1
|
Velasco‐Carneros L, Bernardo‐Seisdedos G, Maréchal J, Millet O, Moro F, Muga A. Pseudophosphorylation of single residues of the J-domain of DNAJA2 regulates the holding/folding balance of the Hsc70 system. Protein Sci 2024; 33:e5105. [PMID: 39012012 PMCID: PMC11249846 DOI: 10.1002/pro.5105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024]
Abstract
The Hsp70 system is essential for maintaining protein homeostasis and comprises a central Hsp70 and two accessory proteins that belong to the J-domain protein (JDP) and nucleotide exchange factor families. Posttranslational modifications offer a means to tune the activity of the system. We explore how phosphorylation of specific residues of the J-domain of DNAJA2, a class A JDP, regulates Hsc70 activity using biochemical and structural approaches. Among these residues, we find that pseudophosphorylation of Y10 and S51 enhances the holding/folding balance of the Hsp70 system, reducing cochaperone collaboration with Hsc70 while maintaining the holding capacity. Truly phosphorylated J domains corroborate phosphomimetic variant effects. Notably, distinct mechanisms underlie functional impacts of these DNAJA2 variants. Pseudophosphorylation of Y10 induces partial disordering of the J domain, whereas the S51E substitution weakens essential DNAJA2-Hsc70 interactions without a large structural reorganization of the protein. S51 phosphorylation might be class-specific, as all cytosolic class A human JDPs harbor a phosphorylatable residue at this position.
Collapse
Affiliation(s)
- Lorea Velasco‐Carneros
- Instituto Biofisika (UPV/EHU, CSIC)University of Basque CountryLeioaSpain
- Department of Biochemistry and Molecular Biology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Ganeko Bernardo‐Seisdedos
- Precision Medicine and Metabolism LabCIC bioGUNEDerioSpain
- Department of Medicine, Faculty of Health SciencesUniversity of DeustoBilbaoSpain
| | - Jean‐Didier Maréchal
- Insilichem, Departament de QuímicaUniversitat Autònoma de Barcelona (UAB)Bellaterra (Barcelona)Spain
| | - Oscar Millet
- Precision Medicine and Metabolism LabCIC bioGUNEDerioSpain
| | - Fernando Moro
- Instituto Biofisika (UPV/EHU, CSIC)University of Basque CountryLeioaSpain
- Department of Biochemistry and Molecular Biology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Arturo Muga
- Instituto Biofisika (UPV/EHU, CSIC)University of Basque CountryLeioaSpain
- Department of Biochemistry and Molecular Biology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| |
Collapse
|
2
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
3
|
Tenner B, Zhang JZ, Kwon Y, Pessino V, Feng S, Huang B, Mehta S, Zhang J. FluoSTEPs: Fluorescent biosensors for monitoring compartmentalized signaling within endogenous microdomains. SCIENCE ADVANCES 2021; 7:7/21/eabe4091. [PMID: 34020947 PMCID: PMC8139597 DOI: 10.1126/sciadv.abe4091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/01/2021] [Indexed: 05/10/2023]
Abstract
Growing evidence suggests that many essential intracellular signaling events are compartmentalized within kinetically distinct microdomains in cells. Genetically encoded fluorescent biosensors are powerful tools to dissect compartmentalized signaling, but current approaches to probe these microdomains typically rely on biosensor fusion and overexpression of critical regulatory elements. Here, we present a novel class of biosensors named FluoSTEPs (fluorescent sensors targeted to endogenous proteins) that combine self-complementing split green fluorescent protein, CRISPR-mediated knock-in, and fluorescence resonance energy transfer biosensor technology to probe compartmentalized signaling dynamics in situ. We designed FluoSTEPs for simultaneously highlighting endogenous microdomains and reporting domain-specific, real-time signaling events including kinase activities, guanosine triphosphatase activation, and second messenger dynamics in live cells. A FluoSTEP for 3',5'-cyclic adenosine monophosphate (cAMP) revealed distinct cAMP dynamics within clathrin microdomains in response to stimulation of G protein-coupled receptors, showcasing the utility of FluoSTEPs in probing spatiotemporal regulation within endogenous signaling architectures.
Collapse
Affiliation(s)
- Brian Tenner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jason Z Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yonghoon Kwon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Veronica Pessino
- Graduate Program of Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Siyu Feng
- The UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Signals Getting Crossed in the Entanglement of Redox and Phosphorylation Pathways: Phosphorylation of Peroxiredoxin Proteins Sparks Cell Signaling. Antioxidants (Basel) 2019; 8:antiox8020029. [PMID: 30678096 PMCID: PMC6406269 DOI: 10.3390/antiox8020029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen and nitrogen species have cell signaling properties and are involved in a multitude of processes beyond redox homeostasis. The peroxiredoxin (Prdx) proteins are highly sensitive intracellular peroxidases that can coordinate cell signaling via direct reactive species scavenging or by acting as a redox sensor that enables control of binding partner activity. Oxidation of the peroxidatic cysteine residue of Prdx proteins are the classical post-translational modification that has been recognized to modulate downstream signaling cascades, but increasing evidence supports that dynamic changes to phosphorylation of Prdx proteins is also an important determinant in redox signaling. Phosphorylation of Prdx proteins affects three-dimensional structure and function to coordinate cell proliferation, wound healing, cell fate and lipid signaling. The advent of large proteomic datasets has shown that there are many opportunities to understand further how phosphorylation of Prdx proteins fit into intracellular signaling cascades in normal or malignant cells and that more research is necessary. This review summarizes the Prdx family of proteins and details how post-translational modification by kinases and phosphatases controls intracellular signaling.
Collapse
|
5
|
Biochemical re-programming of human dermal stem cells to neurons by increasing mitochondrial membrane potential. Cell Death Differ 2018; 26:1048-1061. [PMID: 30154448 DOI: 10.1038/s41418-018-0182-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 01/07/2023] Open
Abstract
Stem cells are generally believed to contain a small number of mitochondria, thus accounting for their glycolytic phenotype. We demonstrate here, however, that despite an indispensable glucose dependency, human dermal stem cells (hDSCs) contain very numerous mitochondria. Interestingly, these stem cells segregate into two distinct subpopulations. One exhibits high, the other low-mitochondrial membrane potentials (Δψm). We have made the same observations with mouse neural stem cells (mNSCs) which serve here as a complementary model to hDSCs. Strikingly, pharmacologic inhibition of phosphoinositide 3-kinase (PI3K) increased the overall Δψm, decreased the dependency on glycolysis and led to formation of TUJ1 positive, electrophysiologically functional neuron-like cells in both mNSCs and hDSCs, even in the absence of any neuronal growth factors. Furthermore, of the two, it was the Δψm-high subpopulation which produced more mitochondrial reactive oxygen species (ROS) and showed an enhanced neuronal differentiation capacity as compared to the Δψm-low subpopulation. These data suggest that the Δψm-low stem cells may function as the dormant stem cell population to sustain future neuronal differentiation by avoiding excessive ROS production. Thus, chemical modulation of PI3K activity, switching the metabotype of hDSCs to neurons, may have potential as an autologous transplantation strategy for neurodegenerative diseases.
Collapse
|
6
|
Cronin JC, Loftus SK, Baxter LL, Swatkoski S, Gucek M, Pavan WJ. Identification and functional analysis of SOX10 phosphorylation sites in melanoma. PLoS One 2018; 13:e0190834. [PMID: 29315345 PMCID: PMC5760019 DOI: 10.1371/journal.pone.0190834] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
The transcription factor SOX10 plays an important role in vertebrate neural crest development, including the establishment and maintenance of the melanocyte lineage. SOX10 is also highly expressed in melanoma tumors, and SOX10 expression increases with tumor progression. The suppression of SOX10 in melanoma cells activates TGF-β signaling and can promote resistance to BRAF and MEK inhibitors. Since resistance to BRAF/MEK inhibitors is seen in the majority of melanoma patients, there is an immediate need to assess the underlying biology that mediates resistance and to identify new targets for combinatorial therapeutic approaches. Previously, we demonstrated that SOX10 protein is required for tumor initiation, maintenance and survival. Here, we present data that support phosphorylation as a mechanism employed by melanoma cells to tightly regulate SOX10 expression. Mass spectrometry identified eight phosphorylation sites contained within SOX10, three of which (S24, S45 and T240) were selected for further analysis based on their location within predicted MAPK/CDK binding motifs. SOX10 mutations were generated at these phosphorylation sites to assess their impact on SOX10 protein function in melanoma cells, including transcriptional activation on target promoters, subcellular localization, and stability. These data further our understanding of SOX10 protein regulation and provide critical information for identification of molecular pathways that modulate SOX10 protein levels in melanoma, with the ultimate goal of discovering novel targets for more effective combinatorial therapeutic approaches for melanoma patients.
Collapse
Affiliation(s)
- Julia C. Cronin
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Stacie K. Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Laura L. Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Steve Swatkoski
- Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
7
|
Waetzig V, Belzer M, Haeusgen W, Boehm R, Cascorbi I, Herdegen T. Crosstalk control and limits of physiological c-Jun N-terminal kinase activity for cell viability and neurite stability in differentiated PC12 cells. Mol Cell Neurosci 2017; 82:12-22. [DOI: 10.1016/j.mcn.2017.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/28/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022] Open
|
8
|
Tsuchiya H, Hohjoh H, Fujiwara Y, Sugimoto Y, Koshimizu TA. Prostaglandin D2 elicits the reversible neurite retraction in hypothalamic cell line. Biochem Biophys Res Commun 2016; 470:804-10. [PMID: 26820529 DOI: 10.1016/j.bbrc.2016.01.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/15/2016] [Indexed: 12/19/2022]
Abstract
Prostaglandins (PGs) play important roles in diverse physiological processes in the central nervous system. PGD2 is the most abundant PG in the brain and acts through specific receptors, DP1 and CRTH2. We investigated the effects of PGD2 on the morphology of the hypothalamic cell line mHypoE-N37 (N37). In N37 cells, serum starvation induced neurite outgrowth and PGD2 elicited neurite retraction, although we failed to detect transcripts for DP1 and CRTH2. Such an effect of PGD2 was efficiently mimicked by its metabolite, 15-deoxy-Δ(12,14)-prostaglandin J2. N-acetyl cysteine completely abolished the effect of PGD2, and reactive oxygen species (ROS) were considered to be important. Notably, neurite outgrowth was restored by PGD2 removal. These results suggest that PGD2 induces reversible neurite retraction in a ROS-mediated mechanism that does not involve any known receptor.
Collapse
Affiliation(s)
- Hiroyoshi Tsuchiya
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan.
| | - Hirofumi Hohjoh
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yoko Fujiwara
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
9
|
Magdeldin S, Moresco JJ, Yamamoto T, Yates JR. Off-Line Multidimensional Liquid Chromatography and Auto Sampling Result in Sample Loss in LC/LC-MS/MS. J Proteome Res 2014; 13:3826-36. [PMID: 25040086 PMCID: PMC4123945 DOI: 10.1021/pr500530e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Indexed: 01/09/2023]
Abstract
Large-scale proteomics often employs two orthogonal separation methods to fractionate complex peptide mixtures. Fractionation can involve ion exchange separation coupled to reversed-phase separation or, more recently, two reversed-phase separations performed at different pH values. When multidimensional separations are combined with tandem mass spectrometry for protein identification, the strategy is often referred to as multidimensional protein identification technology (MudPIT). MudPIT has been used in either an automated (online) or manual (offline) format. In this study, we evaluated the performance of different MudPIT strategies by both label-free and tandem mass tag (TMT) isobaric tagging. Our findings revealed that online MudPIT provided more peptide/protein identifications and higher sequence coverage than offline platforms. When employing an off-line fractionation method with direct loading of samples onto the column from an eppendorf tube via a high-pressure device, a 5.3% loss in protein identifications is observed. When off-line fractionated samples are loaded via an autosampler, a 44.5% loss in protein identifications is observed compared with direct loading of samples onto a triphasic capillary column. Moreover, peptide recovery was significantly lower after offline fractionation than in online fractionation. Signal-to-noise (S/N) ratio, however, was not significantly altered between experimental groups. It is likely that offline sample collection results in stochastic peptide loss due to noncovalent adsorption to solid surfaces. Therefore, the use of the offline approaches should be considered carefully when processing minute quantities of valuable samples.
Collapse
Affiliation(s)
- Sameh Magdeldin
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, SR11, La Jolla, California 92037, United States
- Department
of Structural Pathology, Institute of Nephrology, Graduate School
of Medical and Dental Sciences, Niigata
University, 1-757 Asahimachi-dori, Niigata 951-8510, Japan
- Department
of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - James J. Moresco
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, SR11, La Jolla, California 92037, United States
| | - Tadashi Yamamoto
- Department
of Structural Pathology, Institute of Nephrology, Graduate School
of Medical and Dental Sciences, Niigata
University, 1-757 Asahimachi-dori, Niigata 951-8510, Japan
| | - John R. Yates
- Department
of Chemical Physiology, The Scripps Research
Institute, 10550 North
Torrey Pines Road, SR11, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Thrombin enhances NGF-mediated neurite extension via increased and sustained activation of p44/42 MAPK and p38 MAPK. PLoS One 2014; 9:e103530. [PMID: 25061982 PMCID: PMC4111596 DOI: 10.1371/journal.pone.0103530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/29/2014] [Indexed: 12/13/2022] Open
Abstract
Rapid neurite remodeling is fundamental to nervous system development and plasticity. It involves neurite extension that is regulated by NGF through PI3K/AKT, p44/42 MAPK and p38 MAPK. It also involves neurite retraction that is regulated by the serine protease, thrombin. However, the intracellular signaling pathway by which thrombin causes neurite retraction is unknown. Using the PC12 neuronal cell model, we demonstrate that thrombin utilizes the PI3K/AKT pathway for neurite retraction in NGF-differentiated cells. Interestingly, however, we found that thrombin enhances NGF-induced neurite extension in differentiating cells. This is achieved through increased and sustained activation of p44/42 MAPK and p38 MAPK. Thus, thrombin elicits opposing effects in differentiated and differentiating cells through activation of distinct signaling pathways: neurite retraction in differentiated cells via PI3K/AKT, and neurite extension in differentiating cells via p44/42 MAPK and p38 MAPK. These findings, which also point to a novel cooperative role between thrombin and NGF, have significant implications in the development of the nervous system and the disease processes that afflicts it as well as in the potential of combined thrombin and NGF therapy for impaired learning and memory, and spinal cord injury which all require neurite extension and remodeling.
Collapse
|
11
|
Butland SL, Sanders SS, Schmidt ME, Riechers SP, Lin DTS, Martin DDO, Vaid K, Graham RK, Singaraja RR, Wanker EE, Conibear E, Hayden MR. The palmitoyl acyltransferase HIP14 shares a high proportion of interactors with huntingtin: implications for a role in the pathogenesis of Huntington's disease. Hum Mol Genet 2014; 23:4142-60. [PMID: 24705354 DOI: 10.1093/hmg/ddu137] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HIP14 is the most highly conserved of 23 human palmitoyl acyltransferases (PATs) that catalyze the post-translational addition of palmitate to proteins, including huntingtin (HTT). HIP14 is dysfunctional in the presence of mutant HTT (mHTT), the causative gene for Huntington disease (HD), and we hypothesize that reduced palmitoylation of HTT and other HIP14 substrates contributes to the pathogenesis of the disease. Here we describe the yeast two-hybrid (Y2H) interactors of HIP14 in the first comprehensive study of interactors of a mammalian PAT. Unexpectedly, we discovered a highly significant overlap between HIP14 interactors and 370 published interactors of HTT, 4-fold greater than for control proteins (P = 8 × 10(-5)). Nearly half of the 36 shared interactors are already implicated in HD, supporting a direct link between HIP14 and the disease. The HIP14 Y2H interaction set is significantly enriched for palmitoylated proteins that are candidate substrates. We confirmed that three of them, GPM6A, and the Sprouty domain-containing proteins SPRED1 and SPRED3, are indeed palmitoylated by HIP14; the first enzyme known to palmitoylate these proteins. These novel substrates functions might be affected by reduced palmitoylation in HD. We also show that the vesicular cargo adapter optineurin, an established HTT-binding protein, co-immunoprecipitates with HIP14 but is not palmitoylated. mHTT leads to mislocalization of optineurin and aberrant cargo trafficking. Therefore, it is possible that optineurin regulates trafficking of HIP14 to its substrates. Taken together, our data raise the possibility that defective palmitoylation by HIP14 might be an important mechanism that contributes to the pathogenesis of HD.
Collapse
Affiliation(s)
- Stefanie L Butland
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Shaun S Sanders
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Mandi E Schmidt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Sean-Patrick Riechers
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin-Buch 13125, Germany
| | - David T S Lin
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Dale D O Martin
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Kuljeet Vaid
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Rona K Graham
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Roshni R Singaraja
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin-Buch 13125, Germany
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| |
Collapse
|
12
|
Neuronal process structure and growth proteins are targets of heavy PTM regulation during brain development. J Proteomics 2014; 101:77-87. [DOI: 10.1016/j.jprot.2014.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 11/30/2022]
|
13
|
Cheng YC, Scotting PJ, Hsu LS, Lin SJ, Shih HY, Hsieh FY, Wu HL, Tsao CL, Shen CJ. Zebrafish rgs4 is essential for motility and axonogenesis mediated by Akt signaling. Cell Mol Life Sci 2013; 70:935-50. [PMID: 23052218 PMCID: PMC11113239 DOI: 10.1007/s00018-012-1178-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 12/21/2022]
Abstract
The schizophrenia susceptibility gene, Rgs4, is one of the most intensively studied regulators of G-protein signaling members, well known to be fundamental in regulating neurotransmission. However, little is known about its role in the developing nervous system. We have isolated zebrafish rgs4 and shown that it is transcribed in the developing nervous system. Rgs4 knockdown did not affect neuron number and patterning but resulted in locomotion defects and aberrant development of axons. This was confirmed using a selective Rgs4 inhibitor, CCG-4986. Rgs4 knockdown also attenuated the level of phosphorylated-Akt1, and injection of constitutively-activated AKT1 rescued the motility defects and axonal phenotypes in the spinal cord but not in the hindbrain and trigeminal neurons. Our in vivo analysis reveals a novel role for Rgs4 in regulating axonogenesis during embryogenesis, which is mediated by another schizophrenia-associated gene, Akt1, in a region-specific manner.
Collapse
Affiliation(s)
- Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, 33383, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lang B, Pu J, Hunter I, Liu M, Martin-Granados C, Reilly TJ, Gao GD, Guan ZL, Li WD, Shi YY, He G, He L, Stefánsson H, St Clair D, Blackwood DH, McCaig CD, Shen S. Recurrent deletions of ULK4 in schizophrenia: a novel gene crucial for neuritogenesis and neuronal motility. J Cell Sci 2013; 127:630-40. [DOI: 10.1242/jcs.137604] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although many pathogenic copy number variations (CNVs) are associated with neuropsychiatric diseases, few of them have been functionally characterised. Here we report multiple schizophrenia cases with CNV abnormalities specific to unc-51-like kinase 4 (ULK4), a novel serine/threonine kinase gene. Deletions spanning exons 21–34 of ULK4 were present in 4 out of 3,391 schizophrenia patients from the International Schizophrenia Consortium, but absent in 3,181 controls. Deletions removing exons 33 and 34 of the large splice variant of ULK4 also were enriched in Icelandic schizophrenia and bipolar patients compared to 98,022 controls (P=0.0007 for schizophrenia plus bipolar disorder). Combining the two cohorts gives a p value less than 0.0001 for schizophrenia, or for schizophrenia plus bipolar disorder. The expression of ULK4 is neuron-specific and developmentally regulated. ULK4 modulates multiple signalling pathways including ERK, p38, PKC, and JNK, which are involved in stress responses and implicated in schizophrenia. Knockdown of ULK4 disrupts the composition of microtubules and compromises neuritogenesis and cell motility. Targeted Ulk4 deletion causes corpus callosum agenesis in mice. Our findings indicate that ULK4 is a rare susceptibility gene for schizophrenia.
Collapse
|
15
|
Franco CF, Soares R, Pires E, Santos R, Coelho AV. Radial nerve cord protein phosphorylation dynamics during starfish arm tip wound healing events. Electrophoresis 2012; 33:3764-78. [DOI: 10.1002/elps.201200274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/05/2012] [Accepted: 07/14/2012] [Indexed: 01/14/2023]
Affiliation(s)
- Catarina F. Franco
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras; Portugal
| | - Renata Soares
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras; Portugal
| | - Elisabete Pires
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras; Portugal
| | | | - Ana V. Coelho
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras; Portugal
| |
Collapse
|
16
|
Raman D, Milatovic SZ, Milatovic D, Splittgerber R, Fan GH, Richmond A. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity. Toxicol Appl Pharmacol 2011; 256:300-13. [PMID: 21704645 DOI: 10.1016/j.taap.2011.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aβ-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aβ led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24h following the exposure. The Aβ-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F(2)-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aβ neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration.
Collapse
Affiliation(s)
- Dayanidhi Raman
- Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|