1
|
Sun J, Liu C, Wang L, Song L. The Establishment of Complement System Is from Gene Duplication and Domain Shuffling. Int J Mol Sci 2024; 25:8119. [PMID: 39125697 PMCID: PMC11312191 DOI: 10.3390/ijms25158119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The mammalian complement system constitutes a highly sophisticated body defense machinery. The evolutionary origin of the complement system can be traced to Coelenterata as the presence of the central component C3 and two activation proteases BF and MASP. In the present study, the main complement components were screened and analyzed from the genomes of different species in metazoan subphyla/phyla. C1q with classical domains can be traced to Annelida, and ficolin and MBL to Urochordata. C1r and C1s are only found in Chondrichthyes and even higher species, and MASP is traced to Coelenterata. In the evolutionary tree, C1r from Vertebrates is close to MASP1/2/3 from Deuterostomia and Coelenterata, and C1s from Vertebrates is close to MASP-like protease (MASPL) from Arthropoda, Mollusca, and Annelida. C2, BF, and DF can be traced to Mollusca, Coelenterata, and Porifera, respectively. There are no clear C2 and BF branches in the evolutionary tree. C3 can be traced to Coelenterata, and C4 and C5 are only in Chondrichthyes and even higher species. There are three clear C3, C4, and C5 branches in the evolutionary tree. C6-like (C6L) and C8 can be traced to Urochordata, and C7-like (C7L) can be traced to Cephalochordara. C6L, C7L, and C8 from Urochordata and Cephalochordara provide the structural conditions for the formation of Vertebrate MAC components. The findings unveil the evolutionary principles of the complement system and provide insight into its sophistication.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
2
|
Zhang T, Ma X, Wen H, Xu D, Jin W, Zhou Y. Full-length transcriptome analysis provides new insights into the diversity of immune-related genes in the threatened freshwater shellfish Solenaia oleivora. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108964. [PMID: 37481100 DOI: 10.1016/j.fsi.2023.108964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Solenaia oleivora, a valuable and rare bivalve endemic to China, is becoming a threatened freshwater sepcies. However, the lack of research on its genome and immune system will hinder advances in its conservation and artificial breeding. In this study, we obtained the full-length transcriptome of S. oleivora using PacBio sequencing. A total of 21,415 transcripts with an average length of 1,726 bp were generated. Among these transcripts, 12,084 had coding sequences (CDS), of which 8,639 were annotated in 6 databases. The structure analysis identified 625 transcript factors (TFs), 8,005 long non-coding RNAs (lncRNAs), and 5,288 simple sequences repeat (SSRs). Meanwhile, massive immune genes were identified from the transcriptome of S. oleivora. In terms of non-self-identification, 97 transcripts of pattern recognition receptors (PRRs) were discovered, including peptidoglycan recognition proteins (PGRPs), gram-negative bacteria binding proteins (GNBPs), toll-like receptors (TLRs), scavenger receptors (SRs), galectins (GALs), C-type lectins (CLTs), and fibrinogen-related protein (FREPs). For pathogen elimination, 7 transcripts related to antimicrobial peptides, lysozymes, and lysosomal enzymes were identified. Moreover, 33 complement-associated transcripts were found. This study enriched the genome resources of S. oleivora and provided new insights for the study of the immune system of S. oleivora.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Dongpo Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wu Jin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yanfeng Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
3
|
Zhao BR, Wang XX, Liu PP, Wang XW. Complement-related proteins in crustacean immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104577. [PMID: 36265592 DOI: 10.1016/j.dci.2022.104577] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
As an important part of innate immune system, complement system is widely involved in defense response and immune regulation, and plays an important biological role. The complement system has been deeply studied. More than 30 complement-related molecules and three major complement-activation pathways have been identified in vertebrates. Crustacean animals do not have complement system. There are only some complement-related proteins in crustaceans which are important for host defense. In this review, we summarize the current knowledge about complement-related proteins in crustaceans, and their functions in crustacean immunity. We also make a comparation of the crustacean pro-phenoloxidase activating system and the mammalian complement system. This review provides a better understanding of the evolution and function of complement-related proteins in crustaceans.
Collapse
Affiliation(s)
- Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ping-Ping Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
4
|
Sun J, Wang L, Yang W, Li Y, Jin Y, Wang L, Song L. A novel C-type lectin activates the complement cascade in the primitive oyster Crassostrea gigas. J Biol Chem 2021; 297:101352. [PMID: 34715129 PMCID: PMC8605247 DOI: 10.1016/j.jbc.2021.101352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
The ancient origin of the lectin pathway of the complement system can be traced back to protochordates (such as amphioxus and tunicates) by the presence of components such as ficolin, glucose-binding lectin, mannose-binding lectin-associated serine protease (MASP), and C3. Evidence for a more primitive origin is offered in the present study on the Pacific oyster Crassostrea gigas. C3 protein in C. gigas (CgC3) was found to be cleaved after stimulation with the bacteria Vibrio splendidus. In addition, we identified a novel C-type lectin (defined as CgCLec) with a complement control protein (CCP) domain, which recognized various pathogen-associated molecular patterns (PAMPs) and bacteria. This protein was involved in the activation of the complement system by binding CgMASPL-1 to promote cleavage of CgC3. The production of cytokines and antibacterial peptides, as well as the phagocytotic ratio of haemocytes in CgCLec-CCP-, CgMASPL-1-, or CgC3-knockdown oysters, decreased significantly after V. splendidus stimulation. Moreover, this activated CgC3 participated in perforation of bacterial envelopes and inhibiting survival of the infecting bacteria. These results collectively suggest that there existed an ancient lectin pathway in molluscs, which was activated by a complement cascade to regulate the production of immune effectors, phagocytosis, and bacterial lysis.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Yingnan Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China.
| |
Collapse
|
5
|
Qu B, Zhang S, Ma Z, Gao Z. Hepatic cecum: a key integrator of immunity in amphioxus. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:279-292. [PMID: 37073295 PMCID: PMC10077268 DOI: 10.1007/s42995-020-00080-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/21/2020] [Indexed: 05/03/2023]
Abstract
The vertebrate liver is regarded as an organ essential to the regulation of immunity and inflammation as well as being central to the metabolism of nutrients. Here, we discuss the functions that the hepatic cecum of amphioxus plays in the regulation of immunity and inflammation, and the molecular basis of this. It is apparent that the hepatic cecum performs important roles in the immunity of amphioxus including immune surveillance, clearance of pathogens and acute phase response. Therefore, the hepatic cecum, like the vertebrate liver, is an organ functioning as a key integrator of immunity in amphioxus.
Collapse
Affiliation(s)
- Baozhen Qu
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Zengyu Ma
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Zhan Gao
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
6
|
Yang W, Lv X, Leng J, Li Y, Sun J, Yang C, Wang L, Song L. A fibrinogen-related protein mediates the recognition of various bacteria and haemocyte phagocytosis in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2021; 114:161-170. [PMID: 33957267 DOI: 10.1016/j.fsi.2021.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The family of fibrinogen-related proteins (FREPs) is a group of proteins with fibrinogen-like (FBG) domains, which play important roles as pattern recognition receptors (PRRs) in the innate immune responses. In the present study, a fibrinogen-like protein was identified from the oyster Crassostrea gigas (defined as CgFREP1). The open reading frame of CgFREP1 was of 966 bp that encoded a predicted polypeptide of 321 amino acids comprising a signal peptide and a fibrinogen-like domain. The mRNA expression of CgFREP1 was detected in all the examined tissues. The recombinant CgFREP1 (rCgFREP1) displayed binding activities to lipopolysaccharide (LPS), mannose (MAN), as well as Gram-positive bacteria (Micrococcus luteus and Staphylococcus aureus) and Gram-negative bacteria (Vibrio splendidus and Escherichia coli). The rCgFREP1 displayed the agglutinating activity towards M. luteus, V. splendidus and E. coli in the presence of Ca2+. rCgFREP1 was able to enhance the phagocytic activity of haemocytes towards V. splendidus, and exhibited binding activity to the CUB domain of CgMASPL-1. These results suggest that CgFREP1 not only serves as a PRR to recognize and agglutinate different bacteria but also mediates the haemocytes phagocytosis towards V. splendidus.
Collapse
Affiliation(s)
- Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
7
|
Wang W, Wang C, Chen W, Ding S. Advances in immunological research of amphioxus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103992. [PMID: 33387559 DOI: 10.1016/j.dci.2020.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Amphioxus, one of the most closely related invertebrates to vertebrates, is an important animal model for studying the origin and evolution of vertebrate immunity, especially the transition from innate immunity to adaptive immunity. The current research progresses of amphioxus in the field of immune organs, immune cells, complement system, cytokines, nuclear factor kappa B, immune-related lectins and enzymes are summarized, and some issues that remain to be understood or are in need of further clarification are highlighted. We hope to provide references for more in-depth study of the amphioxus immune system and lay a solid foundation for the construction of three-dimensional immune network in amphioxus from ontogeny to phylogeny.
Collapse
Affiliation(s)
- Wenjun Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Changliu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China.
| | - Wei Chen
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China; Yantai Productivity Promotion Center, Yantai, 264003, People's Republic of China
| | - Shuo Ding
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| |
Collapse
|
8
|
Mu L, Yin X, Wu H, Lei Y, Han K, Mo J, Guo Z, Li J, Ye J. Mannose-Binding Lectin Possesses Agglutination Activity and Promotes Opsonophagocytosis of Macrophages with Calreticulin Interaction in an Early Vertebrate. THE JOURNAL OF IMMUNOLOGY 2020; 205:3443-3455. [PMID: 33199536 DOI: 10.4049/jimmunol.2000256] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
The innate immune system is an ancient defense system in the process of biological evolution, which can quickly and efficiently resist pathogen infection. In mammals, mannose-binding lectin (MBL) is a key molecule in the innate immune and plays an essential role in the first line of host defense against pathogenic bacteria. However, the evolutionary origins and ancient roles of immune defense of MBL and its mechanism in clearance of microbial pathogens are still unclear, especially in early vertebrates. In this study, Oreochromis niloticus MBL (OnMBL) was successfully isolated and purified from the serum of Nile tilapia (O. niloticus). The OnMBL was able to bind and agglutinate with two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila Interestingly, the OnMBL was able to significantly inhibit the proliferation of pathogenic bacteria and reduce the inflammatory response. Upon bacterial challenge, the downregulation of OnMBL expression by RNA interference could lead to rapid proliferation of the pathogenic bacteria, ultimately resulting in tilapia death. However, the phenotype was rescued by reinjection of the OnMBL, which restored the healthy status of the knockdown tilapia. Moreover, a mechanistic analysis revealed that the OnMBL could clear pathogenic bacteria by collaborating with cell-surface calreticulin to facilitate phagocytosis in a complement activation-independent manner. To our knowledge, these results provide the first evidence on the antibacterial response mechanism of MBL performing evolutionary conserved function to promote opsonophagocytosis of macrophages in early vertebrates and reveals new insights into the understanding of the evolutionary origins and ancient roles basis of the C-type lectins in the innate immune defense.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Hairong Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Yang Lei
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Kailiang Han
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Jinfeng Mo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI 49783
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| |
Collapse
|
9
|
Wu H, Mu L, Yin X, Han K, Yan F, Zhou E, Han B, Guo Z, Ye J. A microfibril-associated glycoprotein 4 (MFAP4) from Nile tilapia (Oreochromis niloticus) possesses agglutination and opsonization ability to bacterial pathogens. FISH & SHELLFISH IMMUNOLOGY 2020; 104:182-191. [PMID: 32531331 DOI: 10.1016/j.fsi.2020.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Microfibril-associated glycoprotein 4 (MFAP4), a pattern recognition-like molecule with a fibrinogen-like domain (FBG), has the ability to combine and agglutinate pathogens, playing an essential role in the first line of innate immune defense. In this study, the sequence of Nile tilapia (Oreochromis niloticus) microfibril-associated glycoprotein 4 (OnMFAP4) open reading frame (ORF) was amplified and identified. The ORF of OnMFAP4 is 720 bp of nucleotides and codes for 239 amino acids. Spatial mRNA encoding analysis indicated that OnMFAP4 was highly produced in liver, intestine and head kidney in healthy tilapia, and with the lowest expression in muscle. After challenges with Streptococcus agalactiae (S. agalactiae) and Aeromonas hydrophila (A. hydrophila), the expression of OnMFAP4 mRNA was prominently produced in the liver, spleen and head kidney. The up-regulation of OnMFAP4 expression was also presented in head kidney monocytes/macrophages (MO/MΦ) and hepatocytes. Recombinant OnMFAP4 ((r)OnMFAP4) could bind and agglutinate both bacterial pathogens. Moreover, (r)OnMFAP4 could take part in the modulation of inflammation and phagocytosis. In conclusion, this study revealed that OnMFAP4 might take effect in host defense against bacterial infection in Nile tilapia, with agglutination and opsonization capability to bacterial pathogens.
Collapse
Affiliation(s)
- Hairong Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Liangliang Mu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Xiaoxue Yin
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Kailiang Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Fangfang Yan
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Enxu Zhou
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Biao Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
10
|
Merle NS, Singh P, Rahman J, Kemper C. Integrins meet complement: The evolutionary tip of an iceberg orchestrating metabolism and immunity. Br J Pharmacol 2020; 178:2754-2770. [PMID: 32562277 PMCID: PMC8359198 DOI: 10.1111/bph.15168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
Immunologists have recently realized that there is more to the classic innate immune sensor systems than just mere protection against invading pathogens. It is becoming increasingly clear that such sensors, including the inflammasomes, toll-like receptors, and the complement system, are heavily involved in the regulation of basic cell physiological processes and particularly those of metabolic nature. In fact, their "non-canonical" activities make sense as no system directing immune cell activity can perform such task without the need for energy. Further, many of these ancient immune sensors appeared early and concurrently during evolution, particularly during the developmental leap from the single-cell organisms to multicellularity, and therefore crosstalk heavily with each other. Here, we will review the current knowledge about the emerging cooperation between the major inter-cell communicators, integrins, and the cell-autonomous intracellularly and autocrine-active complement, the complosome, during the regulation of single-cell metabolism. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Nicolas S Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Parul Singh
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jubayer Rahman
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
11
|
Wang W, Qu Q, Chen J. Identification, expression analysis, and antibacterial activity of Apolipoprotein A-I from amphioxus (Branchiostoma belcheri). Comp Biochem Physiol B Biochem Mol Biol 2019; 238:110329. [DOI: 10.1016/j.cbpb.2019.110329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022]
|
12
|
Gorbushin AM. Derivatives of the lectin complement pathway in Lophotrochozoa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:35-58. [PMID: 30682446 DOI: 10.1016/j.dci.2019.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 05/16/2023]
Abstract
A plethora of non-overlapping immune molecular mechanisms in metazoans is the most puzzling issue in comparative immunobiology. No valid evolutionary retrospective on these mechanisms has been developed. In this study, we aimed to reveal the origin and evolution of the immune complement-like system in Lophotrochozoa. For this, we analyzed publicly available transcriptomes of prebilaterian and lophotrochozoan species, mapping lineage-specific molecular events on the phylogenetic tree. We found that there were no orthologs of mannose-binding lectin (MBL) and ficolins (FCN) in Lophotrochozoa but C1q-like proteins (C1qL), bearing both a collagen domain and a globular C1q domain, were omnipresent in them. This suggests that among all complement-like activators the C1qL-specific domain architecture was an evolutionarily first. Two novel protostomian MASP-Related Molecules, MReM1 and MReM2, might hypothetically compensate for the loss of a prebilaterian MASP-orthologous gene and act in complex with C1qL and C1qDC as a "proto-activator" of an ancient "proto-complement". We proposed a new model of the complement evolution predicting that numerous lineage-specific complement-like systems should have evolved from a stem "antique" molecular complex. First evolved in the common ancestor of coelomic animals, the "antique" humoral complex consisted of a TEP molecule, the common ancestor of TEP-associated proteases (C2/Bf/Сf/Lf), the common ancestor of MASP-like proteases (MASP/C1r/C1s, MReM1/MReM2) and multimeric recognition proteins (C1q-, MBL- and FCN-homologs). Further evolutionary specialization and expansion of the complex was independent and lineage-specific, examples being the mammalian complement system and the Apogastropoda complement-like complex. The latter includes an impressive array of multimeric recognition proteins, the variable immunoglobulin and lectin domain containing molecules (VIgL), homologous to C1q, MBL, FCN and other lectins. Four novel polymorphic subfamilies of VIgLs were found to be expressed in Apogastropoda: C1q-related proteins (QREP), zona pellucida-related proteins (ZREP), Scavenger Receptor Cys-Rich-related proteins (SREP) and HPA-lectin related proteins (HREP). The transcriptional response of fibrinogen-related proteins of VIgL family (LlFREP), LlQREP and LlSREP to infestation of common periwinkle, Littorina littorea, with digenean parasite Himasthla elongata correlates with that of LlMReM1, supporting the model suggested in this study.
Collapse
Affiliation(s)
- Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), Saint-Petersburg, Russia.
| |
Collapse
|
13
|
Gao Z, Ma Z, Qu B, Jiao D, Zhang S. Identification and characterization of properdin in amphioxus: Implications for a functional alternative complement pathway in the basal chordate. FISH & SHELLFISH IMMUNOLOGY 2017; 65:1-8. [PMID: 28366782 DOI: 10.1016/j.fsi.2017.03.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
A complement system operating via the alternative pathway similar to that of vertebrates has been demonstrated in the primitive chordate amphioxus. However, the factor P (fP), a positive regulator of the alternative pathway, remains elusive in amphioxus to date. In this study, we identified and characterized a properdin gene in the amphioxus B. japonicum, BjfP, which represents an archetype of vertebrate properdins. Real-time PCR analysis showed that the BjfP was ubiquitously expressed and its expression was significantly up-regulated following the challenge with bacteria or lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Recombinant BjfP (rBjfP) and its truncated proteins including rTSR1-3, rTSR4-6 and rTSR7-8, were all capable of interacting with both Gram-negative and positive bacteria as well as LPS and LTA. Moreover, rBjfP, rTSR1-3 and rTSR4-6 could also specifically bind to C3b. Importantly, both rTSR1-3 and rTSR4-6 could inhibit the binding of rBjfP to C3b, and thus suppress the activation of the alternative pathway of complement, suggesting the involvement of BjfP in the alternative pathway. This is the first report showing that a properdin protein in invertebrates plays similar roles to vertebrate properdins. Collectively, these data suggest that BjfP might represent the ancient molecule from which vertebrate properdins evolved.
Collapse
Affiliation(s)
- Zhan Gao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Zengyu Ma
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Baozhen Qu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Deyan Jiao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
14
|
Nicola F, Loriano B. Morula cells as key hemocytes of the lectin pathway of complement activation in the colonial tunicate Botryllus schlosseri. FISH & SHELLFISH IMMUNOLOGY 2017; 63:157-164. [PMID: 28189764 DOI: 10.1016/j.fsi.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The complement system is deeply rooted in the evolution of humoral mechanism of innate immunity. In addition to the alternative pathway of complement activation, lectins and associated serine proteases exert important roles in the recognition of non-self and activation of the effectors. In the colonial tunicate Botryllus schlosseri, we identified, characterized and studied the expression of three orthologues of genes involved in the lectin pathway of complement activation of vertebrates, i.e., genes for a mannose-binding lectin (MBL), a ficolin and a mannose-associated serine protease 1 (MASP1). All the genes are transcribed by hemocytes, and specifically by morula cells, the same immunocytes responsible for the transcription of C3 and Bf orthologues. The transcription levels of MASP1 and ficolin orthologues are not affected by zymosan challenge, indicating a constitutive expression of complement system associated serine proteases, whereas the MBL orthologue is up-regulated after 15 min of zymosan exposure. Collectively, our data suggest the presence of a complete lectin activation pathway in Botryllus.
Collapse
Affiliation(s)
- Franchi Nicola
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100, Padova, Italy.
| | - Ballarin Loriano
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100, Padova, Italy
| |
Collapse
|
15
|
Han Y, Liu X, Shi B, Xiao R, Gou M, Wang H, Li Q. Identification and characterisation of the immune response properties of Lampetra japonica BLNK. Sci Rep 2016; 6:25308. [PMID: 27126461 PMCID: PMC4850452 DOI: 10.1038/srep25308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/14/2016] [Indexed: 01/01/2023] Open
Abstract
B cell linker protein (BLNK) is a central linker protein involved in B cell signal transduction in jawed vertebrates. In a previous study, we have reported the identification of a BLNK homolog named Lj-BLNK in lampreys. In this study, a 336 bp cDNA fragment encoding the Lj-BLNK Src homology 2 (SH2) domain was cloned into the vector pET-28a(+) and overexpressed in Escherichia coli BL21. The recombinant fragment of Lj-BLNK (rLj-BLNK) was purifiedby His-Bind affinity chromatography, and polyclonal antibodies against rLj-BLNK were raised in male New Zealand rabbits. Fluorescenceactivated cell sorting (FACS) analysisrevealed that Lj-BLNK was expressed in approximately 48% of the lymphocyte-like cells of control lampreys, and a significant increase in Lj-BLNK expression was observed in lampreys stimulated with lipopolysaccharide (LPS). Western blotting analysis showed that variable lymphocyte receptor B (VLRB) and Lj-BLNKwere distributed in the same immune-relevant tissues, and the levels of both were upregulated in supraneural myeloid bodies and lymphocyte-like cells after LPS stimulation. Immunofluorescence demonstrated that Lj-BLNK was localized in VLRB(+) lymphocyte-like cells. These results indicate that the Lj-BLNK protein identified in lampreys might play an important role in the VLRB-mediated adaptive immune response.
Collapse
Affiliation(s)
- Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Biyue Shi
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Rong Xiao
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Hao Wang
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116029, China.,Lamprey Research Center, Liaoning Normal University, Dalian 116029, China
| |
Collapse
|
16
|
Li H, Zhang H, Jiang S, Wang W, Xin L, Wang H, Wang L, Song L. A single-CRD C-type lectin from oyster Crassostrea gigas mediates immune recognition and pathogen elimination with a potential role in the activation of complement system. FISH & SHELLFISH IMMUNOLOGY 2015; 44:566-575. [PMID: 25800112 DOI: 10.1016/j.fsi.2015.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
C-type lectins (CTLs), serving as pattern recognition receptors (PRRs), are a superfamily of Ca(2+)-dependent carbohydrate-recognition proteins that participate in nonself-recognition and pathogen elimination. In the present study, a single carbohydrate-recognition domain (CRD) CTL was identified from oyster Crassostrea gigas (designated as CgCLec-2). There was only one CRD within the deduced amino acid sequence of CgCLec-2 consisting of 129 amino acid residues. A conserved EPN (Glu246-Pro247-Asn248) motif was found in Ca(2+)-binding site 2 of CgCLec-2. The CgCLec-2 mRNA could be detected in all the examined tissues at different expression levels in oysters. The mRNA expression of CgCLec-2 in hemocytes was up-regulated significantly at 6 h post Vibrio splendidus challenge. The recombinant CgCLec-2 (rCgCLec-2) could bind various Pathogen-Associated Molecular Patterns (PAMPs), including lipopolysaccharide, mannan and peptidoglycan, and displayed strong binding abilities to Vibrio anguillarum, V. splendidus and Yarrowiali polytica and week binding ability to Staphylococcus aureus. It could also enhance the phagocytic activity of oyster hemocytes to V. splendidus and exhibited growth suppression activity against gram-positive bacteria S. aureus but no effect on gram-negative bacteria V. splendidus. Furthermore, the interaction between rCgCLec-2 and rCgMASPL-1 was confirmed by GST Pull down. The results suggested that CgCLec-2 served as not only a PRR in immune recognition but also a regulatory factor in pathogen elimination, and played a potential role in the activation of complement system.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
17
|
Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:49-110. [PMID: 25805122 DOI: 10.1016/bs.ircmb.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the innate immune system, a variety of recognition molecules provide the first-line host defense to prevent infection and maintain endogenous homeostasis. Ficolin is a soluble recognition molecule, which senses pathogen-associated molecular patterns on microbes and aberrant sugar structures on self-cells. It consists of a collagen-like stalk and a globular fibrinogen-like domain, the latter binding to carbohydrates such as N-acetylglucosamine. Ficolins have been widely identified in animals from higher invertebrates to mammals. In mammals, ficolins form complexes with mannose-binding lectin-associated serine proteases (MASPs), and ficolin-MASP complexes trigger complement activation via the lectin pathway. Once activated, complement mediates many immune responses including opsonization, phagocytosis, and cytokine production. Although the precise function of each ficolin is still under investigation, accumulating information suggests that ficolins have a crucial role in host defense by recognizing a variety of microorganisms and interacting with effector proteins.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
18
|
Yuan S, Ruan J, Huang S, Chen S, Xu A. Amphioxus as a model for investigating evolution of the vertebrate immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:297-305. [PMID: 24877655 DOI: 10.1016/j.dci.2014.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
As the most basal chordate, the cephalochordate amphioxus has unique features that make it a valuable model for understanding the phylogeny of immunity. Vertebrate adaptive immunity (VAI) mediated by lymphocytes bearing variable receptors has been well-studied in mammals but not observed in invertebrates. However, the identification of lymphocyte-like cells in the gill along with genes related with lymphoid proliferation and differentiation indicates the presence of some basic components of VAI in amphioxus. Without VAI, amphioxus utilizes about 10% of its gene repertoires, and an ongoing domain reshuffling mechanism among these genes, for innate immunity, suggesting extraordinary innate complexity and diversity not observed in other species. Innate diversity may not be comparable to the somatic diversity of the VAI, but there is no doubt of the success of this immune system, since amphioxus has existed for over 500 million years. Studies of amphioxus immunity may provide information on the reduction of innate immune complexity and the conflict between microbiota and host shaped the evolution of adaptive immune systems (AIS) during chordate evolution.
Collapse
Affiliation(s)
- Shaochun Yuan
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jie Ruan
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China; Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
19
|
Two apextrin-like proteins mediate extracellular and intracellular bacterial recognition in amphioxus. Proc Natl Acad Sci U S A 2014; 111:13469-74. [PMID: 25187559 DOI: 10.1073/pnas.1405414111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animals exploit different germ-line-encoded proteins with various domain structures to detect the signature molecules of pathogenic microbes. These molecules are known as pathogen-associated molecular patterns (PAMPs), and the host proteins that react with PAMPs are called pattern recognition proteins (PRPs). Here, we present a novel type of protein domain structure capable of binding to bacterial peptidoglycan (PGN) and the minimal PGN motif muramyl dipeptide (MDP). This domain is designated as apextrin C-terminal domain (ApeC), and its presence was confirmed in several invertebrate phyla and subphyla. Two apextrin-like proteins (ALP1 and ALP2) were identified in a basal chordate, the Japanese amphioxus Branchiostoma japonicum (bj). bjALP1 is a mucosal effector secreted into the gut lumen to agglutinate the Gram-positive bacterium Staphylococcus aureus via PGN binding. Neutralization of secreted bjALP1 by anti-bjALP1 monoclonal antibodies caused serious damage to the gut epithelium and rapid death of the animals after bacterial infection. bjALP2 is an intracellular PGN sensor that binds to TNF receptor-associated factor 6 (TRAF6) and prevents TRAF6 from self-ubiquitination and hence from NF-κB activation. MDP was found to compete with TRAF6 for bjALP2, which released TRAF6 to activate the NF-κB pathway. BjALP1 and bjALP2 therefore play distinct and complementary functions in amphioxus gut mucosal immunity. In conclusion, discovery of the ApeC domain and the functional analyses of amphioxus ALP1 and ALP2 allowed us to define a previously undocumented type of PRP that is represented across different animal phyla.
Collapse
|
20
|
Yang P, Huang S, Yan X, Huang G, Dong X, Zheng T, Yuan D, Wang R, Li R, Tan Y, Xu A. Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate. Free Radic Biol Med 2014; 70:54-67. [PMID: 24560860 DOI: 10.1016/j.freeradbiomed.2014.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 11/23/2022]
Abstract
The vertebrate phagocytic respiratory burst (PRB) is a highly specific and efficient mechanism for reactive oxygen species (ROS) production. This mechanism is mediated by NADPH oxidase 2 (NOX2) and used by vertebrate phagocytic leukocytes to destroy internalized microbes. Here we demonstrate the presence of the PRB in a basal chordate, the amphioxus Branchiostoma belcheri tsingtauense (bbt). We show that using the antioxidant NAC to scavenge the production of ROS significantly decreased the survival rates of infected amphioxus, indicating that ROS are indispensable for efficient antibacterial responses. Amphioxus NOX enzymes and cytosolic factors were found to colocalize in the epithelial cells of the gill, intestine, and hepatic cecum and could be upregulated after exposure to microbial pathogens. The ROS production in epithelial cell lysates could be reconstructed by supplementing recombinant cytosolic factors, including bbt-p47phox, bbt-p67phox, bbt-p47phox, and bbt-Rac; the restored ROS production could be inhibited by anti-bbt-NOX2 and anti-bbt-p67phox antibodies. We also reveal that the gut epithelial lining cells of the amphioxus are competent at bacterial phagocytosis, and there is evidence that the PRB machinery could participate in the initiation of this phagocytic process. In conclusion, we report the presence of the classical PRB machinery in nonvertebrates and provide the first evidence for the possible role of PRB in epithelial cell immunity and phagocytosis.
Collapse
Affiliation(s)
- Ping Yang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Xinyu Yan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Guangrui Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Xiangru Dong
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Tingting Zheng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Dongjuan Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Ruihua Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Rui Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Ying Tan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China; Beijing University of Chinese Medicine, Beijing 100029, People׳s Republic of China.
| |
Collapse
|
21
|
Affiliation(s)
- Shaochun Yuan
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
| | - Xin Tao
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
| | - Anlong Xu
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
- Center of Scientific Research, Beijing University of Chinese Medicine, Beijing 100029, People’s Republic of China
| |
Collapse
|
22
|
Abstract
Summary
Recently it has become evident that invertebrates may mount a highly variable immune response that is dependent on which pathogen is involved. The molecular mechanisms behind this diversity are beginning to be unravelled and in several invertebrate taxa immune proteins exhibiting a broad range of diversity have been found. In some cases, evidence has been gathered suggesting that this molecular diversity translates into the ability of an affected invertebrate to mount a defence that is specifically aimed at a particular pathogen.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
23
|
Matsushita M. Ficolins in complement activation. Mol Immunol 2013; 55:22-6. [PMID: 22959617 DOI: 10.1016/j.molimm.2012.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022]
Abstract
Ficolins are a group of multimeric lectins made up of single subunits each of which is composed of a collagen-like domain and a fibrinogen-like domain. Most of the ficolins identified to date bind to acetylated compounds such as N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc). Ficolins in serum are complexed with MBL-associated serine proteases (MASPs) and their truncated proteins. These lectins play an important role in innate immunity. Binding of the ficolin-MASP complex to carbohydrates present on the surface of microbes initiates complement activation via the lectin pathway.
Collapse
Affiliation(s)
- Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa, Japan.
| |
Collapse
|
24
|
Zhao C, Feng B, Cao Y, Xie P, Xu J, Pang Y, Liu X, Li Q. Identification and characterisation of ROS modulator 1 in Lampetra japonica. FISH & SHELLFISH IMMUNOLOGY 2013; 35:278-283. [PMID: 23685010 DOI: 10.1016/j.fsi.2013.04.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Reactive oxygen species (ROS) are a heterogeneous group of highly reactive molecules that oxidise targets in biological systems. ROS are also considered important immune regulators. In this study, we identified a homologue of reactive oxygen species modulator 1 (Romo1) in the Japanese lamprey (Lampetra japonica). The L japonica Romo1 (Lj-Romo1) gene shares high sequence homology with the Romo1 genes of jawed vertebrates. Real-time quantitative PCR demonstrated the wide distribution of Lj-Romo1 in lamprey tissues. Furthermore, after the lampreys were stimulated with lipopolysaccharide (LPS), the level of Lj-Romo1 mRNA was markedly up-regulated in the liver, gill, kidney, and intestine tissues. Lj-Romo1 was localised to the mitochondria and has the capacity to increase the ROS level in cells. The results obtained in the present study will help us to understand the roles of Romo1 in ROS production and innate immune responses in jawless vertebrates.
Collapse
Affiliation(s)
- Chunhui Zhao
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Faculty of Life Science, Liaoning Normal University, Dalian 116081, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang Y, Zhang H, Kong Y, Feng L. Identification and characterization of an amphioxus matrix metalloproteinase homolog BbMMPL2 responding to bacteria challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:371-380. [PMID: 22440860 DOI: 10.1016/j.dci.2012.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 05/31/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases mainly involved in extracellular matrix (ECM) degradation. We have cloned and identified BbMMPL2 as homolog of MMPs from adult amphioxus. Recombinant BbMMPL2 proteins underwent self-processing during refolding in vitro. The final ~23 kDa polypeptide displayed proteolytic activity against ECM components like casein, gelatin, collagen IV and fibrinogen, but not laminin, fibronectin or α1-PI. This activity could be inhibited by GM6001 and TIMP-1/2. In addition, real-time RT-PCR analysis revealed that BbMMPL2 expressed in all issues/organs in adult amphioxus we tested. Its transcription was significantly up-regulated 12 h post immune challenge by Escherichia coli in epidermis and hepatic diverticulum but only slightly increased by Staphyloccocus aureus in epidermis. Furthermore, recombinant BbMMPL2-EGFP expressed in 293T and NIH/3T3 cells showed aggregation in cytoplasm and induced cell death. Our results provided new evidence that MMP was involved in immune response which could be conserved through evolution.
Collapse
Affiliation(s)
- Yan Zhang
- Marine Biotechnology Research Center, School of Life Sciences, Shandong University, Jinan 250100, China
| | | | | | | |
Collapse
|
26
|
Pang Y, Xiao R, Liu X, Li Q. Identification and characterization of the lamprey high-mobility group box 1 gene. PLoS One 2012; 7:e35755. [PMID: 22563397 PMCID: PMC3338530 DOI: 10.1371/journal.pone.0035755] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 03/26/2012] [Indexed: 01/02/2023] Open
Abstract
High-mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, plays an important role in maintaining nucleosome structures, transcription, and inflammation. We identified a homolog of HMGB1 in the Japanese lamprey (Lampetra japonica). The Lampetra japonica HMGB1 gene (Lj-HMGB1) has over 70% sequence identity with its homologs in jawed vertebrates. Despite the reasonably high sequence identity with other HMGB1 proteins, Lj-HMGB1 did not group together with these proteins in a phylogenetic analysis. We examined Lj-HMGB1 expression in lymphocyte-like cells, and the kidneys, heart, gills, and intestines of lampreys before and after the animals were challenged with lipopolysaccharide (LPS) and concanavalin A (ConA). Lj-HMGB1 was initially expressed at a higher level in the heart, but after treatment with LPS and ConA only the gills demonstrated a significant up-regulation of expression. The recombinant Lj-HMGB1 (rLj-HMGB1) protein bound double-stranded DNA and induced the proliferation of human adenocarcinoma cells to a similar extent as human HMGB1. We further revealed that Lj-HMGB1 was able to induce the production of tumor necrosis factor-α (TNF-α), a pro-inflammatory mediator, in activated human acute monocytic leukemia cells. These results suggest that lampreys use HMGB1 to activate their innate immunity for the purpose of pathogen defense.
Collapse
Affiliation(s)
- Yue Pang
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
- College of Life Science and Technology, Dalian University, Dalian, China
| | - Rong Xiao
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Xin Liu
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
- * E-mail:
| |
Collapse
|