1
|
Tatomir A, Vlaicu S, Nguyen V, Luzina IG, Atamas SP, Drachenberg C, Papadimitriou J, Badea TC, Rus HG, Rus V. RGC-32 mediates proinflammatory and profibrotic pathways in immune-mediated kidney disease. Clin Immunol 2024; 265:110279. [PMID: 38878807 DOI: 10.1016/j.clim.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Systemic lupus erythematosus is an autoimmune disease that results in immune-mediated damage to kidneys and other organs. We investigated the role of response gene to complement-32 (RGC-32), a proinflammatory and profibrotic mediator induced by TGFβ and C5b-9, in nephrotoxic nephritis (NTN), an experimental model that mimics human lupus nephritis. Proteinuria, loss of renal function and kidney histopathology were attenuated in RGC-32 KO NTN mice. RGC-32 KO NTN mice displayed downregulation of the CCL20/CCR6 and CXCL9/CXCR3 ligand/receptor pairs resulting in decreased renal recruitment of IL-17+ and IFNγ+ cells and subsequent decrease in the influx of innate immune cells. RGC-32 deficiency attenuated renal fibrosis as demonstrated by decreased deposition of collagen I, III and fibronectin. Thus, RGC-32 is a unique mediator shared by the Th17 and Th1 dependent proinflammatory and profibrotic pathways and a potential novel therapeutic target in the treatment of immune complex mediated glomerulonephritis such as lupus nephritis.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Neurology Service, Veterans Administration Medical Health Care Center, Baltimore, MD, USA
| | - Sonia Vlaicu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Internal Medicine, Medical Clinic nr. 1, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vinh Nguyen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Irina G Luzina
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sergei P Atamas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Tudor C Badea
- Research and Development Institute, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - Horea G Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Neurology Service, Veterans Administration Medical Health Care Center, Baltimore, MD, USA
| | - Violeta Rus
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Zhang J, Sun Y, Tang K, Xu H, Xiao J, Li Y. RGC32 promotes the progression of ccRCC by activating the NF-κB/SHP2/EGFR signaling pathway. Aging (Albany NY) 2024; 16:205890. [PMID: 38809518 DOI: 10.18632/aging.205890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The role and clinical significance of the response gene to complement 32 (RGC32) in various cancers have been documented, yet its implications in clear cell Renal Cell Carcinoma (ccRCC) remain underexplored. METHODS This study investigated RGC32's diagnostic and prognostic relevance in ccRCC using bioinformatics methods with data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). The impact of RGC32 on ccRCC progression was assessed through nude mouse tumor assays. Immunohistochemistry evaluated RGC32 levels in ccRCC and adjacent normal tissues, while cell proliferation, migration, and invasion capabilities were analyzed using CCK-8, monoclonal proliferation assays, Transwell, and wound healing assays, respectively. Western blotting measured relevant protein expressions. RESULTS Bioinformatics analysis highlighted RGC32's significant role in ccRCC pathogenesis. Elevated RGC32 expression in ccRCC tissues was linked to disease progression. Functionally, RGC32 was found to enhance the expression of proteins such as p-PI3K, CyclinA1, CyclinD1, p-STAT3, MMP2, MMP3, MMP9, p-SMAD2/3, Snail, Slug, and N-Cadherin via the NF-κB/SHP2/EGFR pathway, while decreasing E-cadherin levels. Moreover, RGC32 facilitated ccRCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). CONCLUSION RGC32 is a pivotal factor in ccRCC development, primarily through the activation of the NF-κB/SHP2/EGFR signaling pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Department of Oncology, Zibo Central Hospital, Zibo, China
| | - Yindi Sun
- Department of Oncology, Zibo Central Hospital, Zibo, China
| | - Kai Tang
- Department of Urology, Zibo Central Hospital, Zibo, China
| | - Huirong Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese, Jinan, China
| | - Junjuan Xiao
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yan Li
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
3
|
Zhu P, Deng W. Single-Cell RNA-Sequencing Analyses Identify APLNR, INS-IGF2, RGCC Genes May Be Involved in the Pathogenesis of Systemic Sclerosis Skin. Clin Cosmet Investig Dermatol 2024; 17:1059-1069. [PMID: 38742168 PMCID: PMC11090198 DOI: 10.2147/ccid.s456593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
Background Systemic sclerosis represents a persistent autoimmune disorder marked with fibrosis affecting both skin and other organs, which leads to a diminished quality of life and increased mortality. The affected skin provides a valuable opportunity to explore the pathogenesis of systemic sclerosis. Nevertheless, the roles of various cell populations within scleroderma remain intricate. Methods We conducted a comprehensive reanalysis of recently published single-cell RNA-sequencing data from skin tissue cells in scleroderma. Through the utilization of Seurat, irGSEA, AUCell packages, and WGCNA analysis, we aimed to unveil crucial genes associated with the disease's etiological factors. Our investigation involved the characterization of heterogeneous pathway activities in both healthy and SSc-affected skin. Furthermore, we employed immunofluorescence techniques to validate the expression patterns of hub genes and differentially expressed genes. Results The Endothelial-to-Mesenchymal Transition (EndMT) pathway was upregulated in SSc skin. Notably, the M4 module within Endothelial cell subpopulation 1 exhibited a strong association with EndMT. Furthermore, we identified three overexpressed genes (APLNR, INS-IGF2, RGCC) that demonstrated a significant correlation with EndMT. Importantly, their expression levels were markedly higher in skin of individuals with SSc when compared to healthy controls. Conclusion APLNR, INS-IGF2 and RGCC serve as potential key players in the pathogenesis of SSc skin through EndMT-dependent mechanisms.
Collapse
Affiliation(s)
- Peiqiu Zhu
- Department of Dermatology and Venereology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Weiwei Deng
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Yang Y, Pan X, Chen S. Effect of Semaglutide and Empagliflozin on Pulmonary Structure and Proteomics in Obese Mice. Diabetes Metab Syndr Obes 2024; 17:1217-1233. [PMID: 38496002 PMCID: PMC10942255 DOI: 10.2147/dmso.s456336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Objective This study utilized proteomics to investigate changes in protein expression associated with lung health in obese mice exposed to semaglutide and empagliflozin through a high-fat diet. Methods Twenty-eight male C57BL/6JC mice were randomly assigned to two groups: a control diet group (n = 7) and a high-fat diet group (n = 21). The HFD group was further divided into three groups: HFD group (n = 7), Sema group (n = 7), and Empa group (n = 7). Post-treatment, mice underwent assessments including glucose tolerance, lipids, oxidative stress markers, body weight, lung weight, and structure. Proteomics identified differentially expressed proteins (DEPs) in lung tissue, and bioinformatics analyzed the biological processes and functions of these proteins. Results Semaglutide and empagliflozin significantly attenuated obesity-induced hyperglycemia, abnormal lipid metabolism, oxidative stress response, and can decrease alveolar wall thickness, enlarge alveolar lumen, and reduce collagen content in lung tissue. Both medications also attenuated lung elastic fibre cracking and disintegration. In the HFD/NCD group, there were 66 DEPs, comprising 30 proteins that were increased and 36 that were decreased. Twenty-three DEPs overlapped between Sema/HFD and Empa/HFD, with 11 up-regulated and 12 down-regulated simultaneously. After analysing DEPs in different groups, four proteins - LYVE1, BRAF, RGCC, and CHMP5 - were all downregulated in the HFD group and upregulated by semaglutide and empagliflozin treatment. Conclusion This study demonstrates that obesity induced by a high-fat diet causes a reduction in the expression of LYVE1, BRAF, RGCC, and CHMP5 proteins, potentially affecting lung function and structure in mice. Significantly, the administration of semaglutide and empagliflozin elevates the levels of these proteins, potentially offering therapeutic benefits against lung injury caused by obesity. Merging semaglutide with empagliflozin may exert a more pronounced impact.
Collapse
Affiliation(s)
- Yu Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
5
|
Wang D, Li M, Ling J, Chen S, Zhang Q, Liu Z, Huang Y, Pan C, Lin Y, Shi Z, Zhang P, Zheng Y. Assessing the effects of aging on the liver endothelial cell landscape using single-cell RNA sequencing. Hepatol Commun 2023; 7:e0021. [PMID: 36724124 PMCID: PMC9894352 DOI: 10.1097/hc9.0000000000000021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/25/2022] [Indexed: 02/02/2023] Open
Abstract
Endothelial cell (EC) function declines with age and contributes to the development of many vascular-related disease processes. Currently, the effects of aging on the molecular regulatory mechanisms of liver ECs have not been fully elucidated. Here, we employed single-cell RNA sequencing to map the transcriptome of ECs and analyzed their relationship with aging. We identified 8 different EC subtypes, interestingly, 2 of which were specially expressed in aged mice ECs namely aged capillary ECs (Aged ECs) and pro-inflammation capillary ECs (Proinfla.ECs). Double immunostaining for an EC marker (Cd31) and a marker of these specialized EC phenotypes confirmed the single-cell RNA sequencing data. Gene ontology analysis revealed that Aged ECs and Proinfla.ECs were associated with inflammatory response. Then we found that liver proliferating capillary ECs (Prolife.ECs) were most affected by senescence. Single-cell transcript analysis suggests that Prolife.ECs and angiogenic capillary ECs may form a poor microenvironment that promotes angiogenesis and tumorigenesis. Pseudo-temporal trajectories revealed that Prolife.ECs have different differentiation pathways in young and aged mice. In aged mice, Prolife.ECs could specifically differentiate into an unstable state, which was mainly composed of angiogenic capillary ECs. Intercellular communication revealed inflammatory activation in old group. Overall, this work compared the single-cell RNA profiles of liver ECs in young and aged mice. These findings provide a new insight into liver aging and its molecular mechanisms, and further exploration of Aged ECs and Proinfla.ECs may help to elucidate the molecular mechanisms associated with senescence.
Collapse
|
6
|
Cheng J, Xue F, Cheng C, Sui W, Zhang M, Qiao L, Ma J, Ji X, Chen W, Yu X, Xi B, Xu F, Su G, Zhao Y, Hao P, Zhang Y, Zhang C. ADAM17 knockdown mitigates while ADAM17 overexpression aggravates cardiac fibrosis and dysfunction via regulating ACE2 shedding and myofibroblast transformation. Front Pharmacol 2022; 13:997916. [PMID: 36313337 PMCID: PMC9613967 DOI: 10.3389/fphar.2022.997916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
A disintegrin and metalloprotease domain family protein 17 (ADAM17) is a new member of renin-angiotensin system (RAS) but its role in the pathogenesis of diabetic cardiomyopathy (DCM) is obscure. To test the hypothesis that ADAM17 knockdown mitigates while ADAM17 overexpression aggravates cardiac fibrosis via regulating ACE2 shedding and myofibroblast transformation in diabetic mice, ADAM17 gene was knocked down and overexpressed by means of adenovirus-mediated short-hairpin RNA (shRNA) and adenovirus vector carrying ADAM17 cDNA, respectively, in a mouse model of DCM. Two-dimensional and Doppler echocardiography, histopathology and immunohistochemistry were performed in all mice and in vitro experiments conducted in primary cardiofibroblasts. The results showed that ADAM17 knockdown ameliorated while ADAM17 overexpression worsened cardiac dysfunction and cardiac fibrosis in diabetic mice. In addition, ADAM17 knockdown increased ACE2 while reduced AT1R expression in diabetic hearts. Mechanistically, ADAM17 knockdown decreased while ADAM17 overexpression increased cardiac fibroblast-to-myofibroblast transformation through regulation of TGF-β1/Smad3 signaling pathway. In conclusion, ADAM17 knockdown attenuates while ADAM17 overexpression aggravates cardiac fibrosis via regulating ACE2 shedding and myofibroblast transformation through TGF-β1/Smad3 signaling pathway in diabetic mice. Targeting ADAM17 may provide a promising approach to the prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
- Jing Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fei Xue
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Guohai Su
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuxia Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Panpan Hao, ; Yun Zhang, ; Cheng Zhang,
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Panpan Hao, ; Yun Zhang, ; Cheng Zhang,
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Panpan Hao, ; Yun Zhang, ; Cheng Zhang,
| |
Collapse
|
7
|
Luzina IG, Rus V, Lockatell V, Courneya JP, Hampton BS, Fishelevich R, Misharin AV, Todd NW, Badea TC, Rus H, Atamas SP. Regulator of Cell Cycle Protein (RGCC/RGC-32) Protects against Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 66:146-157. [PMID: 34668840 PMCID: PMC8845131 DOI: 10.1165/rcmb.2021-0022oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Some previous studies in tissue fibrosis have suggested a profibrotic contribution from elevated expression of a protein termed either RGCC (regulator of cell cycle) or RGC-32 (response gene to complement 32 protein). Our analysis of public gene expression datasets, by contrast, revealed a consistent decrease in RGCC mRNA levels in association with pulmonary fibrosis. Consistent with this observation, we found that stimulating primary adult human lung fibroblasts with transforming growth factor (TGF)-β in cell cultures elevated collagen expression and simultaneously attenuated RGCC mRNA and protein levels. Moreover, overexpression of RGCC in cultured lung fibroblasts attenuated the stimulating effect of TGF-β on collagen levels. Similar to humans with pulmonary fibrosis, the levels of RGCC were also decreased in vivo in lung tissues of wild-type mice challenged with bleomycin in both acute and chronic models. Mice with constitutive RGCC gene deletion accumulated more collagen in their lungs in response to chronic bleomycin challenge than did wild-type mice. RNA-Seq analyses of lung fibroblasts revealed that RGCC overexpression alone had a modest transcriptomic effect, but in combination with TGF-β stimulation, induced notable transcriptomic changes that negated the effects of TGF-β, including on extracellular matrix-related genes. At the level of intracellular signaling, RGCC overexpression delayed early TGF-β-induced Smad2/3 phosphorylation, elevated the expression of total and phosphorylated antifibrotic mediator STAT1, and attenuated the expression of a profibrotic mediator STAT3. We conclude that RGCC plays a protective role in pulmonary fibrosis and that its decline permits collagen accumulation. Restoration of RGCC expression may have therapeutic potential in pulmonary fibrosis.
Collapse
Affiliation(s)
- Irina G. Luzina
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Violeta Rus
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Virginia Lockatell
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Jean-Paul Courneya
- Health Sciences and Human Services Library, University of Maryland–Baltimore, Baltimore, Maryland
| | | | - Rita Fishelevich
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Nevins W. Todd
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Tudor C. Badea
- Retinal Circuits Development and Genetics Unit, National Eye Institute, Bethesda, Maryland; and,Faculty of Medicine, Research and Development Institute, Transilvania University of Brașov, Brașov, Romania
| | - Horea Rus
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| | - Sergei P. Atamas
- University of Maryland School of Medicine, Baltimore, Maryland;,Baltimore VA Medical Center, Baltimore, Maryland
| |
Collapse
|
8
|
Penke LRK, Torres Matias G, Ballinger MN. Pumping the Brakes on Pulmonary Fibrosis: A New Role for Regulator of Cell Cycle. Am J Respir Cell Mol Biol 2021; 66:113-114. [PMID: 34758280 PMCID: PMC8845133 DOI: 10.1165/rcmb.2021-0399ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Loka Raghu Kumar Penke
- University of Michigan Michigan Medicine, 21614, Internal Medicine, Ann Arbor, Michigan, United States
| | - Gina Torres Matias
- The Ohio State University, Internal Medicine-Pulmonary, Critical Care and Sleep Medicine , Columbus, Ohio, United States
| | - Megan N Ballinger
- The Ohio State University, Internal Medicine-Pulmonary, Critical Care and Sleep Medicine , Columbus, Ohio, United States;
| |
Collapse
|
9
|
Guo Z, Chen M, Chao Y, Cai C, Liu L, Zhao L, Li L, Bai QR, Xu Y, Niu W, Shi L, Bi Y, Ren D, Yuan F, Shi S, Zeng Q, Han K, Shi Y, Bian S, He G. RGCC balances self-renewal and neuronal differentiation of neural stem cells in the developing mammalian neocortex. EMBO Rep 2021; 22:e51781. [PMID: 34323349 DOI: 10.15252/embr.202051781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
During neocortical development, neural stem cells (NSCs) divide symmetrically to self-renew at the early stage and then divide asymmetrically to generate post-mitotic neurons. The molecular mechanisms regulating the balance between NSC self-renewal and neurogenesis are not fully understood. Using mouse in utero electroporation (IUE) technique and in vitro human NSC differentiation models including cerebral organoids (hCOs), we show here that regulator of cell cycle (RGCC) modulates NSC self-renewal and neuronal differentiation by affecting cell cycle regulation and spindle orientation. RGCC deficiency hampers normal cell cycle process and dysregulates the mitotic spindle, thus driving more cells to divide asymmetrically. These modulations diminish the NSC population and cause NSC pre-differentiation that eventually leads to brain developmental malformation in hCOs. We further show that RGCC might regulate NSC spindle orientation by affecting the organization of centrosome and microtubules. Our results demonstrate that RGCC is essential to maintain the NSC pool during cortical development and suggest that RGCC defects could have etiological roles in human brain malformations.
Collapse
Affiliation(s)
- Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxia Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yiming Chao
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chunhai Cai
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linbo Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanxin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyue Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Zeng
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
De Miguel C, Kraus AC, Saludes MA, Konkalmatt P, Ruiz Domínguez A, Asico LD, Latham PS, Offen D, Jose PA, Cuevas S. ND-13, a DJ-1-Derived Peptide, Attenuates the Renal Expression of Fibrotic and Inflammatory Markers Associated with Unilateral Ureter Obstruction. Int J Mol Sci 2020; 21:ijms21197048. [PMID: 32987947 PMCID: PMC7582723 DOI: 10.3390/ijms21197048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
DJ-1 is a redox-sensitive chaperone with reported antioxidant and anti-inflammatory properties in the kidney. The 20 amino acid (aa) peptide ND-13 consists of 13 highly conserved aas from the DJ-1 sequence and a TAT-derived 7 aa sequence that helps in cell penetration. This study aimed to determine if ND-13 treatment prevents the renal damage and inflammation associated with unilateral ureter obstruction (UUO). Male C57Bl/6 and DJ-1-/- mice underwent UUO and were treated with ND-13 or vehicle for 14 days. ND-13 attenuated the renal expression of fibrotic markers TGF-β and collagen1a1 (Col1a1) and inflammatory markers TNF-α and IL-6 in C57Bl/6 mice. DJ-1-/- mice treated with ND-13 presented similar decreased expression of TNF-α, IL-6 and TGF-β. However, in contrast to C57Bl/6 mice, ND-13 failed to prevent renal fibrosis or to ameliorate the expression of Col1a1 in this genotype. Further, UUO led to elevated urinary levels of the proximal tubular injury marker neutrophil gelatinase-associated lipocalin (NGAL) in DJ-1-/- mice, which were blunted by ND-13. Our results suggest that ND-13 protects against UUO-induced renal injury, inflammation and fibrosis. These are all crucial mechanisms in the pathogenesis of kidney injury. Thus, ND-13 may be a new therapeutic approach to prevent renal diseases.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL 35233, USA;
- Correspondence: (C.D.M.); (S.C.); Tel.: +1-(205)-934-2430 (C.D.M.); +34-(868)-885-038 (S.C.)
| | - Abigayle C. Kraus
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL 35233, USA;
| | - Mitchell A. Saludes
- Department of Medicine, Division of Renal Diseases & Hypertension and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; (M.A.S.); (P.K.); (L.D.A.); (P.A.J.)
| | - Prasad Konkalmatt
- Department of Medicine, Division of Renal Diseases & Hypertension and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; (M.A.S.); (P.K.); (L.D.A.); (P.A.J.)
| | - Almudena Ruiz Domínguez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, 30120 Murcia, Spain;
| | - Laureano D. Asico
- Department of Medicine, Division of Renal Diseases & Hypertension and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; (M.A.S.); (P.K.); (L.D.A.); (P.A.J.)
| | - Patricia S. Latham
- Pathology and Internal Medicine The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA;
| | - Daniel Offen
- Neuroscience Laboratory, The Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Pedro A. Jose
- Department of Medicine, Division of Renal Diseases & Hypertension and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; (M.A.S.); (P.K.); (L.D.A.); (P.A.J.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, 30120 Murcia, Spain;
- Correspondence: (C.D.M.); (S.C.); Tel.: +1-(205)-934-2430 (C.D.M.); +34-(868)-885-038 (S.C.)
| |
Collapse
|
11
|
Zhao Y, Sun D, Chen Y, Zhan K, Meng Q, Zhang X, Zhu L, Yao X. Si-Miao-Yong-An Decoction attenuates isoprenaline-induced myocardial fibrosis in AMPK-driven Akt/mTOR and TGF-β/SMAD3 pathways. Biomed Pharmacother 2020; 130:110522. [PMID: 32736236 DOI: 10.1016/j.biopha.2020.110522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022] Open
Abstract
Myocardial fibrosis is well-known to be the aberrant deposition of extracellular matrix (ECM), which may cause cardiac dysfunction, morbidity, and death. Traditional Chinese medicine formula Si-Miao-Yong-An Decoction (SMYAD), which is used clinically in cardiovascular diseases has been recently reported to able to resist myocardial fibrosis. The anti-fibrosis effects of SMYAD have been evaluated; however, its intricate mechanisms remain to be clarified. Here, we found that SMYAD treatment reduced the fibrosis injury and collagen fiber deposition that could improve cardiac function in isoprenaline (ISO)-induced fibrosis rat models. Combined with our systematic RNA-seq data of SMYAD treatment, we demonstrated that the remarkable up-regulation or down-regulation of several genes were closely related to the functional enrichment of TGF-β and AMPK pathways that were involved in myocardial fibrosis. Accordingly, we further explored the molecular mechanisms of SMYAD were mainly caused by AMPK activation and thereby suppressing its downstream Akt/mTOR and TGF-β/SMAD3 pathways. Moreover, we showed that the ECM deposition and secretion process were attenuated, suggesting that the fibrosis pathological features are changed. Interestingly, we found the similar AMPK-driven pathways in NIH-3T3 mouse fibroblasts treated with ISO. Taken together, these results demonstrate that SMYAD may be a new candidate agent by regulating AMPK-driven Akt/mTOR and TGF-β/SMAD3 pathways for potential therapeutic implications of myocardial fibrosis.
Collapse
Affiliation(s)
- Yuqian Zhao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dejuan Sun
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yanmei Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kaixuan Zhan
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Qu Meng
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xue Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Xinsheng Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Kim D, Park Y. Molecular mechanism for the multiple sclerosis risk variant rs17594362. Hum Mol Genet 2019; 28:3600-3609. [PMID: 31509193 PMCID: PMC6927461 DOI: 10.1093/hmg/ddz216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/31/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is known as an autoimmune demyelinating disease of the central nervous system. However, its cause remains elusive. Given previous studies suggesting that dysfunctional oligodendrocytes (OLs) may trigger MS, we tested whether single nucleotide polymorphisms (SNPs) associated with MS affect OL enhancers, potentially increasing MS risk by dysregulating gene expression of OL lineage cells. We found that two closely spaced OL enhancers, which are 3 Kb apart on chromosome 13, overlap two MS SNPs in linkage disequilibrium-rs17594362 and rs12429256. Our data revealed that the two MS SNPs significantly up-regulate the associated OL enhancers, which we have named as Rgcc-E1 and Rgcc-E2. Analysis of Hi-C data and epigenome editing experiments shows that Rgcc is the primary target of Rgcc-E1 and Rgcc-E2. Collectively, these data indicate that the molecular mechanism of rs17594362 and rs12429256 is to induce Rgcc overexpression by potentiating the enhancer activity of Rgcc-E1 and Rgcc-E2. Importantly, the dosage of the rs17594362/rs12429256 risk allele is positively correlated with the expression level of Rgcc in the human population, confirming our molecular mechanism. Our study also suggests that Rgcc overexpression in OL lineage cells may be a key cellular mechanism of rs17594362 and rs12429256 for MS.
Collapse
Affiliation(s)
- Dongkyeong Kim
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Yungki Park
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
13
|
Tang JM, Shi N, Dong K, Brown SA, Coleman AE, Boegehold MA, Chen SY. Response Gene to Complement 32 Maintains Blood Pressure Homeostasis by Regulating α-Adrenergic Receptor Expression. Circ Res 2019; 123:1080-1090. [PMID: 30355157 DOI: 10.1161/circresaha.118.313266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Hypertension prevalence is much higher among children and adolescents with low birth weight and greater postnatal weight gain than in individuals with normal birth weight. However, the cause and molecular mechanisms underlying this complication remain largely unknown. Our previous studies have shown that RGC-32 (response gene to complement 32)-deficient (RGC-32-/-) mice are born significantly smaller but grow faster than their WT (wild type) controls, which allows adult RGC-32-/- mice to attain body weights similar to those of control mice. OBJECTIVE The objective of this study is to determine whether RGC-32-/- mice develop hypertension, and if so, to elucidate the underlying mechanisms. METHODS AND RESULTS By using a radiotelemetry system, we found that RGC-32-/- mice exhibit higher mean arterial pressure than WT mice (101±4 versus 119±5 mm Hg), which enabled us to use RGC-32-/- mice to study the mechanisms underlying low birth weight-related hypertension. The increased blood pressure in RGC-32-/- mice was associated with increased vascular tone and decreased distensibility of small resistance arteries. The increased vascular tone was because of an increase in the relative contribution of sympathetic versus parasympathetic activity and was linked to increased expression of AT1R (angiotensin II type I receptor) and α1-AdR (α1-adrenergic receptor) in arterial smooth muscles. Mechanistically, RGC-32 regulated AT1R gene transcription by interacting with Sp1 (specificity protein 1) transcription factor and further blocking its binding to the AT1R promoter, leading to suppression of AT1R expression. The attenuation of AT1R leads to reduction in α1-AdR expression, which was critical for the balance of sympathetic versus parasympathetic control of vascular tone. Of importance, downregulation of RGC-32 in arterial smooth muscles was also associated with low birth weight and hypertension in humans. CONCLUSIONS Our results indicate that RGC-32 is a novel protein factor vital for maintaining blood pressure homeostasis, especially in individuals with low birth weight.
Collapse
Affiliation(s)
- Jun-Ming Tang
- From the Department of Physiology and Pharmacology (J.-M.T., N.S., K.D., S.A.B., M.A.B., S.-Y.C.), University of Georgia, Athens.,Institute of Clinical Medicine (J.-M.T.), Renmin Hospital, Hubei University of Medicine, Shiyan, China.,Department of Cardiology (J.-M.T.), Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Ning Shi
- From the Department of Physiology and Pharmacology (J.-M.T., N.S., K.D., S.A.B., M.A.B., S.-Y.C.), University of Georgia, Athens
| | - Kun Dong
- From the Department of Physiology and Pharmacology (J.-M.T., N.S., K.D., S.A.B., M.A.B., S.-Y.C.), University of Georgia, Athens
| | - Scott A Brown
- From the Department of Physiology and Pharmacology (J.-M.T., N.S., K.D., S.A.B., M.A.B., S.-Y.C.), University of Georgia, Athens
| | - Amanda E Coleman
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine (A.E.C.), University of Georgia, Athens
| | - Matthew A Boegehold
- From the Department of Physiology and Pharmacology (J.-M.T., N.S., K.D., S.A.B., M.A.B., S.-Y.C.), University of Georgia, Athens
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology (J.-M.T., N.S., K.D., S.A.B., M.A.B., S.-Y.C.), University of Georgia, Athens
| |
Collapse
|
14
|
Vlaicu SI, Tatomir A, Anselmo F, Boodhoo D, Chira R, Rus V, Rus H. RGC-32 and diseases: the first 20 years. Immunol Res 2019; 67:267-279. [DOI: 10.1007/s12026-019-09080-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Cui XB, Chen SY. Response Gene to Complement 32 in Vascular Diseases. Front Cardiovasc Med 2018; 5:128. [PMID: 30280101 PMCID: PMC6153333 DOI: 10.3389/fcvm.2018.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
Response gene to complement 32 (RGC32) is a protein that was identified in rat oligodendrocytes after complement activation. It is expressed in most of the organs and tissues, such as brain, placenta, heart, and the liver. Functionally, RGC32 is involved in various physiological and pathological processes, including cell proliferation, differentiation, fibrosis, metabolic disease, and cancer. Emerging evidences support the roles of RGC32 in vascular diseases. RGC32 promotes injury-induced vascular neointima formation by mediating smooth muscle cell (SMC) proliferation and migration. Moreover, RGC32 mediates endothelial cell activation and facilitates atherosclerosis development. Its involvement in macrophage phagocytosis and activation as well as T-lymphocyte cell cycle activation also suggests that RGC32 is important for the development and progression of inflammatory vascular diseases. In this mini-review, we provide an overview on the roles of RGC32 in regulating functions of SMCs, endothelial cells, and immune cells, and discuss their contributions to vascular diseases.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, United States
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, United States
| |
Collapse
|
16
|
BET-inhibition by JQ1 alleviates streptozotocin-induced diabetic cardiomyopathy. Toxicol Appl Pharmacol 2018; 352:9-18. [DOI: 10.1016/j.taap.2018.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
|
17
|
Sun C, Chen SY. RGC32 Promotes Bleomycin-Induced Systemic Sclerosis in a Murine Disease Model by Modulating Classically Activated Macrophage Function. THE JOURNAL OF IMMUNOLOGY 2018; 200:2777-2785. [PMID: 29507108 DOI: 10.4049/jimmunol.1701542] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/10/2018] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune disorder that is characterized by inflammation and fibrosis in the skin and internal organs. Previous studies indicate that inflammatory cells and cytokines play essential roles in the pathogenesis of SSc; however, the mechanisms that underlie the inflammation-driven development of SSc are not fully understood. In this study, we show that response gene to complement 32 (RGC32) is abundantly expressed in mouse macrophages in the early stage of bleomycin-induced SSc. Importantly, RGC32 is required to induce the inflammatory response during the onset of SSc, because RGC32 deficiency in mice significantly ameliorates skin and lung sclerosis and inhibits the expression of inflammatory mediators inducible NO synthase (iNOS) and IL-1β in macrophages. RGC32 appears to be a novel regulator for the differentiation of classically activated macrophages (M1 macrophages). IFN-γ and LPS stimulation induces RGC32 expression in primary peritoneal macrophages and bone marrow-derived macrophages. RGC32 deficiency impairs the polarization of M1 macrophages and attenuates iNOS and IL-1β production. Mechanistically, RGC32 interacts with NF-κB proteins and promotes iNOS and IL-1β expression by binding to their promoters. Collectively, our data reveal that RGC32 promotes the onset of SSc by regulating the inflammatory response of M1 macrophages, and it may serve as a promising therapeutic target for treating SSc.
Collapse
Affiliation(s)
- Chenming Sun
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| | - Shi-You Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| |
Collapse
|
18
|
Su SA, Yang D, Wu Y, Xie Y, Zhu W, Cai Z, Shen J, Fu Z, Wang Y, Jia L, Wang Y, Wang JA, Xiang M. EphrinB2 Regulates Cardiac Fibrosis Through Modulating the Interaction of Stat3 and TGF-β/Smad3 Signaling. Circ Res 2017; 121:617-627. [PMID: 28743805 DOI: 10.1161/circresaha.117.311045] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Abstract
RATIONALE Cardiac fibrosis is a common feature in left ventricular remodeling that leads to heart failure, regardless of the cause. EphrinB2 (erythropoietin-producing hepatoma interactor B2), a pivotal bidirectional signaling molecule ubiquitously expressed in mammals, is crucial in angiogenesis during development and disease progression. Recently, EphrinB2 was reported to protect kidneys from injury-induced fibrogenesis. However, its role in cardiac fibrosis remains to be clarified. OBJECTIVE We sought to determine the role of EphrinB2 in cardiac fibrosis and the underlying mechanisms during the pathological remodeling process. METHODS AND RESULTS EphrinB2 was highly expressed in the myocardium of patients with advanced heart failure, as well as in mouse models of myocardial infarction and cardiac hypertrophy induced by angiotensin II infusion, which was accompanied by myofibroblast activation and collagen fiber deposition. In contrast, intramyocardial injection of lentiviruses carrying EphrinB2-shRNA ameliorated cardiac fibrosis and improved cardiac function in mouse model of myocardial infarction. Furthermore, in vitro studies in cultured cardiac fibroblasts demonstrated that EphrinB2 promoted the differentiation of cardiac fibroblasts into myofibroblasts in normoxic and hypoxic conditions. Mechanistically, the profibrotic effect of EphrinB2 on cardiac fibroblast was determined via activating the Stat3 (signal transducer and activator of transcription 3) and TGF-β (transforming growth factor-β)/Smad3 (mothers against decapentaplegic homolog 3) signaling. We further determined that EphrinB2 modulated the interaction between Stat3 and Smad3 and identified that the MAD homology 2 domain of Smad3 and the coil-coil domain and DNA-binding domain of Stat3 mediated the interaction. CONCLUSIONS This study uncovered a previously unrecognized profibrotic role of EphrinB2 in cardiac fibrosis, which is achieved through the interaction of Stat3 with TGF-β/Smad3 signaling, implying a promising therapeutic target in fibrotic diseases and heart failure.
Collapse
Affiliation(s)
- Sheng-An Su
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Du Yang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Yue Wu
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Yao Xie
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Wei Zhu
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Zhejun Cai
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Jian Shen
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Zurong Fu
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Yaping Wang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Liangliang Jia
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Yidong Wang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Jian-An Wang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.)
| | - Meixiang Xiang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (S.-a.S., D.Y., Y.W., W.Z., Z.C., J.S., Z.F., Y.W., L.J., Y.W., J.-a.W., M.X.); and Cardiovascular Division, King's College London BHF Center, United Kingdom (Y.X.).
| |
Collapse
|
19
|
Wang XY, Li SN, Zhu HF, Hu ZY, Zhong Y, Gu CS, Chen SY, Liu TF, Li ZG. RGC32 induces epithelial-mesenchymal transition by activating the Smad/Sip1 signaling pathway in CRC. Sci Rep 2017; 7:46078. [PMID: 28470188 PMCID: PMC5415763 DOI: 10.1038/srep46078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
Abstract
Response gene to complement 32 (RGC32) is a transcription factor that regulates the expression of multiple genes involved in cell growth, viability and tissue-specific differentiation. However, the role of RGC32 in tumorigenesis and tumor progression in colorectal cancer (CRC) has not been fully elucidated. Here, we showed that the expression of RGC32 was significantly up-regulated in human CRC tissues versus adjacent normal tissues. RGC32 expression was significantly correlated with invasive and aggressive characteristics of tumor cells, as well as poor survival of CRC patients. We also demonstrated that RGC32 overexpression promoted proliferation, migration and tumorigenic growth of human CRC cells in vitro and in vivo. Functionally, RGC32 facilitated epithelial-mesenchymal transition (EMT) in CRC via the Smad/Sip1 signaling pathway, as shown by decreasing E-cadherin expression and increasing vimentin expression. In conclusion, our findings suggested that overexpression of RGC32 facilitates EMT of CRC cells by activating Smad/Sip1 signaling.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Nan Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui-Fang Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Yan Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Zhong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chuan-Sha Gu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shi-You Chen
- Department of Physiology &Pharmacology, University of Georgia, Athens, GA, United States
| | - Teng-Fei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zu-Guo Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Chen G, Ishan M, Yang J, Kishigami S, Fukuda T, Scott G, Ray MK, Sun C, Chen SY, Komatsu Y, Mishina Y, Liu HX. Specific and spatial labeling of P0-Cre versus Wnt1-Cre in cranial neural crest in early mouse embryos. Genesis 2017; 55. [PMID: 28371069 DOI: 10.1002/dvg.23034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 01/02/2023]
Abstract
P0-Cre and Wnt1-Cre mouse lines have been widely used in combination with loxP-flanked mice to label and genetically modify neural crest (NC) cells and their derivatives. Wnt1-Cre has been regarded as the gold standard and there have been concerns about the specificity of P0-Cre because it is not clear about the timing and spatial distribution of the P0-Cre transgene in labeling NC cells at early embryonic stages. We re-visited P0-Cre and Wnt1-Cre models in the labeling of NC cells in early mouse embryos with a focus on cranial NC. We found that R26-lacZ Cre reporter responded to Cre activity more reliably than CAAG-lacZ Cre reporter during early embryogenesis. Cre immunosignals in P0-Cre and reporter (lacZ and RFP) activity in P0-Cre/R26-lacZ and P0-Cre/R26-RFP embryos was detected in the cranial NC and notochord regions in E8.0-9.5 (4-19 somites) embryos. P0-Cre transgene expression was observed in migrating NC cells and was more extensive in the forebrain and hindbrain but not apparent in the midbrain. Differences in the Cre distribution patterns of P0-Cre and Wnt1-Cre were profound in the midbrain and hindbrain regions, that is, extensive in the midbrain of Wnt1-Cre and in the hindbrain of P0-Cre embryos. The difference between P0-Cre and Wnt1-Cre in labeling cranial NC may provide a better explanation of the differential distributions of their NC derivatives and of the phenotypes caused by Cre-driven genetic modifications.
Collapse
Affiliation(s)
- Guiqian Chen
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, 30602
| | - Mohamed Ishan
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, 30602
| | - Jingwen Yang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Satoshi Kishigami
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709
| | - Tomokazu Fukuda
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709
| | - Greg Scott
- Knockout Core, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709
| | - Manas K Ray
- Knockout Core, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709
| | - Chenming Sun
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, 30602
| | - Shi-You Chen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, 30602
| | - Yoshihiro Komatsu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109.,Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709.,Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas, 77030
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109.,Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709.,Knockout Core, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
21
|
Rus V, Nguyen V, Tatomir A, Lees JR, Mekala AP, Boodhoo D, Tegla CA, Luzina IG, Antony PA, Cudrici CD, Badea TC, Rus HG. RGC-32 Promotes Th17 Cell Differentiation and Enhances Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2017; 198:3869-3877. [PMID: 28356385 DOI: 10.4049/jimmunol.1602158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023]
Abstract
Th17 cells play a critical role in autoimmune diseases, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Response gene to complement (RGC)-32 is a cell cycle regulator and a downstream target of TGF-β that mediates its profibrotic activity. In this study, we report that RGC-32 is preferentially upregulated during Th17 cell differentiation. RGC-32-/- mice have normal Th1, Th2, and regulatory T cell differentiation but show defective Th17 differentiation in vitro. The impaired Th17 differentiation is associated with defects in IFN regulatory factor 4, B cell-activating transcription factor, retinoic acid-related orphan receptor γt, and SMAD2 activation. In vivo, RGC-32-/- mice display an attenuated experimental autoimmune encephalomyelitis phenotype accompanied by decreased CNS inflammation and reduced frequency of IL-17- and GM-CSF-producing CD4+ T cells. Collectively, our results identify RGC-32 as a novel regulator of Th17 cell differentiation in vitro and in vivo and suggest that RGC-32 is a potential therapeutic target in multiple sclerosis and other Th17-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Violeta Rus
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201; .,Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201
| | - Vinh Nguyen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201.,Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201
| | - Alexandru Tatomir
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Armugam P Mekala
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Dallas Boodhoo
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Cosmin A Tegla
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Irina G Luzina
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201.,Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201
| | - Paul A Antony
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Cornelia D Cudrici
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Tudor C Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Horea G Rus
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
22
|
Shen YL, Liu HJ, Sun L, Niu XL, Kuang XY, Wang P, Hao S, Huang WY. Response gene to complement 32 regulates the G2/M phase checkpoint during renal tubular epithelial cell repair. Cell Mol Biol Lett 2016; 21:19. [PMID: 28536621 PMCID: PMC5415738 DOI: 10.1186/s11658-016-0021-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/10/2016] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this study was to evaluate the influence of RGC-32 (response gene to complement 32) on cell cycle progression in renal tubular epithelial cell injury. Methods NRK-52E cells with overexpressed or silenced RGC-32 were constructed via transient transfection with RGC-32 expression plasmid and RGC-32 siRNA plasmid, and the cell cycle distribution was determined. The expression levels of fibrosis factors, including smooth muscle action (α-SMA), fibronectin (FN) and E-cadherin, were assessed in cells with silenced RGC-32. Results The cells were injured via TNF-α treatment, and the injury was detectable by the enhanced expression of neutrophil gelatinase-associated lipocalin (NGAL). RGC-32 expression also increased significantly. The number of cells at G2/M phase increased dramatically in RGC-32 silenced cells, indicating that RGC-32 silencing induced G2/M arrest. In addition, after treatment with TNF-α, the NRK-52E cells with silenced RGC-32 showed significantly increased expression of α-SMA and FN, but decreased expression of E-cadherin. Conclusions The results of this study suggest that RGC-32 probably has an important impact on the repair process of renal tubular epithelial cells in vitro by regulating the G2/M phase checkpoint, cell fibrosis and cell adhesion. However, the exact mechanism needs to be further elucidated.
Collapse
Affiliation(s)
- Yun-Lin Shen
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Hua-Jie Liu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Lei Sun
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Xiao-Ling Niu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Xin-Yu Kuang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Ping Wang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Wen-Yan Huang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| |
Collapse
|
23
|
Sun L, Shen YL, Liu HJ, Hu YJ, Kang YL, Huang WY. The expression of response gene to complement 32 on renal ischemia reperfusion injury in rat. Ren Fail 2015; 38:276-81. [PMID: 26652201 DOI: 10.3109/0886022x.2015.1120118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To investigate the expression of response gene to complement 32 (RGC32) in rat with acute kidney injury (AKI) and to explore the role of RGC32 in renal injury and repair induced by ischemia reperfusion. Rats were randomly divided into two groups, including sham operation group (n = 48) and acute ischemia reperfusion injury (IRI) group (n = 48). Rats were sacrificed following reperfusion 2 h, 6 h, 24 h, 48 h, 72 h, 1 week (w), 2 w, and 4 w. The distribution and expression of RGC32 in renal tissue were observed by means of immunohistochemistry. The mean density of the images detected by Image-Pro Plus 6 was designated as the representative RGC32 expression levels. Meanwhile, RGC32 mRNA expression was measured by qPCR. RGC32 mainly expressed in cytoplasm of proximal tubular epithelial cells. However, RGC32 did not express in renal interstitium and vessels. The expression levels of RGC32 measured by immunohistochemistry at different reperfusion time were 0.0168 ± 0.0029, 0.0156 ± 0.0021, 0.0065 ± 0.0013, 0.0075 ± 0.0013, 0.0096 ± 0.0014, 0.0132 ± 0.0016, 0.0169 ± 0.0014, 0.0179 ± 0.0022, respectively. Compared with the sham group, the level of RGC32 expression in IRI group was significant lower at 24 h, 48 h, 72 h after IRI (p < 0.05). The expression levels of RGC32 mRNA at different reperfusion time measured by qPCR were corroborated the immunohistochemistry finding. The in vitro experiments show the expression of α-SMA and extracellular matrix expression increased signification when the RGC32 was silenced. Our data showed that the RGC32 expression in AKI rat decreased significantly reduces with different reperfusion time and performs a time-dependent manner. RGC32 may play an important role in the pathogenesis of AKI following IRI and repair in rat.
Collapse
Affiliation(s)
- Lei Sun
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yun-Lin Shen
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Hua-Jie Liu
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yu-Jie Hu
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yu-Lin Kang
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Wen-Yan Huang
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| |
Collapse
|
24
|
Cui XB, Luan JN, Chen SY. RGC-32 Deficiency Protects against Hepatic Steatosis by Reducing Lipogenesis. J Biol Chem 2015; 290:20387-95. [PMID: 26134570 DOI: 10.1074/jbc.m114.630186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 12/20/2022] Open
Abstract
Hepatic steatosis is associated with insulin resistance and metabolic syndrome because of increased hepatic triglyceride content. We have reported previously that deficiency of response gene to complement 32 (RGC-32) prevents high-fat diet (HFD)-induced obesity and insulin resistance in mice. This study was conducted to determine the role of RGC-32 in the regulation of hepatic steatosis. We observed that hepatic RGC-32 was induced dramatically by both HFD challenge and ethanol administration. RGC-32 knockout (RGC32(-/-)) mice were resistant to HFD- and ethanol-induced hepatic steatosis. The hepatic triglyceride content of RGC32(-/-) mice was decreased significantly compared with WT controls even under normal chow conditions. Moreover, RGC-32 deficiency decreased the expression of lipogenesis-related genes, sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase, and stearoyl-CoA desaturase 1 (SCD1). RGC-32 deficiency also decreased SCD1 activity, as indicated by decreased desaturase indices of the liver and serum. Mechanistically, insulin and ethanol induced RGC-32 expression through the NF-κB signaling pathway, which, in turn, increased SCD1 expression in a SREBP-1c-dependent manner. RGC-32 also promoted SREBP-1c expression through activating liver X receptor. These results demonstrate that RGC-32 contributes to the development of hepatic steatosis by facilitating de novo lipogenesis through activating liver X receptor, leading to the induction of SREBP-1c and its target genes. Therefore, RGC-32 may be a potential novel drug target for the treatment of hepatic steatosis and its related diseases.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| | - Jun-Na Luan
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and the Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei Medical University, Shiyan, 442000 Hubei, China
| |
Collapse
|
25
|
Cui XB, Luan JN, Ye J, Chen SY. RGC32 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice. J Endocrinol 2015; 224:127-37. [PMID: 25385871 PMCID: PMC4293277 DOI: 10.1530/joe-14-0548] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases and many other chronic diseases. Adipose tissue inflammation is a critical link between obesity and insulin resistance and type 2 diabetes and a contributor to disease susceptibility and progression. The objective of this study was to determine the role of response gene to complement 32 (RGC32) in the development of obesity and insulin resistance. WT and RGC32 knockout (Rgc32(-/-) (Rgcc)) mice were fed normal chow or high-fat diet (HFD) for 12 weeks. Metabolic, biochemical, and histologic analyses were performed. 3T3-L1 preadipocytes were used to study the role of RGC32 in adipocytes in vitro. Rgc32(-/-) mice fed with HFD exhibited a lean phenotype with reduced epididymal fat weight compared with WT controls. Blood biochemical analysis and insulin tolerance test showed that RGC32 deficiency improved HFD-induced dyslipidemia and insulin resistance. Although it had no effect on adipocyte differentiation, RGC32 deficiency ameliorated adipose tissue and systemic inflammation. Moreover, Rgc32(-/-) induced browning of adipose tissues and increased energy expenditure. Our data indicated that RGC32 plays an important role in diet-induced obesity and insulin resistance, and thus it may serve as a potential novel drug target for developing therapeutics to treat obesity and metabolic disorders.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- Department of Physiology and PharmacologyUniversity of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USARenmin HospitalHubei University of Medicine, Shiyan, Hubei 442000, ChinaAntioxidant and Gene Regulation LaboratoryPennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Jun-Na Luan
- Department of Physiology and PharmacologyUniversity of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USARenmin HospitalHubei University of Medicine, Shiyan, Hubei 442000, ChinaAntioxidant and Gene Regulation LaboratoryPennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Jianping Ye
- Department of Physiology and PharmacologyUniversity of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USARenmin HospitalHubei University of Medicine, Shiyan, Hubei 442000, ChinaAntioxidant and Gene Regulation LaboratoryPennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Shi-You Chen
- Department of Physiology and PharmacologyUniversity of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USARenmin HospitalHubei University of Medicine, Shiyan, Hubei 442000, ChinaAntioxidant and Gene Regulation LaboratoryPennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA Department of Physiology and PharmacologyUniversity of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USARenmin HospitalHubei University of Medicine, Shiyan, Hubei 442000, ChinaAntioxidant and Gene Regulation LaboratoryPennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
26
|
Guo S, Philbrick MJ, An X, Xu M, Wu J. Response gene to complement 32 (RGC-32) in endothelial cells is induced by glucose and helpful to maintain glucose homeostasis. Int J Clin Exp Med 2014; 7:2541-2549. [PMID: 25356107 PMCID: PMC4211757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
Endothelium dysfunction has been understood primarily in terms of abnormal vasomotor function, which plays an important role in the pathogenesis of diabetes and chronic diabetic complications. However, it has not been fully studied that the endothelium may regulate metabolism itself. The response gene to complement 32 (RGC-32) has be considered as an angiogenic inhibitor in the context of endothelial cells. We found that RGC-32 was induced by high fat diet in vivo and by glucose or insulin in endothelial cells, and then we set out to investigate the role of endothelial RGC-32 in metabolism. DNA array analysis and qPCR results showed that glutamine-fructose-6-phosphate aminotransferase [isomerizing] 1 (GFPT1), solute carrier family 2 (facilitated glucose transporter), member 12 (SLC2A12, GLUT12) and glucagon-like peptide 2 receptor (GLP2R) may be among possible glucose metabolism related downstream genes of RGC-32. Additionally, in the mice with endothelial specific over-expressed RGC-32, the disposal of carbohydrate was improved without changing insulin sensitivity when mice were faced with high fat diet challenges. Taken together, our findings suggest that RGC-32 in the endothelial cells regulates glucose metabolism related genes and subsequent helps to maintain the homeostasis of blood glucose.
Collapse
Affiliation(s)
- Shuzhen Guo
- School of Preclinical Medicine, Beijing University of Chinese MedicineBeijing, China
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Melissa J Philbrick
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Xiaojing An
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Ming Xu
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Jiaping Wu
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
27
|
Jin Lim M, Ahn J, Youn Yi J, Kim MH, Son AR, Lee SLO, Lim DS, Soo Kim S, Ae Kang M, Han Y, Song JY. Induction of galectin-1 by TGF-β1 accelerates fibrosis through enhancing nuclear retention of Smad2. Exp Cell Res 2014; 326:125-35. [DOI: 10.1016/j.yexcr.2014.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 05/26/2014] [Accepted: 06/04/2014] [Indexed: 01/13/2023]
|
28
|
Zhou TB, Ou C, Qin YH, Lei FY, Huang WF, Drummen GPC. LIM homeobox transcription factor 1B expression affects renal interstitial fibrosis and apoptosis in unilateral ureteral obstructed rats. Am J Physiol Renal Physiol 2014; 306:F1477-88. [PMID: 24785190 DOI: 10.1152/ajprenal.00600.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
LIM homeobox transcription factor 1B (LMX1B) is a transcription factor of the LIM homeodomain type and has been implicated in the development of diverse structures such as limbs, kidneys, eyes, and the brain. Furthermore, LMX1B has been implicated in nail-patella syndrome, which is predominantly characterized by malformation of limbs and nails, and in 30% of patients, nephropathy, including renal fibrosis, is observed. Since no reports were available that studied the link between LMX1B expression and renal interstitial fibrosis, we explored if LMX1B affects typical markers of fibrosis, e.g., extracellular matrix components, profibrotic factors, and apoptosis as the final detrimental consequence. We recently showed that LMX1B acts as a negative regulator of transforming growth factor-βl, collagen type III, fibronectin, cleaved caspase-3, and the cell apoptosis rate in a renal tubular epithelial cell system under hypoxic conditions. Here, we confirmed these results in unilateral ureteral obstructed rats. Furthermore, LMX1B was distinctly expressed throughout the glomerulus and tubule lining, including epithelial cells. Knockdown of LMX1B aggravated the expression of fibrosis markers, oxidative stress, and apoptosis compared with the already increased levels due to unilateral ureteral obstruction, whereas overexpression attenuated these effects. In conclusion, reduced LMX1B levels clearly represent a risk factor for renal fibrosis, whereas overexpression affords some level of protection. In general, LMX1B may be considered to be a negative regulator of the fibrosis index, transforming growth factor-βl, collagen type III, fibronectin, cleaved caspase-3, cell apoptosis, ROS, and malondialdehyde ( r = −0.756, −0.698, −0.921, −0.923, −0.843, −0.794, −0.883, and −0.825, all P < 0.01).
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Ou
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, NanNing, China
| | - Yuan-Han Qin
- Department of Pediatric Nephrology, The First Affiliated Hospital of GuangXi Medical University, NanNing, China; and
| | - Feng-Ying Lei
- Department of Pediatric Nephrology, The First Affiliated Hospital of GuangXi Medical University, NanNing, China; and
| | - Wei-Fang Huang
- Department of Pediatric Nephrology, The First Affiliated Hospital of GuangXi Medical University, NanNing, China; and
| | - Gregor P. C. Drummen
- Cellular Stress and Ageing Program, Bionanoscience and Bio-Imaging Program, Bio&Nano-Solutions, Düsseldorf, Germany
| |
Collapse
|
29
|
Zhou TB, Qin YH, Lei FY, Huang WF, Drummen GPC. Association of prohibitin-1 and 2 with oxidative stress in rats with renal interstitial fibrosis. Mol Biol Rep 2014; 41:3033-43. [PMID: 24595445 DOI: 10.1007/s11033-014-3162-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/13/2014] [Indexed: 12/13/2022]
Abstract
Prohibitins PHB1 and PHB2 are evolutionary conserved and pleiotropic proteins, which have been shown to be important factors in various cellular functions, including proliferation, tumour suppression, apoptosis, transcription, and mitochondrial protein folding. Recently, we demonstrated that down-regulation promoted renal interstitial fibrosis (RIF) in ureteral obstructed rats. Furthermore, the hypoxic conditions and oxidative stress have been implicated in obstruction-mediated renal disease. This study was performed to explore the association of PHBs with oxidative stress in a rat model of RIF. PHBs, the pro-fibrotic transforming growth factor-β1 (TGF-β1), and the extracellular matrix proteins collagen-IV (Col-IV) and fibronectin (FN) were evaluated, as were markers of oxidative stress [total reactive oxygen species (ROS), malondialdehyde (MDA)] and antioxidative capacity (superoxide dismutase, glutathione), and apoptosis. Our results showed a progressive increase in oxidative stress and concomitant decrease in antioxidants over a period of 4 weeks ureteral obstruction. Concomitantly, profibrotic components increased and PHB expression decreased. Overall, both PHBs were negatively correlated with the extent of observed fibrosis, TGF-β1, Col-IV, FN, ROS, MDA, and apoptosis.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China,
| | | | | | | | | |
Collapse
|
30
|
Zhou TB, Xu HL, Qin YH, Lei FY, Huang WF, Drummen GPC. LIM homeobox transcription factor 1B is associated with pro-fibrotic components and apoptosis in hypoxia/reoxygenation renal tubular epithelial cells. Apoptosis 2013; 19:594-602. [PMID: 24310985 DOI: 10.1007/s10495-013-0952-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Tabuchi M, Hayakawa S, Honda E, Ooshima K, Itoh T, Yoshida K, Park AM, Higashino H, Isemura M, Munakata H. Epigallocatechin-3-gallate suppresses transforming growth factor-beta signaling by interacting with the transforming growth factor-beta type II receptor. World J Exp Med 2013; 3:100-107. [DOI: 10.5493/wjem.v3.i4.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/12/2013] [Accepted: 09/18/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the (-)-epigallocatechin-3-gallate (EGCG) binding to transforming growth factor-β (TGF-β) type II receptor (TGFRII).
METHODS: The expression of α-smooth muscle actin (α-SMA) was used as a marker for fibrotic change in human lung fibroblast MRC-5 cells. The α-SMA expression level was determined by western blotting and immunohistological analysis. We examined whether the anti-fibrotic effects of EGCG on MRC-5 cells was dependent on antioxidant mechanism by using edaravone and N-acetylcysteine (NAC). The suppression effects of EGCG on Smad2/3 activation were studied by confocal fluorescence microscopy. The binding of EGCG to recombinant TGFRII protein was analyzed by immunoprecipitation and affinity chromatography.
RESULTS: When MRC-5 cells were treated with TGF-β, EGCG decreased the expression of α-SMA in a dose dependent manner, whereas catechin did not influence the α-SMA expression in the cells. Except for EGCG, antioxidant compounds (e.g., edaravone and NAC) had no effects on the TGF-β-induced α-SMA expression. Nuclear localization of phosphorylated Smad2/3 was observed after TGF-β treatment; however, EGCG treatment attenuated the nuclear transportation of Smad2/3 in the presence or absence of TGF-β. After a TGFRII expression vector was introduced into COS-7 cells, cell lysates were untreated or treated with EGCG or catechin. The immunoprecipitation experiments using the lysates showed that EGCG dose-dependently bound to TGFRIIand that catechin did not at all. Affinity chromatography study indicated that EGCG would bind to TGFRII.
CONCLUSION: Our results demonstrate that EGCG interacts with TGFRII and inhibits the expression of α-SMA via the TGF-β-Smad2/3 pathway in human lung fibroblast MRC-5 cells.
Collapse
|
32
|
Zhou TB, Qin YH, Lei FY, Huang WF, Drummen GPC. Prohibitin attenuates oxidative stress and extracellular matrix accumulation in renal interstitial fibrosis disease. PLoS One 2013; 8:e77187. [PMID: 24204768 PMCID: PMC3808389 DOI: 10.1371/journal.pone.0077187] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/02/2013] [Indexed: 01/11/2023] Open
Abstract
Prohibitin is an evolutionary conserved and pleiotropic protein that has been implicated in various cellular functions, including proliferation, tumour suppression, apoptosis, transcription, and mitochondrial protein folding. Both prohibitin over- and under-expression have been implicated in various diseases and cell types. We recently demonstrated that prohibitin down-regulation results in increased renal interstitial fibrosis (RIF). Here we investigated the role of oxidative stress and prohibitin expression in RIF in unilateral ureteral obstructed rats. Lentivirus-based delivery vectors were used to knockdown or over-express prohibitin. Our results show that increased prohibitin expression was negatively correlated with the RIF index, reactive oxygen species, malon dialdehyde, transforming growth factor β1, collagen IV, fibronectin, and cell apoptosis index. In conclusion, we postulate that prohibitin acts as a positive regulator of mechanisms that counteract oxidative stress and extracellular matrix accumulation and therefore has an antioxidative effect.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Pediatric Nephrology, the First Affiliated Hospital of GuangXi Medical University, NanNing, China ; Department of Nephrology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
33
|
Xie WB, Li Z, Shi N, Guo X, Tang J, Ju W, Han J, Liu T, Bottinger EP, Chai Y, Jose PA, Chen SY. Smad2 and myocardin-related transcription factor B cooperatively regulate vascular smooth muscle differentiation from neural crest cells. Circ Res 2013; 113:e76-86. [PMID: 23817199 DOI: 10.1161/circresaha.113.301921] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Vascular smooth muscle cell (VSMC) differentiation from neural crest cells (NCCs) is critical for cardiovascular development, but the mechanisms remain largely unknown. OBJECTIVE Transforming growth factor-β (TGF-β) function in VSMC differentiation from NCCs is controversial. Therefore, we determined the role and mechanism of a TGF-β downstream signaling intermediate Smad2 in NCC differentiation to VSMCs. METHODS AND RESULTS By using Cre/loxP system, we generated a NCC tissue-specific Smad2 knockout mouse model and found that Smad2 deletion resulted in defective NCC differentiation to VSMCs in aortic arch arteries during embryonic development and caused vessel wall abnormality in adult carotid arteries where the VSMCs are derived from NCCs. The abnormalities included 1 layer of VSMCs missing in the media of the arteries with distorted and thinner elastic lamina, leading to a thinner vessel wall compared with wild-type vessel. Mechanistically, Smad2 interacted with myocardin-related transcription factor B (MRTFB) to regulate VSMC marker gene expression. Smad2 was required for TGF-β-induced MRTFB nuclear translocation, whereas MRTFB enhanced Smad2 binding to VSMC marker promoter. Furthermore, we found that Smad2, but not Smad3, was a progenitor-specific transcription factor mediating TGF-β-induced VSMC differentiation from NCCs. Smad2 also seemed to be involved in determining the physiological differences between NCC-derived and mesoderm-derived VSMCs. CONCLUSIONS Smad2 is an important factor in regulating progenitor-specific VSMC development and physiological differences between NCC-derived and mesoderm-derived VSMCs.
Collapse
Affiliation(s)
- Wei-Bing Xie
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zuguo Li
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ning Shi
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602
| | - Xia Guo
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602
| | - Junming Tang
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Jun Han
- Center for Craniofacial Molecular Biology, University of Southern California Ostrow School of Dentistry
| | - Tengfei Liu
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Erwin P Bottinger
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California Ostrow School of Dentistry
| | - Pedro A Jose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602
| |
Collapse
|
34
|
Cui XB, Guo X, Chen SY. Response gene to complement 32 deficiency causes impaired placental angiogenesis in mice. Cardiovasc Res 2013; 99:632-9. [PMID: 23695833 DOI: 10.1093/cvr/cvt121] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIMS The objectives of this study are to determine the role of response gene to complement 32 (RGC-32) in the placental angiogenesis during pregnancy and explore the underlying mechanisms. METHODS AND RESULTS RGC-32-deficient (RGC32(-/-)) mice were generated from C57BL/6 embryonic stem cells with deletion of exon 2 and 3 of the RGC-32 gene. Most of the RGC32(-/-) mice can survive. However, their body sizes were much smaller compared with their wild-type littermates when they were born. By examining the embryo development and placentas at 16.5 days post-coitum, we found that RGC32(-/-) embryos and foetal placentas were significantly smaller than the wild-type. Further analysis showed that the labyrinth zone of RGC32(-/-) placenta was smaller with defective angiogenesis. Mechanistically, vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and placental growth factor (PlGF) were significantly down-regulated in RGC32(-/-) placentas, suggesting that VEGFR2 and PlGF may mediate RGC-32 function in placental angiogenesis. Indeed, knockdown of RGC-32 by shRNA inhibited VEGF-induced endothelial cell proliferation, migration, and tube formation while blocking VEGFR2 expression. RGC-32 appeared to regulate VEGFR2 expression via activation of NF-kB. Moreover, RGC-32 regulated trophoblasts proliferation via control of PlGF expression. CONCLUSION Absence of RGC-32 caused foetal growth restriction through interrupting the placental angiogenesis, which was due to the decrease in VEGFR2 expression through the NF-kB-dependent pathway in endothelial cells and PlGF expression in trophoblasts.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- Department of Physiology and Pharmacology, University of Georgia, Athens, 30602, USA
| | | | | |
Collapse
|
35
|
Aller MA, Blanco-Rivero J, Arias JI, Balfagon G, Arias J. The wound-healing response and upregulated embryonic mechanisms: brothers-in-arms forever. Exp Dermatol 2012; 21:497-503. [PMID: 22716244 DOI: 10.1111/j.1600-0625.2012.01525.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cutaneous wound-healing reaction occurs in overlapping but inter-related phases, which ultimately result in fibrosis. The pathophysiological mechanisms involved in fibrotic diseases, including organ-related and even systemic diseases, such as systemic sclerosis, could represent the successive systemic upregulation of extraembryonic-like phenotypes, that is, amniotic and vitelline phenotypes. These two extraembryonic-like phenotypes act on the injured tissue to induce a process similar to gastrulation, which occurs during the early phases of embryo development. The amniotic-like phenotype plays a leading role in the development of neurogenic responses with significant hydroelectrolytic alterations that essentially represent the development of open microcirculation within the injured tissue. In turn, through the overlapping expression of a vitelline-like phenotype, a bone marrow-related response is produced. Interstitial infiltration by molecular and cellular mediators contributed by amniotic- and vitelline-like functions provides the functional and metabolic autonomy needed for inducing new tissue formation through mechanisms similar to those that act in gastrulation during the early phases of embryonic development. Thus, while a new tissue is formed, it quickly evolves into fibrotic tissue because of premature senescence. Mechanisms related to extraembryonic-like functions have been suggested in the following physiological and pathological processes: embryonic development; wound-healing reactions occurring during adult life; and senescence. The existence of this sort of basic self-organizing fractal-like functional pattern is an essential characteristic of our way of life.
Collapse
Affiliation(s)
- María-Angeles Aller
- Department of Surgery I, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|