1
|
Simanov G, Rocques N, Romero S, de Koning L, Vacher S, Dubois T, Bièche I, Gautreau AM. The Arp2/3 inhibitory protein Arpin inhibits homology-directed DNA repair. Biol Cell 2024; 116:e2400073. [PMID: 39118570 DOI: 10.1111/boc.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND INFORMATION Arpin, an Arp2/3 inhibitory protein, inhibits lamellipodial protrusions and cell migration. Arpin expression is lost in tumor cells of several cancer types. RESULTS Here we analyzed expression levels of Arpin and various markers using Reverse Phase Protein Array (RPPA) in human mammary carcinomas. We found that Arpin protein levels were correlated with those of several DNA damage response markers. Arpin-null cells display enhanced clustering of double stand breaks (DSBs) when cells are treated with a DNA damaging agent, in line with a previously described role of the Arp2/3 complex in promoting DSB clustering for homologous DNA repair (HDR) in the nucleus. Using a specific HDR assay, we further showed that Arpin depletion increased HDR efficiency two-fold through its ability to inactivate the Arp2/3 complex. CONCLUSIONS Arpin regulates both cell migration in the cytosol and HDR in the nucleus. SIGNIFICANCE Loss of Arpin expression coordinates enhanced cell migration with up-regulated DNA repair, which is required when DNA damage is induced by active cell migration.
Collapse
Affiliation(s)
- Gleb Simanov
- Laboratory of Structural Biology of the Cell (BIOC), UMR7654 CNRS/Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nathalie Rocques
- Laboratory of Structural Biology of the Cell (BIOC), UMR7654 CNRS/Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Stéphane Romero
- Laboratory of Structural Biology of the Cell (BIOC), UMR7654 CNRS/Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Leanne de Koning
- Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Sophie Vacher
- Department of Genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Thierry Dubois
- Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Ivan Bièche
- Department of Genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Alexis M Gautreau
- Laboratory of Structural Biology of the Cell (BIOC), UMR7654 CNRS/Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
2
|
Vlashi R, Sun F, Zheng C, Zhang X, Liu J, Chen G. The molecular biology of NF2/Merlin on tumorigenesis and development. FASEB J 2024; 38:e23809. [PMID: 38967126 DOI: 10.1096/fj.202400019rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The neurofibromatosis type 2 (NF2) gene, known for encoding the tumor suppressor protein Merlin, is central to the study of tumorigenesis and associated cellular processes. This review comprehensively examines the multifaceted role of NF2/Merlin, detailing its structural characteristics, functional diversity, and involvement in various signaling pathways such as Wnt/β-catenin, Hippo, TGF-β, RTKs, mTOR, Notch, and Hedgehog. These pathways are crucial for cellular growth, proliferation, and differentiation. NF2 mutations are specifically linked to the development of schwannomas, meningiomas, and ependymomas, although the precise mechanisms of tumor formation in these specific cell types remain unclear. Additionally, the review explores Merlin's role in embryogenesis, highlighting the severe developmental defects and embryonic lethality caused by NF2 deficiency. The potential therapeutic strategies targeting these genetic aberrations are also discussed, emphasizing inhibitors of mTOR, HDAC, and VEGF as promising avenues for treatment. This synthesis of current knowledge underscores the necessity for ongoing research to elucidate the detailed mechanisms of NF2/Merlin and develop effective therapeutic strategies, ultimately aiming to improve the prognosis and quality of life for individuals with NF2 mutations.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenggong Zheng
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jie Liu
- Department of Cancer Center, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
3
|
Pipchuk A, Kelly T, Carew M, Nicol C, Yang X. Development of Novel Bioluminescent Biosensors Monitoring the Conformation and Activity of the Merlin Tumour Suppressor. Int J Mol Sci 2024; 25:1527. [PMID: 38338806 PMCID: PMC10855677 DOI: 10.3390/ijms25031527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Solid tumours can universally evade contact inhibition of proliferation (CIP), a mechanism halting cell proliferation when cell-cell contact occurs. Merlin, an ERM-like protein, crucially regulates CIP and is frequently deactivated in various cancers, indicating its significance as a tumour suppressor in cancer biology. Despite extensive investigations into Merlin's role in cancer, its lack of intrinsic catalytic activity and frequent conformation changes have made it notoriously challenging to study. To address this challenge, we harnessed innovative luciferase technologies to create and validate a NanoBiT split-luciferase biosensor system in which Merlin is cloned between two split components (LgBiT and SmBiT) of NanoLuc luciferase. This system enables precise quantification of Merlin's conformation and activity both in vitro and within living cells. This biosensor significantly enhances the study of Merlin's molecular functions, serving as a potent tool for exploring its contributions to CIP and tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.P.); (T.K.); (M.C.); (C.N.)
| |
Collapse
|
4
|
Malla R, Kundrapu DB, Bhamidipati P, Nagaraju GP, Muniraj N. Unleashing the Power of Yes-Associated Protein in Ferroptosis and Drug Resistance in Breast Cancer, with a Special Focus on Therapeutic Strategies. Cancers (Basel) 2023; 15:5728. [PMID: 38136274 PMCID: PMC10741587 DOI: 10.3390/cancers15245728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The YAP protein is a critical oncogenic mediator within the Hippo signaling pathway and has been implicated in various cancer types. In breast cancer, it frequently becomes activated, thereby contributing to developing drug-resistance mechanisms. Recent studies have underscored the intricate interplay between YAP and ferroptosis within the breast tumor microenvironment. YAP exerts a negative regulatory effect on ferroptosis, promoting cancer cell survival and drug resistance. This review offers a concise summary of the current understanding surrounding the interplay between the YAP pathway, ferroptosis, and drug-resistance mechanisms in both bulk tumor cells and cancer stem cells. We also explore the potential of natural compounds alone or in combination with anticancer therapies for targeting the YAP pathway in treating drug-resistant breast cancer. This approach holds the promise of enhancing the effectiveness of current treatments and paving the way for developing novel therapeutics.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India; (D.B.K.); (P.B.)
| | - Durga Bhavani Kundrapu
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India; (D.B.K.); (P.B.)
| | - Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India; (D.B.K.); (P.B.)
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA;
| | - Nethaji Muniraj
- Center for Cancer and Immunology Research, Children’s National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA;
| |
Collapse
|
5
|
Fernández-Tabanera E, Melero-Fernández de Mera RM, Alonso J. CD44 In Sarcomas: A Comprehensive Review and Future Perspectives. Front Oncol 2022; 12:909450. [PMID: 35785191 PMCID: PMC9247467 DOI: 10.3389/fonc.2022.909450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
It is widely accepted that the tumor microenvironment, particularly the extracellular matrix, plays an essential role in the development of tumors through the interaction with specific protein-membrane receptors. One of the most relevant proteins in this context is the transmembrane protein CD44. The role of CD44 in tumor progression, invasion, and metastasis has been well established in many cancers, although a comprehensive review concerning its role in sarcomas has not been published. CD44 is overexpressed in most sarcomas and several in vitro and in vivo experiments have shown a direct effect on tumor progression, dissemination, and drug resistance. Moreover, CD44 has been revealed as a useful marker for prognostic and diagnostic (CD44v6 isoform) in osteosarcoma. Besides, some innovative treatments such as HA-functionalized liposomes therapy have become an excellent CD44-mediated intracellular delivery system for osteosarcoma. Unfortunately, the reduced number of studies deciphering the prognostic/diagnostic value of CD44 in other sarcoma subgroups, neither than osteosarcoma, in addition to the low number of patients involved in those studies, have produced inconclusive results. In this review, we have gone through the information available on the role of CD44 in the development, maintenance, and progression of sarcomas, analyzing their implications at the prognostic, therapeutic, and mechanistic levels. Moreover, we illustrate how research involving the specific role of CD44 in the different sarcoma subgroups could suppose a chance to advance towards a more innovative perspective for novel therapies and future clinical trials.
Collapse
Affiliation(s)
- Enrique Fernández-Tabanera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Raquel M. Melero-Fernández de Mera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- *Correspondence: Javier Alonso,
| |
Collapse
|
6
|
O'Callaghan P, Engberg A, Eriksson O, Fatsis-Kavalopoulos N, Stelzl C, Sanchez G, Idevall-Hagren O, Kreuger J. Piezo1 activation attenuates thrombin-induced blebbing in breast cancer cells. J Cell Sci 2022; 135:274949. [PMID: 35274124 PMCID: PMC9016622 DOI: 10.1242/jcs.258809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cells exploit a variety of migration modes to leave primary tumors and establish metastases, including amoeboid cell migration, which is typically reliant on bleb formation. Here we demonstrate that thrombin induces dynamic blebbing in the MDA-MB-231 breast cancer cell line and confirm that protease-activated receptor 1 (PAR1) activation is sufficient to induce this effect. Cell confinement has been implicated as a driving force in bleb-based migration. Unexpectedly, we found that gentle contact compression, exerted using a custom built ‘cell press’ to mechanically stimulate cells, reduced thrombin-induced blebbing. Thrombin-induced blebbing was similarly attenuated using the small molecule Yoda1, an agonist of the mechanosensitive Ca2+ channel Piezo1, and this attenuation was impaired in Piezo1-depleted cells. Additionally, Piezo1 activation suppressed thrombin-induced phosphorylation of ezrin, radixin and moesin (ERM) proteins, which are implicated in the blebbing process. Our results provide mechanistic insights into Piezo1 activation as a suppressor of dynamic blebbing, specifically that which is induced by thrombin. Summary: Thrombin and protease-activated receptor agonists induce dynamic blebbing in breast cancer cells, which can be attenuated by contact-mediated compression, and activation of the mechanosensitive ion channel Piezo1.
Collapse
Affiliation(s)
- Paul O'Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Adam Engberg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Olle Eriksson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Christina Stelzl
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Gonzalo Sanchez
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
NF2 Gene Participates in Regulation of the Cell Cycle of Meningiomas by Restoring Spindle Assembly Checkpoint Function and Inhibiting the Binding of Cdc20 Protein to Anaphase Promoting Complex/Cyclosome. World Neurosurg 2021; 158:e245-e255. [PMID: 34728400 DOI: 10.1016/j.wneu.2021.10.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND The neurofibromatosis type 2 (NF2) gene mutation is the leading genetic event in meningiomas, usually accompanied by malignant features. Dysfunction of the spindle assembly checkpoint (SAC) induces tumorigenesis. However, the crosstalk between NF2 and SAC in meningiomas remains unclear. METHODS Cell proliferation, invasion, apoptosis, and cell cycle of meningiomas were determined by cell counting kit-8 assay, transwell assay, and flow cytometry, respectively. The expression of SAC in meningioma cells was detected by quantitative real-time polymerase chain reaction and Western blot. The interaction between anaphase promoting complex/cyclosome (APC/C) and cell division cycle 20 (Cdc20) protein in meningioma cells was further explored by co-immunoprecipitation. RESULTS We found that the expression of NF2/merlin was low or absent in malignant meningiomas. Overexpression of NF2 suppressed the proliferation and invasion of meningioma cells, prolonged the G2/M phase, and elevated the expression of SAC proteins at posttranscription. Furthermore, the interaction between APC/C and Cdc20 was inhibited by NF2. CONCLUSIONS Our findings suggested that NF2 might restore SAC function by impairing the binding of APC/C and Cdc20, thereby limiting the mitotic rate and inhibiting proliferation of meningiomas.
Collapse
|
8
|
Zhou Z, Chen Y, Min HS, Wan Y, Shan H, Lin Y, Xia W, Yin F, Jiang C, Yu X. Merlin functions as a critical regulator in Staphylococcus aureus-induced osteomyelitis. J Cell Physiol 2021; 237:815-823. [PMID: 34378805 DOI: 10.1002/jcp.30550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 11/07/2022]
Abstract
Merlin is known as a tumor suppressor, while its role in osteomyelitis remains unclear. This study aimed to investigate the role of Merlin in Staphylococcus aureus-induced osteomyelitis and its underlying mechanisms. S. aureus-induced osteomyelitis mouse model was established in Merlinfl/fl Lyz2cre/+ and Merlinfl/fl Lyz2+/+ mice. Bone marrow-derived macrophages (BMDMs) were isolated and stimulated by lipopolysaccharide (LPS). Bioassays, including quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot analysis, and enzyme-linked immunosorbent assays, were conducted to determine the levels of target genes or proteins. Immunoprecipitation was applied to determine the interactions between proteins. DCAF1fl/fl mice were further crossed with Lyz2-Cre mice to establish myeloid cell conditional knockout mice (DCAF1fl/fl Lyz2cre/+ ). It was found that the level of Merlin was elevated in patients with osteomyelitis and S. aureus-infected BMDMs. Merlin deficiency in macrophages suppressed the production of inflammatory cytokines and ameliorated the symptoms of osteomyelitis induced by S. aureus. Merlin deficiency in macrophages also suppressed the production of proinflammatory cytokines in BMDMs induced by LPS. The inhibitory effects of Merlin deficiency on the inflammatory response were associated with DDB1-Cul4-associated factor 1 (DCAF1). In summary, Merlin deficiency ameliorates S. aureus-induced osteomyelitis through the regulation of DCAF1.
Collapse
Affiliation(s)
- Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanliang Chen
- Department of Orthopaedic Surgery, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, Hainan, China
| | - Hong Sung Min
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yongbai Wan
- Department of Orthopaedic Surgery, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, Hainan, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenyang Xia
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fuli Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chaolai Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
9
|
Mota M, Metge BJ, Hinshaw DC, Alsheikh HA, Chen D, Samant RS, Shevde LA. Merlin deficiency alters the redox management program in breast cancer. Mol Oncol 2021; 15:942-956. [PMID: 33410252 PMCID: PMC8024723 DOI: 10.1002/1878-0261.12896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 11/14/2022] Open
Abstract
The expression of Merlin tumor suppressor protein encoded by Neurofibromin 2 (NF2) gene is remarkably decreased in metastatic breast cancer tissues. In order to recapitulate clinical evidence, we generated a unique, conditional Nf2‐knockout (Nf2−/−) mouse mammary tumor model. Merlin‐deficient breast tumor cells and Nf2−/− mouse embryonic fibroblasts (MEFs) displayed a robustly invasive phenotype. Moreover, Nf2−/− MEFs presented with notable alterations in redox management networks, implicating a role for Merlin in redox homeostasis. This programmatic alteration resonated with pathways that emerged from breast tumor cells engineered for Merlin deficiency. Further investigations revealed that NF2‐silenced cells supported reduced activity of the Nuclear factor, erythroid 2 like 2 antioxidant transcription factor, concomitant with elevated expression of NADPH oxidase enzymes. Importantly, mammary‐specific Nf2−/− in an Mouse mammary tumor virus Neu + murine breast cancer model demonstrated accelerated mammary carcinogenesis in vivo. Tumor‐derived primary organoids and cell lines were characteristically invasive with evidence of a dysregulated cellular redox management system. As such, Merlin deficiency programmatically influences redox imbalance that orchestrates malignant attributes of mammary/breast cancer.
Collapse
Affiliation(s)
- Mateus Mota
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | | | - Heba A Alsheikh
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Dongquan Chen
- Division of Preventive Medicine, University of Alabama at Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, AL, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA.,Birmingham VA Medical Center, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, AL, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
10
|
Gene Expression, Network Analysis, and Drug Discovery of Neurofibromatosis Type 2-Associated Vestibular Schwannomas Based on Bioinformatics Analysis. JOURNAL OF ONCOLOGY 2020; 2020:5976465. [PMID: 32733557 PMCID: PMC7378604 DOI: 10.1155/2020/5976465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 11/24/2022]
Abstract
Neurofibromatosis Type 2- (NF2-) associated vestibular schwannomas (VSs) are histologically benign tumors. This study aimed to determine disease-related genes, pathways, and potential therapeutic drugs associated with NF2-VSs using the bioinformatics method. Microarray data of GSE108524 were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were screened using GEO2R. The functional enrichment and pathway enrichment of DEGs were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG). Furthermore, the STRING and Cytoscape were used to analyze the protein-protein interaction (PPI) network of all differentially expressed genes and identify hub genes. Finally, the enriched gene sets belonging to the identified pathways were queried against the Drug-Gene Interaction database to find drug candidates for topical use in NF2-associated VSs. A total of 542 DEGs were identified, including 13 upregulated and 329 downregulated genes, which were mainly enriched in terms of focal adhesion, PI3K-Akt signaling pathway, ECM-receptor interaction, Toll-like receptor signaling pathway, Rap1 signaling pathway, and regulation of actin cytoskeleton. 28 hub genes were identified based on the subset of PPI network, and 31 drugs were selected based on the Drug-Gene Interaction database. Drug discovery using bioinformatics methods facilitates the identification of existing or potential therapeutic drugs to improve NF2 treatment.
Collapse
|
11
|
Yang J, Wang T, Zhao L, Rajasekhar VK, Joshi S, Andreou C, Pal S, Hsu HT, Zhang H, Cohen IJ, Huang R, Hendrickson RC, Miele MM, Pei W, Brendel MB, Healey JH, Chiosis G, Kircher MF. Gold/alpha-lactalbumin nanoprobes for the imaging and treatment of breast cancer. Nat Biomed Eng 2020; 4:686-703. [PMID: 32661307 PMCID: PMC8255032 DOI: 10.1038/s41551-020-0584-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/11/2020] [Indexed: 02/03/2023]
Abstract
Theranostic agents should ideally be renally cleared and biodegradable. Here, we report the synthesis, characterization and theranostic applications of fluorescent ultrasmall gold quantum clusters that are stabilized by the milk metalloprotein alpha-lactalbumin. We synthesized three types of these nanoprobes that together display fluorescence across the visible and near-infrared spectra when excited at a single wavelength through optical colour coding. In live tumour-bearing mice, the near-infrared nanoprobe generates contrast for fluorescence, X-ray computed tomography and magnetic resonance imaging, and exhibits long circulation times, low accumulation in the reticuloendothelial system, sustained tumour retention, insignificant toxicity and renal clearance. An intravenously administrated near-infrared nanoprobe with a large Stokes shift facilitated the detection and image-guided resection of breast tumours in vivo using a smartphone with modified optics. Moreover, the partially unfolded structure of alpha-lactalbumin in the nanoprobe helps with the formation of an anti-cancer lipoprotein complex with oleic acid that triggers the inhibition of the MAPK and PI3K-AKT pathways, immunogenic cell death and the recruitment of infiltrating macrophages. The biodegradability and safety profile of the nanoprobes make them suitable for the systemic detection and localized treatment of cancer.
Collapse
Affiliation(s)
- Jiang Yang
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tai Wang
- Chemical Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | | | - Suhasini Joshi
- Chemical Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Chrysafis Andreou
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suchetan Pal
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsiao-Ting Hsu
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hanwen Zhang
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivan J Cohen
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruimin Huang
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald C Hendrickson
- Proteomics and Microchemistry Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew M Miele
- Proteomics and Microchemistry Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenbo Pei
- Chemical Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Matthew B Brendel
- Molecular Cytology Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John H Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Sloan Kettering Institute, New York, NY, USA
- Breast Cancer Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Moritz F Kircher
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Mota M, Shevde LA. Merlin regulates signaling events at the nexus of development and cancer. Cell Commun Signal 2020; 18:63. [PMID: 32299434 PMCID: PMC7164249 DOI: 10.1186/s12964-020-00544-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/28/2020] [Indexed: 01/04/2023] Open
Abstract
Background In this review, we describe how the cytoskeletal protein Merlin, encoded by the Neurofibromin 2 (NF2) gene, orchestrates developmental signaling to ensure normal ontogeny, and we discuss how Merlin deficiency leads to aberrant activation of developmental pathways that enable tumor development and malignant progression. Main body Parallels between embryonic development and cancer have underscored the activation of developmental signaling pathways. Hippo, WNT/β-catenin, TGF-β, receptor tyrosine kinase (RTK), Notch, and Hedgehog pathways are key players in normal developmental biology. Unrestrained activity or loss of activity of these pathways causes adverse effects in developing tissues manifesting as developmental syndromes. Interestingly, these detrimental events also impact differentiated and functional tissues. By promoting cell proliferation, migration, and stem-cell like phenotypes, deregulated activity of these pathways promotes carcinogenesis and cancer progression. The NF2 gene product, Merlin, is a tumor suppressor classically known for its ability to induce contact-dependent growth inhibition. Merlin plays a role in different stages of an organism development, ranging from embryonic to mature states. While homozygous deletion of Nf2 in murine embryos causes embryonic lethality, Merlin loss in adult tissue is implicated in Neurofibromatosis type 2 disorder and cancer. These manifestations, cumulatively, are reminiscent of dysregulated developmental signaling. Conclusion Understanding the molecular and cellular repercussions of Merlin loss provides fundamental insights into the etiology of developmental disorders and cancer and has the potential, in the long term, to identify new therapeutic strategies. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Mateus Mota
- Department of Pathology, University of Alabama at Birmingham, WTI 320D, 1824 6th Avenue South, Birmingham, AL, 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, WTI 320D, 1824 6th Avenue South, Birmingham, AL, 35233, USA. .,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, WTI 320D, 1824 6th Avenue South, Birmingham, AL, 35233, USA.
| |
Collapse
|
13
|
Rodrigues-Ferreira S, Molina A, Nahmias C. Microtubule-associated tumor suppressors as prognostic biomarkers in breast cancer. Breast Cancer Res Treat 2019; 179:267-273. [PMID: 31606824 DOI: 10.1007/s10549-019-05463-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Breast cancer is the most common malignancy in women worldwide. Although important therapeutic progress was achieved over the past decade, this disease remains a public health problem. In light of precision medicine, the identification of new prognostic biomarkers in breast cancer is urgently needed to stratify populations of patients with poor clinical outcome who may benefit from new personalized therapies. The microtubule cytoskeleton plays a pivotal role in essential cellular functions and is an interesting target for cancer therapy. Microtubule assembly and dynamics are regulated by a wide range of microtubule-associated proteins (MAPs), some of which have oncogenic or tumor suppressor effects in breast cancer. RESULTS This review covers current knowledge on microtubule-associated tumor suppressors (MATS) in breast cancer and their potential value as prognostic biomarkers. We present recent studies showing that combinatorial expression of ATIP3 and EB1, two microtubule-associated biomarkers with tumor suppressor and oncogenic effects, respectively, improves breast cancer prognosis compared to each biomarker alone. CONCLUSIONS These findings are discussed regarding the increasing complexity of protein networks composed of MAPs that coordinate microtubule dynamics and functions. Further studies are warranted to evaluate the prognostic value of combined expression of different MATS and their interacting partners in breast cancer.
Collapse
Affiliation(s)
- Sylvie Rodrigues-Ferreira
- INSERM U981, LabEx LERMIT, Gustave Roussy Cancer Center, Department of Molecular Medicine, Université Paris Sud, 94800, Villejuif, France.,Inovarion, 75014, Paris, France
| | - Angie Molina
- INSERM U981, LabEx LERMIT, Gustave Roussy Cancer Center, Department of Molecular Medicine, Université Paris Sud, 94800, Villejuif, France.,Centre de Biologie du Développement, Centre de Biologie Intégrative, UMR 5547 CNRS/Université Paul Sabatier, 31400, Toulouse, France
| | - Clara Nahmias
- INSERM U981, LabEx LERMIT, Gustave Roussy Cancer Center, Department of Molecular Medicine, Université Paris Sud, 94800, Villejuif, France. .,Inserm U981, Gustave Roussy Cancer Center, 114 rue Edouard Vaillant, 94800, Villejuif, France.
| |
Collapse
|
14
|
Alcantara KMM, Garcia RL. MicroRNA‑92a promotes cell proliferation, migration and survival by directly targeting the tumor suppressor gene NF2 in colorectal and lung cancer cells. Oncol Rep 2019; 41:2103-2116. [PMID: 30816526 PMCID: PMC6412542 DOI: 10.3892/or.2019.7020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/05/2019] [Indexed: 01/29/2023] Open
Abstract
Inactivation of the tumor suppressor protein Merlin leads to the development of benign nervous system tumors in neurofibromatosis type 2 (NF2). Documented causes of Merlin inactivation include deleterious mutations in the encoding neurofibromin 2 gene (NF2) and aberrant Merlin phosphorylation leading to proteasomal degradation. Rare somatic NF2 mutations have also been detected in common human malignancies not associated with NF2, including colorectal and lung cancer. Furthermore, tumors without NF2 mutations and with unaltered NF2 transcript levels, but with low Merlin expression, have been reported. The present study demonstrated that NF2 is also regulated by microRNAs (miRNAs) through direct interaction with evolutionarily conserved miRNA response elements (MREs) within its 3′-untranslated region (3′UTR). Dual-Luciferase assays in human colorectal carcinoma (HCT116) and lung adenocarcinoma (A549) cells revealed downregulation of NF2 by miR-92a-3p via its wild-type 3′UTR, but not NF2−3′UTR with mutated miR-92a-3p MRE. HCT116 cells overexpressing miR-92a-3p exhibited significant downregulation of endogenous NF2 mRNA and protein levels, which was rescued by co-transfection of a target protector oligonucleotide specific for the miR-92a-3p binding site within NF2−3′UTR. miR-92a-3p overexpression in HCT116 and A549 cells promoted migration, proliferation and resistance to apoptosis, as well as altered F-actin organization compared with controls. Knockdown of NF2 by siRNA phenocopied the oncogenic effects of miR-92a overexpression on HCT116 and A549 cells. Collectively, the findings of the present study provide functional proof of the unappreciated role of miRNAs in NF2 regulation and tumor progression, leading to enhanced oncogenicity.
Collapse
Affiliation(s)
- Krizelle Mae M Alcantara
- National Institute of Molecular Biology and Biotechnology, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Reynaldo L Garcia
- National Institute of Molecular Biology and Biotechnology, University of the Philippines, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
15
|
Jones KM, Karanam B, Jones-Triche J, Sandey M, Henderson HJ, Samant RS, Temesgen S, Yates C, Bedi D. Phage Ligands for Identification of Mesenchymal-Like Breast Cancer Cells and Cancer-Associated Fibroblasts. Front Oncol 2019; 8:625. [PMID: 30619759 PMCID: PMC6304394 DOI: 10.3389/fonc.2018.00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/03/2018] [Indexed: 11/18/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is believed to be crucial for primary tumors to escape their original residence and invade and metastasize. To properly define EMT, there is a need for ligands that can identify this phenomenon in tumor tissue and invivo. A phage-display selection screening was performed to select novel binding phage peptides for identification of EMT in breast cancer. Epithelial breast cancer cell line, MCF-7 was transformed to mesenchymal phenotype by TGF-β treatment and was used for selection. Breast fibroblasts were used for subtractive depletion and breast cancer metastatic cell lines MDA-MB-231, T47D-shNMI were used for specificity assay. The binding peptides were identified, and their binding capacities were confirmed by phage capture assay, phage-based ELISA, immunofluorescence microscopy. The phage peptide bearing the 7-amino acid sequence, LGLRGSL, demonstrated selective binding to EMT phenotypic cells (MCF-7/TGF-β and MDA-MB-231) as compared to epithelial subtype, MCF-7, T47D and breast fibroblasts (Hs578T). The selected phage was also able to identify metastatic breast cancer tumor in breast cancer tissue microarray (TMA). These studies suggest that the selected phage peptide LGLRGSL identified by phage-display library, showed significant ability to bind to mesenchymal-like breast cancer cells/ tissues and can serve as a novel probe/ligand for metastatic breast cancer diagnostic and imaging.
Collapse
Affiliation(s)
- Kelvin M Jones
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | - Balasubramanyam Karanam
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | | | - Maninder Sandey
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Henry J Henderson
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | - Rajeev S Samant
- Department of Pathobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel Temesgen
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | - Clayton Yates
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Deepa Bedi
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
16
|
Mota MSV, Jackson WP, Bailey SK, Vayalil P, Landar A, Rostas JW, Mulekar MS, Samant RS, Shevde LA. Deficiency of tumor suppressor Merlin facilitates metabolic adaptation by co-operative engagement of SMAD-Hippo signaling in breast cancer. Carcinogenesis 2018; 39:1165-1175. [PMID: 29893810 PMCID: PMC6148973 DOI: 10.1093/carcin/bgy078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/15/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022] Open
Abstract
The NF2 gene encodes the tumor and metastasis suppressor protein Merlin. Merlin exerts its tumor suppressive role by inhibiting proliferation and inducing contact-growth inhibition and apoptosis. In the current investigation, we determined that loss of Merlin in breast cancer tissues is concordant with the loss of the inhibitory SMAD, SMAD7, of the TGF-β pathway. This was reflected as dysregulated activation of TGF-β signaling that co-operatively engaged with effectors of the Hippo pathway (YAP/TAZ/TEAD). As a consequence, the loss of Merlin in breast cancer resulted in a significant metabolic and bioenergetic adaptation of cells characterized by increased aerobic glycolysis and decreased oxygen consumption. Mechanistically, we determined that the co-operative activity of the Hippo and TGF-β transcription effectors caused upregulation of the long non-coding RNA Urothelial Cancer-Associated 1 (UCA1) that disengaged Merlin's check on STAT3 activity. The consequent upregulation of Hexokinase 2 (HK2) enabled a metabolic shift towards aerobic glycolysis. In fact, Merlin deficiency engendered cellular dependence on this metabolic adaptation, endorsing a critical role for Merlin in regulating cellular metabolism. This is the first report of Merlin functioning as a molecular restraint on cellular metabolism. Thus, breast cancer patients whose tumors demonstrate concordant loss of Merlin and SMAD7 may benefit from an approach of incorporating STAT3 inhibitors.
Collapse
Affiliation(s)
- Mateus S V Mota
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - William P Jackson
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Sarah K Bailey
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Praveen Vayalil
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Aimee Landar
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Jack W Rostas
- Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Madhuri S Mulekar
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Louisville, Louisville, KY, USA
- UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Louisville, Louisville, KY, USA
- UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Zakhary MM, Mahmoud AA, Hashim MS. Role of osteopontin and its rs11730582 gene polymorphism in breast cancer. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
18
|
FAK and paxillin, two potential targets in pancreatic cancer. Oncotarget 2017; 7:31586-601. [PMID: 26980710 PMCID: PMC5058780 DOI: 10.18632/oncotarget.8040] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/11/2016] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer in large part due to late diagnosis and a lack of effective screening tests. In spite of recent progress in imaging, surgery and new therapeutic options for pancreatic cancer, the overall five-year survival still remains unacceptably low. Numerous studies have shown that focal adhesion kinase (FAK) is activated in many cancers including PDAC and promotes cancer progression and metastasis. Paxillin, an intracellular adaptor protein that plays a key role in cytoskeletal organization, connects integrins to FAK and plays a key role in assembly and disassembly of focal adhesions. Here, we have reviewed evidence in support of FAK as a potential therapeutic target and summarized related combinatorial therapies.
Collapse
|
19
|
Wallesch M, Pachow D, Blücher C, Firsching R, Warnke JP, Braunsdorf WE, Kirches E, Mawrin C. Altered expression of E-Cadherin-related transcription factors indicates partial epithelial-mesenchymal transition in aggressive meningiomas. J Neurol Sci 2017; 380:112-121. [DOI: 10.1016/j.jns.2017.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
20
|
Osteopontin at the Crossroads of Inflammation and Tumor Progression. Mediators Inflamm 2017; 2017:4049098. [PMID: 28769537 PMCID: PMC5523273 DOI: 10.1155/2017/4049098] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/04/2017] [Indexed: 12/13/2022] Open
Abstract
Complex interactions between tumor and host cells regulate systemic tumor dissemination, a process that begins early at the primary tumor site and goes on until tumor cells detach themselves from the tumor mass and start migrating into the blood or lymphatic vessels. Metastatic cells colonize the target organs and are capable of surviving and growing at distant sites. In this context, osteopontin (OPN) appears to be a key determinant of the crosstalk between cancer cells and the host microenvironment, which in turn modulates immune evasion. OPN is overexpressed in several human carcinomas and has been implicated in inflammation, tumor progression, and metastasis. Thus, it represents one of the most attracting targets for cancer therapy. Within the tumor mass, OPN is secreted in various forms either by the tumor itself or by stroma cells, and it can exert either pro- or antitumorigenic effects according to the cell type and tumor microenvironment. Thus, targeting OPN for therapeutic purposes needs to take into account the heterogeneous functions of the multiple OPN forms with regard to cancer formation and progression. In this review, we will describe the role of systemic, tumor-derived, and stroma-derived OPN, highlighting its pivotal role at the crossroads of inflammation and tumor progression.
Collapse
|
21
|
Håvik AL, Bruland O, Myrseth E, Miletic H, Aarhus M, Knappskog PM, Lund-Johansen M. Genetic landscape of sporadic vestibular schwannoma. J Neurosurg 2017; 128:911-922. [PMID: 28409725 DOI: 10.3171/2016.10.jns161384] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Vestibular schwannoma (VS) is a benign tumor with associated morbidities and reduced quality of life. Except for mutations in NF2, the genetic landscape of VS remains to be elucidated. Little is known about the effect of Gamma Knife radiosurgery (GKRS) on the VS genome. The aim of this study was to characterize mutations occurring in this tumor to identify new genes and signaling pathways important for the development of VS. In addition, the authors sought to evaluate whether GKRS resulted in an increase in the number of mutations. METHODS Forty-six sporadic VSs, including 8 GKRS-treated tumors and corresponding blood samples, were subjected to whole-exome sequencing and tumor-specific DNA variants were called. Pathway analysis was performed using the Ingenuity Pathway Analysis software. In addition, multiplex ligation-dependent probe amplification was performed to characterize copy number variations in the NF2 gene, and microsatellite instability testing was done to investigate for DNA replication error. RESULTS With the exception of a single sample with an aggressive phenotype that harbored a large number of mutations, most samples showed a relatively low number of mutations. A median of 14 tumor-specific mutations in each sample were identified. The GKRS-treated tumors harbored no more mutations than the rest of the group. A clustering of mutations in the cancer-related axonal guidance pathway was identified (25 patients), as well as mutations in the CDC27 (5 patients) and USP8 (3 patients) genes. Thirty-five tumors harbored mutations in NF2 and 16 tumors had 2 mutational hits. The samples without detectable NF2 mutations harbored mutations in genes that could be linked to NF2 or to NF2-related functions. None of the tumors showed microsatellite instability. CONCLUSIONS The genetic landscape of VS seems to be quite heterogeneous; however, most samples had mutations in NF2 or in genes that could be linked to NF2. The results of this study do not link GKRS to an increased number of mutations.
Collapse
Affiliation(s)
- Aril Løge Håvik
- Departments of1Clinical Medicine.,2Center for Medical Genetics and Molecular Medicine, and.,3Clinical Science, and
| | - Ove Bruland
- 2Center for Medical Genetics and Molecular Medicine, and
| | | | - Hrvoje Miletic
- 5Pathology, Haukeland University Hospital, Bergen; and.,6K.G. Jebsen Brain Tumor Research Center, University of Bergen.,7Biomedicine, and
| | - Mads Aarhus
- 8Department of Neurosurgery, Oslo University Hospitals, Ullevål Sykehus, Oslo,Norway
| | - Per-Morten Knappskog
- 2Center for Medical Genetics and Molecular Medicine, and.,3Clinical Science, and
| | - Morten Lund-Johansen
- Departments of1Clinical Medicine.,Departments of4Neurosurgery and.,6K.G. Jebsen Brain Tumor Research Center, University of Bergen
| |
Collapse
|
22
|
Morrow KA, Das S, Meng E, Menezes ME, Bailey SK, Metge BJ, Buchsbaum DJ, Samant RS, Shevde LA. Loss of tumor suppressor Merlin results in aberrant activation of Wnt/β-catenin signaling in cancer. Oncotarget 2017; 7:17991-8005. [PMID: 26908451 PMCID: PMC4951266 DOI: 10.18632/oncotarget.7494] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
The expression of the tumor suppressor Merlin is compromised in nervous system malignancies due to genomic aberrations. We demonstrated for the first time, that in breast cancer, Merlin protein expression is lost due to proteasome-mediated elimination. Immunohistochemical analysis of tumor tissues from patients with metastatic breast cancer revealed characteristically reduced Merlin expression. Importantly, we identified a functional role for Merlin in impeding breast tumor xenograft growth and reducing invasive characteristics. We sought to determine a possible mechanism by which Merlin accomplishes this reduction in malignant activity. We observed that breast and pancreatic cancer cells with loss of Merlin show an aberrant increase in the activity of β-catenin concomitant with nuclear localization of β-catenin. We discovered that Merlin physically interacts with β-catenin, alters the sub-cellular localization of β-catenin, and significantly reduces the protein levels of β-catenin by targeting it for degradation through the upregulation of Axin1. Consequently, restoration of Merlin inhibited β-catenin-mediated transcriptional activity in breast and pancreatic cancer cells. We also present evidence that loss of Merlin sensitizes tumor cells to inhibition by compounds that target β-catenin-mediated activity. Thus, this study provides compelling evidence that Merlin reduces the malignant activity of pancreatic and breast cancer, in part by suppressing the Wnt/β-catenin pathway. Given the potent role of Wnt/β-catenin signaling in breast and pancreatic cancer and the flurry of activity to test β-catenin inhibitors in the clinic, our findings are opportune and provide evidence for Merlin in restraining aberrant activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- K Adam Morrow
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shamik Das
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Erhong Meng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sarah K Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
23
|
Loss of Merlin induces metabolomic adaptation that engages dependence on Hedgehog signaling. Sci Rep 2017; 7:40773. [PMID: 28112165 PMCID: PMC5256100 DOI: 10.1038/srep40773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor protein Merlin is proteasomally degraded in breast cancer. We undertook an untargeted metabolomics approach to discern the global metabolomics profile impacted by Merlin in breast cancer cells. We discerned specific changes in glutathione metabolites that uncovered novel facets of Merlin in impacting the cancer cell metabolome. Concordantly, Merlin loss increased oxidative stress causing aberrant activation of Hedgehog signaling. Abrogation of GLI-mediated transcription activity compromised the aggressive phenotype of Merlin-deficient cells indicating a clear dependence of cells on Hedgehog signaling. In breast tumor tissues, GLI1 expression enhanced tissue identification and discriminatory power of Merlin, cumulatively presenting a powerful substantiation of the relationship between these two proteins. We have uncovered, for the first time, details of the tumor cell metabolomic portrait modulated by Merlin, leading to activation of Hedgehog signaling. Importantly, inhibition of Hedgehog signaling offers an avenue to target the vulnerability of tumor cells with loss of Merlin.
Collapse
|
24
|
Xie D, Cui J, Xia T, Jia Z, Wang L, Wei W, Zhu A, Gao Y, Xie K, Quan M. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression. Oncotarget 2016; 6:35949-63. [PMID: 26416426 PMCID: PMC4742153 DOI: 10.18632/oncotarget.5772] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/12/2015] [Indexed: 12/18/2022] Open
Abstract
Transcriptional co-activator with PDZ binding motif (TAZ) is a transducer of the Hippo pathway and promotes cancer development and progression. In the present study, we sought to determine the roles and underlying mechanisms of elevated expression and activation of TAZ in pancreatic cancer development and progression. The mechanistic role of TAZ and Hippo signaling in promotion of pancreatic cancer development and progression was examined using cell culture, molecular biology, and mouse models. The relevance of our experimental and mechanistic findings was validated using human pancreatic tumor specimens. We found that TAZ expression was markedly higher in pancreatic tumors than in normal pancreatic tissue. Further analysis of the correlation of TAZ expression with tissue microarray clinicopathologic parameters revealed that this expression was positively associated with tumor differentiation. Also, TAZ expression was higher in pancreatic cancer cell lines than in pancreatic ductal epithelial cells. TAZ activation in pancreatic cancer cells promoted their proliferation, migration, invasion, and epithelial-mesenchymal transition. Further mechanistic studies demonstrated that aberrant expression and activation of TAZ in pancreatic cancer cells resulted from suppression of the expression of Merlin, a positive regulator upstream of the Hippo pathway, and that the oncogenic function of TAZ in pancreatic cancer cells was mediated by TEA/ATTS domain transcription factors. Therefore, TAZ functioned as an oncogene and promoted pancreatic cancer epithelial-mesenchymal transition and progression. TAZ thus may be a target for effective therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Dacheng Xie
- Department of Oncology, Shanghai Tongji University Affiliated East Hospital, Shanghai, People's Republic of China
| | - Jiujie Cui
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tian Xia
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zhiliang Jia
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liang Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenfei Wei
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Zhu
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yong Gao
- Department of Oncology, Shanghai Tongji University Affiliated East Hospital, Shanghai, People's Republic of China.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Quan
- Department of Oncology, Shanghai Tongji University Affiliated East Hospital, Shanghai, People's Republic of China.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Couderc C, Boin A, Fuhrmann L, Vincent-Salomon A, Mandati V, Kieffer Y, Mechta-Grigoriou F, Del Maestro L, Chavrier P, Vallerand D, Brito I, Dubois T, De Koning L, Bouvard D, Louvard D, Gautreau A, Lallemand D. AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia 2016; 18:10-24. [PMID: 26806348 PMCID: PMC4735628 DOI: 10.1016/j.neo.2015.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 11/29/2022] Open
Abstract
The Hippo signaling network is a key regulator of cell fate. In the recent years, it was shown that its implication in cancer goes well beyond the sole role of YAP transcriptional activity and its regulation by the canonical MST/LATS kinase cascade. Here we show that the motin family member AMOTL1 is an important effector of Hippo signaling in breast cancer. AMOTL1 connects Hippo signaling to tumor cell aggressiveness. We show that both canonical and noncanonical Hippo signaling modulates AMOTL1 levels. The tumor suppressor Merlin triggers AMOTL1 proteasomal degradation mediated by the NEDD family of ubiquitin ligases through direct interaction. In parallel, YAP stimulates AMOTL1 expression. The loss of Merlin expression and the induction of Yap activity that are frequently observed in breast cancers thus result in elevated AMOTL1 levels. AMOTL1 expression is sufficient to trigger tumor cell migration and stimulates proliferation by activating c-Src. In a large cohort of human breast tumors, we show that AMOTL1 protein levels are upregulated during cancer progression and that, importantly, the expression of AMOTL1 in lymph node metastasis appears predictive of the risk of relapse. Hence we uncover an important mechanism by which Hippo signaling promotes breast cancer progression by modulating the expression of AMOTL1.
Collapse
Affiliation(s)
| | - Alizée Boin
- Institut Curie, Paris, France; CNRS UMR144, Paris, France
| | - Laetitia Fuhrmann
- Institut Curie, Paris, France; CNRS UMR144, Paris, France; Department of Biopathology, Paris, France
| | - Anne Vincent-Salomon
- Institut Curie, Paris, France; Department of Biopathology, Paris, France; INSERM U934, Paris, France
| | - Vinay Mandati
- Institut Curie, Paris, France; CNRS UMR144, Paris, France
| | - Yann Kieffer
- Institut Curie, Paris, France; Stress and Cancer Laboratory, INSERM U830, France
| | | | | | | | - David Vallerand
- Institut Curie, Paris, France; Département de Recherche Translationnelle, Laboratoire d'Investigation Préclinique, Paris, France
| | - Isabelle Brito
- Institut Curie, Paris, France; INSERM U900, Paris, France; Mines ParisTech, Fontainebleau, France
| | - Thierry Dubois
- Institut Curie, Paris, France; Département de Recherche Translationnelle, Breast Cancer Biology Group, France
| | | | - Daniel Bouvard
- INSERM U823, Institut Albert Bonniot, Grenoble, France; Université Joseph Fourier, Grenoble, France
| | - Daniel Louvard
- Institut Curie, Paris, France; CNRS UMR144, Paris, France
| | | | | |
Collapse
|
26
|
Yimlamai D, Fowl BH, Camargo FD. Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer. J Hepatol 2015; 63:1491-501. [PMID: 26226451 PMCID: PMC4654680 DOI: 10.1016/j.jhep.2015.07.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 01/11/2023]
Abstract
The Hippo pathway and its regulatory target, YAP, has recently emerged as an important biochemical signaling pathway that tightly governs epithelial tissue growth. Initially defined in Drosophilia, this pathway has shown remarkable conservation in vertebrate systems with many components of the Hippo/YAP pathway showing biochemical and functional conservation. The liver is particularly sensitive to changes in Hippo/YAP signaling with rapid increases in liver size becoming manifest on the order of days to weeks after perturbation. The first identified direct targets of Hippo/YAP signaling were pro-proliferative and anti-apoptotic gene programs, but recent work has now implicated this pathway in cell fate choice, stem cell maintenance/renewal, epithelial to mesenchymal transition, and oncogenesis. The mechanisms by which Hippo/YAP signaling is changed endogenously are beginning to come to light as well as how this pathway interacts with other signaling pathways, and important details for designing new therapeutic interventions. This review focuses on the known roles for Hippo/YAP signaling in the liver and promising avenues for future study.
Collapse
Affiliation(s)
- Dean Yimlamai
- The Stem Cell Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, United States; Division of Gastroenterology and Nutrition, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, United States.
| | - Brendan H Fowl
- The Stem Cell Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, United States; Division of Gastroenterology and Nutrition, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, United States
| | - Fernando D Camargo
- The Stem Cell Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, United States; Harvard Stem Cell Institute, Cambridge, MA 02138, United States; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
27
|
Quan M, Cui J, Xia T, Jia Z, Xie D, Wei D, Huang S, Huang Q, Zheng S, Xie K. Merlin/NF2 Suppresses Pancreatic Tumor Growth and Metastasis by Attenuating the FOXM1-Mediated Wnt/β-Catenin Signaling. Cancer Res 2015; 75:4778-4789. [PMID: 26483206 DOI: 10.1158/0008-5472.can-14-1952] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/20/2015] [Indexed: 11/16/2022]
Abstract
Merlin, the protein encoded by the NF2 gene, is a member of the band 4.1 family of cytoskeleton-associated proteins and functions as a tumor suppressor for many types of cancer. However, the roles and mechanism of Merlin expression in pancreatic cancer have remained unclear. In this study, we sought to determine the impact of Merlin expression on pancreatic cancer development and progression using human tissue specimens, cell lines, and animal models. Decreased expression of Merlin was pronounced in human pancreatic tumors and cancer cell lines. Functional analysis revealed that restored expression of Merlin inhibited pancreatic tumor growth and metastasis in vitro and in vivo. Furthermore, Merlin suppressed the expression of Wnt/β-catenin signaling downstream genes and the nuclear expression of β-catenin protein, and overexpression of Forkhead box M1 (FOXM1) attenuated the suppressive effect of Merlin on Wnt/β-catenin signaling. Mechanistically, Merlin decreased the stability of FOXM1 protein, which plays critical roles in nuclear translocation of β-catenin. Collectively, these findings demonstrated that Merlin critically regulated pancreatic cancer pathogenesis by suppressing FOXM1/β-catenin signaling, suggesting that targeting novel Merlin/FOXM1/β-catenin signaling is an effective therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Ming Quan
- Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China.,Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiujie Cui
- Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China.,Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tian Xia
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zhiliang Jia
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dacheng Xie
- Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qian Huang
- Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China
| | - Shaojiang Zheng
- Pathology Department of Affiliated Hospital, Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, Hainan, People's Republic of China
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
28
|
Guerrero PA, Yin W, Camacho L, Marchetti D. Oncogenic role of Merlin/NF2 in glioblastoma. Oncogene 2015; 34:2621-30. [PMID: 25043298 PMCID: PMC4302072 DOI: 10.1038/onc.2014.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/23/2014] [Accepted: 05/16/2014] [Indexed: 02/07/2023]
Abstract
Glioblastoma is the most common and aggressive primary brain tumor in adults, with a poor prognosis because of its resistance to radiotherapy and chemotherapy. Merlin/NF2 (moesin-ezrin-radixin-like protein/neurofibromatosis type 2) is a tumor suppressor found to be mutated in most nervous system tumors; however, it is not mutated in glioblastomas. Merlin associates with several transmembrane receptors and intracellular proteins serving as an anchoring molecule. Additionally, it acts as a key component of cell motility. By selecting sub-populations of U251 glioblastoma cells, we observed that high expression of phosphorylated Merlin at serine 518 (S518-Merlin), NOTCH1 and epidermal growth factor receptor (EGFR) correlated with increased cell proliferation and tumorigenesis. These cells were defective in cell-contact inhibition with changes in Merlin phosphorylation directly affecting NOTCH1 and EGFR expression, as well as downstream targets HES1 (hairy and enhancer of split-1) and CCND1 (cyclin D1). Of note, we identified a function for S518-Merlin, which is distinct from what has been reported when the expression of Merlin is diminished in relation to EGFR and NOTCH1 expression, providing first-time evidence that demonstrates that the phosphorylation of S518-Merlin in glioblastoma promotes oncogenic properties that are not only the result of inactivation of the tumor suppressor role of Merlin but also an independent process implicating a Merlin-driven regulation of NOTCH1 and EGFR.
Collapse
Affiliation(s)
- Paola A. Guerrero
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Wei Yin
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Laura Camacho
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Dario Marchetti
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| |
Collapse
|
29
|
Schroeder RD, Angelo LS, Kurzrock R. NF2/merlin in hereditary neurofibromatosis 2 versus cancer: biologic mechanisms and clinical associations. Oncotarget 2014; 5:67-77. [PMID: 24393766 PMCID: PMC3960189 DOI: 10.18632/oncotarget.1557] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inactivating germline mutations in the tumor suppressor gene NF2 cause the hereditary syndrome neurofibromatosis 2, which is characterized by the development of neoplasms of the nervous system, most notably bilateral vestibular schwannoma. Somatic NF2 mutations have also been reported in a variety of cancers, but interestingly these mutations do not cause the same tumors that are common in hereditary neurofibromatosis 2, even though the same gene is involved and there is overlap in the site of mutations. This review highlights cancers in which somatic NF2 mutations have been found, the cell signaling pathways involving NF2/merlin, current clinical trials treating neurofibromatosis 2 patients, and preclinical findings that promise to lead to new targeted therapies for both cancers harboring NF2 mutations and neurofibromatosis 2 patients.
Collapse
Affiliation(s)
- Rebecca Dunbar Schroeder
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
30
|
Artesunate induces necrotic cell death in schwannoma cells. Cell Death Dis 2014; 5:e1466. [PMID: 25321473 PMCID: PMC4649524 DOI: 10.1038/cddis.2014.434] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 11/09/2022]
Abstract
Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely dependent on necroptosis. ART appears to inhibit autophagy, which may also contribute to the cell death. Our data in human schwannoma cells show that ART can be combined with the autophagy inhibitor chloroquine (CQ) to potentiate the cell death. Thus, this study suggests that artemisinin-based drugs may be used in certain tumours where cells are necroptosis competent, and the drugs may act in synergy with apoptosis inducers or autophagy inhibitors to enhance their anti-tumour activity.
Collapse
|
31
|
Ammoun S, Schmid MC, Zhou L, Hilton DA, Barczyk M, Hanemann CO. The p53/mouse double minute 2 homolog complex deregulation in merlin-deficient tumours. Mol Oncol 2014; 9:236-48. [PMID: 25217104 DOI: 10.1016/j.molonc.2014.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 11/28/2022] Open
Abstract
Deficiency of the tumour suppressor merlin leads to the development of schwannomas, meningiomas and ependymomas occurring spontaneously or as a part of the hereditary disease Neurofibromatosis type 2 (NF2). Merlin loss is also found in a proportion of other cancers like mesothelioma, melanoma, breast cancer and glioblastoma. The tumour suppressor/transcription factor p53 regulates proliferation, survival and differentiation and its deficiency plays a role in the development of many tumours. 53 can be negatively regulated by FAK, PI3K/AKT and MDM2 and possibly positively regulated by merlin in different cell lines. In this study we investigated the role of p53 in merlin-deficient tumours. Using our in vitro model of primary human schwannoma cells we have previously demonstrated that FAK is overexpressed/activated and localises into the nucleus of schwannoma cells increasing proliferation. AKT is strongly activated via platelet-derived growth factor (PDGF) - and insulin-like growth factor 1 (IGF1) - receptors increasing survival. Here we investigated p53 regulation and its role in proliferation and survival of human primary schwannoma cells using western blotting, immunocytochemistry, immunohistochemistry and proliferation, survival and transcription factor assays. In human primary schwannoma cells p53 was found to be downregulated while MDM2 was upregulated leading to increased cell proliferation and survival. p53 is regulated by merlin involving FAK, AKT and MDM2. Merlin reintroduction into schwannoma cells increased p53 levels and activity, and treatment with Nutlin-3, a drug which increases p53 stability by disrupting the p53/MDM2 complex, decreased tumour growth and reduced cell survival. These findings are important to dissect the mechanisms responsible for the development of merlin-deficient tumours and to identify new therapeutic targets. We suggest that Nutlin-3, possibly in combination with FAK or PI3K inhibitors, can be employed as a novel treatment for schwannoma and other merlin-deficient tumours.
Collapse
Affiliation(s)
- Sylwia Ammoun
- Plymouth University, Peninsula Schools of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK
| | - Marei Caroline Schmid
- Plymouth University, Peninsula Schools of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK
| | - Lu Zhou
- Plymouth University, Peninsula Schools of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK
| | - David A Hilton
- Department of Histopathology, Derriford Hospital, Plymouth, UK
| | - Magdalena Barczyk
- Plymouth University, Peninsula Schools of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK
| | - Clemens Oliver Hanemann
- Plymouth University, Peninsula Schools of Medicine and Dentistry, The Institute of Translational and Stratified Medicine, The John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK.
| |
Collapse
|
32
|
Shevde LA, Samant RS. Role of osteopontin in the pathophysiology of cancer. Matrix Biol 2014; 37:131-41. [PMID: 24657887 PMCID: PMC5916777 DOI: 10.1016/j.matbio.2014.03.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
Osteopontin (OPN) is a multifunctional cytokine that impacts cell proliferation, survival, drug resistance, invasion, and stem like behavior. Due to its critical involvement in regulating cellular functions, its aberrant expression and/or splicing is functionally responsible for undesirable alterations in disease pathologies, specifically cancer. It is implicated in promoting invasive and metastatic progression of many carcinomas. Due to its autocrine and paracrine activities OPN has been shown to be a crucial mediator of cellular cross talk and an influential factor in the tumor microenvironment. OPN has been implicated as a prognostic and diagnostic marker for several cancer types. It has also been explored as a possible target for treatment. In this article we hope to provide a broad perspective on the importance of OPN in the pathophysiology of cancer.
Collapse
Affiliation(s)
- Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| | - Rajeev S Samant
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| |
Collapse
|
33
|
Wang ZQ, Keita M, Bachvarova M, Gobeil S, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Trinh XB, Bachvarov D. Inhibition of RUNX2 transcriptional activity blocks the proliferation, migration and invasion of epithelial ovarian carcinoma cells. PLoS One 2013; 8:e74384. [PMID: 24124450 PMCID: PMC3790792 DOI: 10.1371/journal.pone.0074384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/31/2013] [Indexed: 01/19/2023] Open
Abstract
Previously, we have identified the RUNX2 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from serous epithelial ovarian cancer (EOC) patients, when compared to primary cultures derived from matched primary (prior to CT) tumors. However, we found no differences in the RUNX2 methylation in primary EOC tumors and EOC omental metastases, suggesting that DNA methylation-based epigenetic mechanisms have no impact on RUNX2 expression in advanced (metastatic) stage of the disease. Moreover, RUNX2 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. Knockdown of the RUNX2 expression in EOC cells led to a sharp decrease of cell proliferation and significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as various genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX2 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX2 gene in serous EOC progression and suggest that RUNX2 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX2 and other members of the RUNX gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Mamadou Keita
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Magdalena Bachvarova
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Stephane Gobeil
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, CHUL, Québec (Québec), Canada
| | - Chantale Morin
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Xuan Bich Trinh
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Gynecological Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- * E-mail:
| |
Collapse
|
34
|
|
35
|
Nin DS, Ali AB, Okumura K, Asou N, Chen CS, Chng WJ, Khan M. Akt-induced phosphorylation of N-CoR at serine 1450 contributes to its misfolded conformational dependent loss (MCDL) in acute myeloid leukemia of the M5 subtype. PLoS One 2013; 8:e70891. [PMID: 23940660 PMCID: PMC3733915 DOI: 10.1371/journal.pone.0070891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/25/2013] [Indexed: 11/18/2022] Open
Abstract
The nuclear receptor co-repressor (N-CoR) is a key component of the generic co-repressor complex that plays an important role in the control of cellular growth and differentiation. As shown by us recently, the growth suppressive function of N-CoR largely relies on its capacity to repress Flt3, a key regulator of cellular gorwth during normal and malignant hematopoesis. We further demonstrated how de-repression of Flt3 due to the misfolded conformation dependent loss (MCDL) of N-CoR contributed to malignant growth in acute myeloid leukemia (AML). However, the molecular mechanism underlying the MCDL of N-CoR and its implication in AML pathogenesis is not fully understood. Here, we report that Akt-induced phosphorylation of N-CoR at the consensus Akt motif is crucial for its misfolding and subsequent loss in AML (AML-M5). N-CoR displayed significantly higher level of serine specific phosphorylation in almost all AML-M5 derived cells and was subjected to processing by AML-M5 specific aberrant protease activity. To identify the kinase linked to N-CoR phosphorylation, a library of activated kinases was screened with the extracts of AML cells; leading to the identification of Akt as the putative kinase linked to N-CoR phosphorylation. Consistent with this finding, a constitutively active Akt consistently phosphorylated N-CoR leading to its misfolding; while the therapeutic and genetic ablation of Akt largely abrogated the MCDL of N-CoR in AML-M5 cells. Site directed mutagenic analysis of N-CoR identified serine 1450 as the crucial residue whose phosphorylation by Akt was essential for the misfolding and loss of N-CoR protein. Moreover, Akt-induced phosphorylation of N-CoR contributed to the de-repression of Flt3, suggesting a cross talk between Akt signaling and N-CoR misfolding pathway in the pathogenesis of AML-M5. The N-CoR misfolding pathway could be the common downstream thread of pleiotropic Akt signaling activated by various oncogenic insults in some subtypes of leukemia and solid tumors.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Cancer Science Institute of Singapore, Yong Loo Lin School
of Medicine, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine,
National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore
| | - Azhar Bin Ali
- Cancer Science Institute of Singapore, Yong Loo Lin School
of Medicine, National University of Singapore, Singapore
| | - Koichi Okumura
- Cancer Science Institute of Singapore, Yong Loo Lin School
of Medicine, National University of Singapore, Singapore
| | - Norio Asou
- Department of Haematology, Kumamoto University, Kumamoto, Japan
| | - Chien-Shing Chen
- Division of Hematologyand Oncology, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, Yong Loo Lin School
of Medicine, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine,
National University of Singapore, Singapore
- Department of Haematology-Oncology, National Cancer
Institute of Singapore, National University Health System,
Singapore
| | - Matiullah Khan
- Cancer Science Institute of Singapore, Yong Loo Lin School
of Medicine, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine,
National University of Singapore, Singapore
- School of Medicine, Asian Institute of Medicine, Science and Technology (AIMST), Bedong, Malaysia
- * E-mail: ,
| |
Collapse
|
36
|
Silencing of CD44 gene expression in human 143-B osteosarcoma cells promotes metastasis of intratibial tumors in SCID mice. PLoS One 2013; 8:e60329. [PMID: 23565227 PMCID: PMC3614951 DOI: 10.1371/journal.pone.0060329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/25/2013] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary malignant bone cancer in children and adolescents with a high propensity for lung metastasis. Therefore, it is of great importance to identify molecular markers leading to increased metastatic potential in order to devise more effective therapeutic strategies that suppress metastasis, the major cause of death in OS. CD44, the principal receptor for the extracellular matrix component hyaluronan (HA), is frequently found overexpressed in tumor cells and has been implicated in metastatic spread in various cancer types. Here, we investigated the effects of stable shRNA-mediated silencing of CD44 gene products on in vitro and in vivo metastatic properties of the highly metastatic human 143-B OS cell line. In vitro, CD44 knockdown resulted in a 73% decrease in the adhesion to HA, a 57% decrease in the migration rate in a trans-filter migration assay, and a 28% decrease in the cells' capacity for anchorage-independent growth in soft agar compared to the control cells, implicating that CD44 expression contributes to the metastatic activity of 143-B cells. However, making use of an orthotopic xenograft OS mouse model, we demonstrated that reduced CD44 expression facilitated primary tumor growth and formation of pulmonary metastases. The enhanced malignant phenotype was associated with decreased adhesion to HA and reduced expression of the tumor suppressor merlin in vivo. In conclusion, our study identified CD44 as a metastasis suppressor in this particular experimental OS model.
Collapse
|
37
|
Torres-Martin M, Lassaletta L, San-Roman-Montero J, De Campos JM, Isla A, Gavilan J, Melendez B, Pinto GR, Burbano RR, Castresana JS, Rey JA. Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation. Int J Oncol 2013; 42:848-62. [PMID: 23354516 PMCID: PMC3597452 DOI: 10.3892/ijo.2013.1798] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/04/2013] [Indexed: 11/06/2022] Open
Abstract
Vestibular schwannomas are benign neoplasms that arise from the vestibular nerve. The hallmark of these tumors is the biallelic inactivation of neurofibromin 2 (NF2). Transcriptomic alterations, such as the neuregulin 1 (NRG1)/ErbB2 pathway, have been described in schwannomas. In this study, we performed a whole transcriptome analysis in 31 vestibular schwannomas and 9 control nerves in the Affymetrix Gene 1.0 ST platform, validated by quantitative real-time PCR (qRT-PCR) using TaqMan Low Density arrays. We performed a mutational analysis of NF2 by PCR/denaturing high-performance liquid chromatography (dHPLC) and multiplex ligation-dependent probe amplification (MLPA), as well as a microsatellite marker analysis of the loss of heterozygosity (LOH) of chromosome 22q. The microarray analysis demonstrated that 1,516 genes were deregulated and 48 of the genes were validated by qRT-PCR. At least 2 genetic hits (allelic loss and/or gene mutation) in NF2 were found in 16 tumors, seven cases showed 1 hit and 8 tumors showed no NF2 alteration. MET and associated genes, such as integrin, alpha 4 (ITGA4)/B6, PLEXNB3/SEMA5 and caveolin-1 (CAV1) showed a clear deregulation in vestibular schwannomas. In addition, androgen receptor (AR) downregulation may denote a hormonal effect or cause in this tumor. Furthermore, the osteopontin gene (SPP1), which is involved in merlin protein degradation, was upregulated, which suggests that this mechanism may also exert a pivotal role in schwannoma merlin depletion. Finally, no major differences were observed among tumors of different size, histological type or NF2 status, which suggests that, at the mRNA level, all schwannomas, regardless of their molecular and clinical characteristics, may share common features that can be used in their treatment.
Collapse
Affiliation(s)
- Miguel Torres-Martin
- Research Unit, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Beltrami S, Kim R, Gordon J. Neurofibromatosis type 2 protein, NF2: an uncoventional cell cycle regulator. Anticancer Res 2013; 33:1-11. [PMID: 23267122 PMCID: PMC3725758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Neurofibromatosis type 2 protein (NF2) is an underappreciated tumor suppressor involved in a broad range of nervous system tumors. Inactivation of the NF2 gene leads to neurofibromatosis type-2, which is characterized by multiple benign nervous system tumors and mutations in the gene have been demonstrated in many other tumor types as well. All tumors, regardless of location or grade, lack a fundamental control over cell cycle progression. Historically, NF2 is an unconventional tumor suppressor protein in that it does not directly influence the cell cycle. NF2 links receptors at the plasma membrane to their cytoplasmic kinases to facilitate contact inhibition. However, NF2 can also interact with an array of cytoplasmic and nuclear proteins that affect cell cycle progression. Furthermore, through some of these pathways, NF2 may reverse the functional inhibition of conventional tumor suppressor pathways. Here we review mechanisms utilized by NF2 to regain control of the cell cycle.
Collapse
Affiliation(s)
- Sarah Beltrami
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA
- Biomedical Neuroscience Graduate Program, Temple University School of Medicine, Philadelphia, PA
| | - Richard Kim
- Department of Neurosurgery, Temple University School of Medicine, Philadelphia, PA
| | - Jennifer Gordon
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
39
|
Abstract
DNAJB6 is a constitutively expressed member of the HSP40 family. It has been described as a negative regulator of breast tumor progression and a regulator of epithelial phenotype. Expression of DNAJB6 is reported to be compromised with tumor progression. However, factors responsible for its downregulation are still undefined. We used a knowledge-based screen for identifying miRNAs capable of targeting DNAJB6. In this work, we present our findings that hsa-miR-632 (miR-632) targets the coding region of DNAJB6. Invasive and metastatic breast cancer cells express high levels of miR-632 compared with mammary epithelial cells. Analysis of RNA from breast tumor specimens reveals inverse expression patterns of DNAJB6 transcript and miR-632. In response to exogenous miR-632 expression, DNAJB6 protein levels are downregulated and the resultant cell population shows significantly increased invasive ability. Silencing endogenous miR-632 abrogates invasive ability of breast cancer cells and promotes epithelial like characteristics noted by E-cadherin expression with concomitant decrease in mesenchymal markers such as Zeb2 and Slug. Thus, miR-632 is a potentially important epigenetic regulator of DNAJB6, which contributes to the downregulation of DNAJB6 and plays a supportive role in malignant progression.
Collapse
|
40
|
Murray LB, Lau YKI, Yu Q. Merlin is a negative regulator of human melanoma growth. PLoS One 2012; 7:e43295. [PMID: 22912849 PMCID: PMC3422319 DOI: 10.1371/journal.pone.0043295] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/18/2012] [Indexed: 01/01/2023] Open
Abstract
Merlin is encoded by the neurofibromatosis type 2 (NF2) gene and is a member of the Band 4.1 protein family. This protein acts as a linker that connects cell surface proteins to the actin cytoskeleton. Defects caused by mutations of the NF2 gene give rise to NF2 disease, which is generally characterized by the formation of bilateral vestibular schwannomas and, to a lesser extent, meningiomas and ependymomas. In addition to these tumor types, NF2 is mutated and/or merlin expression is reduced or lost in numerous non-NF2 associated tumors, including melanoma. However, the role of merlin in human melanoma growth and the mechanism underlying its effect are currently unknown. In the present study, we show that merlin knockdown enhances melanoma cell proliferation, migration, and invasion in vitro and that decreased merlin expression promotes subcutaneous melanoma growth in immunocompromised mice. Concordantly, we find that increased expression of merlin in a metastatic melanoma cell line reduced their in vitro migration and proliferation, and diminished their ability to grow in an anchorage independent manner. Increased merlin expression also inhibits in vivo growth of these melanoma cells. Lastly, we demonstrate that higher merlin levels in human melanoma cells promote the H2O2-induced activation of MST1/2 Ser/Thr kinases, which are known tumor suppressors in the Hippo signaling pathway. Taken together, these results provide for the first time evidence that merlin negatively regulates human melanoma growth, and that loss of merlin, or impaired merlin function, results in an opposite effect. In addition, we show that increased merlin expression leads to enhanced activation of the MTS1/2 kinases, implying the potential roles of MST1/2 in mediating the anti-melanoma effects of merlin.
Collapse
Affiliation(s)
- Lucas B. Murray
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ying-Ka Ingar Lau
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Qin Yu
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Vincent AJ, Ren S, Harris LG, Devine DJ, Samant RS, Fodstad O, Shevde LA. Cytoplasmic translocation of p21 mediates NUPR1-induced chemoresistance: NUPR1 and p21 in chemoresistance. FEBS Lett 2012; 586:3429-34. [PMID: 22858377 DOI: 10.1016/j.febslet.2012.07.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/09/2012] [Accepted: 07/22/2012] [Indexed: 12/22/2022]
Abstract
The expression of Nuclear Protein 1 (NUPR1) is associated with chemoresistance in multiple malignancies. We previously reported that NUPR1 functions as a transcriptional cofactor for the p300-p53 complex and transcriptionally regulates p21 expression. In the present study we investigated the activity of NUPR1 in p53-deficient, triple-negative, inflammatory SUM159 breast cancer cells. Our studies reveal that NUPR1 confers growth benefit and chemoresistance by causing Akt-mediated phosphorylation and subsequent cytoplasmic re-localization of p21 and activation of the anti-apoptotic Bcl-xL protein. Our findings elucidate a NUPR1-PI-3-K/Akt-phospho-p21 axis that functions in p53-negative, inflammatory breast cancer cells to enhance chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Andrew J Vincent
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | | | | | | | | | | | | |
Collapse
|
42
|
Morrow KA, Shevde LA. Merlin: the wizard requires protein stability to function as a tumor suppressor. Biochim Biophys Acta Rev Cancer 2012; 1826:400-6. [PMID: 22750751 DOI: 10.1016/j.bbcan.2012.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 11/27/2022]
Abstract
Neurofibromatosis type 2 (NF2), characterized by tumors of the nervous system, is a result of functional loss of the NF2 gene. The NF2 gene encodes Merlin (moesin-ezrin-radixin-like protein), an ERM (Ezrin, Radixin, Moesin) protein family member. Merlin functions as a tumor suppressor through impacting mechanisms related to proliferation, apoptosis, survival, motility, adhesion, and invasion. Several studies have summarized the tumor intrinsic mutations in Merlin. Given the fact that tumor cells are not in isolation, but rather in an intricate, mutually sustaining synergy with their surrounding stroma, the dialog between the tumor cells and the stroma can potentially impact the molecular homeostasis and promote evolution of the malignant phenotype. This review summarizes the epigenetic modifications, transcript stability, and post-translational modifications that impact Merlin. We have reviewed the role of extrinsic factors originating from the tumor milieu that influence the availability of Merlin inside the cell. Information regarding Merlin regulation could lead to novel therapeutics by stabilizing Merlin protein in tumors that have reduced Merlin protein expression without displaying any NF2 genetic alterations.
Collapse
Affiliation(s)
- K Adam Morrow
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | | |
Collapse
|
43
|
Zhou L, Hanemann CO. Merlin, a multi-suppressor from cell membrane to the nucleus. FEBS Lett 2012; 586:1403-8. [PMID: 22595235 DOI: 10.1016/j.febslet.2012.03.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 01/07/2023]
Abstract
Recent evidence suggests that the neurofibromatosis type 2 (NF2) gene encoded protein merlin suppresses mitogenic signalling not only at the cell membrane but also in the nucleus. At the membrane, merlin inhibits signalling by integrins and tyrosine receptor kinases (RTKs) and the activation of downstream pathways, including the Ras/Raf/MEK/ERK, FAK/Src, PI3K/AKT, Rac/PAK/JNK, mTORC1, and Wnt/β-catenin pathways. In the nucleus, merlin suppresses the E3 ubiquitin ligase CRL4(DCAF1) to inhibit proliferation. Gene expression analysis suggested that CRL4(DCAF1) could also regulate the expression of integrins and RTKs. In this review, we explore the links between merlin function at the membrane and in the nucleus, and discuss the potential of targeting the master regulator CRL4 (DCAF1) to treat NF2 and other merlin-deficient tumours.
Collapse
Affiliation(s)
- Lu Zhou
- Clinical Neurobiology, Peninsula College of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | | |
Collapse
|