1
|
Lu X, Yu R, Li Z, Yang M, Dai J, Liu M. JC-010a, a novel selective SHP2 allosteric inhibitor, overcomes RTK/non-RTK-mediated drug resistance in multiple oncogene-addicted cancers. Cancer Lett 2024; 582:216517. [PMID: 38101609 DOI: 10.1016/j.canlet.2023.216517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
Src homology 2 domain-containing phosphatase (SHP2) is a non-receptor protein phosphatase that transduces signals from upstream receptor tyrosine kinases (RTKs)/non-RTKs to Ras/MAPK pathway. Accumulating studies indicated that SHP2 is a critical mediator of resistance to current targeted therapies in multiple cancers. Here, we reported a novel SHP2 allosteric inhibitor JC-010a, which was highly selective to SHP2 and bound at the "tunnel" allosteric site of SHP2. The effect of JC-010a on combating RTK/non-RTK or MAPK inhibitors-induced acquired resistance was explored. Our study demonstrated that JC-010a monotherapy significantly inhibited the proliferation of cancer cells with different oncogenic drivers via inhibiting signaling through SHP2. Importantly, JC-010a abolished acquired resistance induced by targeted therapies: in KRAS-mutant cancers, JC-010a abrogated selumetinib-induced adaptive resistance mediated by RTK/SHP2; in BCR-ABL-driven leukemia cells, we demonstrated JC-010a inhibited BCR-ABL T315I mutation-mediated imatinib resistance and proposed a novel mechanism of JC-010a involving the disrupted co-interaction of SHP2, BCR-ABL, and Hsp90; in non-small cell lung cancer (NSCLC) cells, JC-010a inhibited both EGFR T790M/C797S mutation and alternate RTK-driven resistance to gefitinib or osimertinib; importantly, we first proposed a novel potential therapeutic strategy for RET-rearranged cancer, we confirmed that JC-010a monotherapy inhibited cell resistance to BLU-667, and JC-010a/BLU-667 combination prolonged anticancer response both in vivo and in vitro cancer models by inhibiting the alternate MET activation-induced RAS/MAPK reactivation, thereby promoting cancer cell apoptosis. These findings suggested that JC-010a was a novel selective SHP2 allosteric inhibitor, and combing JC-010a with current targeted therapy agents provided a promising therapeutic approach for clinical resistant cancers.
Collapse
Affiliation(s)
- Xuxiu Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhen Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mengke Yang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jiajia Dai
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Elgehama A, Wang Y, Yu Y, Zhou L, Chen Z, Wang L, Sun L, Gao J, Yu B, Shen Y, Xu Q. Targeting the PTP1B-Bcr-Abl1 interaction for the degradation of T315I mutant Bcr-Abl1 in chronic myeloid leukemia. Cancer Sci 2022; 114:247-258. [PMID: 36086954 PMCID: PMC9807508 DOI: 10.1111/cas.15580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023] Open
Abstract
Small-molecule-induced degradation of mutant Bcr-Abl1 provides a potential approach to overcome Bcr-Abl1 tyrosine kinase inhibitor (TKI)-resistant chronic myeloid leukemia (CML). Our previous study reported that a synthetic steroidal glycoside SBF-1 showed remarkable anti-CML activity by inducing the degradation of native Bcr-Abl1 protein. Here, we observed the comparable growth inhibition for SBF-1 in CML cells harboring T315I mutant Bcr-Abl1 in vitro and in vivo. SBF-1 triggered its degradation through disrupting the interaction between protein-tyrosine phosphatase 1B (PTP1B) and Bcr-Abl1. Using SBF-1 as a tool, we found that Tyr46 in the PTP1B catalytic domain and Tyr852 in the Bcr-Abl1 pleckstrin-homology (PH) domain are critical for their interaction. Moreover, the phosphorylation of Tyr1086 within the Bcr-Abl1 SH2 domain recruited the E3 ubiquitin ligase c-Cbl to catalyze K27-linked ubiquitin chains, which serve as a recognition signal for p62-dependent autophagic degradation. PTP1B dephosphorylated Bcr-Abl1 at Tyr1086 and prevented the recruitment of c-Cbl, leading to the stability of Bcr-Abl1. This study unravels the action mechanism of PTP1B in stabilizing Bcr-Abl1 protein and indicates that the PTP1B-Bcr-Abl1 interaction might be one of druggable targets for TKI-resistant CML with point mutations.
Collapse
Affiliation(s)
- Ahmed Elgehama
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Ying Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Lin Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Zhixiu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Liwei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Lijun Sun
- Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Biao Yu
- State Key Laborary of Bio‐organic and Natural Products ChemistryShanghai Institute of Organic AcademyShanghaiChina
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| |
Collapse
|
3
|
Chen PJ, Zhang YT. Protein Tyrosine Phosphatase 1B (PTP1B): Insights into Its New Implications in Tumorigenesis. Curr Cancer Drug Targets 2022; 22:181-194. [PMID: 35088671 DOI: 10.2174/1568009622666220128113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
In vivo, tyrosine phosphorylation is a reversible and dynamic process governed by the opposing activities of protein tyrosine kinases and phosphatases. Defective or inappropriate operation of these proteins leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases, including cancers. PTP1B, a non-transmembrane phosphatase, is generally considered a negative regulator of the metabolic signaling pathways and a promising drug target for type Ⅱ diabetes and obesity. Recently, PTP1B is also attracting considerable interest due to its important function and therapeutic potential in other diseases. An increasing number of studies have indicated that PTP1B plays a vital role in the initiation and progression of cancers and could be a target for new cancer therapies. Following recent advances in the aspects mentioned above, this review is focused on the major functions of PTP1B in different types of cancer and the underlying mechanisms behind these functions, as well as the potential pharmacological effects of PTP1B inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Pei-Jie Chen
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230012, China
| | - Yun-Tian Zhang
- Hefei Visionnox Technology Co., Lid, Hefei 230012, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
4
|
SCP4-STK35/PDIK1L complex is a dual phospho-catalytic signaling dependency in acute myeloid leukemia. Cell Rep 2022; 38:110233. [PMID: 35021089 PMCID: PMC8796272 DOI: 10.1016/j.celrep.2021.110233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/20/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Acute myeloid leukemia (AML) cells rely on phospho-signaling pathways to gain unlimited proliferation potential. Here, we use domain-focused CRISPR screening and identify the nuclear phosphatase SCP4 as a dependency in AML, yet this enzyme is dispensable in normal hematopoietic progenitor cells. Using CRISPR exon scanning and gene complementation assays, we show that the catalytic function of SCP4 is essential in AML. Through mass spectrometry analysis of affinity-purified complexes, we identify the kinase paralogs STK35 and PDIK1L as binding partners and substrates of the SCP4 phosphatase domain. We show that STK35 and PDIK1L function catalytically and redundantly in the same pathway as SCP4 to maintain AML proliferation and to support amino acid biosynthesis and transport. We provide evidence that SCP4 regulates STK35/PDIK1L through two distinct mechanisms: catalytic removal of inhibitory phosphorylation and by promoting kinase stability. Our findings reveal a phosphatase-kinase signaling complex that supports the pathogenesis of AML.
Collapse
|
5
|
Current Views on the Interplay between Tyrosine Kinases and Phosphatases in Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13102311. [PMID: 34065882 PMCID: PMC8151247 DOI: 10.3390/cancers13102311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The chromosomal alteration t(9;22) generating the BCR-ABL1 fusion protein represents the principal feature that distinguishes some types of leukemia. An increasing number of articles have focused the attention on the relevance of protein phosphatases and their potential role in the control of BCR-ABL1-dependent or -independent signaling in different areas related to the biology of chronic myeloid leukemia. Herein, we discuss how tyrosine and serine/threonine protein phosphatases may interact with protein kinases, in order to regulate proliferative signal cascades, quiescence and self-renewals on leukemic stem cells, and drug-resistance, indicating how BCR-ABL1 can (directly or indirectly) affect these critical cells behaviors. We provide an updated review of the literature on the function of protein phosphatases and their regulation mechanism in chronic myeloid leukemia. Abstract Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by BCR-ABL1 oncogene expression. This dysregulated protein-tyrosine kinase (PTK) is known as the principal driver of the disease and is targeted by tyrosine kinase inhibitors (TKIs). Extensive documentation has elucidated how the transformation of malignant cells is characterized by multiple genetic/epigenetic changes leading to the loss of tumor-suppressor genes function or proto-oncogenes expression. The impairment of adequate levels of substrates phosphorylation, thus affecting the balance PTKs and protein phosphatases (PPs), represents a well-established cellular mechanism to escape from self-limiting signals. In this review, we focus our attention on the characterization of and interactions between PTKs and PPs, emphasizing their biological roles in disease expansion, the regulation of LSCs and TKI resistance. We decided to separate those PPs that have been validated in primary cell models or leukemia mouse models from those whose studies have been performed only in cell lines (and, thus, require validation), as there may be differences in the manner that the associated pathways are modified under these two conditions. This review summarizes the roles of diverse PPs, with hope that better knowledge of the interplay among phosphatases and kinases will eventually result in a better understanding of this disease and contribute to its eradication.
Collapse
|
6
|
Zeng P, Schmaier A. Ponatinib and other CML Tyrosine Kinase Inhibitors in Thrombosis. Int J Mol Sci 2020; 21:ijms21186556. [PMID: 32911643 PMCID: PMC7555546 DOI: 10.3390/ijms21186556] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 01/05/2023] Open
Abstract
Abl1 kinase has important biological roles. The Bcr-Abl1 fusion protein creates undesired kinase activity and is pathogenic in 95% of chronic myeloid leukemia (CML) and 30% of acute lymphoblastic leukemia (ALL) patients. Targeted therapies to these diseases are tyrosine kinase inhibitors. The extent of a tyrosine kinase inhibitor’s targets determines the degree of biologic effects of the agent that may influence the well-being of the patient. This fact is especially true with tyrosine kinase inhibitor effects on the cardiovascular system. Thirty-one percent of ponatinib-treated patients, the tyrosine kinase inhibitor with the broadest inhibitory spectrum, have thrombosis associated with its use. Recent experimental investigations have indicated the mechanisms of ponatinib-associated thrombosis. Further, an antidote to ponatinib is in development by re-purposing an FDA-approved medication.
Collapse
Affiliation(s)
- Peng Zeng
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Alvin Schmaier
- Departments of Medicine and Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-0796; Fax: +1-216-368-3014
| |
Collapse
|
7
|
Yin X, Zhou M, Fu Y, Yang L, Xu M, Sun T, Wang X, Huang T, Chen C. Histone demethylase RBP2 mediates the blast crisis of chronic myeloid leukemia through an RBP2/PTEN/BCR-ABL cascade. Cell Signal 2019; 63:109360. [PMID: 31374292 DOI: 10.1016/j.cellsig.2019.109360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022]
Abstract
Epigenetic disorders play a key role in tumorigenesis and development, among which histone methylation abnormalities are common. While patients living with chronic myeloid leukemia in the chronic phase (CML-CP) have a good response to TKI, blastic phase (CML-BP) patients demonstrate poor efficacy and high fatality rates. However, while the mechanism of blast crisis of chronic myeloid leukemia remains unclear, high expression and activation of BCR-ABL are usually related to CML blast crisis transition. We found that histone H3 lysine 4 (H3K4) demethylase RBP2 expression is negatively correlated with BCR-ABL expression, which suggests a regulatory link between these two genes. We also discovered that RBP2 mediates the dephosphorylation of BCR-ABL by directly downregulating PTEN expression, depending on histone demethylase activity, while PTEN targets protein phosphatase activity of BCR-ABL, a phosphatase which directly dephosphorylates BCR-ABL. In clinical specimens, the mRNA expression of RBP2 was found to be positively correlated with that of PTEN. These data suggest that the under-expression of RBP2 promotes blast crisis transition by activating an RBP2/PTEN/BCR-ABL cascade.
Collapse
Affiliation(s)
- Xiaolin Yin
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Yue Fu
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Lin Yang
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Man Xu
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Ting Sun
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Xiaoming Wang
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Tao Huang
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital, Shandong University, No. 107,Wenhua Xi Road, Jinan 250012, Shandong, PR China.
| |
Collapse
|
8
|
Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2019; 76:2571-2592. [PMID: 30982078 PMCID: PMC11105579 DOI: 10.1007/s00018-019-03095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It is the fourth leading cause of cancer-related death and is associated with a very poor prognosis. KRAS driver mutations occur in approximately 95% of PDAC cases and cause the activation of several signaling pathways such as mitogen-activated protein kinase (MAPK) pathways. Regulation of these signaling pathways is orchestrated by feedback loops mediated by the balance between protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), leading to activation or inhibition of its downstream targets. The human PTPome comprises 125 members, and these proteins are classified into three distinct families according to their structure. Since PTP activity description, it has become clear that they have both inhibitory and stimulatory effects on cancer-associated signaling processes and that deregulation of PTP function is closely associated with tumorigenesis. Several PTPs have displayed either tumor suppressor or oncogenic characteristics during the development and progression of PDAC. In this sense, PTPs have been presented as promising candidates for the treatment of human pancreatic cancer, and many PTP inhibitors have been developed since these proteins were first associated with cancer. Nevertheless, some challenges persist regarding the development of effective and safe methods to target these molecules and deliver these drugs. In this review, we discuss the role of PTPs in tumorigenesis as tumor suppressor and oncogenic proteins. We have focused on the differential expression of these proteins in PDAC, as well as their clinical implications and possible targeting for pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Pamela Viani de Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
Zhu HQ, Gao FH. Regulatory Molecules and Corresponding Processes of BCR-ABL Protein Degradation. J Cancer 2019; 10:2488-2500. [PMID: 31258755 PMCID: PMC6584333 DOI: 10.7150/jca.29528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
The BCR-ABL fusion protein with strong tyrosine kinase activity is one of the molecular biological bases of leukemia. Imatinib (Gleevec), a specific targeted drug for the treatment of chronic myeloid leukemia (CML), was developed for inhibiting the kinase activity of the BCR-ABL fusion protein. Despite the positive clinical efficacy of imatinib, the proportion of imatinib resistance has gradually increased. The main reason for the resistance is a decrease in sensitivity to imatinib caused by mutation or amplification of the BCR-ABL gene. In response to this phenomenon, the new generation of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL fusion protein was developed to solve the problem. However this strategy only selectively inhibits the tyrosine kinase activity of the BCR-ABL protein without eliminating the BCR-ABL protein, it does not fundamentally cure the BCR-ABL-positive leukemia patients. With the accumulation of the knowledge of cellular molecular biology, it has become possible to specifically eliminate certain proteins by cellular proteases in a specific way. Therefore, the therapeutic strategy to induce the degradation of the BCR-ABL fusion protein is superior to the strategy of inhibiting its activity. The protein degradation strategy is also a solution to the TKI resistance caused by different BCR-ABL gene point mutations. In order to provide possible exploration directions and clues for eliminating the BCR-ABL fusion protein in tumor cells, we summarize the significant molecules involved in the degradation pathway of the BCR-ABL protein, as well as the reported potent compounds that can target the BCR-ABL protein for degradation.
Collapse
Affiliation(s)
- Han-Qing Zhu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
10
|
Kumar AP, Nguyen MN, Verma C, Lukman S. Structural analysis of protein tyrosine phosphatase 1B reveals potentially druggable allosteric binding sites. Proteins 2018; 86:301-321. [PMID: 29235148 DOI: 10.1002/prot.25440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/16/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
Abstract
Catalytic proteins such as human protein tyrosine phosphatase 1B (PTP1B), with conserved and highly polar active sites, warrant the discovery of druggable nonactive sites, such as allosteric sites, and potentially, therapeutic small molecules that can bind to these sites. Catalyzing the dephosphorylation of numerous substrates, PTP1B is physiologically important in intracellular signal transduction pathways in diverse cell types and tissues. Aberrant PTP1B is associated with obesity, diabetes, cancers, and neurodegenerative disorders. Utilizing clustering methods (based on root mean square deviation, principal component analysis, nonnegative matrix factorization, and independent component analysis), we have examined multiple PTP1B structures. Using the resulting representative structures in different conformational states, we determined consensus clustroids and used them to identify both known and novel binding sites, some of which are potentially allosteric. We report several lead compounds that could potentially bind to the novel PTP1B binding sites and can be further optimized. Considering the possibility for drug repurposing, we discovered homologous binding sites in other proteins, with ligands that could potentially bind to the novel PTP1B binding sites.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Minh N Nguyen
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Elson A. Stepping out of the shadows: Oncogenic and tumor-promoting protein tyrosine phosphatases. Int J Biochem Cell Biol 2017; 96:135-147. [PMID: 28941747 DOI: 10.1016/j.biocel.2017.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022]
Abstract
Protein tyrosine phosphorylation is critical for proper function of cells and organisms. Phosphorylation is regulated by the concerted but generically opposing activities of tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs), which ensure its proper regulation, reversibility, and ability to respond to changing physiological situations. Historically, PTKs have been associated mainly with oncogenic and pro-tumorigenic activities, leading to the generalization that protein dephosphorylation is anti-oncogenic and hence that PTPs are tumor-suppressors. In many cases PTPs do suppress tumorigenesis. However, a growing body of evidence indicates that PTPs act as dominant oncogenes and drive cell transformation in a number of contexts, while in others PTPs support transformation that is driven by other oncogenes. This review summarizes the known transforming and tumor-promoting activities of the classical, tyrosine specific PTPs and highlights their potential as drug targets for cancer therapy.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
12
|
Elgehama A, Chen W, Pang J, Mi S, Li J, Guo W, Wang X, Gao J, Yu B, Shen Y, Xu Q. Blockade of the interaction between Bcr-Abl and PTB1B by small molecule SBF-1 to overcome imatinib-resistance of chronic myeloid leukemia cells. Cancer Lett 2015; 372:82-8. [PMID: 26721204 DOI: 10.1016/j.canlet.2015.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/20/2015] [Accepted: 12/12/2015] [Indexed: 11/15/2022]
Abstract
In this study, a synthetic steroidal glycoside SBF-1 had strong and preferential antitumor effects on the human chronic myeloid leukemia (CML) cell line K562 and its imatinib-resistant form K562/G. SBF-1 induced apoptosis in both cell lines without any effect on cell cycle arrest. It also inhibited the activation of PI3K/Akt pathway members, such as PI3K and Akt, as well as downstream targets mTOR and Bcl-2. Moreover, the degradation of the Bcr-Abl protein was induced by SBF-1 in a concentration- and time-dependent manner. Using a pull-down assay, SBF-1 was found to bind to both Bcr-Abl and PTP1B and disrupted the interaction between them. SBF-1 triggered the degradation of Bcr-Abl through ubiquitination via the lysosome pathway. Taking together these findings, this study, for the first time, suggests that the blockade of the interaction between Bcr-Abl and PTP1B may be a feasible strategy for the treatment of CML, especially CML with resistance to Bcr-Abl kinase inhibitor imatinib. Our study also indicates that SBF-1 may serve as a leading compound for novel anti-CML therapeutic agents.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Cholestenones/pharmacology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate/pharmacology
- Inhibitory Concentration 50
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Lysosomes/drug effects
- Lysosomes/enzymology
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Proteolysis
- Saponins/pharmacology
- Signal Transduction/drug effects
- Time Factors
- Ubiquitination
Collapse
Affiliation(s)
- Ahmed Elgehama
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Juan Pang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shanwei Mi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jiahuang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xingqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Academy, Shanghai, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Kumagai T, Baldwin C, Aoudjit L, Nezvitsky L, Robins R, Jiang R, Takano T. Protein Tyrosine Phosphatase 1B Inhibition Protects against Podocyte Injury and Proteinuria. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2211-24. [DOI: 10.1016/j.ajpath.2014.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 04/12/2014] [Accepted: 05/09/2014] [Indexed: 12/18/2022]
|
14
|
Huang YW, Lee WH, Tsai YH, Huang HM. Activin A induction of erythroid differentiation sensitizes K562 chronic myeloid leukemia cells to a subtoxic concentration of imatinib. Am J Physiol Cell Physiol 2013; 306:C37-44. [PMID: 24088895 DOI: 10.1152/ajpcell.00130.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic stem/progenitor cell disorder in which Bcr-Abl oncoprotein inhibits cell differentiation. Differentiation induction is considered an alternative strategy for treating CML. Activin A, a member of the transforming growth factor-β superfamily, induces erythroid differentiation of CML cells through the p38 MAPK pathway. In this study, treatment of the K562 CML stem/progenitor cell line with activin A followed by a subtoxic concentration of the Bcr-Abl inhibitor imatinib strongly induced growth inhibition and apoptosis compared with simultaneous treatment with activin A and imatinib. Imatinib-induced growth inhibition and apoptosis following activin A pretreatment were dose- and time-dependent. Imatinib-induced growth inhibition and apoptosis were also dependent on the pretreatment dose of activin A. More than 90% of the activin A-induced increases in glycophorin A-positive cells were sensitive to imatinib. However, only some of original glycophorin A-positive cells in the activin A treatment group were sensitive to imatinib. Sequential treatment with activin A and imatinib decreased Bcr-Abl, procaspase-3, Mcl-1, and Bcl-xL and also induced cleavage of procaspase-3/poly(ADP-ribose)polymerase. The reduction of erythroid differentiation in p38 MAPK dominant-negative mutants or by short hairpin RNA knockdown of p38 MAPK decreased the growth inhibition and apoptosis mediated by sequential treatment with activin A and imatinib. Furthermore, the same inhibition level of multidrug resistance 1 expression was observed in cells treated with activin A alone, treated sequentially with activin A and imatinib, or treated simultaneously with activin A and imatinib. The p38 MAPK inhibitor SB-203580 can restore activin A-inhibited multidrug resistance 1 expression. Taken together, our results suggest that a subtoxic concentration of imatinib could exhibit strong cytotoxicity against erythroid-differentiated K562 CML cells.
Collapse
Affiliation(s)
- Yu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | |
Collapse
|
15
|
Verma M, Karimiani EG, Byers RJ, Rehman S, Westerhoff HV, Day PJR. Mathematical modelling of miRNA mediated BCR.ABL protein regulation in chronic myeloid leukaemia vis-a-vis therapeutic strategies. Integr Biol (Camb) 2013; 5:543-54. [PMID: 23340812 DOI: 10.1039/c3ib20230e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disease resulting from an aberrant BCR.ABL gene and protein. To predict BCR.ABL protein abundance and phosphorylation in individual cells in a population of CML cells, we modelled BCR.ABL protein regulation through associated miRNAs using a systems approach. The model rationalizes the level of BCR.ABL protein heterogeneity in CML cells in correlation with the heterogeneous BCR.ABL mRNA levels. We also measured BCR.ABL mRNA and BCR.ABLp phosphorylation in individual cells. The experimental data were consistent with the modelling results, thereby partly validating the model. Provided it is tested further, the model may be used to support effective therapeutic strategies including the combined application of a tyrosine kinase inhibitor and miRNAs targeting BCR.ABL. It appears able to predict different effects of the two types of drug on cells with different expression levels and consequently different effects on the generation of resistance.
Collapse
Affiliation(s)
- Malkhey Verma
- Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, School for Chemical Engineering and Analytical Science, University of Manchester, Manchester, M1 7DN, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Lee YL, Chen CW, Liu FH, Huang YW, Huang HM. Aclacinomycin A sensitizes K562 chronic myeloid leukemia cells to imatinib through p38MAPK-mediated erythroid differentiation. PLoS One 2013; 8:e61939. [PMID: 23613979 PMCID: PMC3629111 DOI: 10.1371/journal.pone.0061939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/15/2013] [Indexed: 12/31/2022] Open
Abstract
Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and apoptosis. These results provided a potential management by which ACM might have a crucial impact on increasing sensitivity of CML cells to imatinib in the differentiation therapeutic approaches.
Collapse
Affiliation(s)
- Yueh-Lun Lee
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
17
|
O'Donovan DS, MacFhearraigh S, Whitfield J, Swigart LB, Evan GI, Mc Gee MM. Sequential Cdk1 and Plk1 phosphorylation of protein tyrosine phosphatase 1B promotes mitotic cell death. Cell Death Dis 2013; 4:e468. [PMID: 23348582 PMCID: PMC3563996 DOI: 10.1038/cddis.2012.208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 01/20/2023]
Abstract
Mitotic cell death following prolonged arrest is an important death mechanism that is not completely understood. This study shows that Protein Tyrosine Phosphatase 1B (PTP1B) undergoes phosphorylation during mitotic arrest induced by microtubule-targeting agents (MTAs) in chronic myeloid leukaemia cells. Inhibition of cyclin-dependent kinase 1 (Cdk1) or polo-like kinase 1 (Plk1) during mitosis prevents PTP1B phosphorylation, implicating these kinases in PTP1B phosphorylation. In support of this, Cdk1 and Plk1 co-immunoprecipitate with endogenous PTP1B from mitotic cells. In addition, active recombinant Cdk1-cyclin B1 directly phosphorylates PTP1B at serine 386 in a kinase assay. Recombinant Plk1 phosphorylates PTP1B on serine 286 and 393 in vitro, however, it requires a priming phosphorylation by Cdk1 at serine 386 highlighting a novel co-operation between Cdk1 and Plk1 in the regulation of PTP1B. Furthermore, overexpression of wild-type PTP1B induced mitotic cell death, which is potentiated by MTAs. Moreover, mutation of serine 286 abrogates the cell death induced by PTP1B, whereas mutation of serine 393 does not, highlighting the importance of serine 286 phosphorylation in the execution of mitotic cell death. Finally, phosphorylation on serine 286 enhanced PTP1B phosphatase activity. Collectively, these data reveal that PTP1B activity promotes mitotic cell death and is regulated by the co-operative action of Cdk1 and Plk1 during mitotic arrest.
Collapse
Affiliation(s)
- D S O'Donovan
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - S MacFhearraigh
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - J Whitfield
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - L B Swigart
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - G I Evan
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - M M Mc Gee
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
The tyrosine phosphatase TC48 interacts with and inactivates the oncogenic fusion protein BCR-Abl but not cellular Abl. Biochim Biophys Acta Mol Basis Dis 2012; 1832:275-84. [PMID: 23124138 DOI: 10.1016/j.bbadis.2012.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 11/20/2022]
Abstract
The chimeric oncoprotein BCR-Abl exhibits deregulated protein tyrosine kinase activity and is responsible for the pathogenesis of certain human leukemias, such as chronic myelogenous leukemia. The activities of cellular Abl (c-Abl) and BCR-Abl are stringently regulated and the cellular mechanisms involved in their inactivation are poorly understood. Protein tyrosine phosphatases can negatively regulate Abl mediated signaling by dephosphorylating the kinase and/or its substrates. This study investigated the ability of the intracellular T cell protein tyrosine phosphatase (TCPTP/PTPN2) to dephosphorylate and regulate the functions of BCR-Abl and c-Abl. TCPTP is expressed as two alternately spliced isoforms - TC48 and TC45, which differ in their C-termini and localize to the cytoplasm and nucleus respectively. We show that TC48 dephosphorylates BCR-Abl but not c-Abl and inhibits its activity towards its substrate, CrkII. Y1127 and Y1294 residues whose phosphorylation corresponds with BCR-Abl activation status were the primary sites targeted by TC48. Co-localization and immunoprecipitation experiments showed that TC48 interacted with BCR-Abl but not with c-Abl, and BCR domain was sufficient for interaction. TC48 expression resulted in the stabilization of Bcr-Abl protein dependent on its phosphatase activity. Inactivation of cellular TC48 in K562 cells by stable expression of a dominant negative catalytically inactive mutant TC48, enhanced proliferation. TC48 expressing K562 clones showed reduced proliferation and enhanced sensitivity to STI571 compared to control clones suggesting that TC48 can repress the growth of CML cells. This study identifies a novel cellular regulator that specifically inhibits the activity of oncogenic BCR-Abl but not that of the cellular Abl kinase.
Collapse
|
19
|
Goussetis DJ, Gounaris E, Wu EJ, Vakana E, Sharma B, Bogyo M, Altman JK, Platanias LC. Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood 2012; 120:3555-62. [PMID: 22898604 PMCID: PMC3482863 DOI: 10.1182/blood-2012-01-402578] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 08/02/2012] [Indexed: 01/27/2023] Open
Abstract
We provide evidence that arsenic trioxide (As(2)O(3)) targets the BCR-ABL oncoprotein via a novel mechanism involving p62/SQSTM1-mediated localization of the oncoprotein to the autolysosomes and subsequent degradation mediated by the protease cathepsin B. Our studies demonstrate that inhibitors of autophagy or cathepsin B activity and/or molecular targeting of p62/SQSTM1, Atg7, or cathepsin B result in partial reversal of the suppressive effects of AS(2)O(3) on BCR-ABL expressing leukemic progenitors, including primitive leukemic precursors from chronic myelogenous leukemia (CML) patients. Altogether, these findings indicate that autophagic degradation of BCR-ABL is critical for the induction of the antileukemic effects of As(2)O(3) and raise the potential for future therapeutic approaches to target BCR-ABL expressing cells by modulating elements of the autophagic machinery to promote BCR-ABL degradation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/pharmacology
- Arsenic Trioxide
- Arsenicals/pharmacology
- Autophagy/drug effects
- Autophagy/genetics
- Autophagy-Related Protein 7
- Cathepsin B/antagonists & inhibitors
- Cathepsin B/genetics
- Cathepsin B/metabolism
- Enzyme Inhibitors/pharmacology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Lysosomes/drug effects
- Lysosomes/metabolism
- Oxides/pharmacology
- Phosphorylation
- Plasmids
- Primary Cell Culture
- Proteolysis/drug effects
- Sequestosome-1 Protein
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transfection
- Ubiquitin-Activating Enzymes/antagonists & inhibitors
- Ubiquitin-Activating Enzymes/genetics
- Ubiquitin-Activating Enzymes/metabolism
Collapse
Affiliation(s)
- Dennis J Goussetis
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Woolley JF, Naughton R, Stanicka J, Gough DR, Bhatt L, Dickinson BC, Chang CJ, Cotter TG. H2O2 production downstream of FLT3 is mediated by p22phox in the endoplasmic reticulum and is required for STAT5 signalling. PLoS One 2012; 7:e34050. [PMID: 22807997 PMCID: PMC3396659 DOI: 10.1371/journal.pone.0034050] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/29/2012] [Indexed: 11/18/2022] Open
Abstract
The internal tandem duplication (ITD) of the juxtamembrane region of the FLT3 receptor has been associated with increased reactive oxygen species (ROS) generation in acute myeloid leukemia (AML). How this elevated level of ROS contributes to the leukemic phenotype, however, remains poorly understood. In this work we show that ROS in the FLT3-ITD expressing AML cell line MV4-11 is reduced by treatment with PKC412, an inhibitor of FLT3, DPI, a flavoprotein inhibitor, and VAS2870, a Nox specific inhibitor, suggesting that ROS production is both FLT3 and NADPH oxidase dependent. The majority of these ROS co-localize to the endoplasmic reticulum (ER), as determined with the H2O2-specific aryl-boronate dye Peroxyorange 1, which also corresponds to co-localization of p22phox. Moreover, knocking down p22phox dramatically reduces H2O2 after 24 hours in the ER, without affecting mitochondrial ROS. Significantly, the FLT3 inhibitor PKC412 reduces H2O2 in FLT3-ITD expressing cell lines (MV4-11, MOLM-13) through reduction of p22phox over 24 hours. Reduced p22phox is achieved by proteasomal degradation and is prevented upon GSK3-β inhibition. Knockdown of p22phox resulted in reduced STAT5 signalling and reduced Pim-1 levels in the cells after 24 hours. Thus, we have shown that FLT3 driven H2O2 production in AML cells is mediated by p22phox and is critical for STAT5 signalling.
Collapse
MESH Headings
- Benzoxazoles/pharmacology
- Cell Line, Tumor
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Fluorescent Dyes
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Knockdown Techniques
- Glycogen Synthase Kinase 3/antagonists & inhibitors
- Glycogen Synthase Kinase 3/genetics
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Humans
- Hydrogen Peroxide/metabolism
- Imidazoles/pharmacology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mutation
- NADPH Oxidases/antagonists & inhibitors
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Proteasome Endopeptidase Complex/drug effects
- Proteasome Endopeptidase Complex/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors
- Proto-Oncogene Proteins c-pim-1/genetics
- Proto-Oncogene Proteins c-pim-1/metabolism
- Pyrroles/pharmacology
- RNA, Small Interfering/genetics
- STAT5 Transcription Factor/antagonists & inhibitors
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Staurosporine/analogs & derivatives
- Staurosporine/pharmacology
- Triazoles/pharmacology
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- John F. Woolley
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College, Cork, Ireland
| | - Ruth Naughton
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College, Cork, Ireland
| | - Joanna Stanicka
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College, Cork, Ireland
| | - David R. Gough
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College, Cork, Ireland
| | - Lavinia Bhatt
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College, Cork, Ireland
| | - Bryan C. Dickinson
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Christopher J. Chang
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Thomas G. Cotter
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College, Cork, Ireland
- * E-mail:
| |
Collapse
|