening revealed that Linc01056 was among the most downregulated lncRNAs in sorafenib-resistant HCC cells. Knockdown of Linc01056 reduced the sensitivity of HCC cells to sorafenib, suppressing apoptosis in vitro and promoting tumour growth in mice in vivo. Proteomic analysis revealed that Linc01056 knockdown in sorafenib-treated HCC cells induced genes related to fatty acid oxidation (FAO) while repressing glycolysis-associated genes, leading to a metabolic switch favouring higher intracellular energy production. FAO inhibition in HCC cells with Linc01056 knockdown significantly restored sensitivity to sorafenib. Mechanistically, we determined that PPARα is the critical molecule governing the metabolic switch upon Linc01056 knockdown in HCC cells and indeed, PPARα inhibition restored the sorafenib response in HCC cells in vitro and HCC tumours in vivo. Clinically, Linc01056 expression predicted optimal overall and progression-free survival outcomes in HCC patients and predicted a better sorafenib response. Linc01056 expression indicated a low FAO level in HCC. CONCLUSION Our study identified Linc01056 as a critical epigenetic regulator and potential therapeutic target in the regulation of the sorafenib response in HCC.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Qiucheng Li
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zixin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tingyuan Xing
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hor-Yue Tan
- Centre for Chinese Medicine New Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
2
|
Valdés-Hernández J, Folch JM, Crespo-Piazuelo D, Passols M, Sebastià C, Criado-Mesas L, Castelló A, Sánchez A, Ramayo-Caldas Y. Identification of candidate regulatory genes for intramuscular fatty acid composition in pigs by transcriptome analysis. Genet Sel Evol 2024; 56:12. [PMID: 38347496 PMCID: PMC10860264 DOI: 10.1186/s12711-024-00882-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content and its fatty acid (FA) composition are typically controlled by several genes, each with a small effect. In the current study, to pinpoint candidate genes and putative regulators involved in FA composition, we performed a multivariate integrative analysis between intramuscular FA and transcriptome profiles of porcine longissimus dorsi (LD) muscle. We also carried out a combination of network, regulatory impact factor (RIF), in silico prediction of putative target genes, and functional analyses to better support the biological relevance of our findings. RESULTS For this purpose, we used LD RNA-Seq and intramuscular FA composition profiles of 129 Iberian × Duroc backcrossed pigs. We identified 378 correlated variables (13 FA and 365 genes), including six FA (C20:4n-6, C18:2n-6, C20:3n-6, C18:1n-9, C18:0, and C16:1n-7) that were among the most interconnected variables in the predicted network. The detected FA-correlated genes include genes involved in lipid and/or carbohydrate metabolism or in regulation of IMF deposition (e.g., ADIPOQ, CHUK, CYCS, CYP4B1, DLD, ELOVL6, FBP1, G0S2, GCLC, HMGCR, IDH3A, LEP, LGALS12, LPIN1, PLIN1, PNPLA8, PPP1R1B, SDR16C5, SFRP5, SOD3, SNW1, and TFRC), meat quality (GALNT15, GOT1, MDH1, NEU3, PDHA1, SDHD, and UNC93A), and transport (e.g., EXOC7 and SLC44A2). Functional analysis highlighted 54 over-represented gene ontology terms, including well-known biological processes and pathways that regulate lipid and carbohydrate metabolism. RIF analysis suggested a pivotal role for six transcription factors (CARHSP1, LBX1, MAFA, PAX7, SIX5, and TADA2A) as putative regulators of gene expression and intramuscular FA composition. Based on in silico prediction, we identified putative target genes for these six regulators. Among these, TADA2A and CARHSP1 had extreme RIF scores and present novel regulators in pigs. In addition, the expression of TADA2A correlated (either positively or negatively) with C20:4n-6, C18:2n-6, C20:3n-6, C18:1n-9, and that of CARHSP1 correlated (positively) with the C16:1n-7 lipokine. We also found that these two transcription factors share target genes that are involved in lipid metabolism (e.g., GOT1, PLIN1, and TFRC). CONCLUSIONS This integrative analysis of muscle transcriptome and intramuscular FA profile revealed valuable information about key candidate genes and potential regulators for FA and lipid metabolism in pigs, among which some transcription factors are proposed to control gene expression and modulate FA composition differences.
Collapse
Affiliation(s)
- Jesús Valdés-Hernández
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Josep M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Daniel Crespo-Piazuelo
- Departament de Genètica i Millora Animal, Institut de Recerca y Tecnologia Agraroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Magí Passols
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Cristina Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lourdes Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Armand Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Yuliaxis Ramayo-Caldas
- Departament de Genètica i Millora Animal, Institut de Recerca y Tecnologia Agraroalimentàries (IRTA), Caldes de Montbui, Spain.
| |
Collapse
|
3
|
Kandzija N, Payne S, Cooke WR, Seedat F, Fischer R, Vatish M. Protein Profiling of Placental Extracellular Vesicles in Gestational Diabetes Mellitus. Int J Mol Sci 2024; 25:1947. [PMID: 38396626 PMCID: PMC10887986 DOI: 10.3390/ijms25041947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Throughout pregnancy, some degree of insulin resistance is necessary to divert glucose towards the developing foetus. In gestational diabetes mellitus (GDM), insulin resistance is exacerbated in combination with insulin deficiency, causing new-onset maternal hyperglycaemia. The rapid reversal of insulin resistance following delivery strongly implicates the placenta in GDM pathogenesis. In this case-control study, we investigated the proteomic cargo of human syncytiotrophoblast-derived extracellular vesicles (STBEVs), which facilitate maternal-fetal signalling during pregnancy, in a UK-based cohort comprising patients with a gestational age of 38-40 weeks. Medium/large (m/l) and small (s) STBEVs were isolated from GDM (n = 4) and normal (n = 5) placentae using ex vivo dual-lobe perfusion and subjected to mass spectrometry. Bioinformatics were used to identify differentially carried proteins and mechanistic pathways. In m/lSTBEVs, 56 proteins were differently expressed while in sSTBEVs, no proteins reached statistical difference. Differences were also observed in the proteomic cargo between m/lSTBEVs and sSTBEVs, indicating that the two subtypes of STBEVs may have divergent modes of action and downstream effects. In silico functional enrichment analysis of differentially expressed proteins in m/lSTBEVs from GDM and normal pregnancy found positive regulation of cytoskeleton organisation as the most significantly enriched biological process. This work presents the first comparison of two populations of STBEVs' protein cargos (m/l and sSTBEVs) from GDM and normal pregnancy isolated using placenta perfusion. Further investigation of differentially expressed proteins may contribute to an understanding of GDM pathogenesis and the development of novel diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Neva Kandzija
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; (N.K.); (S.P.); (W.R.C.); (F.S.)
| | - Sophie Payne
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; (N.K.); (S.P.); (W.R.C.); (F.S.)
| | - William R. Cooke
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; (N.K.); (S.P.); (W.R.C.); (F.S.)
| | - Faheem Seedat
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; (N.K.); (S.P.); (W.R.C.); (F.S.)
| | - Roman Fischer
- Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, UK;
| | - Manu Vatish
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; (N.K.); (S.P.); (W.R.C.); (F.S.)
| |
Collapse
|
4
|
Ren L, Du W, Song D, Lu H, Hamblin MH, Wang C, Du C, Fan GC, Becker RC, Fan Y. Genetic ablation of diabetes-associated gene Ccdc92 reduces obesity and insulin resistance in mice. iScience 2023; 26:105769. [PMID: 36594018 PMCID: PMC9804112 DOI: 10.1016/j.isci.2022.105769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple genome-wide association studies (GWAS) have identified specific genetic variants in the coiled-coil domain containing 92 (CCDC92) locus that is associated with obesity and type 2 diabetes in humans. However, the biological function of CCDC92 in obesity and insulin resistance remains to be explored. Utilizing wild-type (WT) and Ccdc92 whole-body knockout (KO) mice, we found that Ccdc92 KO reduced obesity and increased insulin sensitivity under high-fat diet (HFD) conditions. Ccdc92 KO inhibited macrophage infiltration and fibrosis in white adipose tissue (WAT), suggesting Ccdc92 ablation protects against adipose tissue dysfunction. Ccdc92 deletion also increased energy expenditure and further attenuated hepatic steatosis in mice on an HFD. Ccdc92 KO significantly inhibited the inflammatory response and suppressed the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in WAT. Altogether, we demonstrated the critical role of CCDC92 in metabolism, constituting a potential target for treating obesity and insulin resistance.
Collapse
Affiliation(s)
- Lu Ren
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wa Du
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dan Song
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Haocheng Lu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milton H. Hamblin
- Tulane University Health Sciences Center, Tulane University, New Orleans, LA 70112, USA
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Chunying Du
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Richard C. Becker
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
5
|
Genome-wide CRISPR/Cas9 screening identifies CARHSP1 responsible for radiation resistance in glioblastoma. Cell Death Dis 2021; 12:724. [PMID: 34290231 PMCID: PMC8295287 DOI: 10.1038/s41419-021-04000-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/09/2023]
Abstract
Glioblastomas (GBM) is the most common primary malignant brain tumor, and radiotherapy plays a critical role in its therapeutic management. Unfortunately, the development of radioresistance is universal. Here, we identified calcium-regulated heat-stable protein 1 (CARHSP1) as a critical driver for radioresistance utilizing genome-wide CRISPR activation screening. This is a protein with a cold-shock domain (CSD)-containing that is highly similar to cold-shock proteins. CARHSP1 mRNA level was upregulated in irradiation-resistant GBM cells and knockdown of CARHSP1 sensitized GBM cells to radiotherapy. The high expression of CARHSP1 upon radiation might mediate radioresistance by activating the inflammatory signaling pathway. More importantly, patients with high levels of CARHSP1 had poorer survival when treated with radiotherapy. Collectively, our findings suggested that targeting the CARHSP1/TNF-α inflammatory signaling activation induced by radiotherapy might directly affect radioresistance and present an attractive therapeutic target for GBM, particularly for patients with high levels of CARHSP1.
Collapse
|
6
|
Hu D, Guo Y, Wu R, Shao T, Long J, Yu B, Wang H, Luo Y, Lu H, Zhang J, Chen YE, Peng D. New Insight Into Metformin-Induced Cholesterol-Lowering Effect Crosstalk Between Glucose and Cholesterol Homeostasis via ChREBP (Carbohydrate-Responsive Element-Binding Protein)-Mediated PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Regulation. Arterioscler Thromb Vasc Biol 2021; 41:e208-e223. [PMID: 33535788 DOI: 10.1161/atvbaha.120.315708] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Die Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Yanhong Guo
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Renrong Wu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China (R.W., T.S.)
| | - Tiannan Shao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China (R.W., T.S.)
| | - Junke Long
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
| | - Bilian Yu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
| | - Huilun Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Yonghong Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Haocheng Lu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Jifeng Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Y Eugene Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
- Department of Internal Medicine, University of Michigan, Ann Arbor (D.H., Y.G., H.W., Y.L., H.L., J.Z., Y.E.C.)
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (D.H., J.L., B.Y., Y.L., D.P.)
| |
Collapse
|
7
|
Curcumin Treatment Identifies Therapeutic Targets within Biomarkers of Liver Colonization by Highly Invasive Mesothelioma Cells-Potential Links with Sarcomas. Cancers (Basel) 2020; 12:cancers12113384. [PMID: 33207594 PMCID: PMC7696465 DOI: 10.3390/cancers12113384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Aggressive sarcomatoid tumors designed in inbred strains of immunocompetent rats represent useful tools for both the identification of biomarkers of invasiveness and evaluation of innovative therapies. Our aim was to investigate the molecular determinants of liver colonization and potential common biomarkers of sarcomas and sarcomatoid tumors, using the most invasive (M5-T1) of our four experimental models of peritoneal sarcomatoid malignant mesothelioma in the F344 rat. Using an advanced and robust technique of quantitative proteomics and a bank of paraffin-embedded tumor and tissue samples, we analyzed changes in the proteotype patterns of the liver from normal rats, adjacent non-tumorous liver from untreated tumor-bearing rats, and liver from tumor-bearing rats positively responding to repeated administrations of curcumin given intraperitoneally. The identification of proteome alterations accounting for the antitumor effects of curcumin and changes in the liver microenvironment, which favored the induction of an immune response, could be useful to the research community. Abstract Investigations of liver metastatic colonization suggest that the microenvironment is preordained to be intrinsically hospitable to the invasive cancer cells. To identify molecular determinants of that organotropism and potential therapeutic targets, we conducted proteomic analyses of the liver in an aggressive model of sarcomatoid peritoneal mesothelioma (M5-T1). The quantitative changes between SWATH-MS (sequential window acquisition of all theoretical fragmentation spectra) proteotype patterns of the liver from normal rats (G1), adjacent non-tumorous liver from untreated tumor-bearing rats (G2), and liver from curcumin-treated rats without hepatic metastases (G3) were compared. The results identified 12 biomarkers of raised immune response against M5-T1 cells in G3 and 179 liver biomarker changes in (G2 vs. G1) and (G3 vs. G2) but not in (G3 vs. G1). Cross-comparing these 179 candidates with proteins showing abundance changes related to increasing invasiveness in four different rat mesothelioma tumor models identified seven biomarkers specific to the M5-T1 tumor. Finally, analysis of correlations between these seven biomarkers, purine nucleoside phosphorylase being the main biomarker of immune response, and the 179 previously identified proteins revealed a network orchestrating liver colonization and treatment efficacy. These results highlight the links between potential targets, raising interesting prospects for optimizing therapies against highly invasive cancer cells exhibiting a sarcomatoid phenotype and sarcoma cells.
Collapse
|
8
|
An T, Zhang J, Ma Y, Lian J, Wu YX, Lv BH, Ma MH, Meng JH, Zhou YT, Zhang ZY, Liu Q, Gao SH, Jiang GJ. Relationships of Non-coding RNA with diabetes and depression. Sci Rep 2019; 9:10707. [PMID: 31341180 PMCID: PMC6656886 DOI: 10.1038/s41598-019-47077-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/07/2019] [Indexed: 01/12/2023] Open
Abstract
In order to study the molecular differences between type 2 diabetes mellitus (T2DM) and T2DM with depression (DD), we aimed to screen the differential expression of lncRNA, mRNA, and circRNA in the blood of patients with T2DM and DD. Based on the self-rating depression scale (SDS), patient health questionnaire 9 (PHQ9), blood glucose and HbA1c, we divided the patients into T2DM and DD group. Peripheral blood was collected from the two groups of patients to perform lncRNA, mRNA, and circRNA expression profiling and screening DD-related specific molecules. Subsequently, bioinformatics analysis was performed to investigate the functions of differentially expressed genes (DEgenes). Finally, RT-PCR and lncRNA-mRNA regulatory network was performed to verify the expressions of lncRNAs and mRNAs related to the occurrence and development of DD. 28 lncRNAs, 107 circRNAs, and 89 mRNAs were identified in DD differential expression profiles. GO and pathway analysis found that 20 biological process (BP) related entities and 20 pathways associated with DD. The analysis shows that the genes that are differentially expressed in the DD group involved in the development of the neuropsychiatric system, immunity, and inflammation. Then, we screening for the important DElncRNA and mRNA associated with DD were verified by RT-PCR experiments and the results of RT-PCR were consistent with the sequencing results. LncRNA, circRNA, and mRNA differential expression profiles exist in DD patients compared with T2DM. The lncRNA-mRNA regulatory network analysis confirmed the crosslinking and complex regulation patterns of lncRNA and mRNA expression and verified the authenticity of the regulatory network.
Collapse
Affiliation(s)
- Tian An
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jing Zhang
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Yue Ma
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Juan Lian
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan-Xiang Wu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bo-Han Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meng-Hua Ma
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Jun-Hua Meng
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Yun-Tao Zhou
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Zhi-Yong Zhang
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Qing Liu
- Beijing Medicine and Food Co., Ltd., Beijing, 100029, China
| | - Si-Hua Gao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Guang-Jian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
9
|
Wang L, Qiu P, Jiao J, Hirai H, Xiong W, Zhang J, Zhu T, Ma PX, Chen YE, Yang B. Yes-Associated Protein Inhibits Transcription of Myocardin and Attenuates Differentiation of Vascular Smooth Muscle Cell from Cardiovascular Progenitor Cell Lineage. Stem Cells 2016; 35:351-361. [PMID: 27571517 DOI: 10.1002/stem.2484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 01/12/2023]
Abstract
Vascular smooth muscle cells (VSMCs) derived from cardiovascular progenitor cell (CVPC) lineage populate the tunica media of the aortic root. Understanding differentiation of VSMCs from CVPC will further our understanding of the molecular mechanisms contributing to aortic root aneurysms, and thus, facilitate the development of novel therapeutic agents to prevent this devastating complication. It is established that the yes-associated protein (YAP) and Hippo pathway is important for VSMC proliferation and phenotype switch. To determine the role of YAP in differentiation of VSMCs from CVPCs, we utilized the in vitro monolayer lineage specific differentiation method by differentiating human embryonic stem cells into CVPCs, and then, into VSMCs. We found that expression of YAP decreased during differentiation of VSMC from CVPCs. Overexpression of YAP attenuated expression of VSMC contractile markers and impaired VSMC function. Knockdown of YAP increased expression of contractile proteins during CVPC-VSMCs differentiation. Importantly, expression of YAP decreased transcription of myocardin during this process. Overexpression of YAP in PAC1 SMC cell line inhibited luciferase activity of myocardin proximal promoter in a dose dependent and NKX2.5 dependent manners. YAP protein interacted with NKX2.5 protein and inhibited binding of NKX2.5 to the 5'-proximal promoter region of myocardin in CVPC-derived VSMCs. In conclusion, YAP negatively regulates differentiation of VSMCs from CVPCs by decreasing transcription of myocardin in a NKX2.5-dependent manner. Stem Cells 2017;35:351-361.
Collapse
Affiliation(s)
- Lunchang Wang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, Michigan, USA.,Department of Vascular Surgery, Xiangya School of medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Qiu
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, Michigan, USA
| | - Jiao Jiao
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, Michigan, USA
| | - Hiroyuki Hirai
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, Michigan, USA
| | - Wei Xiong
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, Michigan, USA
| | - Jifeng Zhang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, Michigan, USA
| | - Tianqing Zhu
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, Michigan, USA
| | - Peter X Ma
- Biologic and Materials Sciences, Biomedical Engineering, Macromolecular Science and Engineering, Materials Science and Engineering, University of Michigan, Ann arbor, Michigan, USA
| | - Y Eugene Chen
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, Michigan, USA
| | - Bo Yang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Rodríguez JE, Liao JY, He J, Schisler JC, Newgard CB, Drujan D, Glass DJ, Frederick CB, Yoder BC, Lalush DS, Patterson C, Willis MS. The ubiquitin ligase MuRF1 regulates PPARα activity in the heart by enhancing nuclear export via monoubiquitination. Mol Cell Endocrinol 2015; 413:36-48. [PMID: 26116825 PMCID: PMC4523404 DOI: 10.1016/j.mce.2015.06.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/22/2015] [Accepted: 06/08/2015] [Indexed: 12/17/2022]
Abstract
The transcriptional regulation of peroxisome proliferator-activated receptor (PPAR) α by post-translational modification, such as ubiquitin, has not been described. We report here for the first time an ubiquitin ligase (muscle ring finger-1/MuRF1) that inhibits fatty acid oxidation by inhibiting PPARα, but not PPARβ/δ or PPARγ in cardiomyocytes in vitro. Similarly, MuRF1 Tg+ hearts showed significant decreases in nuclear PPARα activity and acyl-carnitine intermediates, while MuRF1-/- hearts exhibited increased PPARα activity and acyl-carnitine intermediates. MuRF1 directly interacts with PPARα, mono-ubiquitinates it, and targets it for nuclear export to inhibit fatty acid oxidation in a proteasome independent manner. We then identified a previously undescribed nuclear export sequence in PPARα, along with three specific lysines (292, 310, 388) required for MuRF1's targeting of nuclear export. These studies identify the role of ubiquitination in regulating cardiac PPARα, including the ubiquitin ligase that may be responsible for this critical regulation of cardiac metabolism in heart failure.
Collapse
Affiliation(s)
- Jessica E Rodríguez
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jie-Ying Liao
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jun He
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Jonathan C Schisler
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and the Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, USA
| | - Doreen Drujan
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - David J Glass
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - C Brandon Frederick
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Bryan C Yoder
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - David S Lalush
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY, USA
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Guo Y, Fan Y, Zhang J, Lomberk GA, Zhou Z, Sun L, Mathison AJ, Garcia-Barrio MT, Zhang J, Zeng L, Li L, Pennathur S, Willer CJ, Rader DJ, Urrutia R, Chen YE. Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA-I production. J Clin Invest 2015; 125:3819-30. [PMID: 26368306 DOI: 10.1172/jci79048] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
Recent genome-wide association studies have revealed that variations near the gene locus encoding the transcription factor Krüppel-like factor 14 (KLF14) are strongly associated with HDL cholesterol (HDL-C) levels, metabolic syndrome, and coronary heart disease. However, the precise mechanisms by which KLF14 regulates lipid metabolism and affects atherosclerosis remain largely unexplored. Here, we report that KLF14 is dysregulated in the liver of 2 dyslipidemia mouse models. We evaluated the effects of both KLF14 overexpression and genetic inactivation and determined that KLF14 regulates plasma HDL-C levels and cholesterol efflux capacity by modulating hepatic ApoA-I production. Hepatic-specific Klf14 deletion in mice resulted in decreased circulating HDL-C levels. In an attempt to pharmacologically target KLF14 as an experimental therapeutic approach, we identified perhexiline, an approved therapeutic small molecule presently in clinical use to treat angina and heart failure, as a KLF14 activator. Indeed, in WT mice, treatment with perhexiline increased HDL-C levels and cholesterol efflux capacity via KLF14-mediated upregulation of ApoA-I expression. Moreover, perhexiline administration reduced atherosclerotic lesion development in apolipoprotein E-deficient mice. Together, these results provide comprehensive insight into the KLF14-dependent regulation of HDL-C and subsequent atherosclerosis and indicate that interventions that target the KLF14 pathway should be further explored for the treatment of atherosclerosis.
Collapse
|
12
|
Insights into Transcriptional Regulation of Hepatic Glucose Production. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:203-53. [DOI: 10.1016/bs.ircmb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Guo Y, Fan Y, Zhang J, Chang L, Lin JD, Chen YE. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) protein attenuates vascular lesion formation by inhibition of chromatin loading of minichromosome maintenance complex in smooth muscle cells. J Biol Chem 2012; 288:4625-36. [PMID: 23264620 DOI: 10.1074/jbc.m112.407452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) in response to vascular injury plays a critical role in vascular lesion formation. Emerging data suggest that peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1) is a key regulator of energy metabolism and other biological processes. However, the physiological role of PGC-1β in VSMCs remains unknown. A decrease in PGC-1β expression was observed in balloon-injured rat carotid arteries. PGC-1β overexpression substantially inhibited neointima formation in vivo and markedly inhibited VSMC proliferation and induced cell cycle arrest at the G(1)/S transition phase in vitro. Accordingly, overexpression of PGC-1β decreased the expression of minichromosome maintenance 4 (MCM4), which leads to a decreased loading of the MCM complex onto chromatin at the replication origins and decreased cyclin D1 levels, whereas PGC-1β loss of function by adenovirus containing PGC-1β shRNA resulted in the opposite effect. The transcription factor AP-1 was involved in the down-regulation of MCM4 expression. Furthermore, PGC-1β is up-regulated by metformin, and metformin-associated anti-proliferative activity in VSMCs is at least partially dependent on PGC-1β. Our data show that PGC-1β is a critical component in regulating DNA replication, VSMC proliferation, and vascular lesion formation, suggesting that PGC-1β may emerge as a novel therapeutic target for control of proliferative vascular diseases.
Collapse
Affiliation(s)
- Yanhong Guo
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
14
|
Fan Y, Guo Y, Zhang J, Subramaniam M, Song CZ, Urrutia R, Chen YE. Krüppel-like factor-11, a transcription factor involved in diabetes mellitus, suppresses endothelial cell activation via the nuclear factor-κB signaling pathway. Arterioscler Thromb Vasc Biol 2012; 32:2981-8. [PMID: 23042817 DOI: 10.1161/atvbaha.112.300349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endothelial cell (EC) inflammatory status is critical to many vascular diseases. Emerging data demonstrate that mutations of Krüppel-like factor-11 (KLF11), a gene coding maturity-onset diabetes mellitus of the young type 7 (MODY7), contribute to the development of neonatal diabetes mellitus. However, the function of KLF11 in the cardiovascular system still remains to be uncovered. In this study, we aimed to investigate the role of KLF11 in vascular endothelial inflammation. METHODS AND RESULTS KLF11 is highly expressed in vascular ECs and induced by proinflammatory stimuli. Adenovirus-mediated KLF11 overexpression inhibits expression of tumor necrosis factors-α-induced adhesion molecules. Moreover, small interfering RNA-mediated KLF11 knockdown augments the proinflammatory status in ECs. KLF11 inhibits promoter activity of adhesion molecules induced by tumor necrosis factor-α and nuclear factor-κB p65 overexpression. Mechanistically, KLF11 potently inhibits nuclear factor-κB signaling pathway via physical interaction with p65. Furthermore, KLF11 knockdown results in increased binding of p65 to vascular cell adhesion molecule-1 and E-selectin promoters. At the whole organism level, KLF11(-/-) mice exhibit a significant increase in leukocyte recruitment to ECs after lipopolysaccharide administration. CONCLUSIONS Taken together, our data demonstrate for the first time that KLF11 is a suppressor of EC inflammatory activation, suggesting that KLF11 constitutes a novel potential molecular target for inhibition of vascular inflammatory diseases.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Ong KT, Mashek MT, Bu SY, Mashek DG. Hepatic ATGL knockdown uncouples glucose intolerance from liver TAG accumulation. FASEB J 2012; 27:313-21. [PMID: 22993196 DOI: 10.1096/fj.12-213454] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adipose triglyceride lipase (ATGL) is the predominant triacylglycerol (TAG) hydrolase in mammals; however, the tissue-specific effects of ATGL outside of adipose tissue have not been well characterized. Hence, we tested the contribution of hepatic ATGL on mediating glucose tolerance and insulin action. Glucose or insulin tolerance tests and insulin signaling were performed in C57BL/6 mice administered control (nongene specific shRNA) or Atgl shRNA adenoviruses. Glucose and lipid metabolism assays were conducted in primary hepatocytes isolated from mice transduced with control or Atgl shRNA adenoviruses. Knocking down hepatic ATGL completely abrogated the increase in serum insulin following either 1 or 12 wk of feeding a high-fat (HF) diet despite higher hepatic TAG content. Glucose tolerance tests demonstrated that ATGL knockdown normalized glucose tolerance in HF-diet-fed mice. The observed improvements in glucose tolerance were present despite unaltered hepatic insulin signaling and increased liver TAG. Mice with suppressed hepatic ATGL had reduced hepatic glucose production in vivo, and hepatocytes isolated from Atgl shRNA-treated mice displayed a 26% decrease in glucose production and a 38% increase in glucose oxidation compared to control cells. Taken together, these data suggest that hepatic ATGL knockdown enhances glucose tolerance by increasing hepatic glucose utilization and uncouples impairments in insulin action from hepatic TAG accumulation.
Collapse
Affiliation(s)
- Kuok Teong Ong
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
16
|
Xie C, Guo Y, Zhu T, Zhang J, Ma PX, Chen YE. Yap1 protein regulates vascular smooth muscle cell phenotypic switch by interaction with myocardin. J Biol Chem 2012; 287:14598-605. [PMID: 22411986 DOI: 10.1074/jbc.m111.329268] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Hippo-Yap (Yes-associated protein) signaling pathway has emerged as one of the critical pathways regulating cell proliferation, differentiation, and apoptosis in response to environmental and developmental cues. However, Yap1 roles in vascular smooth muscle cell (VSMC) biology have not been investigated. VSMCs undergo phenotypic switch, a process characterized by decreased gene expression of VSMC contractile markers and increased proliferation, migration, and matrix synthesis. The goals of the present studies were to investigate the relationship between Yap1 and VSMC phenotypic switch and to determine the molecular mechanisms by which Yap1 affects this essential process in VSMC biology. Results demonstrated that the expression of Yap1 was rapidly up-regulated by stimulation with PDGF-BB (a known inducer of phenotypic switch in VSMCs) and in the injured vessel wall. Knockdown of Yap1 impaired VSMC proliferation in vitro and enhanced the expression of VSMC contractile genes as well by increasing serum response factor binding to CArG-containing regions of VSMC-specific contractile genes within intact chromatin. Conversely, the interaction between serum response factor and its co-activator myocardin was reduced by overexpression of Yap1 in a dose-dependent manner. Taken together, these results indicate that down-regulation of Yap1 promotes VSMC contractile phenotype by both up-regulating myocardin expression and promoting the association of the serum response factor-myocardin complex with VSMC contractile gene promoters and suggest that the Yap1 signaling pathway is a central regulator of phenotypic switch of VSMCs.
Collapse
Affiliation(s)
- Changqing Xie
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|