1
|
Potential role for protein kinase D inhibitors in prostate cancer. J Mol Med (Berl) 2023; 101:341-349. [PMID: 36843036 DOI: 10.1007/s00109-023-02298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/28/2023]
Abstract
Protein kinase D (PrKD), a novel serine-threonine kinase, belongs to a family of calcium calmodulin kinases that consists of three isoforms: PrKD1, PrKD2, and PrKD3. The PrKD isoforms play a major role in pathologic processes such as cardiac hypertrophy and cancer progression. The charter member of the family, PrKD1, is the most extensively studied isoform. PrKD play a dual role as both a proto-oncogene and a tumor suppressor depending on the cellular context. The duplicity of PrKD can be highlighted in advanced prostate cancer (PCa) where expression of PrKD1 is suppressed whereas the expressions of PrKD2 and PrKD3 are upregulated to aid in cancer progression. As understanding of the PrKD signaling pathways has been better elucidated, interest has been garnered in the development of PrKD inhibitors. The broad-spectrum kinase inhibitor staurosporine acts as a potent PrKD inhibitor and is the most well-known; however, several other novel and more specific PrKD inhibitors have been developed over the last two decades. While there is tremendous potential for PrKD inhibitors to be used in a clinical setting, none has progressed beyond preclinical trials due to a variety of challenges. In this review, we focus on PrKD signaling in PCa and the potential role of PrKD inhibitors therein, and explore the possible clinical outcomes based on known function and expression of PrKD isoforms at different stages of PCa.
Collapse
|
2
|
Varga A, Nguyen MT, Pénzes K, Bátai B, Gyulavári P, Gurbi B, Murányi J, Csermely P, Csala M, Vántus T, Sőti C. Protein Kinase D3 (PKD3) Requires Hsp90 for Stability and Promotion of Prostate Cancer Cell Migration. Cells 2023; 12:cells12020212. [PMID: 36672148 PMCID: PMC9857065 DOI: 10.3390/cells12020212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer metastasis is a significant cause of mortality in men. PKD3 facilitates tumor growth and metastasis, however, its regulation is largely unclear. The Hsp90 chaperone stabilizes an array of signaling client proteins, thus is an enabler of the malignant phenotype. Here, using different prostate cancer cell lines, we report that Hsp90 ensures PKD3 conformational stability and function to promote cancer cell migration. We found that pharmacological inhibition of either PKDs or Hsp90 dose-dependently abrogated the migration of DU145 and PC3 metastatic prostate cancer cells. Hsp90 inhibition by ganetespib caused a dose-dependent depletion of PKD2, PKD3, and Akt, which are all involved in metastasis formation. Proximity ligation assay and immunoprecipitation experiments demonstrated a physical interaction between Hsp90 and PKD3. Inhibition of the chaperone-client interaction induced misfolding and proteasomal degradation of PKD3. PKD3 siRNA combined with ganetespib treatment demonstrated a specific involvement of PKD3 in DU145 and PC3 cell migration, which was entirely dependent on Hsp90. Finally, ectopic expression of PKD3 enhanced migration of non-metastatic LNCaP cells in an Hsp90-dependent manner. Altogether, our findings identify PKD3 as an Hsp90 client and uncover a potential mechanism of Hsp90 in prostate cancer metastasis. The molecular interaction revealed here may regulate other biological and pathological functions.
Collapse
Affiliation(s)
- Attila Varga
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, 1094 Budapest, Hungary
- Correspondence: (A.V.); (C.S.)
| | - Minh Tu Nguyen
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Kinga Pénzes
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, 1094 Budapest, Hungary
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| | - Bence Bátai
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, 1094 Budapest, Hungary
- HCEMM-SU Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Pál Gyulavári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, 1094 Budapest, Hungary
- IQVIA Hungary, 1117 Budapest, Hungary
| | - Bianka Gurbi
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, 1094 Budapest, Hungary
| | - József Murányi
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, 1094 Budapest, Hungary
| | - Péter Csermely
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, 1094 Budapest, Hungary
| | - Tibor Vántus
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
- Correspondence: (A.V.); (C.S.)
| |
Collapse
|
3
|
Barbarics B, Eildermann K, Kaderali L, Cyganek L, Plessmann U, Bodemeyer J, Paul T, Ströbel P, Urlaub H, Tirilomis T, Lenz C, Bohnenberger H. Proteomic mapping of atrial and ventricular heart tissue in patients with aortic valve stenosis. Sci Rep 2021; 11:24389. [PMID: 34937869 PMCID: PMC8695579 DOI: 10.1038/s41598-021-03907-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Aortic valve stenosis (AVS) is one of the most common valve diseases in the world. However, detailed biological understanding of the myocardial changes in AVS hearts on the proteome level is still lacking. Proteomic studies using high-resolution mass spectrometry of formalin-fixed and paraffin-embedded (FFPE) human myocardial tissue of AVS-patients are very rare due to methodical issues. To overcome these issues this study used high resolution mass spectrometry in combination with a stem cell-derived cardiac specific protein quantification-standard to profile the proteomes of 17 atrial and 29 left ventricular myocardial FFPE human myocardial tissue samples from AVS-patients. In our proteomic analysis we quantified a median of 1980 (range 1495–2281) proteins in every single sample and identified significant upregulation of 239 proteins in atrial and 54 proteins in ventricular myocardium. We compared the proteins with published data. Well studied proteins reflect disease-related changes in AVS, such as cardiac hypertrophy, development of fibrosis, impairment of mitochondria and downregulated blood supply. In summary, we provide both a workflow for quantitative proteomics of human FFPE heart tissue and a comprehensive proteomic resource for AVS induced changes in the human myocardium.
Collapse
|
4
|
Zhang X, Connelly J, Chao Y, Wang QJ. Multifaceted Functions of Protein Kinase D in Pathological Processes and Human Diseases. Biomolecules 2021; 11:biom11030483. [PMID: 33807058 PMCID: PMC8005150 DOI: 10.3390/biom11030483] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Protein kinase D (PKD) is a family of serine/threonine protein kinases operating in the signaling network of the second messenger diacylglycerol. The three family members, PKD1, PKD2, and PKD3, are activated by a variety of extracellular stimuli and transduce cell signals affecting many aspects of basic cell functions including secretion, migration, proliferation, survival, angiogenesis, and immune response. Dysregulation of PKD in expression and activity has been detected in many human diseases. Further loss- or gain-of-function studies at cellular levels and in animal models provide strong support for crucial roles of PKD in many pathological conditions, including cancer, metabolic disorders, cardiac diseases, central nervous system disorders, inflammatory diseases, and immune dysregulation. Complexity in enzymatic regulation and function is evident as PKD isoforms may act differently in different biological systems and disease models, and understanding the molecular mechanisms underlying these differences and their biological significance in vivo is essential for the development of safer and more effective PKD-targeted therapies. In this review, to provide a global understanding of PKD function, we present an overview of the PKD family in several major human diseases with more focus on cancer-associated biological processes.
Collapse
|
5
|
Giardoglou P, Bournele D, Park M, Kanoni S, Dedoussis GV, Steinberg SF, Deloukas P, Beis D. A zebrafish forward genetic screen identifies an indispensable threonine residue in the kinase domain of PRKD2. Biol Open 2021; 10:bio.058542. [PMID: 33597201 PMCID: PMC7969590 DOI: 10.1242/bio.058542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein kinase D2 belongs to a family of evolutionarily conserved enzymes regulating several biological processes. In a forward genetic screen for zebrafish cardiovascular mutants, we identified a mutation in the prkd2 gene. Homozygous mutant embryos develop as wild type up to 36 h post-fertilization and initiate blood flow, but fail to maintain it, resulting in a complete outflow tract stenosis. We identified a mutation in the prkd2 gene that results in a T757A substitution at a conserved residue in the kinase domain activation loop (T714A in human PRKD2) that disrupts catalytic activity and drives this phenotype. Homozygous mutants survive without circulation for several days, allowing us to study the extreme phenotype of no intracardiac flow, in the background of a functional heart. We show dysregulation of atrioventricular and outflow tract markers in the mutants and higher sensitivity to the Calcineurin inhibitor, Cyclosporin A. Finally we identify TBX5 as a potential regulator of PRKD2. Our results implicate PRKD2 catalytic activity in outflow tract development in zebrafish. This article has an associated First Person interview with the first author of the paper. Summary: We identified, through a zebrafish forward screen, an evolutionarily conserved residue in the catalytic domain of protein kinase D2 and its homologues.
Collapse
Affiliation(s)
- Panagiota Giardoglou
- Zebrafish Disease Model lab, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece.,Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens 176 71, Greece
| | - Despina Bournele
- Zebrafish Disease Model lab, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece
| | - Misun Park
- Department of Pharmacology, Columbia University, New York 100 27, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Clinical Pharmacology Centre, Queen Mary University of London, London, EC1M 6BQ, UK
| | - George V Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens 176 71, Greece
| | - Susan F Steinberg
- Department of Pharmacology, Columbia University, New York 100 27, USA
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Clinical Pharmacology Centre, Queen Mary University of London, London, EC1M 6BQ, UK.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah 222 52, Saudi Arabia
| | - Dimitris Beis
- Zebrafish Disease Model lab, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece
| |
Collapse
|
6
|
Pablo Tortola C, Fielitz B, Li Y, Rüdebusch J, Luft FC, Fielitz J. Activation of Tripartite Motif Containing 63 Expression by Transcription Factor EB and Transcription Factor Binding to Immunoglobulin Heavy Chain Enhancer 3 Is Regulated by Protein Kinase D and Class IIa Histone Deacetylases. Front Physiol 2021; 11:550506. [PMID: 33519497 PMCID: PMC7838639 DOI: 10.3389/fphys.2020.550506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/09/2020] [Indexed: 01/07/2023] Open
Abstract
Rationale The ubiquitin–proteasome system (UPS) is responsible for skeletal muscle atrophy. We showed earlier that the transcription factor EB (TFEB) plays a role by increasing E3 ubiquitin ligase muscle really interesting new gene-finger 1(MuRF1)/tripartite motif-containing 63 (TRIM63) expression. MuRF 1 ubiquitinates structural proteins and mediates their UPS-dependent degradation. We now investigated how TFEB-mediated TRIM63 expression is regulated. Objective Because protein kinase D1 (PKD1), histone deacetylase 5 (HDAC5), and TFEB belong to respective families with close structural, regulatory, and functional properties, we hypothesized that these families comprise a network regulating TRIM63 expression. Methods and Results We found that TFEB and transcription factor for immunoglobulin heavy-chain enhancer 3 (TFE3) activate TRIM63 expression. The class IIa HDACs HDAC4, HDAC5, and HDAC7 inhibited this activity. Furthermore, we could map the HDAC5 and TFE3 physical interaction. PKD1, PKD2, and PKD3 reversed the inhibitory effect of all tested class IIa HDACs toward TFEB and TFE3. PKD1 mediated nuclear export of all HDACs and lifted TFEB and TFE3 repression. We also mapped the PKD2 and HDAC5 interaction. We found that the inhibitory effect of PKD1 and PKD2 toward HDAC4, HDAC5, and HDAC7 was mediated by their phosphorylation and 14-3-3 mediated nuclear export. Conclusion TFEB and TFE3 activate TRIM63 expression. Both transcription factors are controlled by HDAC4, HDAC5, HDAC7, and all PKD-family members. We propose that the multilevel PKD/HDAC/TFEB/TFE3 network tightly controls TRIM63 expression.
Collapse
Affiliation(s)
- Cristina Pablo Tortola
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Fielitz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Yi Li
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Rüdebusch
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Pazó-Sayós L, González MC, Quintana-Villamandos B. Inhibition of the NFATc4/ERK/AKT Pathway and Improvement of Thiol-Specific Oxidative Stress by Dronedarone Possibly Secondary to the Reduction of Blood Pressure in an Animal Model of Ventricular Hypertrophy. Front Physiol 2020; 11:967. [PMID: 32982770 PMCID: PMC7479650 DOI: 10.3389/fphys.2020.00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/16/2020] [Indexed: 12/07/2022] Open
Abstract
Untreated chronic hypertension causes left ventricular hypertrophy, which is related to the occurrence of atrial fibrillation. Dronedarone is an antiarrhythmic agent recently approved for atrial fibrillation. Our group previously demonstrated that dronedarone produced an early regression of left ventricular hypertrophy after 14 days of treatment in an experimental study. In this study, we analyze the possible mechanisms responsible for this effect. Ten-month-old male spontaneously hypertensive rats (SHRs, n = 16) were randomly divided into therapy groups: SHR-D, which received dronedarone, and hypertensive controls, SHR, which received saline. Ten-month-old male Wistar Kyoto rats (WKY, n = 8), which also received a saline solution, were selected as normotensive controls. After 14 days of treatment, echocardiographic measurements of the left ventricle were performed, blood samples were collected for thiol-specific oxidative stress analysis, and the left ventricles were processed for western blot analysis. Dronedarone significantly lowered the left ventricular mass index and relative wall thickness compared with the SHR control group, and no differences were observed between the SHR-D group and the WKY rats. Interestingly, the SHR-D group showed significantly decreased levels of nuclear factor of activated T cells 4 (p-NFATc4), extracellular-signal-regulated kinase 1/2 (p-ERK1/2), and protein kinase B (p-AKT) compared with the hypertensive controls without statistical differences when compared with the WKY rats. Moreover, the SHR control group showed elevated thiolated protein levels and protein thiolation index (PTI) compared with the WKY rats. After treatment with dronedarone, both parameters decreased with respect to the SHR control group until reaching similar levels to the WKY rats. Our study suggests that dronedarone produces inhibition of the NFATc4/ERK/AKT pathway and improvement of thiol-specific oxidative stress possibly secondary to the reduction of blood pressure in an animal model of ventricular hypertrophy.
Collapse
Affiliation(s)
- Laia Pazó-Sayós
- Department of Anesthesiology and Intensive Care, Hospital Gregorio Marañón, Madrid, Spain
| | | | - Begoña Quintana-Villamandos
- Department of Anesthesiology and Intensive Care, Hospital Gregorio Marañón, Madrid, Spain.,Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
8
|
Neshati Z, Schalij MJ, de Vries AAF. The proarrhythmic features of pathological cardiac hypertrophy in neonatal rat ventricular cardiomyocyte cultures. J Appl Physiol (1985) 2020; 128:545-553. [PMID: 31999526 DOI: 10.1152/japplphysiol.00420.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Different factors may trigger arrhythmias in diseased hearts, including fibrosis, cardiomyocyte hypertrophy, hypoxia, and inflammation. This makes it difficult to establish the relative contribution of each of them to the occurrence of arrhythmias. Accordingly, in this study, we used an in vitro model of pathological cardiac hypertrophy (PCH) to investigate its proarrhythmic features and the underlying mechanisms independent of fibrosis or other PCH-related processes. Neonatal rat ventricular cardiomyocyte (nr-vCMC) monolayers were treated with phorbol 12-myristate 13-acetate (PMA) to create an in vitro model of PCH. The electrophysiological properties of PMA-treated and control monolayers were analyzed by optical mapping at day 9 of culture. PMA treatment led to a significant increase in cell size and total protein content. It also caused a reduction in sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 level (32%) and an increase in natriuretic peptide A (42%) and α1-skeletal muscle actin (34%) levels, indicating that the hypertrophic response induced by PMA was, indeed, pathological in nature. PMA-treated monolayers showed increases in action potential duration (APD) and APD dispersion, and a decrease in conduction velocity (CV; APD30 of 306 ± 39 vs. 148 ± 18 ms, APD30 dispersion of 85 ± 19 vs. 22 ± 7 and CV of 10 ± 4 vs. 21 ± 2 cm/s in controls). Upon local 1-Hz stimulation, 53.6% of the PMA-treated cultures showed focal tachyarrhythmias based on triggered activity (n = 82), while the control group showed 4.3% tachyarrhythmias (n = 70). PMA-treated nr-vCMC cultures may, thus, represent a well-controllable in vitro model for testing new therapeutic interventions targeting specific aspects of hypertrophy-associated arrhythmias.NEW & NOTEWORTHY Phorbol 12-myristate 13-acetate (PMA) treatment of neonatal rat ventricular cardiomyocytes (nr-vCMCs) led to induction of many significant features of pathological cardiac hypertrophy (PCH), including action potential duration prolongation and dispersion, which provided enough time and depolarizing force for formation of early afterdepolarization (EAD)-induced focal tachyarrhythmias. PMA-treated nr-vCMCs represent a well-controllable in vitro model, which mostly resembles to moderate left ventricular hypertrophy (LVH) rather than severe LVH, in which generation of a reentry is the putative mechanism of its arrhythmias.
Collapse
Affiliation(s)
- Zeinab Neshati
- Zeinab Neshati, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J Schalij
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, The Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Mayer AE, Löffler MC, Loza Valdés AE, Schmitz W, El-Merahbi R, Viera JT, Erk M, Zhang T, Braun U, Heikenwalder M, Leitges M, Schulze A, Sumara G. The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling. Sci Signal 2019; 12:12/593/eaav9150. [PMID: 31387939 DOI: 10.1126/scisignal.aav9150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletion of PKD3 in mice improved insulin-induced glucose tolerance. However, increased insulin signaling in the absence of PKD3 promoted lipogenesis mediated by SREBP (sterol regulatory element-binding protein) and consequently increased triglyceride and cholesterol content in the livers of PKD3-deficient mice fed a high-fat diet. Conversely, hepatic-specific overexpression of a constitutively active PKD3 mutant suppressed insulin-induced signaling and caused insulin resistance. Our results indicate that PKD3 provides feedback on hepatic lipid production and suppresses insulin signaling. Therefore, manipulation of PKD3 activity could be used to decrease hepatic lipid content or improve hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Alexander E Mayer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Mona C Löffler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Angel E Loza Valdés
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Rabih El-Merahbi
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Jonathan Trujillo Viera
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Manuela Erk
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Thianzhou Zhang
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Ursula Braun
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Leitges
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Almut Schulze
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany. .,Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland
| |
Collapse
|
10
|
Khalilimeybodi A, Daneshmehr A, Sharif-Kashani B. Investigating β-adrenergic-induced cardiac hypertrophy through computational approach: classical and non-classical pathways. J Physiol Sci 2018; 68:503-520. [PMID: 28674776 PMCID: PMC10717155 DOI: 10.1007/s12576-017-0557-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/27/2017] [Indexed: 01/05/2023]
Abstract
The chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of β-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of β-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of β2 receptors out of total cardiac β-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of β-adrenergic-induced hypertrophy is noticeable and variations in β1/β2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3β deactivation after β-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in β-adrenergic signaling.
Collapse
Affiliation(s)
- Ali Khalilimeybodi
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Daneshmehr
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Babak Sharif-Kashani
- Department of Cardiology, Massih-Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Simsek Papur O, Sun A, Glatz JFC, Luiken JJFP, Nabben M. Acute and Chronic Effects of Protein Kinase-D Signaling on Cardiac Energy Metabolism. Front Cardiovasc Med 2018; 5:65. [PMID: 29930945 PMCID: PMC5999788 DOI: 10.3389/fcvm.2018.00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/17/2018] [Indexed: 02/05/2023] Open
Abstract
Protein kinase-D (PKD) is increasingly recognized as a key regulatory signaling hub in cardiac glucose uptake and also a major player in the development of hypertrophy. Glucose is one of the predominant energy substrates for the heart to support contraction. However, a cardiac substrate switch toward glucose over-usage is associated with the development of cardiac hypertrophy. Hence, regulation of PKD activity must be strictly coordinated. This review provides mechanistic insights into the acute and chronic regulatory functions of PKD signaling in the healthy and hypertrophied heart. First an overview of the activation pathways of PKD1, the most abundant isoform in the heart, is provided. Then the various regulatory roles of the PKD isoforms in the heart in relation to cardiac glucose and fatty acid metabolism, contraction, morphology, function, and the development of cardiac hypertrophy are described. Finally, these findings are integrated and the possibility of targeting this kinase as a novel strategy to combat cardiac diseases is discussed.
Collapse
Affiliation(s)
- Ozlenen Simsek Papur
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Medicine, Institute of Health Science, Dokuz Eylul University, Izmir, Turkey
| | - Aomin Sun
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
12
|
Short-Term Treatment with Esmolol Reverses Left Ventricular Hypertrophy in Adult Spontaneously Hypertensive Rats via Inhibition of Akt/NF- κB and NFATc4. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2691014. [PMID: 29670896 PMCID: PMC5835291 DOI: 10.1155/2018/2691014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 11/20/2022]
Abstract
Our group has previously demonstrated that short-term treatment with esmolol reduces left ventricular hypertrophy (LVH) in spontaneously hypertensive rats (SHRs). The present study aimed to assess the molecular mechanisms related to this effect. Fourteen-month-old male SHRs were treated intravenously with saline as vehicle (SHR) or esmolol (SHR-E) (300 μg/kg/min). Age-matched vehicle-treated male Wistar-Kyoto (WKY) rats served as controls. After 48 hours of treatment, the hearts were harvested and left ventricular tissue was separated and processed for Western blot analysis to determine the levels of Akt, NF-κB, NFATc4, Creb1, Serca2a, Erk1/2, and Sapk/Jnk. Biomarkers of oxidative stress, such as catalase, protein carbonyls, total thiols, and total antioxidant capacity were evaluated. Esmolol reversed the levels of p-NFATc4, p-Akt, and p-NF-κB in SHRs to the phospholevels of these proteins in WKY rats without modifying p-Erk1/2, p-Sapk/Jnk, p-Creb1, or Serca2a in SHR. Compared with SHR, esmolol increased catalase activity and reduced protein carbonyls without modifying total thiols or total antioxidant capacity. Short-term treatment with esmolol reverses LVH in aged SHRs by downregulation of Akt/NF-κB and NFATc4 activity. Esmolol treatment also increases catalase activity and reduces oxidative stress in SHRs with LVH.
Collapse
|
13
|
Peter AK, Bjerke MA, Leinwand LA. Biology of the cardiac myocyte in heart disease. Mol Biol Cell 2017; 27:2149-60. [PMID: 27418636 PMCID: PMC4945135 DOI: 10.1091/mbc.e16-01-0038] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophy is a major risk factor for heart failure, and it has been shown that this increase in size occurs at the level of the cardiac myocyte. Cardiac myocyte model systems have been developed to study this process. Here we focus on cell culture tools, including primary cells, immortalized cell lines, human stem cells, and their morphological and molecular responses to pathological stimuli. For each cell type, we discuss commonly used methods for inducing hypertrophy, markers of pathological hypertrophy, advantages for each model, and disadvantages to using a particular cell type over other in vitro model systems. Where applicable, we discuss how each system is used to model human disease and how these models may be applicable to current drug therapeutic strategies. Finally, we discuss the increasing use of biomaterials to mimic healthy and diseased hearts and how these matrices can contribute to in vitro model systems of cardiac cell biology.
Collapse
Affiliation(s)
- Angela K Peter
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Maureen A Bjerke
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Leslie A Leinwand
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
14
|
Sasi SP, Yan X, Zuriaga-Herrero M, Gee H, Lee J, Mehrzad R, Song J, Onufrak J, Morgan J, Enderling H, Walsh K, Kishore R, Goukassian DA. Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart. Radiat Res 2017; 188:191-203. [PMID: 28613990 DOI: 10.1667/rr14667.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Deep-space travel presents risks of exposure to ionizing radiation composed of a spectrum of low-fluence protons (1H) and high-charge and energy (HZE) iron nuclei (e.g., 56Fe). When exposed to galactic cosmic rays, each cell in the body may be traversed by 1H every 3-4 days and HZE nuclei every 3-4 months. The effects of low-dose sequential fractionated 1H or HZE on the heart are unknown. In this animal model of simulated ionizing radiation, middle-aged (8-9 months old) male C57BL/6NT mice were exposed to radiation as follows: group 1, nonirradiated controls; group 2, three fractionated doses of 17 cGy 1H every other day (1H × 3); group 3, three fractionated doses of 17 cGy 1H every other day followed by a single low dose of 15 cGy 56Fe two days after the final 1H dose (1H × 3 + 56Fe); and group 4, a single low dose of 15 cGy 56Fe followed (after 2 days) by three fractionated doses of 17 cGy 1H every other day (56Fe + 1H × 3). A subgroup of mice from each group underwent myocardial infarction (MI) surgery at 28 days postirradiation. Cardiac structure and function were assessed in all animals at days 7, 14 and 28 after MI surgery was performed. Compared to the control animals, the treatments that groups 2 and 3 received did not induce negative effects on cardiac function or structure. However, compared to all other groups, the animals in group 4, showed depressed left ventricular (LV) functions at 1 month with concomitant enhancement in cardiac fibrosis and induction of cardiac hypertrophy signaling at 3 months. In the irradiated and MI surgery groups compared to the control group, the treatments received by groups 2 and 4 did not induce negative effects at 1 month postirradiation and MI surgery. However, in group 3 after MI surgery, there was a 24% increase in mortality, significant decreases in LV function and a 35% increase in post-infarction size. These changes were associated with significant decreases in the angiogenic and cell survival signaling pathways. These data suggest that fractionated doses of radiation induces cellular and molecular changes that result in depressed heart functions both under basal conditions and particularly after myocardial infarction.
Collapse
Affiliation(s)
- Sharath P Sasi
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Xinhua Yan
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts.,b Tufts University School of Medicine, Boston, Massachusetts
| | - Marian Zuriaga-Herrero
- f Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Hannah Gee
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Juyong Lee
- c Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut
| | - Raman Mehrzad
- d Steward Carney Hospital, Dorchester, Massachusetts
| | - Jin Song
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Jillian Onufrak
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - James Morgan
- b Tufts University School of Medicine, Boston, Massachusetts.,d Steward Carney Hospital, Dorchester, Massachusetts
| | - Heiko Enderling
- e Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Walsh
- f Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Raj Kishore
- 7 Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - David A Goukassian
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts.,f Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts.,7 Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Kumar S, Jahangir Alam M, Prabhakar P, Ahmad S, Maulik SK, Sharma M, Goswami SK. Proteomic analysis of the protective effects of aqueous bark extract of Terminalia arjuna (Roxb.) on isoproterenol-induced cardiac hypertrophy in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:98-108. [PMID: 28063919 DOI: 10.1016/j.jep.2016.12.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 12/12/2016] [Accepted: 12/31/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aqueous bark extract of Terminalia arjuna (TA) has been in use as an ethnomedicine for cardiovascular ailments in the Indian subcontinent for centuries. Studies using hemodynamic, ROS scavenging and anti-inflammatory parameters in animal models have shown its anti-atherogenic, hypotensive, inotropic, anti-inflammatory effects. However, details analysis on its effects on established molecular and cell biological markers are a prerequisite for its wider acceptance to the medical community. AIMS OF THE STUDY To test the efficacy of TA extract in ameliorating cardiac hypertrophy induced by ISO in rats. METHODS Cardiac hypertrophy was induced by ISO (5mg/kg/day s.c. for 14 days) in rats and a standardized aqueous extract of TA stem bark was orally administered by gavage. Total RNA and protein were isolated from control, ISO, ISO plus TA and TA treated rat hearts and analyzed for the transcripts for the markers of hypertrophy, signaling kinases, transcription factors and total protein profile. RESULTS TA extract reversed the induction of fetal genes like β-myosin heavy chain, skeletal α-actin and brain natriuretic peptide in hypertrophic rat hearts. While ISO slightly increased the level of phospho-ERK, TA repressed it to about one third of the base line level. Survival kinase Akt, ER stress marker Grp78 and epigenetic regulator HDAC5 were augmented by ISO and TA restored them by various extents. ISO administration moderately increased the transcription factor NFκB binding activity, while coadministration of TA further increased it. AP-1 binding activity was largely unchanged by ISO treatment but it was upregulated when administered along with TA. MEF2D binding activity was increased by ISO and TA restored it to the baseline level. Global proteomic analysis revealed that TA treatment restored a subset of proteins up- and down-regulated in the hypertrophied hearts. Amongst those restored by TA were purinergic receptor X, myosin light chain 3, tropomyosin, and kininogen; suggesting a nodal role of TA in modulating cardiac function. CONCLUSIONS This study for the first time reveals that TA partially or completely restores the marker mRNAs, signaling kinases, transcription factors and total protein profile in rat heart, thereby demonstrating its efficacy in preventing ISO-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Santosh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India.
| | - Md Jahangir Alam
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India.
| | - Pankaj Prabhakar
- Department of Pharmacology, All India Institute of Medical Sciences (A.I.I.M.S.), Ansari Nagar, 110029, New Delhi, India.
| | - Sayeed Ahmad
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| | - Subir K Maulik
- Department of Pharmacology, All India Institute of Medical Sciences (A.I.I.M.S.), Ansari Nagar, 110029, New Delhi, India.
| | - Manish Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India.
| |
Collapse
|
16
|
Qiu W, Steinberg SF. Phos-tag SDS-PAGE resolves agonist- and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts. J Mol Cell Cardiol 2016; 99:14-22. [PMID: 27515283 DOI: 10.1016/j.yjmcc.2016.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 01/16/2023]
Abstract
Protein kinase D (PKD) consists of a family of three structurally related enzymes that are co-expressed in the heart and have important roles in many biological responses. PKD1 is activated by pro-hypertrophic stimuli and has been implicated in adverse cardiac remodeling. Efforts to define the cardiac actions of PKD2 and PKD3 have been less successful at least in part because conventional methods provide a general screen for PKD activation but are poorly suited to resolve activation patterns for PKD2 or PKD3. This study uses Phos-tag SDS-PAGE, a method that exaggerates phosphorylation-dependent mobility shifts, to overcome this technical limitation. Phos-tag SDS-PAGE resolves PKD1 as distinct molecular species (indicative of pools of enzyme with distinct phosphorylation profiles) in unstimulated cardiac fibroblasts and cardiomyocytes; as a result, attempts to track PKD1 mobility shifts that result from agonist activation were only moderately successful. In contrast, PKD2 and PKD3 are recovered from resting cardiac fibroblasts and cardiomyocytes as single molecular species; both enzymes display robust mobility shifts in Phos-tag SDS-PAGE in response to treatment with sphingosine-1-phosphate, thrombin, PDGF, or H2O2. Studies with GF109203X implicate protein kinase C activity in the stimulus-dependent pathways that activate PKD2/PKD3 in both cardiac fibroblasts and cardiomyocytes. Studies with C3 toxin identify a novel role for Rho in the sphingosine-1-phosphate and thrombin receptor-dependent pathways that lead to the phosphorylation of PKD2/3 and the downstream substrate CREB in cardiomyocytes. In conclusion, Phos-tag SDS-PAGE provides a general screen for stimulus-specific changes in PKD2 and PKD3 phosphorylation and exposes a novel role for these enzymes in specific stress-dependent pathways that influence cardiac remodeling.
Collapse
Affiliation(s)
- Weihua Qiu
- Department of Pharmacology, Columbia University, New York, NY 10032, United States
| | - Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
17
|
Coleman MA, Sasi SP, Onufrak J, Natarajan M, Manickam K, Schwab J, Muralidharan S, Peterson LE, Alekseyev YO, Yan X, Goukassian DA. Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes. Am J Physiol Heart Circ Physiol 2015; 309:H1947-63. [PMID: 26408534 DOI: 10.1152/ajpheart.00050.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/03/2015] [Indexed: 01/22/2023]
Abstract
There are 160,000 cancer patients worldwide treated with particle radiotherapy (RT). With the advent of proton, and high (H) charge (Z) and energy (E) HZE ionizing particle RT, the cardiovascular diseases risk estimates are uncertain. In addition, future deep space exploratory-type missions will expose humans to unknown but low doses of particle irradiation (IR). We examined molecular responses using transcriptome profiling in left ventricular murine cardiomyocytes isolated from mice that were exposed to 90 cGy, 1 GeV proton ((1)H) and 15 cGy, 1 GeV/nucleon iron ((56)Fe) over 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the IR response and time after exposure, with (56)Fe-IR showing the greatest level of gene modulation. (1)H-IR showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses, and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Validation of the signal transduction network by protein analysis and gel shift assay showed that particle IR clearly regulates a long-lived signaling mechanism for ERK1/2, p38 MAPK signaling and identified NFATc4, GATA4, STAT3, and NF-κB as regulators of the response at specific time points. These data suggest that the molecular responses and gene expression to (56)Fe-IR in cardiomyocytes are unique and long-lasting. Our study may have significant implications for the efforts of National Aeronautics and Space Administration to develop heart disease risk estimates for astronauts and for patients receiving conventional and particle RT via identification of specific HZE-IR molecular markers.
Collapse
Affiliation(s)
- Matthew A Coleman
- University of California, Davis School of Medicine, Radiation Oncology, Sacramento, California; Lawrence Livermore National Laboratory, Livermore, California
| | - Sharath P Sasi
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Jillian Onufrak
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Mohan Natarajan
- University of Texas Health Science Center, San Antonio, Texas
| | | | - John Schwab
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Sujatha Muralidharan
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Leif E Peterson
- Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; and
| | - Xinhua Yan
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts; Tufts University School of Medicine, Boston, Massachusetts
| | - David A Goukassian
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; and Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
18
|
Yan X, Sasi SP, Gee H, Lee J, Yang Y, Mehrzad R, Onufrak J, Song J, Enderling H, Agarwal A, Rahimi L, Morgan J, Wilson PF, Carrozza J, Walsh K, Kishore R, Goukassian DA. Cardiovascular risks associated with low dose ionizing particle radiation. PLoS One 2014; 9:e110269. [PMID: 25337914 PMCID: PMC4206415 DOI: 10.1371/journal.pone.0110269] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/04/2014] [Indexed: 12/30/2022] Open
Abstract
Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton (1H; 0.5 Gy, 1 GeV) and iron ion (56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.
Collapse
Affiliation(s)
- Xinhua Yan
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (DAG); (XY)
| | - Sharath P. Sasi
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - Hannah Gee
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - JuYong Lee
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
- Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Yongyao Yang
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - Raman Mehrzad
- Steward Carney Hospital, Dorchester, Massachusetts, United States of America
| | - Jillian Onufrak
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - Jin Song
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Akhil Agarwal
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - Layla Rahimi
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
| | - James Morgan
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Steward Carney Hospital, Dorchester, Massachusetts, United States of America
| | - Paul F. Wilson
- Biosciences Department, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Joseph Carrozza
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Steward St. Elizabeth's Medical Center, Boston, Massachusetts, United States of America
| | - Kenneth Walsh
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Raj Kishore
- Feinberg Cardiovascular Institute, Northwestern University, Chicago, Illinois, United States of America
| | - David A. Goukassian
- Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (DAG); (XY)
| |
Collapse
|
19
|
McKee LA, Chen H, Regan JA, Behunin SM, Walker JW, Walker JS, Konhilas JP. Sexually dimorphic myofilament function and cardiac troponin I phosphospecies distribution in hypertrophic cardiomyopathy mice. Arch Biochem Biophys 2013; 535:39-48. [PMID: 23352598 PMCID: PMC3640654 DOI: 10.1016/j.abb.2012.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 11/16/2022]
Abstract
The pathological progression of hypertrophic cardiomyopathy (HCM) is sexually dimorphic such that male HCM mice develop phenotypic indicators of cardiac disease well before female HCM mice. Here, we hypothesized that alterations in myofilament function underlies, in part, this sex dimorphism in HCM disease development. Firstly, 10-12month female HCM (harboring a mutant [R403Q] myosin heavy chain) mice presented with proportionately larger hearts than male HCM mice. Next, we determined Ca(2+)-sensitive tension development in demembranated cardiac trabeculae excised from 10-12month female and male HCM mice. Whereas HCM did not impact Ca(2+)-sensitive tension development in male trabeculae, female HCM trabeculae were more sensitive to Ca(2+) than wild-type (WT) counterparts and both WT and HCM males. We hypothesized that the underlying cause of this sex difference in Ca(2+)-sensitive tension development was due to changes in Ca(2+) handling and sarcomeric proteins, including expression of SR Ca(2+) ATPase (2a) (SERCA2a), β-myosin heavy chain (β-MyHC) and post-translational modifications of myofilament proteins. Female HCM hearts showed an elevation of SERCA2a and β-MyHC protein whereas male HCM hearts showed a similar elevation of β-MyHC protein but a reduced level of cardiac troponin T (cTnT) phosphorylation. We also measured the distribution of cardiac troponin I (cTnI) phosphospecies using phosphate-affinity SDS-PAGE. The distribution of cTnI phosphospecies depended on sex and HCM. In conclusion, female and male HCM mice display sex dimorphic myofilament function that is accompanied by a sex- and HCM-dependent distribution of sarcomeric proteins and cTnI phosphospecies.
Collapse
Affiliation(s)
- Laurel A.K. McKee
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Hao Chen
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Jessica A. Regan
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Samantha M. Behunin
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Jeffery W. Walker
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - John S. Walker
- University of Colorado Denver, Department of Medicine/Cardiology, Aurora, CO 80045, USA
| | - John P. Konhilas
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| |
Collapse
|
20
|
Yang L, Cai X, Liu J, Jia Z, Jiao J, Zhang J, Li C, Li J, Tang XD. CpG-ODN attenuates pathological cardiac hypertrophy and heart failure by activation of PI3Kα-Akt signaling. PLoS One 2013; 8:e62373. [PMID: 23638055 PMCID: PMC3640052 DOI: 10.1371/journal.pone.0062373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/20/2013] [Indexed: 12/29/2022] Open
Abstract
Phosphoinositide-3-kinase α (PI3Kα) represents a potential novel drug target for pathological cardiac hypertrophy (PCH) and heart failure. Oligodeoxynucleotides containing CpG motifs (CpG-ODN) are classic agonists of Toll-like receptor 9 (TLR9), which typically activates PI3K-Akt signaling in immune cells; however, the role of the nucleotide TLR9 agonists in cardiac myocytes is largely unknown. Here we report that CpG-ODN C274 could both attenuate PCH and improve cardiac dysfunction by activating PI3Kα-Akt signaling cascade. In vitro studies indicated that C274 could blunt reactivation of fetal cardiac genes and cell enlargement induced by a hypertrophic agent, isoproterenol. The anti-hypertrophic effect of C274 was suppressed by a pan-PI3K inhibitor, LY294002, or a small interfering RNA targeting PI3Kα. In vivo studies demonstrated that PCH, as marked by increased heart weight (HW) and cardiac ANF mRNA, was normalized by pre-administration with C274. In addition, Doppler echocardiography detected cardiac ventricular dilation, and contractile dysfunction in isoproterenol-treated animals, consistent with massive replacement fibrosis, reflecting cardiac cell death. As expected, pre-treatment of mice with C274 could prevent cardiac dysfunction associated with diminished cardiac cell death and fibrosis. In conclusion, CpG-ODNs are novel cardioprotective agents possessing antihypertrophic and anti-cell death activity afforded by engagement of the PI3Kα-Akt signaling. CpG-ODNs may have clinical use curbing the progression of PCH and preventing heart failure.
Collapse
Affiliation(s)
- Liang Yang
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
| | - Xiangyu Cai
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
| | - Jie Liu
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
| | - Zhe Jia
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
| | - Jinjin Jiao
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
| | - Jincai Zhang
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
| | - Changlin Li
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
| | - Jing Li
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
- * E-mail: (JL); (XDT)
| | - Xiang D. Tang
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
- Chinese Ministry of Education Key Laboratory of Bioactive Materials, Nankai University School of Medicine, Tianjin, China
- * E-mail: (JL); (XDT)
| |
Collapse
|
21
|
Jiang Q, Lust RM, DeWitt JC. Perfluorooctanoic acid induced-developmental cardiotoxicity: are peroxisome proliferator activated receptor α (PPARα) and bone morphorgenic protein 2 (BMP2) pathways involved? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:635-650. [PMID: 23941634 DOI: 10.1080/15287394.2013.789415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an environmental contaminant known to induce developmental toxicity in animal models through activation of the peroxisome proliferator-activated receptor α (PPARα). Previously, it was demonstrated that in ovo exposure to PFOA induced cardiotoxicity in chicken embryos and hatchlings. To investigate potential PPARα-mediated mechanisms, fertile chicken eggs were injected prior to incubation with WY 14,643, a PPARα agonist. Cardiac morphology and function were evaluated in late-stage embryos and hatchlings. Histologically, unlike PFOA, WY 14,643 did not induce thinning of the right ventricular wall. Via echocardiography, however, WY 14,643 induced effects similar to those of PFOA, including increased left ventricular wall thickness and mass, elevated heart rate, ejection fraction, fractional shortening, and decreased stroke volume. Additionally, to investigate mechanisms associated with early heart development, a separate group of fertile chicken eggs was injected prior to incubation with PFOA or WY 14,643 and in early-stage embryos, gene expression and protein concentration associated with the bone morphogenic protein (BMP2) pathway were determined. Although changes were not statistically consistent among doses, expression of BMP2, Nkx2.5, and GATA4 mRNA in early embryos was altered by PFOA exposure; however, protein concentrations of these targets were not markedly altered by either PFOA or WY 14,643. Protein levels of pSMAD1/5, a transcriptional regulator stimulated by BMPs, were altered by both PFOA and WY 14,643, but in different directions; PFOA reduced cytoplasmic pSMAD1/5, whereas WY 14,643 decreased nuclear pSMAD1/5. Taken together, these data suggest that developmental cardiotoxicity induced by PFOA likely involves both PPARα and BMP2 pathways.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | | | | |
Collapse
|
22
|
Pahl MC, Derr K, Gäbel G, Hinterseher I, Elmore JR, Schworer CM, Peeler TC, Franklin DP, Gray JL, Carey DJ, Tromp G, Kuivaniemi H. MicroRNA expression signature in human abdominal aortic aneurysms. BMC Med Genomics 2012; 5:25. [PMID: 22704053 PMCID: PMC3507654 DOI: 10.1186/1755-8794-5-25] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/31/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a dilatation of the aorta affecting most frequently elderly men. Histologically AAAs are characterized by inflammation, vascular smooth muscle cell apoptosis, and extracellular matrix degradation. The mechanisms of AAA formation, progression, and rupture are currently poorly understood. A previous mRNA expression study revealed a large number of differentially expressed genes between AAA and non-aneurysmal control aortas. MicroRNAs (miRNAs), small non-coding RNAs that are post-transcriptional regulators of gene expression, could provide a mechanism for the differential expression of genes in AAA. METHODS To determine differences in miRNA levels between AAA (n = 5) and control (n = 5) infrarenal aortic tissues, a microarray study was carried out. Results were adjusted using Benjamini-Hochberg correction (adjusted p < 0.05). Real-time quantitative RT-PCR (qRT-PCR) assays with an independent set of 36 AAA and seven control tissues were used for validation. Potential gene targets were retrieved from miRNA target prediction databases Pictar, TargetScan, and MiRTarget2. Networks from the target gene set were generated and examined using the network analysis programs, CytoScape® and Ingenuity Pathway Core Analysis®. RESULTS A microarray study identified eight miRNAs with significantly different expression levels between AAA and controls (adjusted p < 0.05). Real-time qRT-PCR assays validated the findings for five of the eight miRNAs. A total of 222 predicted miRNA target genes known to be differentially expressed in AAA based on a prior mRNA microarray study were identified. Bioinformatic analyses revealed that several target genes are involved in apoptosis and activation of T cells. CONCLUSIONS Our genome-wide approach revealed several differentially expressed miRNAs in human AAA tissue suggesting that miRNAs play a role in AAA pathogenesis.
Collapse
Affiliation(s)
- Matthew C Pahl
- The Sigfried and Janet Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Pennsylvania, 17822-2610, USA
- Department of Biology, Susquehanna University, Selinsgrove, PA, USA
| | - Kimberly Derr
- The Sigfried and Janet Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Pennsylvania, 17822-2610, USA
| | - Gabor Gäbel
- Department of Visceral, Thoracic and Vascular Surgery, Technical University of Dresden, Dresden, Germany
| | - Irene Hinterseher
- Department of Visceral, Thoracic and Vascular Surgery, Technical University of Dresden, Dresden, Germany
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité Universitätsmedizin, Charité Campus Mitte, Berlin, Germany
| | - James R Elmore
- Department of Vascular and Endovascular Surgery, Geisinger Clinic, Danville, PA, USA
| | - Charles M Schworer
- The Sigfried and Janet Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Pennsylvania, 17822-2610, USA
| | - Thomas C Peeler
- Department of Biology, Susquehanna University, Selinsgrove, PA, USA
| | - David P Franklin
- Department of Vascular and Endovascular Surgery, Geisinger Clinic, Danville, PA, USA
| | - John L Gray
- Department of Vascular and Endovascular Surgery, Geisinger Clinic, Danville, PA, USA
| | - David J Carey
- The Sigfried and Janet Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Pennsylvania, 17822-2610, USA
| | - Gerard Tromp
- The Sigfried and Janet Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Pennsylvania, 17822-2610, USA
| | - Helena Kuivaniemi
- The Sigfried and Janet Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Pennsylvania, 17822-2610, USA
| |
Collapse
|