1
|
Phillips TA, Hauck GT, Pribadi MP, Cho EE, Cleary SR, Robia SL. Micropeptide hetero-oligomerization adds complexity to the calcium pump regulatory network. Biophys J 2023; 122:301-309. [PMID: 36523160 PMCID: PMC9892615 DOI: 10.1016/j.bpj.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is an ion transporter that creates and maintains intracellular calcium stores. SERCA is inhibited or stimulated by several membrane micropeptides including another-regulin, dwarf open reading frame, endoregulin, phospholamban (PLB), and sarcolipin. We previously showed that these micropeptides assemble into homo-oligomeric complexes with varying affinity. Here, we tested whether different micropeptides can interact with each other, hypothesizing that coassembly into hetero-oligomers may affect micropeptide bioavailability to regulate SERCA. We quantified the relative binding affinity of each combination of candidates using automated fluorescence resonance energy transfer microscopy. All pairs were capable of interacting with good affinity, similar to the affinity of micropeptide self-binding (homo-oligomerization). Testing each pair at a 1:5 ratio and a reciprocal 5:1 ratio, we noted that the affinity of hetero-oligomerization of some micropeptides depended on whether they were the minority or majority species. In particular, sarcolipin was able to join oligomers when it was the minority species but did not readily accommodate other micropeptides in the reciprocal experiment when it was expressed in fivefold excess. The opposite was observed for endoregulin. PLB was a universal partner for all other micropeptides tested, forming avid hetero-oligomers whether it was the minority or majority species. Increasing expression of SERCA decreased PLB-dwarf open reading frame hetero-oligomerization, suggesting that SERCA-micropeptide interactions compete with micropeptide-micropeptide interactions. Thus, micropeptides populate a regulatory network of diverse protein assemblies. The data suggest that the complexity of this interactome increases exponentially with the number of micropeptides that are coexpressed in a particular tissue.
Collapse
Affiliation(s)
- Taylor A Phillips
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Garrett T Hauck
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Marsha P Pribadi
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Ellen E Cho
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Sean R Cleary
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois.
| |
Collapse
|
2
|
Cleary SR, Fang X, Cho EE, Pribadi MP, Seflova J, Beach JR, Kekenes-Huskey PM, Robia SL. Inhibitory and stimulatory micropeptides preferentially bind to different conformations of the cardiac calcium pump. J Biol Chem 2022; 298:102060. [PMID: 35605666 PMCID: PMC9218510 DOI: 10.1016/j.jbc.2022.102060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
The ATP-dependent ion pump sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) sequesters Ca2+ in the endoplasmic reticulum to establish a reservoir for cell signaling. Because of its central importance in physiology, the activity of this transporter is tightly controlled via direct interactions with tissue-specific regulatory micropeptides that tune SERCA function to match changing physiological conditions. In the heart, the micropeptide phospholamban (PLB) inhibits SERCA, while dwarf open reading frame (DWORF) stimulates SERCA. These competing interactions determine cardiac performance by modulating the amplitude of Ca2+ signals that drive the contraction/relaxation cycle. We hypothesized that the functions of these peptides may relate to their reciprocal preferences for SERCA binding; SERCA binds PLB more avidly at low cytoplasmic [Ca2+] but binds DWORF better when [Ca2+] is high. In the present study, we demonstrated this opposing Ca2+ sensitivity is due to preferential binding of DWORF and PLB to different intermediate states that SERCA samples during the Ca2+ transport cycle. We show PLB binds best to the SERCA E1-ATP state, which prevails at low [Ca2+]. In contrast, DWORF binds most avidly to E1P and E2P states that are more populated when Ca2+ is elevated. Moreover, FRET microscopy revealed dynamic shifts in SERCA–micropeptide binding equilibria during cellular Ca2+ elevations. A computational model showed that DWORF exaggerates changes in PLB–SERCA binding during the cardiac cycle. These results suggest a mechanistic basis for inhibitory versus stimulatory micropeptide function, as well as a new role for DWORF as a modulator of dynamic oscillations of PLB–SERCA regulatory interactions.
Collapse
Affiliation(s)
- Sean R Cleary
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Xuan Fang
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Ellen E Cho
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Marsha P Pribadi
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Jaroslava Seflova
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA.
| |
Collapse
|
3
|
Liu AY, Aguayo-Ortiz R, Guerrero-Serna G, Wang N, Blin MG, Goldstein DR, Michel Espinoza-Fonseca L. Homologous cardiac calcium pump regulators phospholamban and sarcolipin adopt distinct oligomeric states in the membrane. Comput Struct Biotechnol J 2021; 20:380-384. [PMID: 35035790 PMCID: PMC8748397 DOI: 10.1016/j.csbj.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Phospholamban (PLN) and Sarcolipin (SLN) are homologous membrane proteins that belong to the family of proteins that regulate the activity of the cardiac calcium pump (sarcoplasmic reticulum Ca2+-ATPase, SERCA). PLN and SLN share highly conserved leucine zipper motifs that control self-association; consequently, it has been proposed that both PLN and SLN assemble into stable pentamers in the membrane. In this study, we used molecular dynamics (MD) simulations and Western blot analysis to investigate the precise molecular architecture of the PLN and SLN oligomers. Analysis showed that the PLN pentamer is the predominant oligomer present in mouse ventricles and ventricle-like human iPSC-derived cardiomyocytes, in agreement with the MD simulations showing stable leucine zipper interactions across all protomer-protomer interfaces and MD replicates. Interestingly, we found that the PLN pentamer populates an asymmetric structure of the transmembrane region, which is likely an intrinsic feature of the oligomer in a lipid bilayer. The SLN pentamer is not favorably formed across MD replicates and species of origin; instead, SLN from human and mouse atria primarily populate coexisting dimeric and trimeric states. In contrast to previous studies, our findings indicate that the SLN pentamer is not the predominant oligomeric state populated in the membrane. We conclude that despite their structural homology, PLN and SLN adopt distinct oligomeric states in the membrane. We propose that the distinct oligomeric states populated by PLN and SLN may contribute to tissue-specific SERCA regulation via differences in protomer-oligomer exchange, oligomer-SERCA dynamics, and noise filtering during β-adrenergic stimulation in the heart.
Collapse
Affiliation(s)
- Andy Y. Liu
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- McKetta Department of Chemical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Guadalupe Guerrero-Serna
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nulang Wang
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muriel G. Blin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - L. Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Nothing Regular about the Regulins: Distinct Functional Properties of SERCA Transmembrane Peptide Regulatory Subunits. Int J Mol Sci 2021; 22:ijms22168891. [PMID: 34445594 PMCID: PMC8396278 DOI: 10.3390/ijms22168891] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
The sarco-endoplasmic reticulum calcium ATPase (SERCA) is responsible for maintaining calcium homeostasis in all eukaryotic cells by actively transporting calcium from the cytosol into the sarco-endoplasmic reticulum (SR/ER) lumen. Calcium is an important signaling ion, and the activity of SERCA is critical for a variety of cellular processes such as muscle contraction, neuronal activity, and energy metabolism. SERCA is regulated by several small transmembrane peptide subunits that are collectively known as the “regulins”. Phospholamban (PLN) and sarcolipin (SLN) are the original and most extensively studied members of the regulin family. PLN and SLN inhibit the calcium transport properties of SERCA and they are required for the proper functioning of cardiac and skeletal muscles, respectively. Myoregulin (MLN), dwarf open reading frame (DWORF), endoregulin (ELN), and another-regulin (ALN) are newly discovered tissue-specific regulators of SERCA. Herein, we compare the functional properties of the regulin family of SERCA transmembrane peptide subunits and consider their regulatory mechanisms in the context of the physiological and pathophysiological roles of these peptides. We present new functional data for human MLN, ELN, and ALN, demonstrating that they are inhibitors of SERCA with distinct functional consequences. Molecular modeling and molecular dynamics simulations of SERCA in complex with the transmembrane domains of MLN and ALN provide insights into how differential binding to the so-called inhibitory groove of SERCA—formed by transmembrane helices M2, M6, and M9—can result in distinct functional outcomes.
Collapse
|
5
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
6
|
Fisher ME, Bovo E, Aguayo-Ortiz R, Cho EE, Pribadi MP, Dalton MP, Rathod N, Lemieux MJ, Espinoza-Fonseca LM, Robia SL, Zima AV, Young HS. Dwarf open reading frame (DWORF) is a direct activator of the sarcoplasmic reticulum calcium pump SERCA. eLife 2021; 10:65545. [PMID: 34075877 PMCID: PMC8203291 DOI: 10.7554/elife.65545] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/01/2021] [Indexed: 01/05/2023] Open
Abstract
The sarco-plasmic reticulum calcium pump (SERCA) plays a critical role in the contraction-relaxation cycle of muscle. In cardiac muscle, SERCA is regulated by the inhibitor phospholamban. A new regulator, dwarf open reading frame (DWORF), has been reported to displace phospholamban from SERCA. Here, we show that DWORF is a direct activator of SERCA, increasing its turnover rate in the absence of phospholamban. Measurement of in-cell calcium dynamics supports this observation and demonstrates that DWORF increases SERCA-dependent calcium reuptake. These functional observations reveal opposing effects of DWORF activation and phospholamban inhibition of SERCA. To gain mechanistic insight into SERCA activation, fluorescence resonance energy transfer experiments revealed that DWORF has a higher affinity for SERCA in the presence of calcium. Molecular modeling and molecular dynamics simulations provide a model for DWORF activation of SERCA, where DWORF modulates the membrane bilayer and stabilizes the conformations of SERCA that predominate during elevated cytosolic calcium.
Collapse
Affiliation(s)
- M'Lynn E Fisher
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Rodrigo Aguayo-Ortiz
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, United States
| | - Ellen E Cho
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Marsha P Pribadi
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Michael P Dalton
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Nishadh Rathod
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, United States
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Prediction of LncRNA-encoded small peptides in glioma and oligomer channel functional analysis using in silico approaches. PLoS One 2021; 16:e0248634. [PMID: 33735310 PMCID: PMC7971536 DOI: 10.1371/journal.pone.0248634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Glioma is a lethal malignant brain cancer, and many reports have shown that abnormalities in the behavior of water and ion channels play an important role in regulating tumor proliferation, migration, apoptosis, and differentiation. Recently, new studies have suggested that some long noncoding RNAs containing small open reading frames can encode small peptides and form oligomers for water or ion regulation. However, because the peptides are difficult to identify, their functional mechanisms are far from being clearly understood. In this study, we used bioinformatics methods to identify and evaluate lncRNAs, which may encode small transmembrane peptides in gliomas. Combining ab initio homology modeling, molecular dynamics simulations, and free energy calculations, we constructed a predictive model and predicted the oligomer channel activity of peptides by identifying the lncRNA ORFs. We found that one key hub lncRNA, namely, DLEU1, which contains two smORFs (ORF1 and ORF8), encodes small peptides that form pentameric channels. The mechanics of water and ion (Na+ and Cl-) transport through this pentameric channel were simulated. The potential mean force of the H2O molecules along the two ORF-encoded peptide channels indicated that the energy barrier was different between ORF1 and ORF8. The ORF1-encoded peptide pentamer acted as a self-assembled water channel but not as an ion channel, and the ORF8 permeated neither ions nor water. This work provides new methods and theoretical support for further elucidation of the function of lncRNA-encoded small peptides and their role in cancer. Additionally, this study provides a theoretical basis for drug development.
Collapse
|
8
|
Montigny C, Huang DL, Beswick V, Barbot T, Jaxel C, le Maire M, Zheng JS, Jamin N. Sarcolipin alters SERCA1a interdomain communication by impairing binding of both calcium and ATP. Sci Rep 2021; 11:1641. [PMID: 33452371 PMCID: PMC7810697 DOI: 10.1038/s41598-021-81061-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023] Open
Abstract
Sarcolipin (SLN), a single-spanning membrane protein, is a regulator of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1a). Chemically synthesized SLN, palmitoylated or not (pSLN or SLN), and recombinant wild-type rabbit SERCA1a expressed in S. cerevisiae design experimental conditions that provide a deeper understanding of the functional role of SLN on the regulation of SERCA1a. Our data show that chemically synthesized SLN interacts with recombinant SERCA1a, with calcium-deprived E2 state as well as with calcium-bound E1 state. This interaction hampers the binding of calcium in agreement with published data. Unexpectedly, SLN has also an allosteric effect on SERCA1a transport activity by impairing the binding of ATP. Our results reveal that SLN significantly slows down the E2 to Ca2.E1 transition of SERCA1a while it affects neither phosphorylation nor dephosphorylation. Comparison with chemically synthesized SLN deprived of acylation demonstrates that palmitoylation is not necessary for either inhibition or association with SERCA1a. However, it has a small but statistically significant effect on SERCA1a phosphorylation when various ratios of SLN-SERCA1a or pSLN-SERCA1a are tested.
Collapse
Affiliation(s)
- Cédric Montigny
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Dong Liang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Veronica Beswick
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Department of Physics, Evry-Val-d'Essonne University, 91025, Evry, France
| | - Thomas Barbot
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Christine Jaxel
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Marc le Maire
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Ji-Shen Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Nadège Jamin
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Cao Y, Yang R, Sun J, Zhang W, Lee I, Wang W, Meng X. Effects of amino acid modifications on the permeability of the pentameric sarcolipin channel. Proteins 2020; 89:427-435. [PMID: 33244801 DOI: 10.1002/prot.26028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Sarcolipin (SLN) is an important transmembrane (TM) protein encoded by long noncoding RNA. SLN is expressed in the sarcoplasmic reticulum and regulates cardiac and skeletal muscle contractions. SLN forms a pentameric hydrophobic ligand-gated ion channel. The protonation of Glu7 (protonated SLN, pSLN) and mutation of Thr18 to Ala18 (T18A) have been reported to exert a significant influence on the permeability of the channel. In this study, the altered permeability of both the pSLN and T18A pentameric channels was simulated. Combined with molecular dynamics simulation, the free-energy landscape for single ions, computational electrophysiology, diffusion coefficient, and pore geometrical characteristic analyses were performed to further understand the properties of amino acid modifications in the SLN pentameric channel. The results suggest that both the pSLN and T18A pentameric channels form stable hydrophobic ligand-gated channels. The TM voltage has a positive effect on the permeability of water molecules and ions. By using pSLN and T18A, our study provides helpful information on the pore-forming mechanism of SLN and furthers our understanding of the regulatory mechanisms underlying the permeation of ions and water molecules in the pentameric SLN channel.
Collapse
Affiliation(s)
- Yipeng Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,National Supercomputer Center in Tianjin, TEDA - Tianjin Economic-Technological Development Area, Tianjin, China
| | - Rui Yang
- Department of Infection and Immunity, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Jiana Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenwen Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Imshik Lee
- College of Physics, Nankai University, Tianjin, China
| | - Wei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiangfei Meng
- National Supercomputer Center in Tianjin, TEDA - Tianjin Economic-Technological Development Area, Tianjin, China
| |
Collapse
|
10
|
Sarcolipin Exhibits Abundant RNA Transcription and Minimal Protein Expression in Horse Gluteal Muscle. Vet Sci 2020; 7:vetsci7040178. [PMID: 33202832 PMCID: PMC7711957 DOI: 10.3390/vetsci7040178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
Ca2+ regulation in equine muscle is important for horse performance, yet little is known about this species-specific regulation. We reported recently that horse encode unique gene and protein sequences for the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) and the regulatory subunit sarcolipin (SLN). Here we quantified gene transcription and protein expression of SERCA and its inhibitory peptides in horse gluteus, as compared to commonly-studied rabbit skeletal muscle. RNA sequencing and protein immunoblotting determined that horse gluteus expresses the ATP2A1 gene (SERCA1) as the predominant SR Ca2+-ATPase isoform and the SLN gene as the most-abundant SERCA inhibitory peptide, as also found in rabbit skeletal muscle. Equine muscle expresses an insignificant level of phospholamban (PLN), another key SERCA inhibitory peptide expressed commonly in a variety of mammalian striated muscles. Surprisingly in horse, the RNA transcript ratio of SLN-to-ATP2A1 is an order of magnitude higher than in rabbit, while the corresponding protein expression ratio is an order of magnitude lower than in rabbit. Thus, SLN is not efficiently translated or maintained as a stable protein in horse muscle, suggesting a non-coding role for supra-abundant SLN mRNA. We propose that the lack of SLN and PLN inhibition of SERCA activity in equine muscle is an evolutionary adaptation that potentiates Ca2+ cycling and muscle contractility in a prey species domestically selected for speed.
Collapse
|
11
|
Autry JM, Karim CB, Cocco M, Carlson SF, Thomas DD, Valberg SJ. Purification of sarcoplasmic reticulum vesicles from horse gluteal muscle. Anal Biochem 2020; 610:113965. [PMID: 32956693 DOI: 10.1016/j.ab.2020.113965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
We have analyzed protein expression and enzyme activity of the sarcoplasmic reticulum Ca2+-transporting ATPase (SERCA) in horse gluteal muscle. Horses exhibit a high incidence of recurrent exertional rhabdomyolysis, with myosolic Ca2+ proposed, but yet to be established, as the underlying cause. To better assess Ca2+ regulatory mechanisms, we developed an improved protocol for isolating sarcoplasmic reticulum (SR) vesicles from horse skeletal muscle, based on mechanical homogenization and optimized parameters for differential centrifugation. Immunoblotting identified the peak subcellular fraction containing the SERCA1 protein (fast-twitch isoform). Gel analysis using the Stains-all dye demonstrated that calsequestrin (CASQ) and phospholipids are highly enriched in the SERCA-containing subcellular fraction isolated from horse gluteus. Immunoblotting also demonstrated that these horse SR vesicles show low content of glycogen phosphorylase (GP), which is likely an abundant contaminating protein of traditional horse SR preps. The maximal Ca2+-activated ATPase activity (Vmax) of SERCA in horse SR vesicles isolated using this protocol is 5‒25-fold greater than previously-reported SERCA activity in SR preps from horse skeletal muscle. We propose that this new protocol for isolating SR vesicles will be useful for determining enzymatic parameters of horse SERCA with high fidelity, plus assessing regulatory effect of SERCA peptide subunit(s) expressed in horse muscle.
Collapse
Affiliation(s)
- Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Christine B Karim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mariana Cocco
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Samuel F Carlson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephanie J Valberg
- Department of Large Animal Clinical Sciences, McPhail Equine Performance Center, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
12
|
Aguayo-Ortiz R, Fernández-de Gortari E, Espinoza-Fonseca LM. Conserved Luminal C-Terminal Domain Dynamically Controls Interdomain Communication in Sarcolipin. J Chem Inf Model 2020; 60:3985-3991. [PMID: 32668157 DOI: 10.1021/acs.jcim.0c00418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sarcolipin (SLN) mediates Ca2+ transport and metabolism in muscle by regulating the activity of the Ca2+ pump SERCA. SLN has a conserved luminal C-terminal domain that contributes to its functional divergence among homologous SERCA regulators, but the precise mechanistic role of this domain remains poorly understood. We used all-atom molecular dynamics (MD) simulations of SLN totaling 77.5 μs to show that the N- (NT) and C-terminal (CT) domains function in concert. Analysis of the MD simulations showed that serial deletions of the SLN C-terminus do not affect the stability of the peptide nor induce dissociation of SLN from the membrane but promote a gradual decrease in both the tilt angle of the transmembrane helix and the local thickness of the lipid bilayer. Mutual information analysis showed that the NT and CT domains communicate with each other in SLN and that interdomain communication is partially or completely abolished upon deletion of the conserved segment Tyr29-Tyr31 as well as by serial deletions beyond this domain. Phosphorylation of SLN at residue Thr5 also induces changes in the communication between the CT and NT domains, which thus provides additional evidence for interdomain communication within SLN. We found that interdomain communication is independent of the force field used and lipid composition, which thus demonstrates that communication between the NT and CT domains is an intrinsic functional feature of SLN. We propose the novel hypothesis that the conserved C-terminus is an essential element required for dynamic control of SLN regulatory function.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eli Fernández-de Gortari
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Aguayo-Ortiz R, Espinoza-Fonseca LM. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities. Int J Mol Sci 2020; 21:ijms21114146. [PMID: 32532023 PMCID: PMC7313052 DOI: 10.3390/ijms21114146] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.
Collapse
|
14
|
Glaves JP, Primeau JO, Gorski PA, Espinoza-Fonseca LM, Lemieux MJ, Young HS. Interaction of a Sarcolipin Pentamer and Monomer with the Sarcoplasmic Reticulum Calcium Pump, SERCA. Biophys J 2019; 118:518-531. [PMID: 31858977 DOI: 10.1016/j.bpj.2019.11.3385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 11/27/2022] Open
Abstract
The sequential rise and fall of cytosolic calcium underlies the contraction-relaxation cycle of muscle cells. Whereas contraction is initiated by the release of calcium from the sarcoplasmic reticulum, muscle relaxation involves the active transport of calcium back into the sarcoplasmic reticulum. This reuptake of calcium is catalyzed by the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA), which plays a lead role in muscle contractility. The activity of SERCA is regulated by small membrane protein subunits, the most well-known being phospholamban (PLN) and sarcolipin (SLN). SLN physically interacts with SERCA and differentially regulates contractility in skeletal and atrial muscle. SLN has also been implicated in skeletal muscle thermogenesis. Despite these important roles, the structural mechanisms by which SLN modulates SERCA-dependent contractility and thermogenesis remain unclear. Here, we functionally characterized wild-type SLN and a pair of mutants, Asn4-Ala and Thr5-Ala, which yielded gain-of-function behavior comparable to what has been found for PLN. Next, we analyzed two-dimensional crystals of SERCA in the presence of wild-type SLN by electron cryomicroscopy. The fundamental units of the crystals are antiparallel dimer ribbons of SERCA, known for decades as an assembly of calcium-free SERCA molecules induced by the addition of decavanadate. A projection map of the SERCA-SLN complex was determined to a resolution of 8.5 Å, which allowed the direct visualization of an SLN pentamer. The SLN pentamer was found to interact with transmembrane segment M3 of SERCA, although the interaction appeared to be indirect and mediated by an additional density consistent with an SLN monomer. This SERCA-SLN complex correlated with the ability of SLN to decrease the maximal activity of SERCA, which is distinct from the ability of PLN to increase the maximal activity of SLN. Protein-protein docking and molecular dynamics simulations provided models for the SLN pentamer and the novel interaction between SERCA and an SLN monomer.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph O Primeau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Przemek A Gorski
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Newly Discovered Micropeptide Regulators of SERCA Form Oligomers but Bind to the Pump as Monomers. J Mol Biol 2019; 431:4429-4443. [PMID: 31449798 DOI: 10.1016/j.jmb.2019.07.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
The recently-discovered single-span transmembrane proteins endoregulin (ELN), dwarf open reading frame (DWORF), myoregulin (MLN), and another-regulin (ALN) are reported to bind to the SERCA calcium pump in a manner similar to that of known regulators of SERCA activity, phospholamban (PLB) and sarcolipin (SLN). To determine how micropeptide assembly into oligomers affects the availability of the micropeptide to bind to SERCA in a regulatory complex, we used co-immunoprecipitation and fluorescence resonance energy transfer (FRET) to quantify micropeptide oligomerization and SERCA-binding. Micropeptides formed avid homo-oligomers with high-order stoichiometry (n > 2 protomers per homo-oligomer), but it was the monomeric form of all micropeptides that interacted with SERCA. In view of these two alternative binding interactions, we evaluated the possibility that oligomerization occurs at the expense of SERCA-binding. However, even the most avidly oligomeric micropeptide species still showed robust FRET with SERCA, and there was a surprising positive correlation between oligomerization affinity and SERCA-binding. This comparison of micropeptide family members suggests that the same structural determinants that support oligomerization are also important for binding to SERCA. Moreover, the unique oligomerization/SERCA-binding profile of DWORF is in harmony with its distinct role as a PLB-competing SERCA activator, in contrast to the inhibitory function of the other SERCA-binding micropeptides.
Collapse
|
16
|
Raguimova ON, Smolin N, Bovo E, Bhayani S, Autry JM, Zima AV, Robia SL. Redistribution of SERCA calcium pump conformers during intracellular calcium signaling. J Biol Chem 2018; 293:10843-10856. [PMID: 29764938 PMCID: PMC6052202 DOI: 10.1074/jbc.ra118.002472] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Indexed: 11/06/2022] Open
Abstract
The conformational changes of a calcium transport ATPase were investigated with molecular dynamics (MD) simulations as well as fluorescence resonance energy transfer (FRET) measurements to determine the significance of a discrete structural element for regulation of the conformational dynamics of the transport cycle. Previous MD simulations indicated that a loop in the cytosolic domain of the SERCA calcium transporter facilitates an open-to-closed structural transition. To investigate the significance of this structural element, we performed additional MD simulations and new biophysical measurements of SERCA structure and function. Rationally designed in silico mutations of three acidic residues of the loop decreased SERCA domain-domain contacts and increased domain-domain separation distances. Principal component analysis of MD simulations suggested decreased sampling of compact conformations upon N-loop mutagenesis. Deficits in headpiece structural dynamics were also detected by measuring intramolecular FRET of a Cer-YFP-SERCA construct (2-color SERCA). Compared with WT, the mutated 2-color SERCA shows a partial FRET response to calcium, whereas retaining full responsiveness to the inhibitor thapsigargin. Functional measurements showed that the mutated transporter still hydrolyzes ATP and transports calcium, but that maximal enzyme activity is reduced while maintaining similar calcium affinity. In live cells, calcium elevations resulted in concomitant FRET changes as the population of WT 2-color SERCA molecules redistributed among intermediates of the transport cycle. Our results provide novel insights on how the population of SERCA pumps responds to dynamic changes in intracellular calcium.
Collapse
Affiliation(s)
- Olga N Raguimova
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Nikolai Smolin
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Elisa Bovo
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Siddharth Bhayani
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Joseph M Autry
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Aleksey V Zima
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Seth L Robia
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| |
Collapse
|
17
|
Cellular mechanisms of metabolic syndrome-related atrial decompensation in a rat model of HFpEF. J Mol Cell Cardiol 2017; 115:10-19. [PMID: 29289652 DOI: 10.1016/j.yjmcc.2017.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 11/23/2022]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is present in about 50% of HF patients. Atrial remodeling is common in HFpEF and associated with increased mortality. We postulate that atrial remodeling is associated with atrial dysfunction in vivo related to alterations in cardiomyocyte Calcium (Ca) signaling and remodeling. We examined atrial function in vivo and Ca transients (CaT) (Fluo4-AM, field stim) in atrial cardiomyocytes of ZSF-1 rats without (Ln; lean hypertensive) and with metabolic syndrome (Ob; obese, hypertensive, diabetic) and HFpEF. RESULTS At 21weeks Ln showed an increased left ventricular (LV) mass and left ventricular end-diastolic pressure (LVEDP), but unchanged left atrial (LA) size and preserved atrial ejection fraction vs. wild-type (WT). CaT amplitude in atrial cardiomyocytes was increased in Ln (2.9±0.2 vs. 2.3±0.2F/F0 in WT; n=22 cells/group; p<0.05). Studying subcellular Ca release in more detail, we found that local central cytosolic CaT amplitude was increased, while subsarcolemmal CaT amplitudes remained unchanged. Moreover, Sarcoplasmic reticulum (SR) Ca content (caffeine) was preserved while Ca spark frequency and tetracaine-dependent SR Ca leak were significantly increased in Ln. Ob mice developed a HFpEF phenotype in vivo, LA area was significantly increased and atrial in vivo function was impaired, despite increased atrial CaT amplitudes in vitro (2.8±0.2; p<0.05 vs. WT). Ob cells showed alterations of the tubular network possibly contributing to the observed phenotype. CaT kinetics as well as SR Ca in Ob were not significantly different from WT, but SR Ca leak remained increased. Angiotensin II (Ang II) reduced in vitro cytosolic CaT amplitudes and let to active nuclear Ca release in Ob but not in Ln or WT. SUMMARY In hypertensive ZSF-1 rats, a possibly compensatory increase of cytosolic CaT amplitude and increased SR Ca leak precede atrial remodeling and HFpEF. Atrial remodeling in ZSF-1 HFpEF is associated with an altered tubular network in-vitro and atrial contractile dysfunction in vivo, indicating insufficient compensation. Atrial cardiomyocyte dysfunction in vitro is induced by the addition of angiotensin II.
Collapse
|
18
|
Desmond PF, Labuza A, Muriel J, Markwardt ML, Mancini AE, Rizzo MA, Bloch RJ. Interactions between small ankyrin 1 and sarcolipin coordinately regulate activity of the sarco(endo)plasmic reticulum Ca 2+-ATPase (SERCA1). J Biol Chem 2017; 292:10961-10972. [PMID: 28487373 PMCID: PMC5491780 DOI: 10.1074/jbc.m117.783613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Indexed: 11/06/2022] Open
Abstract
SERCA1, the sarco(endo)plasmic reticulum Ca2+-ATPase of skeletal muscle, is essential for muscle relaxation and maintenance of low resting Ca2+ levels in the myoplasm. We recently reported that small ankyrin 1 (sAnk1) interacts with the sarco(endo)plasmic reticulum Ca2+-ATPase in skeletal muscle (SERCA1) to inhibit its activity. We also showed that this interaction is mediated at least in part through sAnk1's transmembrane domain in a manner similar to that of sarcolipin (SLN). Earlier studies have shown that SLN and phospholamban, the other well studied small SERCA-regulatory proteins, oligomerize either alone or together. As sAnk1 is coexpressed with SLN in muscle, we sought to determine whether these two proteins interact with one another when coexpressed exogenously in COS7 cells. Coimmunoprecipitation (coIP) and anisotropy-based FRET (AFRET) assays confirmed this interaction. Our results indicated that sAnk1 and SLN can associate in the sarcoplasmic reticulum membrane and after exogenous expression in COS7 cells in vitro but that their association did not require endogenous SERCA2. Significantly, SLN promoted the interaction between sAnk1 and SERCA1 when the three proteins were coexpressed, and both coIP and AFRET experiments suggested the formation of a complex consisting of all three proteins. Ca2+-ATPase assays showed that sAnk1 ablated SLN's inhibition of SERCA1 activity. These results suggest that sAnk1 interacts with SLN both directly and in complex with SERCA1 and reduces SLN's inhibitory effect on SERCA1 activity.
Collapse
Affiliation(s)
- Patrick F Desmond
- From the Department of Physiology and
- Programs in Biochemistry and Molecular Biology
| | - Amanda Labuza
- From the Department of Physiology and
- Neuroscience, and
| | | | | | - Allison E Mancini
- Molecular Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Megan A Rizzo
- From the Department of Physiology and
- Neuroscience, and
- Molecular Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Robert J Bloch
- From the Department of Physiology and
- Programs in Biochemistry and Molecular Biology
- Neuroscience, and
- Molecular Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
19
|
Cao Y, Wu X, Yang R, Wang X, Sun H, Lee I. Self-assembling study of sarcolipin and its mutants in multiple molecular dynamic simulations. Proteins 2017; 85:1065-1077. [PMID: 28241400 DOI: 10.1002/prot.25273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/16/2017] [Accepted: 02/12/2017] [Indexed: 01/12/2023]
Abstract
The Sarcolipin (SLN) is a single trans-membrane protein that can self-assembly to dimer and oligomer for playing importantphysiological function. In this work, we addressed the dimerization of wild type SLN (wSLN) and its mutants (mSLNs) - I17A and I20A, using both coarse-grained (CG) and atomistic (AT) molecular dynamics (MD) simulations. Our results demonstrated that wSLN homodimer assembled as a left-handed helical complex, while mSLNs heterodimers assembled as right-handed complexes. Analysis of residue-residue contacts map indicated that isoleucine (Ile)-leucione (Leu) zipper domain played an important role in dimerization. The potential of mean force (PMF) demonstrated that wSLN homodimer was more stable than mSLNs heterodimers. Meanwhile, the mSLNs heterodimers preferred right-handed rather than left-handed helix. AT-MD simulations for wSLN and mSLNs were also in line with CG-MD simulations. These results provided the insights for understanding the mechanisms of SLNs self-assembling. Proteins 2017; 85:1065-1077. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yipeng Cao
- School of Physics, Nankai University, 94 Weijin Road, Tianjin, 300071, P.R.China
| | - Xue Wu
- School of Physics, Nankai University, 94 Weijin Road, Tianjin, 300071, P.R.China
| | - Rui Yang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, P.R.China
| | - Xinyu Wang
- School of Physics, Nankai University, 94 Weijin Road, Tianjin, 300071, P.R.China
| | - Haiying Sun
- School of Physics, Nankai University, 94 Weijin Road, Tianjin, 300071, P.R.China
| | - Imshik Lee
- School of Physics, Nankai University, 94 Weijin Road, Tianjin, 300071, P.R.China
| |
Collapse
|
20
|
Autry JM, Thomas DD, Espinoza-Fonseca LM. Sarcolipin Promotes Uncoupling of the SERCA Ca 2+ Pump by Inducing a Structural Rearrangement in the Energy-Transduction Domain. Biochemistry 2016; 55:6083-6086. [PMID: 27731980 PMCID: PMC5506494 DOI: 10.1021/acs.biochem.6b00728] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have performed microsecond (μs) molecular dynamics simulation (MDS) to identify structural mechanisms for sarcolipin (SLN) uncoupling of Ca2+ transport from ATP hydrolysis for the sarcoplasmic reticulum Ca2+-ATPase (SERCA). SLN regulates muscle metabolism and energy expenditure to provide resistance against diet-induced obesity and extreme cold. MDS demonstrated that the cytosolic domain of SLN induces a salt bridge-mediated structural rearrangement in the energy-transduction domain of SERCA. We propose that this structural change uncouples SERCA by perturbing Ca2+ occlusion at residue E309 in transport site II, thus facilitating Ca2+ backflux to the cytosol. Our results have important implications for designing muscle-based therapies for human obesity.
Collapse
Affiliation(s)
- Joseph M. Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Biophysical Technology Center, University of Minnesota, Minneapolis, MN 55455
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - L. Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
21
|
Bian T, Autry JM, Casemore D, Li J, Thomas DD, He G, Xing C. Direct detection of SERCA calcium transport and small-molecule inhibition in giant unilamellar vesicles. Biochem Biophys Res Commun 2016; 481:206-211. [PMID: 27815070 DOI: 10.1016/j.bbrc.2016.10.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
We have developed a charge-mediated fusion method to reconstitute the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) in giant unilamellar vesicles (GUV). Intracellular Ca2+ transport by SERCA controls key processes in human cells such as proliferation, signaling, and contraction. Small-molecule effectors of SERCA are urgently needed as therapeutics for Ca2+ dysregulation in human diseases including cancer, diabetes, and heart failure. Here we report the development of a method for efficiently reconstituting SERCA in GUV, and we describe a streamlined protocol based on optimized parameters (e.g., lipid components, SERCA preparation, and activity assay requirements). ATP-dependent Ca2+ transport by SERCA in single GUV was detected directly using confocal fluorescence microscopy with the Ca2+ indicator Fluo-5F. The GUV reconstitution system was validated for functional screening of Ca2+ transport using thapsigargin (TG), a small-molecule inhibitor of SERCA currently in clinical trials as a prostate cancer prodrug. The GUV system overcomes the problem of inhibitory Ca2+ accumulation for SERCA in native and reconstituted small unilamellar vesicles (SUV). We propose that charge-mediated fusion provides a widely-applicable method for GUV reconstitution of clinically-important membrane transport proteins. We conclude that GUV reconstitution is a technological advancement for evaluating small-molecule effectors of SERCA.
Collapse
Affiliation(s)
- Tengfei Bian
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States; State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, United States; Biophysical Technology Center, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, United States
| | - Denise Casemore
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States
| | - Ji Li
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, United States; Biophysical Technology Center, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, United States
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
22
|
Abstract
Molecular modeling and simulation are useful tools in structural biology, allowing the formulation of functional hypotheses and interpretation of spectroscopy experiments. Here, we describe a method to construct in silico models of a fluorescent fusion protein construct, where a cyan fluorescent protein (CFP) is linked to the actuator domain of the Sarco/Endoplasmic Reticulum Ca(2+)-ATPase (SERCA). This CFP-SERCA construct is a biosensor that can report on structural dynamics in the cytosolic headpiece of SERCA. Molecular modeling and FRET experiments allow us to generate new structural and mechanistic models that better describe the conformational landscape and regulation of SERCA. The methods described here can be applied to the creation of models for any fusion protein constructs and also describe the steps needed to simulate FRET results using molecular models.
Collapse
Affiliation(s)
- Bengt Svensson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN, 55455, USA.
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN, 55455, USA
| |
Collapse
|
23
|
Shaikh SA, Sahoo SK, Periasamy M. Phospholamban and sarcolipin: Are they functionally redundant or distinct regulators of the Sarco(Endo)Plasmic Reticulum Calcium ATPase? J Mol Cell Cardiol 2015; 91:81-91. [PMID: 26743715 DOI: 10.1016/j.yjmcc.2015.12.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/10/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
Abstract
In muscle, the Sarco(Endo)plasmic Reticulum Calcium ATPase (SERCA) activity is regulated by two distinct proteins, PLB and SLN, which are highly conserved throughout vertebrate evolution. PLB is predominantly expressed in the cardiac muscle, while SLN is abundant in skeletal muscle. SLN is also found in the cardiac atria and to a lesser extent in the ventricle. PLB regulation of SERCA is central to cardiac function, both at rest and during extreme physiological demand. Compared to PLB, the physiological relevance of SLN remained a mystery until recently and some even thought it was redundant in function. Studies on SLN suggest that it is an uncoupler of the SERCA pump activity and can increase ATP hydrolysis resulting in heat production. Using genetically engineered mouse models for SLN and PLB, we showed that SLN, not PLB, is required for muscle-based thermogenesis. However, the mechanism of how SLN binding to SERCA results in uncoupling SERCA Ca(2+) transport from its ATPase activity remains unclear. In this review, we discuss recent advances in understanding how PLB and SLN differ in their interaction with SERCA. We will also explore whether structural differences in the cytosolic domain of PLB and SLN are the basis for their unique function and physiological roles in cardiac and skeletal muscle.
Collapse
Affiliation(s)
- Sana A Shaikh
- Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, FL. 6400 Sanger Road, Orlando, FL 32827, United States
| | - Sanjaya K Sahoo
- Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, FL. 6400 Sanger Road, Orlando, FL 32827, United States
| | - Muthu Periasamy
- Center for Metabolic Origins of Disease, Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Lake Nona, FL. 6400 Sanger Road, Orlando, FL 32827, United States.
| |
Collapse
|
24
|
Cao Y, Wu X, Lee I, Wang X. Molecular dynamics of water and monovalent-ions transportation mechanisms of pentameric sarcolipin. Proteins 2015; 84:73-81. [DOI: 10.1002/prot.24956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Yipeng Cao
- Institute of Physics, Nankai University; Tianjin China
| | - Xue Wu
- Institute of Physics, Nankai University; Tianjin China
| | - Imshik Lee
- Institute of Physics, Nankai University; Tianjin China
| | - Xinyu Wang
- Institute of Physics, Nankai University; Tianjin China
| |
Collapse
|
25
|
Desmond PF, Muriel J, Markwardt ML, Rizzo MA, Bloch RJ. Identification of Small Ankyrin 1 as a Novel Sarco(endo)plasmic Reticulum Ca2+-ATPase 1 (SERCA1) Regulatory Protein in Skeletal Muscle. J Biol Chem 2015; 290:27854-67. [PMID: 26405035 DOI: 10.1074/jbc.m115.676585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 01/06/2023] Open
Abstract
Small ankyrin 1 (sAnk1) is a 17-kDa transmembrane (TM) protein that binds to the cytoskeletal protein, obscurin, and stabilizes the network sarcoplasmic reticulum in skeletal muscle. We report that sAnk1 shares homology in its TM amino acid sequence with sarcolipin, a small protein inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). Here we investigate whether sAnk1 and SERCA1 interact. Our results indicate that sAnk1 interacts specifically with SERCA1 in sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle, and in COS7 cells transfected to express these proteins. This interaction was demonstrated by co-immunoprecipitation and an anisotropy-based FRET method. Binding was reduced ~2-fold by the replacement of all of the TM amino acids of sAnk1 with leucines by mutagenesis. This suggests that, like sarcolipin, sAnk1 interacts with SERCA1 at least in part via its TM domain. Binding of the cytoplasmic domain of sAnk1 to SERCA1 was also detected in vitro. ATPase activity assays show that co-expression of sAnk1 with SERCA1 leads to a reduction of the apparent Ca(2+) affinity of SERCA1 but that the effect of sAnk1 is less than that of sarcolipin. The sAnk1 TM mutant has no effect on SERCA1 activity. Our results suggest that sAnk1 interacts with SERCA1 through its TM and cytoplasmic domains to regulate SERCA1 activity and modulate sequestration of Ca(2+) in the sarcoplasmic reticulum lumen. The identification of sAnk1 as a novel regulator of SERCA1 has significant implications for muscle physiology and the development of therapeutic approaches to treat heart failure and muscular dystrophies linked to Ca(2+) misregulation.
Collapse
Affiliation(s)
- Patrick F Desmond
- From the Department of Physiology and Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland 21230
| | | | | | | | - Robert J Bloch
- From the Department of Physiology and Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland 21230
| |
Collapse
|
26
|
Espinoza-Fonseca LM, Autry JM, Thomas DD. Sarcolipin and phospholamban inhibit the calcium pump by populating a similar metal ion-free intermediate state. Biochem Biophys Res Commun 2015; 463:37-41. [PMID: 25983321 DOI: 10.1016/j.bbrc.2015.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/06/2015] [Indexed: 12/31/2022]
Abstract
We have performed microsecond molecular dynamics (MD) simulations and protein pKa calculations of the muscle calcium pump (sarcoplasmic reticulum Ca(2+)-ATPase, SERCA) in complex with sarcolipin (SLN) to determine the mechanism by which SLN inhibits SERCA. SLN and its close analog phospholamban (PLN) are membrane proteins that regulate SERCA by inhibiting Ca(2+) transport in skeletal and cardiac muscle. Although SLN and PLB binding to SERCA have different functional outcomes on the coupling efficiency of SERCA, both proteins decrease the apparent Ca(2+) affinity of the pump, suggesting that SLN and PLB inhibit SERCA by using a similar mechanism. Recently, MD simulations showed that PLB inhibits SERCA by populating a metal ion-free, partially-protonated E1 state of the pump, E1· [Formula: see text] . X-ray crystallography studies at 40-80 mM Mg(2+) have proposed that SLN-bound SERCA populates E1·Mg(2+), an intermediate with Mg(2+) bound near transport site I. To test this proposed mode of SLN regulation, we performed a 0.5-μs MD simulation of E1·Mg(2+)-SLN in a solution containing 100 mM K(+) and 3 mM Mg(2+), with calculation of domain dynamics in the cytosolic headpiece and side-chain ionization and occupancy in the transport sites. We found that SLN increases the distance between residues E771 and D800, thereby rendering E1·Mg(2+) incapable of producing a competent Ca(2+) transport site I. Following removal of Mg(2+,) a 2-μs MD simulation of Mg(2+)-free SERCA-SLN showed that Mg(2+) does not re-bind to the transport sites, indicating that SERCA-SLN does not populate E1·Mg(2+) at physiological conditions. Instead, protein pKa calculations indicate that SLN stabilizes a metal ion-free SERCA state (E1· [Formula: see text] ) protonated at residue E771, but ionized at E309 and D800. We conclude that both SLN and PLB inhibit SERCA by populating a similar metal ion-free intermediate state. We propose that (i) this partially-protonated intermediate serves as the consensus mechanism for SERCA inhibition by other members of the SERCA regulatory subunit family including myoregulin and sarcolamban, and (ii) this consensus mechanism is utilized to regulate Ca(2+) transport in skeletal and cardiac muscle, with important implications for therapeutic approaches to muscle dystrophy and heart failure.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Fajardo VA, Bombardier E, Vigna C, Devji T, Bloemberg D, Gamu D, Gramolini AO, Quadrilatero J, Tupling AR. Co-expression of SERCA isoforms, phospholamban and sarcolipin in human skeletal muscle fibers. PLoS One 2013; 8:e84304. [PMID: 24358354 PMCID: PMC3865254 DOI: 10.1371/journal.pone.0084304] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/13/2013] [Indexed: 01/22/2023] Open
Abstract
Sarcolipin (SLN) and phospholamban (PLN) inhibit the activity of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) by reducing their apparent affinity for Ca2+. A ternary complex between SLN, PLN, and SERCAs results in super-inhibition of SERCA activity. Analysis of skeletal muscle homogenate has limited our current understanding of whether SLN and PLN regulate SERCA1a, SERCA2a, or both in skeletal muscle and whether SLN and PLN are co-expressed in skeletal muscle fibers. Biopsies from human vastus lateralis were analyzed through single fiber Western blotting and immunohisto/fluorescence staining to circumvent this limitation. With a newly generated SLN antibody, we report for the first time that SLN protein is present in human skeletal muscle. Addition of the SLN antibody (50 µg) to vastus lateralis homogenates increased the apparent Ca2+ affinity of SERCA (KCa, pCa units) (-Ab, 5.85 ± 0.02 vs. +Ab, 5.95 ± 0.02) and maximal SERCA activity (μmol/g protein/min) (-Ab, 122 ± 6.4 vs. +Ab, 159 ± 11) demonstrating a functional interaction between SLN and SERCAs in human vastus lateralis. Specifically, our results suggest that although SLN and PLN may preferentially regulate SERCA1a, and SERCA2a, respectively, physiologically they both may regulate either SERCA isoform. Furthermore, we show that SLN and PLN co-immunoprecipitate in human vastus lateralis homogenate and are simultaneously expressed in 81% of the fibers analyzed with Western blotting which implies that super-inhibition of SERCA may exist in human skeletal muscle. Finally, we demonstrate unequivocally that mouse soleus contains PLN protein suggesting that super-inhibition of SERCA may also be important physiologically in rodent skeletal muscle.
Collapse
Affiliation(s)
- Val A. Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Chris Vigna
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Tahira Devji
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Darin Bloemberg
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - A. Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
28
|
Ather S, Respress JL, Li N, Wehrens XHT. Alterations in ryanodine receptors and related proteins in heart failure. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2425-31. [PMID: 23770282 DOI: 10.1016/j.bbadis.2013.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/23/2013] [Accepted: 06/05/2013] [Indexed: 01/07/2023]
Abstract
Sarcoplasmic reticulum (SR) Ca(2+) release plays an essential role in mediating cardiac myocyte contraction. Depolarization of the plasma membrane results in influx of Ca(2+) through l-type Ca(2+) channels (LTCCs) that in turn triggers efflux of Ca(2+) from the SR through ryanodine receptor type-2 channels (RyR2). This process known as Ca(2+)-induced Ca(2+)release (CICR) occurs within the dyadic region, where the adjacent transverse (T)-tubules and SR membranes allow RyR2 clusters to release SR Ca(2+) following Ca(2+) influx through adjacent LTCCs. SR Ca(2+) released during systole binds to troponin-C and initiates actin-myosin cross-bridging, leading to muscle contraction. During diastole, the cytosolic Ca(2+) concentration is restored by the resequestration of Ca(2+) into the SR by SR/ER Ca(2+)-ATPase (SERCA2a) and by the extrusion of Ca(2+) via the Na(+)/Ca(2+)-exchanger (NCX1). This whole process, entitled excitation-contraction (EC) coupling, is highly coordinated and determines the force of contraction, providing a link between the electrical and mechanical activities of cardiac muscle. In response to heart failure (HF), the heart undergoes maladaptive changes that result in depressed intracellular Ca(2+) cycling and decreased SR Ca(2+) concentrations. As a result, the amplitude of CICR is reduced resulting in less force production during EC coupling. In this review, we discuss the specific proteins that alter the regulation of Ca(2+) during HF. In particular, we will focus on defects in RyR2-mediated SR Ca(2+) release. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Sameer Ather
- Dept of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Dept of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
29
|
Gorski PA, Glaves JP, Vangheluwe P, Young HS. Sarco(endo)plasmic reticulum calcium ATPase (SERCA) inhibition by sarcolipin is encoded in its luminal tail. J Biol Chem 2013; 288:8456-8467. [PMID: 23362265 DOI: 10.1074/jbc.m112.446161] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is regulated in a tissue-dependent manner via interaction with the short integral membrane proteins phospholamban (PLN) and sarcolipin (SLN). Although defects in SERCA activity are known to cause heart failure, the regulatory mechanisms imposed by PLN and SLN could have clinical implications for both heart and skeletal muscle diseases. PLN and SLN have significant sequence homology in their transmembrane regions, suggesting a similar mode of binding to SERCA. However, unlike PLN, SLN has a conserved C-terminal luminal tail composed of five amino acids ((27)RSYQY), which may contribute to a distinct SERCA regulatory mechanism. We have functionally characterized alanine mutants of the C-terminal tail of SLN using co-reconstituted proteoliposomes of SERCA and SLN. We found that Arg(27) and Tyr(31) are essential for SLN function. We also tested the effect of a truncated variant of SLN (Arg(27)stop) and extended chimeras of PLN with the five luminal residues of SLN added to its C terminus. The Arg(27)stop form of SLN resulted in loss of function, whereas the PLN chimeras resulted in superinhibition with characteristics of both PLN and SLN. Based on our results, we propose that the C-terminal tail of SLN is a distinct, essential domain in the regulation of SERCA and that the functional properties of the SLN tail can be transferred to PLN.
Collapse
Affiliation(s)
- Przemek A Gorski
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; National Institute for Nanotechnology, University of Alberta, Edmonton, Alberta T6G 2M9, Canada
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, B3000 Leuven, Belgium
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; National Institute for Nanotechnology, University of Alberta, Edmonton, Alberta T6G 2M9, Canada.
| |
Collapse
|
30
|
Sahoo SK, Shaikh SA, Sopariwala DH, Bal NC, Periasamy M. Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump. J Biol Chem 2013; 288:6881-9. [PMID: 23341466 DOI: 10.1074/jbc.m112.436915] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sarco(endo)plasmic reticulum Ca(2+)ATPase (SERCA) pump activity is modulated by phospholamban (PLB) and sarcolipin (SLN) in cardiac and skeletal muscle. Recent data suggest that SLN could play a role in muscle thermogenesis by promoting uncoupling of the SERCA pump (Lee, A.G. (2002) Curr. Opin. Struct. Biol. 12, 547-554 and Bal, N. C., Maurya, S. K., Sopariwala, D. H., Sahoo, S. K., Gupta, S. C., Shaikh, S. A., Pant, M., Rowland, L. A., Bombardier, E., Goonasekera, S. A., Tupling, A. R., Molkentin, J. D., and Periasamy, M. (2012) Nat. Med. 18, 1575-1579), but the mechanistic details are unknown. To better define how binding of SLN to SERCA promotes uncoupling of SERCA, we compared SLN and SERCA1 interaction with that of PLB in detail. The homo-bifunctional cross-linker (1,6-bismaleimidohexane) was employed to detect dynamic protein interaction during the SERCA cycle. Our studies reveal that SLN differs significantly from PLB: 1) SLN primarily affects the Vmax of SERCA-mediated Ca(2+) uptake but not the pump affinity for Ca(2+); 2) SLN can bind to SERCA in the presence of high Ca(2+), but PLB can only interact to the ATP-bound Ca(2+)-free E2 state; and 3) unlike PLB, SLN interacts with SERCA throughout the kinetic cycle and promotes uncoupling of the SERCA pump. Using SERCA transmembrane mutants, we additionally show that PLB and SLN can bind to the same groove but interact with a different set of residues on SERCA. These data collectively suggest that SLN is functionally distinct from PLB; its ability to interact with SERCA in the presence of Ca(2+) causes uncoupling of the SERCA pump and increased heat production.
Collapse
Affiliation(s)
- Sanjaya K Sahoo
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
31
|
Autry JM, Rubin JE, Svensson B, Li J, Thomas DD. Nucleotide activation of the Ca-ATPase. J Biol Chem 2012; 287:39070-82. [PMID: 22977248 DOI: 10.1074/jbc.m112.404434] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used fluorescence spectroscopy, molecular modeling, and limited proteolysis to examine structural dynamics of the sarcoplasmic reticulum Ca-ATPase (SERCA). The Ca-ATPase in sarcoplasmic reticulum vesicles from fast twitch muscle (SERCA1a isoform) was selectively labeled with fluorescein isothiocyanate (FITC), a probe that specifically reacts with Lys-515 in the nucleotide-binding site. Conformation-specific proteolysis demonstrated that FITC labeling does not induce closure of the cytoplasmic headpiece, thereby assigning FITC-SERCA as a nucleotide-free enzyme. We used enzyme reverse mode to synthesize FITC monophosphate (FMP) on SERCA, producing a phosphorylated pseudosubstrate tethered to the nucleotide-binding site of a Ca(2+)-free enzyme (E2 state to prevent FMP hydrolysis). Conformation-specific proteolysis demonstrated that FMP formation induces SERCA headpiece closure similar to ATP binding, presumably due to the high energy phosphoryl group on the fluorescent probe (ATP·E2 analog). Subnanosecond-resolved detection of fluorescence lifetime, anisotropy, and quenching was used to characterize FMP-SERCA (ATP·E2 state) versus FITC-SERCA in Ca(2+)-free, Ca(2+)-bound, and actively cycling phosphoenzyme states (E2, E1, and EP). Time-resolved spectroscopy revealed that FMP-SERCA exhibits increased probe dynamics but decreased probe accessibility compared with FITC-SERCA, indicating that ATP exhibits enhanced dynamics within a closed cytoplasmic headpiece. Molecular modeling was used to calculate the solvent-accessible surface area of FITC and FMP bound to SERCA crystal structures, revealing a positive correlation of solvent-accessible surface area with quenching but not anisotropy. Thus, headpiece closure is coupled to substrate binding but not active site dynamics. We propose that dynamics in the nucleotide-binding site of SERCA is important for Ca(2+) binding (distal allostery) and phosphoenzyme formation (direct activation).
Collapse
Affiliation(s)
- Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
32
|
Lewis AK, Valley CC, Sachs JN. TNFR1 Signaling Is Associated with Backbone Conformational Changes of Receptor Dimers Consistent with Overactivation in the R92Q TRAPS Mutant. Biochemistry 2012; 51:6545-55. [DOI: 10.1021/bi3006626] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrew K. Lewis
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis,
Minnesota 55455, United States
| | - Christopher C. Valley
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis,
Minnesota 55455, United States
| | - Jonathan N. Sachs
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis,
Minnesota 55455, United States
| |
Collapse
|
33
|
Valley CC, Lewis AK, Mudaliar DJ, Perlmutter JD, Braun AR, Karim CB, Thomas DD, Brody JR, Sachs JN. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor 5 networks that are highly organized. J Biol Chem 2012; 287:21265-78. [PMID: 22496450 DOI: 10.1074/jbc.m111.306480] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent evidence suggests that TNF-related apoptosis-inducing ligand (TRAIL), a death-inducing cytokine with anti-tumor potential, initiates apoptosis by re-organizing TRAIL receptors into large clusters, although the structure of these clusters and the mechanism by which they assemble are unknown. Here, we demonstrate that TRAIL receptor 2 (DR5) forms receptor dimers in a ligand-dependent manner at endogenous receptor levels, and these receptor dimers exist within high molecular weight networks. Using mutational analysis, FRET, fluorescence microscopy, synthetic biochemistry, and molecular modeling, we find that receptor dimerization relies upon covalent and noncovalent interactions between membrane-proximal residues. Additionally, by using FRET, we show that the oligomeric structure of two functional isoforms of DR5 is indistinguishable. The resulting model of DR5 activation should revise the accepted architecture of the functioning units of DR5 and the structurally homologous TNF receptor superfamily members.
Collapse
Affiliation(s)
- Christopher C Valley
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gruber SJ, Haydon S, Thomas DD. Phospholamban mutants compete with wild type for SERCA binding in living cells. Biochem Biophys Res Commun 2012; 420:236-40. [PMID: 22405774 DOI: 10.1016/j.bbrc.2012.02.125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 02/23/2012] [Indexed: 12/18/2022]
Abstract
We have used fluorescent fusion proteins stably expressed in HEK cells to detect directly the interaction between the sarcoplasmic reticulum Ca-ATPase (SERCA) and phospholamban (PLB) in living cells, in order to design PLB mutants for gene therapy. Ca(2+) cycling in muscle cells depends strongly on SERCA. Heart failure (HF), which contributes to 12% of US deaths, typically exhibits decreased SERCA activity, and several potential therapies for HF aim to increase SERCA activity. We are investigating the use of LOF-PLB mutants (PLB(M)) as gene therapy vectors to increase SERCA activity. Active SERCA1a and WT-PLB, tagged at their N termini with fluorescent proteins (CFP and YFP), were coexpressed in stable HEK cell lines, and fluorescence resonance energy transfer (FRET) was used to detect their interaction directly. Phosphorylation of PLB, induced by forskolin, caused an increase in FRET from CFP-SERCA to YFP-PLB, indicating that SERCA inhibition can be relieved without dissociation of the complex. This suggests that a LOF mutant might bind to SERCA with sufficient affinity to complete effectively with WT-PLB, thus relieving SERCA inhibition. Therefore, we transiently expressed a series of PLB(M) in the CFP-SERCA/YFP-PLB cell line, and found decreased FRET, implying competition between PLB(M) and WT-PLB for binding to SERCA. These results establish this FRET assay as a rapid and quantitative means of screening PLB(M) for optimization of gene therapy to activate SERCA, as needed for gene therapy in HF.
Collapse
Affiliation(s)
- Simon J Gruber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
35
|
Bidwell P, Blackwell DJ, Hou Z, Zima AV, Robia SL. Phospholamban binds with differential affinity to calcium pump conformers. J Biol Chem 2011; 286:35044-50. [PMID: 21832088 PMCID: PMC3186385 DOI: 10.1074/jbc.m111.266759] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/03/2011] [Indexed: 12/16/2022] Open
Abstract
To investigate the mechanism of regulation of sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) by phospholamban (PLB), we expressed Cerulean-SERCA and yellow fluorescent protein (YFP)-PLB in adult rabbit ventricular myocytes using adenovirus vectors. SERCA and PLB were localized in the sarcoplasmic reticulum and were mobile over multiple sarcomeres on a timescale of tens of seconds. We also observed robust fluorescence resonance energy transfer (FRET) from Cerulean-SERCA to YFP-PLB. Electrical pacing of cardiac myocytes elicited cytoplasmic Ca(2+) elevations, but these increases in Ca(2+) produced only modest changes in SERCA-PLB FRET. The data suggest that the regulatory complex is not disrupted by elevations of cytosolic calcium during cardiac contraction (systole). This conclusion was also supported by parallel experiments in heterologous cells, which showed that FRET was reduced but not abolished by calcium. Thapsigargin also elicited a small decrease in PLB-SERCA binding affinity. We propose that PLB is not displaced from SERCA by high calcium during systole, and relief of functional inhibition does not require dissociation of the regulatory complex. The observed modest reduction in the affinity of the PLB-SERCA complex with Ca(2+) or thapsigargin suggests that the binding interface is altered by SERCA conformational changes. The results are consistent with multiple modes of PLB binding or alternative binding sites.
Collapse
Affiliation(s)
- Philip Bidwell
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153
| | - Daniel J. Blackwell
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153
| | - Zhanjia Hou
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153
| | - Aleksey V. Zima
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153
| | - Seth L. Robia
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153
| |
Collapse
|