1
|
Liao YR, Tsai YC, Hsieh TH, Tsai MT, Lin FY, Lin SJ, Lin CC, Chiang HY, Chu PH, Li SY. FHL2 in arterial medial calcification in chronic kidney disease. Nephrol Dial Transplant 2024; 39:2025-2039. [PMID: 38664060 PMCID: PMC11596093 DOI: 10.1093/ndt/gfae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Arterial medial calcification (AMC) is a common complication in individuals with chronic kidney disease (CKD), which can lead to cardiovascular morbidity and mortality. The progression of AMC is controlled by a key transcription factor called runt-related transcription factor 2 (RUNX2), which induces vascular smooth muscle cells (VSMCs) transdifferentiation into an osteogenic phenotype. However, RUNX2 has not been targeted for therapy due to its essential role in bone development. The objective of our study was to discover a RUNX2 coactivator that is highly expressed in arterial VSMCs as a potential therapy for AMC. METHODS We employed transcriptomic analysis of human data and an animal reporter system to pinpoint four and a half LIM domains 2 (FHL2) as a potential target. Subsequently, we investigated the mRNA and protein expression patterns of FHL2 in the aortas of both human and animal subjects with CKD. To examine the role of FHL2 in the RUNX2 transcription machinery, we conducted coimmunoprecipitation and chromatin immunoprecipitation experiments. Next, we manipulated FHL2 expression in cultured VSMCs to examine its impact on high phosphate-induced transdifferentiation. Finally, we employed FHL2-null mice to confirm the role of FHL2 in the development of AMC in vivo. RESULTS Among all the potential RUNX2 cofactors, FHL2 displays selective expression within the cardiovascular system. In the context of CKD subjects, FHL2 undergoes upregulation and translocation from the cytosol to the nucleus of arterial VSMCs. Once in the nucleus, FHL2 interacts structurally and functionally with RUNX2, acting as a coactivator of RUNX2. Notably, the inhibition of FHL2 expression averts transdifferentiation of VSMCs into an osteogenic phenotype and mitigates aortic calcification in uremic animals, without causing any detrimental effects on the skeletal system. CONCLUSION These observations provide evidence that FHL2 is a promising target for treating arterial calcification in patients with CKD.
Collapse
MESH Headings
- Animals
- LIM-Homeodomain Proteins/metabolism
- LIM-Homeodomain Proteins/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/complications
- Humans
- Mice
- Muscle Proteins/metabolism
- Muscle Proteins/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- Core Binding Factor Alpha 1 Subunit/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cells, Cultured
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/etiology
- Vascular Calcification/genetics
- Male
- Cell Transdifferentiation
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Knockout
Collapse
Affiliation(s)
- Yuan-Ru Liao
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Tsai
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yen Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hou-Yu Chiang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Science, College of Medicine, Chang Guang University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taiwan
| | - Szu-Yuan Li
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Wang Y, Kuang Z, Xing X, Qiu Y, Zhang J, Shao D, Huang J, Dai C, He W. Proximal tubular FHL2, a novel downstream target of hypoxia inducible factor 1, is a protector against ischemic acute kidney injury. Cell Mol Life Sci 2024; 81:244. [PMID: 38814462 PMCID: PMC11139843 DOI: 10.1007/s00018-024-05289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Four-and-a-half LIM domains protein 2 (FHL2) is an adaptor protein that may interact with hypoxia inducible factor 1α (HIF-1α) or β-catenin, two pivotal protective signaling in acute kidney injury (AKI). However, little is known about the regulation and function of FHL2 during AKI. We found that FHL2 was induced in renal tubular cells in patients with acute tubular necrosis and mice model of ischemia-reperfusion injury (IRI). In cultured renal proximal tubular cells (PTCs), hypoxia induced FHL2 expression and promoted the binding of HIF-1 to FHL2 promoter. Compared with control littermates, mice with PTC-specific deletion of FHL2 gene displayed worse renal function, more severe morphologic lesion, more tubular cell death and less cell proliferation, accompanying by downregulation of AQP1 and Na, K-ATPase after IRI. Consistently, loss of FHL2 in PTCs restricted activation of HIF-1 and β-catenin signaling simultaneously, leading to attenuation of glycolysis, upregulation of apoptosis-related proteins and downregulation of proliferation-related proteins during IRI. In vitro, knockdown of FHL2 suppressed hypoxia-induced activation of HIF-1α and β-catenin signaling pathways. Overexpression of FHL2 induced physical interactions between FHL2 and HIF-1α, β-catenin, GSK-3β or p300, and the combination of these interactions favored the stabilization and nuclear translocation of HIF-1α and β-catenin, enhancing their mediated gene transcription. Collectively, these findings identify FHL2 as a direct downstream target gene of HIF-1 signaling and demonstrate that FHL2 could play a critical role in protecting against ischemic AKI by promoting the activation of HIF-1 and β-catenin signaling through the interactions with its multiple protein partners.
Collapse
Affiliation(s)
- Yan Wang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Ziwei Kuang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Xueqi Xing
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Jie Zhang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Dandan Shao
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Jiaxin Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China.
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
3
|
Liu J, Xie M, Duan X, Liu F, Luo P, Liu Q. Upregulation of the Four and a Half LIM Domains 1 linked with familial venous dysplasia in a familial genetic examination. Am J Transl Res 2023; 15:5035-5046. [PMID: 37692954 PMCID: PMC10492050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND This study aimed to analyze the mutation site in a family diagnosed with venous dysplasia to identify possible pathogenic genes. METHODS A 15-year-old female presented with lower extremity venous tortuosity aggravated by ulceration. Only the young sister exhibited similar symptoms within the immediate family of the proband. Whole genome sequencing (WGS) was used to evaluate the mutation sites and chromosome copy number variations (CNV) within the family. The possible pathogenic genes located in the region with CNVs were identified, and the expression of the possible pathogenic genes was verified via quantitative polymerase chain reaction (Q-PCR) and western blotting (WB) analysis. In-vitro models were used to verify the role of possible pathogenic genes linked with the development of venous dysplasia. RESULTS The high-resolution karyotype analysis of the chromosomes found no abnormalities. The results of the WGS indicated that the proband and her sister shared the CNV events, including a microdeletion on chromosomes X: 13580000-1358555000 and microduplications of chromosome X: 136055000-136290000, chromosome X: 136475000-13671000. The results of the Q-PCR and WB showed that FHL1 was highly expressed in the proband and her sister, indicating that mutations of the FHL1 may have an important role in the development of vein malformations. The results of the in vitro experiments showed that FHL1 overexpression could inhibit venous development. CONCLUSION The CNV in the Xq26 region (136054501-136288300) was found to be linked with the development of venous malformations in this family. However, further studies are required to evaluate the genetic mechanisms involved in the development of venous malformations.
Collapse
Affiliation(s)
- Jianping Liu
- Suzhou Medical College of Soochow UniversitySuzhou, Jiangsu, China
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi, China
| | - Mingfeng Xie
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi, China
- Chinese & Western Integrative Medicine Discipline, Jiangxi University of Chinese MedicineNanchang, Jiangxi, China
- Jiangxi Key Laboratory of TCM for Prevention and Treatment on HemangiomaNanchang, Jiangxi, China
| | - Xunhong Duan
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi, China
| | - Fengen Liu
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi, China
| | - Pan Luo
- Chinese & Western Integrative Medicine Discipline, Jiangxi University of Chinese MedicineNanchang, Jiangxi, China
| | - Qian Liu
- Suzhou Medical College of Soochow UniversitySuzhou, Jiangsu, China
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi, China
- Chinese & Western Integrative Medicine Discipline, Jiangxi University of Chinese MedicineNanchang, Jiangxi, China
- Jiangxi Key Laboratory of TCM for Prevention and Treatment on HemangiomaNanchang, Jiangxi, China
| |
Collapse
|
4
|
Jehanno C, Le Page Y, Flouriot G, Le Goff P, Michel D. Synergistic activation of genes promoting invasiveness by dual deprivation in oxygen and nutrients. Int J Exp Pathol 2023; 104:64-75. [PMID: 36694990 PMCID: PMC10009306 DOI: 10.1111/iep.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
By depriving cancer cells of blood supplies of oxygen and nutrients, anti-angiogenic therapy is aimed at simultaneously asphyxiating and starving the cells. But in spite of its apparent logic, this strategy is generally counterproductive over the long term as the treatment seems to elicit malignancy. Since a defect of blood supply is expected to deprive tumours simultaneously of oxygen and nutrients naturally, we examine here these two deprivations, alone or in combination, on the phenotype and signalling pathways of moderately aggressive MCF7 cancer cells. Each deprivation induces some aspects of the aggressive and migratory phenotypes through activating several pathways, including HIF1-alpha as expected, but also SRF/MRTFA and TCF4/beta-catenin. Strikingly, the dual deprivation has strong cooperative effects on the upregulation of genes increasing the metastatic potential, such as four and a half LIM domains 2 (FHL2) and HIF1A-AS2 lncRNA, which have response elements for both pathways. Using anti-angiogenic agents as monotherapy is therefore questionable as it may give falsely promising short-term tumour regression, but could ultimately exacerbate aggressive phenotypes.
Collapse
Affiliation(s)
- Charly Jehanno
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Yann Le Page
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France
| | - Gilles Flouriot
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France
| | - Pascale Le Goff
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France
| | - Denis Michel
- University of Rennes, Inserm, EHESP, Irset UMR 1085, Rennes, France
| |
Collapse
|
5
|
Yfantis A, Mylonis I, Chachami G, Nikolaidis M, Amoutzias GD, Paraskeva E, Simos G. Transcriptional Response to Hypoxia: The Role of HIF-1-Associated Co-Regulators. Cells 2023; 12:cells12050798. [PMID: 36899934 PMCID: PMC10001186 DOI: 10.3390/cells12050798] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The Hypoxia Inducible Factor 1 (HIF-1) plays a major role in the cellular response to hypoxia by regulating the expression of many genes involved in adaptive processes that allow cell survival under low oxygen conditions. Adaptation to the hypoxic tumor micro-environment is also critical for cancer cell proliferation and therefore HIF-1 is also considered a valid therapeutical target. Despite the huge progress in understanding regulation of HIF-1 expression and activity by oxygen levels or oncogenic pathways, the way HIF-1 interacts with chromatin and the transcriptional machinery in order to activate its target genes is still a matter of intense investigation. Recent studies have identified several different HIF-1- and chromatin-associated co-regulators that play important roles in the general transcriptional activity of HIF-1, independent of its expression levels, as well as in the selection of binding sites, promoters and target genes, which, however, often depends on cellular context. We review here these co-regulators and examine their effect on the expression of a compilation of well-characterized HIF-1 direct target genes in order to assess the range of their involvement in the transcriptional response to hypoxia. Delineating the mode and the significance of the interaction between HIF-1 and its associated co-regulators may offer new attractive and specific targets for anticancer therapy.
Collapse
Affiliation(s)
- Angelos Yfantis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada
- Correspondence:
| |
Collapse
|
6
|
Identification of Human Cell Cycle Phase Markers Based on Single-Cell RNA-Seq Data by Using Machine Learning Methods. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2516653. [PMID: 36004205 PMCID: PMC9393965 DOI: 10.1155/2022/2516653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 12/17/2022]
Abstract
The cell cycle is composed of a series of ordered, highly regulated processes through which a cell grows and duplicates its genome and eventually divides into two daughter cells. According to the complex changes in cell structure and biosynthesis, the cell cycle is divided into four phases: gap 1 (G1), DNA synthesis (S), gap 2 (G2), and mitosis (M). Determining which cell cycle phases a cell is in is critical to the research of cancer development and pharmacy for targeting cell cycle. However, current detection methods have the following problems: (1) they are complicated and time consuming to perform, and (2) they cannot detect the cell cycle on a large scale. Rapid developments in single-cell technology have made dissecting cells on a large scale possible with unprecedented resolution. In the present research, we construct efficient classifiers and identify essential gene biomarkers based on single-cell RNA sequencing data through Boruta and three feature ranking algorithms (e.g., mRMR, MCFS, and SHAP by LightGBM) by utilizing four advanced classification algorithms. Meanwhile, we mine a series of classification rules that can distinguish different cell cycle phases. Collectively, we have provided a novel method for determining the cell cycle and identified new potential cell cycle-related genes, thereby contributing to the understanding of the processes that regulate the cell cycle.
Collapse
|
7
|
Stathopoulou K, Schnittger J, Raabe J, Fleischer F, Mangels N, Piasecki A, Findlay J, Hartmann K, Krasemann S, Schlossarek S, Uebeler J, Wixler V, Blake DJ, Baillie GS, Carrier L, Ehler E, Cuello F. CMYA5 is a novel interaction partner of FHL2 in cardiac myocytes. FEBS J 2022; 289:4622-4645. [PMID: 35176204 DOI: 10.1111/febs.16402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 11/27/2022]
Abstract
Four-and-a-half LIM domains protein 2 (FHL2) is an anti-hypertrophic adaptor protein that regulates cardiac myocyte signalling and function. Herein, we identified cardiomyopathy-associated 5 (CMYA5) as a novel FHL2 interaction partner in cardiac myocytes. In vitro pull-down assays demonstrated interaction between FHL2 and the N- and C-terminal regions of CMYA5. The interaction was verified in adult cardiac myocytes by proximity ligation assays. Immunofluorescence and confocal microscopy demonstrated co-localisation in the same subcellular compartment. The binding interface between FHL2 and CMYA5 was mapped by peptide arrays. Exposure of neonatal rat ventricular myocytes to a CMYA5 peptide covering one of the FHL2 interaction sites led to an increase in cell area at baseline, but a blunted response to chronic phenylephrine treatment. In contrast to wild-type hearts, loss or reduced FHL2 expression in Fhl2-targeted knockout mouse hearts or in a humanised mouse model of hypertrophic cardiomyopathy led to redistribution of CMYA5 into the perinuclear and intercalated disc region. Taken together, our results indicate a direct interaction of the two adaptor proteins FHL2 and CMYA5 in cardiac myocytes, which might impact subcellular compartmentation of CMYA5.
Collapse
Affiliation(s)
- Konstantina Stathopoulou
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Josef Schnittger
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Janice Raabe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Frederic Fleischer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Nils Mangels
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Angelika Piasecki
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Jane Findlay
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - June Uebeler
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Viktor Wixler
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation, Westfaelische Wilhelms-University, Germany
| | - Derek J Blake
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| | - Elisabeth Ehler
- School of Cardiovascular Medicine and Sciences, BHF Research Excellence Centre, King's College London, UK.,Randall Centre for Cell and Molecular Biophysics (School of Basic and Medical Biosciences), King's College London, UK
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
8
|
Huang Z, Yu C, Yu L, Shu H, Zhu X. The Roles of FHL3 in Cancer. Front Oncol 2022; 12:887828. [PMID: 35686099 PMCID: PMC9171237 DOI: 10.3389/fonc.2022.887828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022] Open
Abstract
The four and a half LIM domain protein 3, also named the LIM-protein FHL3, belongs to the LIM-only family. Based on the special structure of LIM-only proteins, FHL3 can perform significant functions in muscle proliferation and cardiovascular diseases by regulating cell growth and signal transduction. In recent years, there has been increasing evidence of a relation between FHLs and tumor biology, since FHL3 is often overexpressed or downregulated in different cancers. On the one hand, FHL3 can function as a tumor suppressor and influence the expression of downstream genes. On the other hand, FHL3 can also play a role as an oncoprotein in some cancers to promote tumor progression via phosphorylation. Thus, FHL3 is proposed to have a dual effect on cancer progression, reflecting its complex roles in cancer. This review focuses on the roles of FHL3 in cancer progression and discusses the interaction of FHL3 with other proteins and transcription factors. Finally, the clinical significance of FHL3 for the treatment of cancers is discussed.
Collapse
Affiliation(s)
- Zhenjun Huang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqing Yu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Hongxin Shu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Xianhua Zhu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Shi MK, Xuan YL, He XF. FHL1 Overexpression as A Inhibitor of Lung Cancer Cell Invasion via Increasing RhoGDIß mRNA Expression. CELL JOURNAL 2022; 24:239-244. [PMID: 35717564 PMCID: PMC9445515 DOI: 10.22074/cellj.2022.8031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/26/2021] [Indexed: 11/07/2022]
Abstract
Objective Four and a half Lin-11, Isl-1, Mac-3 (LIM) protein 1 (FHL1) is one of the FHL protein family, which is regarded as a tumor suppressor in the multiple malignant tumors. In this study, we aimed to explore the regulatory effects and mechanisms of FHL1 on lung cancer cell invasion. Materials and Methods In this experimental study, bioinformatics analysis of FHL1 transcripts in human lung adenocarcinomas of TCGA database was performed. Quantitative real-time polymerase chain reaction (PCR) was performed to detect FHL1 mRNA expression in 15 paired human lung cancer tissues and their adjacent normal lung tissues, or lung cancer cell lines (A549 and H1299) in comparison with human bronchial epithelial cell line (Beas- 2B). Moreover, western blot was used to analyze FHL1 and rho GDP-dissociation inhibitor beta (RhoGDIβ) protein expression in the indicated cell lines. Also, transwell assays were employed to measure the migrated, and invaded of indicated cell lines. Results FHL1 transcripts were downregulated in the human lung adenocarcinoma. The impaired FHL1 transcripts were positively correlated with advanced tumor node metastasis (TNM) stage. Moreover, as compared to the adjacent normal lung tissues, FHL1 mRNA was low expressed in 15 paired human lung cancer tissues than their adjacent normal lung tissues. Besides, FHL1 mRNA and protein expression were also reduced in H1299 and A549 cell lines in comparison with Beas-2B cell line. Overexpressed FHL1 protein inhibited the invasive ability of H1299 and A549 cell lines. Mechanically, FHL1 protein overexpression increased the RhoGDIβ protein and mRNA abundance, while knockdown of RhoGDIβ protein, completely restored the invasion ability of A549 (Flag-FHL1) cell line. Conclusion Our findings indicated that as a key FHL1 downstream regulator, RhoGDIβ is in charge of FHL1 inhibiting lung cancer cell invasion abilities, providing a critical insight into understanding the role of FHL1 for lung cancer development.
Collapse
Affiliation(s)
- Min-ke Shi
- Department of Thoracic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical
SchoolNanjingPR. China
| | - Yu-long Xuan
- Department of Thoracic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical
SchoolNanjingPR. China
| | - Xiao-feng He
- Department of Thoracic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical
SchoolNanjingPR. China
| |
Collapse
|
10
|
Disruption of the CCDC43-FHL1 interaction triggers apoptosis in gastric cancer cells. Exp Cell Res 2022; 415:113107. [DOI: 10.1016/j.yexcr.2022.113107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
|
11
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
13
|
Wei X, Zhang H. Four and a half LIM domains protein 1 can be as a double-edged sword in cancer progression. Cancer Biol Med 2020; 17:270-281. [PMID: 32587768 PMCID: PMC7309467 DOI: 10.20892/j.issn.2095-3941.2019.0420] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/04/2020] [Indexed: 11/18/2022] Open
Abstract
Four and a half LIM domains protein 1 (FHL1), as the name suggests, contains four and a half LIM domains capable of interacting with various molecules, including structural proteins, kinases, and transcriptional machinery. FHL1 contains a zinc-finger domain and performs diverse roles in regulation of gene transcription, cytoarchitecture, cell proliferation, and signal transduction. Several studies have validated the importance of FHL1 in muscle development, myopathy, and cardiovascular diseases. Mutations in the FHL1 gene are associated with various myopathies. Recently, FHL1 was identified as a major host factor for chikungunya virus (CHIKV) infection in both humans and mice. Based on more recent findings over the last decade, FHL1 is proposed to play a dual role in cancer progression. On the one hand, FHL1 expression is suppressed in several cancer types, which correlates with increased metastatic disease and decreased survival. Moreover, FHL1 is reported to inhibit tumor cell growth and migration by associating with diverse signals, such as TGF-β and ER, and therefore considered a tumor suppressor. On the other hand, FHL1 can function as an oncogenic protein that promotes tumor progression upon phosphorylation, reflecting complex roles in cancer. This review primarily focuses on the dual role and underlying mechanisms of action of FHL1 in human cancer progression and its clinical relevance.
Collapse
Affiliation(s)
- Xiaofan Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
14
|
Hatfield S, Veszeleiova K, Steingold J, Sethuraman J, Sitkovsky M. Mechanistic Justifications of Systemic Therapeutic Oxygenation of Tumors to Weaken the Hypoxia Inducible Factor 1α-Mediated Immunosuppression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:113-121. [PMID: 31201720 DOI: 10.1007/978-3-030-12734-3_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Long-term studies of anti-pathogen and anti-tumor immunity have provided complementary genetic and pharmacological evidence for the immunosuppressive and immunomodulatory effects of Hypoxia-HIF-1α and adenosine-mediated suppression via the A2A adenosine receptor signaling pathway (Hypoxia-A2A-adenosinergic). This pathway is life saving when it protects inflamed tissues of vital organs from collateral damage by overactive anti-pathogen immune cells or enables the differentiation of cells of adaptive immunity. However, the Hypoxia-A2A-adenosinergic immunosuppression can also prevent tumor rejection by inhibiting the anti-tumor effects of T and NK cells. In addition, this suppressive pathway has been shown to mask tumors due to the hypoxia-HIF-α-mediated loss of MHC Class I molecules on tumor cells. It is suggested that it will be impossible to realize the full anti-tumor capacities of current cancer immunotherapies without simultaneous administration of anti-Hypoxia-A2A-Adenosinergic drugs that inactivate this tumor-protecting mechanism in hypoxic and adenosine-rich tumors.Here, we overview the supporting evidence for the conceptually novel immunotherapeutic motivation to breathe supplemental oxygen (40-60%) or to repurpose already available oxygenation agents in combination with current immunotherapies. Preclinical studies provide strong support for oxygen immunotherapy to enable much stronger tumor regression by weakening immunosuppression by A2A adenosine receptors and by the Hypoxia➔HIF-1α axis. The results of these studies emphasize the value of systemic oxygenation as clinically feasible, promising, and as a valuable tool for mechanistic investigations of tumor biology and cancer immunology. Perhaps the most effective and feasible among individual members of this novel class of anti-tumor drugs are oxygenation agents.
Collapse
Affiliation(s)
- Stephen Hatfield
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, USA
| | - Katarina Veszeleiova
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, USA
| | - Joe Steingold
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, USA
| | - Jyothi Sethuraman
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, USA
| | - Michail Sitkovsky
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA, USA.
| |
Collapse
|
15
|
Han W, Hu P, Wu F, Wang S, Hu Y, Li S, Jiang T, Qiang B, Peng X. FHL3 links cell growth and self-renewal by modulating SOX4 in glioma. Cell Death Differ 2018; 26:796-811. [PMID: 29955125 DOI: 10.1038/s41418-018-0152-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/13/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
Abstract
Differentiation status significantly affects the properties of malignant glioma cells, with non-stem cells inducing tumor enlargement and stem-like cells driving tumor initiation and treatment resistance. It is not completely understood how the same protein can have a distinct role in these cell populations. Here, we report that four and a half LIM domain protein 3 (FHL3) has an inhibitory effect on proliferation in non-stem glioma cells and a non-proliferative effect in glioma stem cells (GSCs). In GSCs, we show that FHL3 interacts with the Smad2/3 protein complex at the SOX4 promoter region, inhibits SOX4 transcriptional activity by recruiting PPM1A phosphatase to Smad2/3, and then suppresses GSC tumor sphere formation and self-renewal in vitro and in vivo via downregulation of SOX2 expression. Altogether, these findings highlight the role of FHL3 as a stemness-suppressor in regulation of the Smad2/3-SOX4-SOX2 axis in glioma.
Collapse
Affiliation(s)
- Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Peishan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Fan Wu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, 100050, Beijing, China
| | - Shanshan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Yan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Shanshan Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, 100050, Beijing, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China.
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China. .,Institute of Medical Biology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, 650118, Kunming, China.
| |
Collapse
|
16
|
Luo W, Wang Y. Epigenetic regulators: multifunctional proteins modulating hypoxia-inducible factor-α protein stability and activity. Cell Mol Life Sci 2018; 75:1043-1056. [PMID: 29032501 PMCID: PMC5984203 DOI: 10.1007/s00018-017-2684-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/26/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
The hypoxia-inducible factor (HIF) is a heterodimeric transcription factor governing a transcriptional program in response to reduced O2 availability in metazoans. It contributes to physiology and pathogenesis of many human diseases through its downstream target genes. Emerging studies have shown that the transcriptional activity of HIF is highly regulated at multiple levels and the epigenetic regulators are essential for HIF-mediated transactivation. In this review, we will discuss the comprehensive regulation of HIF transcriptional activity by different types of epigenetic regulators.
Collapse
Affiliation(s)
- Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Pharmacology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
17
|
Semenza GL. A compendium of proteins that interact with HIF-1α. Exp Cell Res 2017; 356:128-135. [PMID: 28336293 DOI: 10.1016/j.yexcr.2017.03.041] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 12/23/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is the founding member of a family of transcription factors that function as master regulators of oxygen homeostasis. HIF-1 is composed of an O2-regulated HIF-1α subunit and a constitutively expressed HIF-1β subunit. This review provides a compendium of proteins that interact with the HIF-1α subunit, many of which regulate HIF-1 activity in either an O2-dependent or O2-independent manner.
Collapse
Affiliation(s)
- Gregg L Semenza
- Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205 USA.
| |
Collapse
|
18
|
Ji X, Zhang Y, Ku T, Yun Y, Li G, Sang N. MicroRNA-338-5p modulates pulmonary hypertension-like injuries caused by SO 2, NO 2 and PM 2.5 co-exposure through targeting the HIF-1α/Fhl-1 pathway. Toxicol Res (Camb) 2016; 5:1548-1560. [PMID: 30090456 DOI: 10.1039/c6tx00257a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/06/2016] [Indexed: 01/26/2023] Open
Abstract
The role of ambient air pollution is considered to be important in the development of chronic obstructive pulmonary disease (COPD), and pulmonary hypertension (PH) is a common clinical manifestation of COPD. However, many studies have mainly focused on the adverse health effects of a single air pollutant, ignoring the combined toxicity of multiple pollutants. In the present study, we co-exposed mice to coal-burning air pollutants (SO2, NO2 and PM2.5), and confirmed PH-like injury occurrence by airflow limitation, marked abnormal endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) expression, and histopathological and ultrastructural alteration. Global microRNA (miRNA) arrays identified three significantly changed miRNAs homologous with humans (miR-338-5p, miR-450b-3p and miR-142-5p), and we targeted miR-338-5p based on real-time reverse transcription-PCR (RT-PCR) validation. Furthermore, bioinformatic and dual-luciferase reporter gene analyses indicated that miR-338-5p bound to 3'-UTR of hypoxia-inducible factor 1α (HIF-1α) mRNA and down-regulation of miR-338-5p led to the increased expression of HIF-1α and its related gene four-and-a-half LIM (Lin-11, Isl-1 and Mec-3) domain 1 (Fhl-1) and contributed to PH. This study provides evidence for the role of miRNAs in PH through targeting HIF-1α/Fhl-1 pathway after air pollutants co-exposure and implies new insights into the molecular markers for COPD caused by air pollution.
Collapse
Affiliation(s)
- Xiaotong Ji
- College of Environment and Resource , Research Center of Environment and Health , Shanxi University , Taiyuan , Shanxi 030006 , PR China . ; ; Tel: +86-351-7011932
| | - Yingying Zhang
- College of Environment and Resource , Research Center of Environment and Health , Shanxi University , Taiyuan , Shanxi 030006 , PR China . ; ; Tel: +86-351-7011932
| | - Tingting Ku
- College of Environment and Resource , Research Center of Environment and Health , Shanxi University , Taiyuan , Shanxi 030006 , PR China . ; ; Tel: +86-351-7011932
| | - Yang Yun
- College of Environment and Resource , Research Center of Environment and Health , Shanxi University , Taiyuan , Shanxi 030006 , PR China . ; ; Tel: +86-351-7011932
| | - Guangke Li
- College of Environment and Resource , Research Center of Environment and Health , Shanxi University , Taiyuan , Shanxi 030006 , PR China . ; ; Tel: +86-351-7011932
| | - Nan Sang
- College of Environment and Resource , Research Center of Environment and Health , Shanxi University , Taiyuan , Shanxi 030006 , PR China . ; ; Tel: +86-351-7011932
| |
Collapse
|
19
|
Bullen JW, Tchernyshyov I, Holewinski RJ, DeVine L, Wu F, Venkatraman V, Kass DL, Cole RN, Van Eyk J, Semenza GL. Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci Signal 2016; 9:ra56. [PMID: 27245613 PMCID: PMC5541497 DOI: 10.1126/scisignal.aaf0583] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes encoding proteins that enable cells to adapt to reduced O2 availability. Proteins encoded by HIF-1 target genes play a central role in mediating physiological processes that are dysregulated in cancer and heart disease. These diseases are also characterized by increased production of cyclic adenosine monophosphate (cAMP), the allosteric activator of cAMP-dependent protein kinase A (PKA). Using glutathione S-transferase pull-down, coimmunoprecipitation, and mass spectrometry analyses, we demonstrated that PKA interacts with HIF-1α in HeLa cervical carcinoma cells and rat cardiomyocytes. PKA phosphorylated Thr(63) and Ser(692) on HIF-1α in vitro and enhanced HIF transcriptional activity and target gene expression in HeLa cells and rat cardiomyocytes. PKA inhibited the proteasomal degradation of HIF-1α in an O2-independent manner that required the phosphorylation of Thr(63) and Ser(692) and was not affected by prolyl hydroxylation. PKA also stimulated the binding of the coactivator p300 to HIF-1α to enhance its transcriptional activity and counteracted the inhibitory effect of asparaginyl hydroxylation on the association of p300 with HIF-1α. Furthermore, increased cAMP concentrations enhanced the expression of HIF target genes encoding CD39 and CD73, which are enzymes that convert extracellular adenosine 5'-triphosphate to adenosine, a molecule that enhances tumor immunosuppression and reduces heart rate and contractility. These data link stimuli that promote cAMP signaling, HIF-1α-dependent changes in gene expression, and increased adenosine, all of which contribute to the pathophysiology of cancer and heart disease.
Collapse
Affiliation(s)
- John W Bullen
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Irina Tchernyshyov
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ronald J Holewinski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fan Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vidya Venkatraman
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David L Kass
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer Van Eyk
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Cao W, Liu J, Xia R, Lin L, Wang X, Xiao M, Zhang C, Li J, Ji T, Chen W. X-linked FHL1 as a novel therapeutic target for head and neck squamous cell carcinoma. Oncotarget 2016; 7:14537-50. [PMID: 26908444 PMCID: PMC4924734 DOI: 10.18632/oncotarget.7478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
To identify X-linked novel tumor suppressors could provide novel insights to improve prognostic prediction and therapeutic strategy for some cancers. Using bioinformatics and Venn analysis of gene transcriptional profiling, we identified downregulation of X-linked four-and-a-half LIM domains protein 1 (FHL1) gene in head and neck squamous cell carcinoma (HNSCC). FHL1 functions were investigated and confirmed in vitro and in vivo. FHL1 downregulated mechanisms were analyzed in HNSCCs by using methylation specific PCR, bisulfate-based sequencing, 5-Aza-dC treatment and chromatin immunoprecipitation assays. Two independent HNSCC cohorts (the training cohort n = 105 and the validation cohort n = 101) were enrolled to evaluate clinical implications of FHL1 expression by using real-time PCR or immunohistochemistry. FHL1 mRNA and protein expressions were frequently decreased in HNSCCs. FHL1 overexpression or depletion gave rise to suppress or promote cell growth through Cyclin D1, Cyclin E and p27 dysregulations. Abundant occupy of EZH2 or H3K27Me3 was observed in FHL1 promoter except for DNA hypermethylation. Reduced FHL1 mRNA expression was notably associated with poor differentiation (p = 0.020). Multivariate analysis demonstrated FHL1 mRNA expression was identified as independent prognostic predictors of overall survival (OS) (p = 0.036; HR 0.520; Cl, 0.283-0.958) and disease-free survival (DFS) (p = 0.041; HR 0.527; Cl, 0.284-0.975), which was validated by another independent cohort (p = 0.021; HR 0.404; Cl, 0.187-0.871 for OS; p = 0.011; HR 0.407; Cl, 0.203-0.815 for DFS). These results suggest epigenetic silencing of X-linked FHL1 may have an important role in adjuvant therapeutic intervention of HNSCCs and is an independent prognostic factor in patients with HNSCCs.
Collapse
Affiliation(s)
- Wei Cao
- 1 Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- 2 Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jiannan Liu
- 1 Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- 2 Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ronghui Xia
- 3 Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lu Lin
- 4 Department of Medical Records, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xu Wang
- 1 Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- 2 Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Meng Xiao
- 1 Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- 2 Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Chenping Zhang
- 1 Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- 2 Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jiang Li
- 3 Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tong Ji
- 1 Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- 2 Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wantao Chen
- 1 Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- 2 Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
21
|
Luo W, Chen I, Chen Y, Alkam D, Wang Y, Semenza GL. PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia. Oncotarget 2016; 7:6379-97. [PMID: 26837221 PMCID: PMC4872721 DOI: 10.18632/oncotarget.7142] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) control the transcription of genes that are crucial for the pathogenesis of cancer and other human diseases. The transcriptional activity of HIFs is rapidly increased upon exposure to hypoxia, but expression of some HIF target genes decreases during prolonged hypoxia. However, the underlying mechanism for feedback inhibition is not completely understood. Here, we report that peroxiredoxin 2 (PRDX2) and PRDX4 interact with HIF-1α and HIF-2α in vitro and in hypoxic HeLa cells. Prolonged hypoxia increases the nuclear translocation of PRDX2 and PRDX4. As a result, PRDX2 and PRDX4 impair HIF-1 and HIF-2 binding to the hypoxia response elements of a subset of HIF target genes, thereby inhibiting gene transcription in cells exposed to prolonged hypoxia. PRDX2 and PRDX4 have no effect on the recruitment of p300 and RNA polymerase II to HIF target genes and the enzymatic activity of PRDX2 and PRDX4 is not required for inhibition of HIF-1 and HIF-2. We also demonstrate that PRDX2 is a direct HIF target gene and that PRDX2 expression is induced by prolonged hypoxia. These findings uncover a novel feedback mechanism for inhibition of HIF transcriptional activity under conditions of prolonged hypoxia.
Collapse
Affiliation(s)
- Weibo Luo
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Chen
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Duah Alkam
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gregg L. Semenza
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Tran MK, Kurakula K, Koenis DS, de Vries CJM. Protein-protein interactions of the LIM-only protein FHL2 and functional implication of the interactions relevant in cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:219-28. [PMID: 26548523 DOI: 10.1016/j.bbamcr.2015.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 11/26/2022]
Abstract
FHL2 belongs to the LIM-domain only proteins and contains four and a half LIM domains, each of which are composed of two zinc finger structures. FHL2 exhibits specific interaction with proteins exhibiting diverse functions, including transmembrane receptors, transcription factors and transcription co-regulators, enzymes, and structural proteins. The function of these proteins is regulated by FHL2, which modulates intracellular signal transduction pathways involved in a plethora of cellular tasks. The present review summarizes the current knowledge on the protein interactome of FHL2 and provides an overview of the functional implication of these interactions in apoptosis, migration, and regulation of nuclear receptor function. FHL2 was originally identified in the heart and there is extensive literature available on the role of FHL2 in the cardiovascular system, which is also summarized in this review.
Collapse
Affiliation(s)
- M Khang Tran
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kondababu Kurakula
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Duco S Koenis
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Zhang Y, Li W, Zhu M, Li Y, Xu Z, Zuo B. FHL3 differentially regulates the expression of MyHC isoforms through interactions with MyoD and pCREB. Cell Signal 2015; 28:60-73. [PMID: 26499038 DOI: 10.1016/j.cellsig.2015.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/09/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022]
Abstract
In skeletal muscle, muscle fiber types are defined by four adult myosin heavy chain (MyHC) isoforms. Four and a half LIM domain protein 3 (FHL3) regulates myoblasts differentiation and gene expression by acting as a transcriptional co-activator or co-repressor. However, how FHL3 regulates MyHC expression is currently not clear. In this study, we found that FHL3 down-regulated the expression of MyHC 1/slow and up-regulated the expression of MyHC 2a and MyHC 2b, whereas no significant effect was found on MyHC 2x expression. MyoD and phosphorylated cAMP response element binding protein (pCREB) played important roles in the regulation of MyHC 1/slow and MyHC 2a expression by FHL3, respectively. FHL3 could interact with MyoD, CREB and pCREB in vivo. pCREB had stronger interaction with the cyclic AMP-responsive elements (CRE) of the MyHC 2a promoter compared with CREB, and FHL3 significantly affected the binding capacity of pCREB to CRE. We established a model in which FHL3 promotes the expression of MyHC 2a through CREB-mediated transcription and inhibits the expression of MyHC 1/slow by inhibiting MyoD transcription activity during myogenesis. Our data support the notion that FHL3 plays important roles in the regulation of muscle fiber type composition.
Collapse
Affiliation(s)
- Yunxia Zhang
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wentao Li
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mingfei Zhu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yuan Li
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
24
|
Han W, Xia Q, Yin B, Peng XZ. Ribotrap analysis of proteins associated with FHL3 3'untranslated region in glioma cells. ACTA ACUST UNITED AC 2014; 29:78-84. [PMID: 24998228 DOI: 10.1016/s1001-9294(14)60032-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To screen the proteins associated with four-and-a-half LIM domains 3 (FHL3) 3' untranslated region (3'UTR) in glioma cells. METHODS Western blot was adopted to detect the regulatory effect of poly(C)-binding protein 2 (PCBP2) on FHL3. Biotin pull-down and sliver staining were employed to screen and verify the candidate binding proteins of FHL3 3'UTR. Then liquid chromatography-tandem mass spectrometry (LC-MS/MS) and molecule annotation system were used to identify and analyze the candidate binding proteins. Immuno- precipitation was conducted to study the interaction between PCBP2 and polypyrimidine tract-binding protein 1 (PTBP1), a binding protein identified by LC-MS/MS. RESULTS PCBP2 could bind to FHL3 mRNA 3'UTR-A and inhibited the expression of FHL3 in T98G glioms cells. 22 candidate binding proteins were identified. Among them, there were 11 RNA binding proteins, including PCBP2. PTBP1 associated with FHL3 mRNA 3'UTR and interacted with PCBP2 protein. CONCLUSIONS PCBP2 and PTBP1 can both associate with FHL3 mRNA 3'UTR through forming a protein complex.
Collapse
Affiliation(s)
- Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Qing Xia
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China
| | | | - Xiao-Zhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
25
|
Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. J Mol Med (Berl) 2014; 92:1283-92. [PMID: 25120128 DOI: 10.1007/s00109-014-1189-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/17/2014] [Accepted: 07/04/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Intratumoral hypoxia and hypoxia inducible factor-1α (HIF-1-α)-dependent CD39/CD73 ectoenzymes may govern the accumulation of tumor-protecting extracellular adenosine and signaling through A2A adenosine receptors (A2AR) in tumor microenvironments (TME). Here, we explored the conceptually novel motivation to use supplemental oxygen as a treatment to inhibit the hypoxia/HIF-1α-CD39/CD73-driven accumulation of extracellular adenosine in the TME in order to weaken the tumor protection. We report that hyperoxic breathing (60 % O2) decreased the TME hypoxia, as well as levels of HIF-1α and downstream target proteins of HIF-1α in the TME according to proteomic studies in mice. Importantly, oxygenation also downregulated the expression of adenosine-generating ectoenzymes and significantly lowered levels of tumor-protecting extracellular adenosine in the TME. Using supplemental oxygen as a tool in studies of the TME, we also identified FHL-1 as a potentially useful marker for the conversion of hypoxic into normoxic TME. Hyperoxic breathing resulted in the upregulation of antigen-presenting MHC class I molecules on tumor cells and in the better recognition and increased susceptibility to killing by tumor-reactive cytotoxic T cells. Therapeutic breathing of 60 % oxygen resulted in the significant inhibition of growth of established B16.F10 melanoma tumors and prolonged survival of mice. Taken together, the data presented here provide proof-of principle for the therapeutic potential of systemic oxygenation to convert the hypoxic, adenosine-rich and tumor-protecting TME into a normoxic and extracellular adenosine-poor TME that, in turn, may facilitate tumor regression. We propose to explore the combination of supplemental oxygen with existing immunotherapies of cancer. KEY MESSAGES Oxygenation decreases levels of tumor protecting hypoxia. Oxygenation decreases levels of tumor protecting extracellular adenosine. Oxygenation decreases expression of HIF-1alpha dependent tumor-protecting proteins. Oxygenation increases MHC class I expression and enables tumor regression.
Collapse
|
26
|
Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1α to promote cell-cycle progression. Proc Natl Acad Sci U S A 2014; 111:E3325-34. [PMID: 25071185 DOI: 10.1073/pnas.1412840111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that mediates adaptive responses to oxygen deprivation. In addition, the HIF-1α subunit has a nontranscriptional role as a negative regulator of DNA replication through effects on minichromosome maintenance helicase loading and activation. However, some cell types continue to replicate under hypoxic conditions. The mechanism by which these cells maintain proliferation in the presence of elevated HIF-1α levels is unclear. Here we report that HIF-1α physically and functionally interacts with cyclin-dependent kinase 1 (Cdk1) and Cdk2. Cdk1 activity blocks lysosomal degradation of HIF-1α and increases HIF-1α protein stability and transcriptional activity. By contrast, Cdk2 activity promotes lysosomal degradation of HIF-1α at the G1/S phase transition. Blocking lysosomal degradation by genetic or pharmacological means leads to HIF-1α-dependent cell-cycle arrest, demonstrating that lysosomal degradation of HIF-1α is an essential step for the maintenance of cell-cycle progression under hypoxic conditions.
Collapse
|
27
|
Lingappan K, Srinivasan C, Jiang W, Wang L, Couroucli XI, Moorthy B. Analysis of the transcriptome in hyperoxic lung injury and sex-specific alterations in gene expression. PLoS One 2014; 9:e101581. [PMID: 25003466 PMCID: PMC4086819 DOI: 10.1371/journal.pone.0101581] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/07/2014] [Indexed: 12/13/2022] Open
Abstract
Exposure to high concentration of oxygen (hyperoxia) leads to lung injury in experimental animal models and plays a role in the pathogenesis of diseases such as Acute Respiratory Distress Syndrome (ARDS) and Bronchopulmonary dysplasia (BPD) in humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. The major goal of this study was to characterize the changes in the pulmonary transcriptome following hyperoxia exposure and further elucidate the sex-specific changes. Male and female (8-10 wk) wild type (WT) (C57BL/6J) mice were exposed to hyperoxia (FiO2>0.95) and gene expression in lung tissues was studied at 48 h. A combination of fold change ≥1.4 and false discovery rate (FDR)<5% was used to define differentially expressed genes (DEGs). Overrepresentation of gene ontology terms representing biological processes and signaling pathway impact analysis (SPIA) was performed. Comparison of DEG profiles identified 327 genes unique to females, 585 unique to males and 1882 common genes. The major new findings of this study are the identification of new candidate genes of interest and the sex-specific transcriptomic changes in hyperoxic lung injury. We also identified DEGs involved in signaling pathways like MAP kinase and NF-kappa B which may explain the differences in sex-specific susceptibility to hyperoxic lung injury. These findings highlight changes in the pulmonary transcriptome and sex-specific differences in hyperoxic lung injury, and suggest new pathways, whose components could serve as sex-specific biomarkers and possible therapeutic targets for acute lung injury (ALI)/acute respiratory distress (ARDS) in humans.
Collapse
Affiliation(s)
- Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| | - Chandra Srinivasan
- Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xanthi I. Couroucli
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bhagavatula Moorthy
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
28
|
Yu Z, Ge Y, Xie L, Zhang T, Huang L, Zhao X, Liu J, Huang G. Using a yeast two-hybrid system to identify FTCD as a new regulator for HIF-1α in HepG2 cells. Cell Signal 2014; 26:1560-6. [DOI: 10.1016/j.cellsig.2014.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/16/2014] [Accepted: 03/16/2014] [Indexed: 12/15/2022]
|
29
|
Zhang SC, Chen F, Jiang KL, Yuan ZW, Wang WL. Comparative proteomic profiles of the normal and aganglionic hindgut in human Hirschsprung disease. Pediatr Res 2014; 75:754-61. [PMID: 24608570 DOI: 10.1038/pr.2014.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/04/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is the third most common congenital disorder of the gastrointestinal tract. This study aims to elucidate changes in protein expression between the normal and aganglionic hindgut in human HSCR. METHODS The biopsies were obtained from the normal and aganglionic hindgut in human HSCR, and the comparative proteomics were analyzed by mass spectrometry (MS)-based two-dimensional gel electrophoresis (2DE). RESULTS A total of 932-986 protein spots were identified in each of the gut segments, among which 30 spots had at least an eightfold difference in volume (%). Of the 30 differentially expressed spots, 15 proteins were identified via sequence analysis. Among these 15 proteins, eight were upregulated and seven were downregulated in the aganglionic group. The well-represented classes included biomarkers of enteric ganglions, extracellular matrix proteins, LIM domain proteins, serum proteins, and other pleiotropic proteins. Five proteins were selected and verified by western blotting and real-time PCR, and the results were consistent with the results of 2DE. CONCLUSION MS-based 2DE can help to identify pathological relevant proteins in HSCR; it defines an extensive protein catalog of the normal and aganglionic hindgut and may constitute the basis to understand pathophysiological mechanisms related to the HSCR.
Collapse
Affiliation(s)
- Shu-Cheng Zhang
- Department of Pediatric Surgery, Major Laboratory of Chinese Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang Chen
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kai-Lei Jiang
- Department of Pediatric Surgery, Major Laboratory of Chinese Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zheng-Wei Yuan
- Department of Pediatric Surgery, Major Laboratory of Chinese Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei-Lin Wang
- Department of Pediatric Surgery, Major Laboratory of Chinese Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Biophysical properties of intrinsically disordered p130Cas substrate domain--implication in mechanosensing. PLoS Comput Biol 2014; 10:e1003532. [PMID: 24722239 PMCID: PMC3983058 DOI: 10.1371/journal.pcbi.1003532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/05/2014] [Indexed: 02/06/2023] Open
Abstract
Mechanical stretch-induced tyrosine phosphorylation in the proline-rich 306-residue substrate domain (CasSD) of p130Cas (or BCAR1) has eluded an experimentally validated structural understanding. Cellular p130Cas tyrosine phosphorylation is shown to function in areas without internal actomyosin contractility, sensing force at the leading edge of cell migration. Circular dichroism shows CasSD is intrinsically disordered with dominant polyproline type II conformations. Strongly conserved in placental mammals, the proline-rich sequence exhibits a pseudo-repeat unit with variation hotspots 2–9 residues before substrate tyrosine residues. Atomic-force microscopy pulling experiments show CasSD requires minimal extension force and exhibits infrequent, random regions of weak stability. Proteolysis, light scattering and ultracentrifugation results show that a monomeric intrinsically disordered form persists for CasSD in solution with an expanded hydrodynamic radius. All-atom 3D conformer sampling with the TraDES package yields ensembles in agreement with experiment when coil-biased sampling is used, matching the experimental radius of gyration. Increasing β-sampling propensities increases the number of prolate conformers. Combining the results, we conclude that CasSD has no stable compact structure and is unlikely to efficiently autoinhibit phosphorylation. Taking into consideration the structural propensity of CasSD and the fact that it is known to bind to LIM domains, we propose a model of how CasSD and LIM domain family of transcription factor proteins may function together to regulate phosphorylation of CasSD and effect machanosensing. Mechanical stretching of cells causes the substrate domain of p130Cas (CasSD) to be phosphorylated on 15 tyrosine residues embedded along its length. CasSD is rich in proline and surprisingly well conserved in placental mammals. Stretching of CasSD by atomic force microscopy has identified that it requires far less force than normal folded proteins. Classical biophysical analyses have determined that CasSD is a typical intrinsically disordered protein, a difficult-to-study group of molecules covering about 30% of human proteins. The average size of CasSD is larger and elongated than folded globular proteins but smaller than chemically denatured proteins. We have simulated a large number of all-atom protein structures using a fast all-atom sampling method. The result is in good agreement with the experimental observation. As it is already known that stretching somehow exposes the tyrosine residues to phosphorylation, a mechanism is proposed where straightening of the p130Cas substrate domain backbone conformation through mechanical stretching can lead to dissociation of p130Cas-binding LIM domain proteins and exposure of CasSD tyrosine residues for phosphorylation. This study has led to a new model of a protein-based mechanism of force sensing at the leading edge of cells that allows the cells to feel their way as they move.
Collapse
|
31
|
Cai X, Wang J, Huang X, Fu W, Xia W, Zou M, Wang Y, Wang J, Xu D. Identification and characterization of MT-1X as a novel FHL3-binding partner. PLoS One 2014; 9:e93723. [PMID: 24690879 PMCID: PMC3972135 DOI: 10.1371/journal.pone.0093723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/06/2014] [Indexed: 11/20/2022] Open
Abstract
Four and a half LIM domain protein 3 (FHL3) is a member of the FHL protein family that plays roles in the regulation of cell survival, cell adhesion and signal transduction. However, the mechanism of action for FHL3 is not yet clear. The aim of present study was to identify novel binding partner of FHL3 and to explore the underlying mechanism. With the use of yeast two-hybrid screening system, FHL3 was used as the bait to screen human fetal hepatic cDNA library for interacting proteins. Methionine-1X was identified as a novel FHL3 binding partner. The interaction between FHL3 and the full length MT-1X was further confirmed by yeast two-hybrid assay, co-immunoprecipitation and GST pull-down assays. Furthermore,the result demonstrated that MT-1X knockdown promoted the FHL3-induced inhibitory effect on HepG2 cells by regulating FHL3-mediated Smad signaling and involving in the modulation the expression of G2/M phase-related proteins through interaction with FHL3. These findings suggest that functional interactions between FHL3 and MT-1X may provide some clues to the mechanisms of FHL3-regulated cell proliferation.
Collapse
Affiliation(s)
- Xin Cai
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - JinFeng Wang
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Xin Huang
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Wenliang Fu
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Wenrong Xia
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Minji Zou
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - YuanYuan Wang
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Jiaxi Wang
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | - Donggang Xu
- Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, Beijing, PR China
- * E-mail:
| |
Collapse
|
32
|
Four-and-a-half LIM domains proteins are novel regulators of the protein kinase D pathway in cardiac myocytes. Biochem J 2014; 457:451-61. [PMID: 24219103 PMCID: PMC3927927 DOI: 10.1042/bj20131026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PKD (protein kinase D) is a serine/threonine kinase implicated in multiple cardiac roles, including the phosphorylation of the class II HDAC5 (histone deacetylase isoform 5) and thereby de-repression of MEF2 (myocyte enhancer factor 2) transcription factor activity. In the present study we identify FHL1 (four-and-a-half LIM domains protein 1) and FHL2 as novel binding partners for PKD in cardiac myocytes. This was confirmed by pull-down assays using recombinant GST-fused proteins and heterologously or endogenously expressed PKD in adult rat ventricular myocytes or NRVMs (neonatal rat ventricular myocytes) respectively, and by co-immunoprecipitation of FHL1 and FHL2 with GFP–PKD1 fusion protein expressed in NRVMs. In vitro kinase assays showed that neither FHL1 nor FHL2 is a PKD1 substrate. Selective knockdown of FHL1 expression in NRVMs significantly inhibited PKD activation and HDAC5 phosphorylation in response to endothelin 1, but not to the α1-adrenoceptor agonist phenylephrine. In contrast, selective knockdown of FHL2 expression caused a significant reduction in PKD activation and HDAC5 phosphorylation in response to both stimuli. Interestingly, neither intervention affected MEF2 activation by endothelin 1 or phenylephrine. We conclude that FHL1 and FHL2 are novel cardiac PKD partners, which differentially facilitate PKD activation and HDAC5 phosphorylation by distinct neurohormonal stimuli, but are unlikely to regulate MEF2-driven transcriptional reprogramming. Protein kinase D has multiple roles in cardiac myocytes, where its regulatory mechanisms remain incompletely defined. In the present study we identify four-and-a-half LIM domains proteins 1 and 2 as novel binding partners and regulators of protein kinase D in this cell type.
Collapse
|
33
|
EAF2 suppresses hypoxia-induced factor 1α transcriptional activity by disrupting its interaction with coactivator CBP/p300. Mol Cell Biol 2014; 34:1085-99. [PMID: 24421387 DOI: 10.1128/mcb.00718-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous studies revealed that the potential tumor suppressor EAF2 binds to and stabilizes pVHL, suggesting that EAF2 may function by disturbing the hypoxia signaling pathway. However, the extent to which EAF2 affects hypoxia and the mechanisms underlying this activity remain largely unknown. In this study, we found that EAF2 is a hypoxia response gene harboring the hypoxia response element (HRE) in its promoter. By taking advantage of the pVHL-null cell lines RCC4 and 786-O, we demonstrated that hypoxia-induced factor 1α (HIF-1α), but not HIF-2α, induced EAF2 under hypoxia. Subsequent experiments showed that EAF2 bound to and suppressed HIF-1α but not HIF-2α transactivity. In addition, we observed that EAF2 inhibition of HIF-1α activity resulted from the disruption of p300 recruitment and that this occurred independently of FIH-1 (factor inhibiting HIF-1) and Sirt1. Furthermore, we found that EAF2 protected cells against hypoxia-induced cell death and inhibited cellular uptake of glucose under hypoxic conditions, suggesting that EAF2 indeed may act by modulating the hypoxia-signaling pathway. Our findings not only uncover a unique feedback regulation loop between EAF2 and HIF-1α but also provide a novel insight into the mechanism of EAF2 tumor suppression.
Collapse
|
34
|
Lee HH, Lee JY, Shih LH. ProperFhl1expression as Wnt signaling is required for chondrogenesis of ATDC5 cells. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.856341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
35
|
Hubbi ME, Hu H, Kshitiz, Gilkes DM, Semenza GL. Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J Biol Chem 2013; 288:20768-20775. [PMID: 23750001 PMCID: PMC3774348 DOI: 10.1074/jbc.m113.476903] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/31/2013] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible factor (HIF) 1 and HIF-2 are heterodimeric proteins composed of an oxygen-regulated HIF-1α or HIF-2α subunit, respectively, and a constitutively expressed HIF-1β subunit, which mediate adaptive transcriptional responses to hypoxia. Here, we report that Sirt7 (sirtuin-7) negatively regulates HIF-1α and HIF-2α protein levels by a mechanism that is independent of prolyl hydroxylation and that does not involve proteasomal or lysosomal degradation. The effect of Sirt7 was maintained in the presence of the sirtuin inhibitor nicotinamide and upon deletion or mutation of its deacetylase domain, indicating a non-catalytic function. Knockdown of Sirt7 led to an increase in HIF-1α and HIF-2α protein levels and an increase in HIF-1 and HIF-2 transcriptional activity. Thus, we identify a novel molecular function of Sirt7 as a negative regulator of HIF signaling.
Collapse
Affiliation(s)
- Maimon E Hubbi
- From the Vascular Program, Institute for Cell Engineering,; the McKusick-Nathans Institute of Genetic Medicine
| | - Hongxia Hu
- From the Vascular Program, Institute for Cell Engineering,; the McKusick-Nathans Institute of Genetic Medicine,; the Predoctoral Training Program in Human Genetics,; the Departments of Medicine, Oncology, Pediatrics, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kshitiz
- From the Vascular Program, Institute for Cell Engineering,; the Department of Biomedical Engineering, and
| | - Daniele M Gilkes
- From the Vascular Program, Institute for Cell Engineering,; the McKusick-Nathans Institute of Genetic Medicine
| | - Gregg L Semenza
- From the Vascular Program, Institute for Cell Engineering,; the McKusick-Nathans Institute of Genetic Medicine,.
| |
Collapse
|
36
|
Tsai YP, Wu KJ. Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications. Int J Cancer 2013; 134:249-56. [PMID: 23564219 DOI: 10.1002/ijc.28190] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/28/2013] [Indexed: 12/20/2022]
Abstract
Mammalian cells constantly encounter hypoxia, which is a stress condition occurring during development and physiological processes. To adapt to this inevitable condition, cells develop various mechanisms to cope with this stress and survive. In addition to the activation/stabilization of transcriptional regulators (hypoxia-inducible factors), other epigenetic mechanisms of gene regulation are used. These mechanisms are mediated by various players including transcriptional coregulators, chromatin-modifying complexes, histone modification enzymes and changes in DNA methylation status. Recent progress in all the fields mentioned above has greatly improved the knowledge of how gene regulation contributes to the hypoxic response. This review should shed light on the molecular epigenetic mechanisms of hypoxia-induced gene regulation and help understand the processes adapted by cells to cope with hypoxia.
Collapse
Affiliation(s)
- Ya-Ping Tsai
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
37
|
Yue J, Guan J, Wang X, Zhang L, Yang Z, Ao Q, Deng Y, Zhu P, Wang G. MicroRNA-206 is involved in hypoxia-induced pulmonary hypertension through targeting of the HIF-1α/Fhl-1 pathway. J Transl Med 2013; 93:748-59. [PMID: 23628900 DOI: 10.1038/labinvest.2013.63] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-induced pulmonary hypertension (PH), which is characterized by vasoconstriction and subsequent structural remodeling of blood vessels, is an important event in chronic obstructive pulmonary disease patients and in people living at high altitudes. Hypoxia-inducible factor-1α (HIF-1α) and its regulator four-and-a-half LIM (Lin-11, Isl-1 and Mec-3) domain 1 (Fhl-1) have important roles in hypoxia-induced PH. MicroRNA-206 (miR-206) is critical for myogenesis and related diseases; however, the role of miR-206 in hypoxia-induced PH is unknown. miR-206 expression was evaluated in a hypoxic rat model and in cultured hypoxic pulmonary artery smooth muscle cells (PASMCs) using real-time quantitative PCR (RT-qPCR). HIF-1α and Fhl-1 expression were evaluated using RT-qPCR, western blotting, immunohistochemistry and immunofluorescence. The function of miR-206 was assessed by transfecting miR-206 mimics and inhibitors. Dual-luciferase reporter gene assays and western blotting were performed to validate the target genes of miR-206. siRNA targeted against Fhl-1 was used to investigate the effect of Fhl-1 on miR-206. Flow cytometry was used to detect the cell cycle phase distribution in each group of PASMCs. Significant downregulation of miR-206 in hypoxic lung tissue and PASMCs was identified, whereas HIF-1α and Fhl-1 were upregulated in these samples. The expression of miR-206 in the serum was different from that in the lung tissue. Transfection of pre-miR miR-206 in hypoxic conditions led to increased expression of HIF-1α and Fhl-1 rather than abolishing hypoxia-induced HIF-1α and Fhl-1, as was expected, and promoted the entry of cells into the S phase and enhanced PASMC proliferation. Fhl-1-targeted siRNA in PASMC prevented cell proliferation and led to an increased proportion of cells in the G1 phase without altering miR-206 expression. Bioinformatic analysis and dual-luciferase reporter gene assays revealed direct evidence for miR-206 targeting of HIF-1α. In conclusion, hypoxia-induced downregulation of miR-206 promotes PH by targeting the HIF-1α/Fhl-1 pathway in PASMCs. miR-206 could be a triggering factor of early stage of hypoxia-induced PH.
Collapse
Affiliation(s)
- Junqiu Yue
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
LIM-only protein FHL2 activates NF-κB signaling in the control of liver regeneration and hepatocarcinogenesis. Mol Cell Biol 2013; 33:3299-308. [PMID: 23775124 DOI: 10.1128/mcb.00105-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Four-and-a-half LIM-only protein 2 (FHL2) is an important mediator in many signaling pathways. In this study, we analyzed the functions of FHL2 in nuclear factor κB (NF-κB) signaling in the liver. We show that FHL2 enhanced tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) activity in transcriptional activation of NF-κB targets by stabilizing the protein. TRAF6 is a binding partner of FHL2 and an important component of the Toll-like receptor-NF-κB pathway. Knockdown of FHL2 in 293-hTLR4/MD2-CD14 cells impaired lipopolysaccharide (LPS)-induced NF-κB activity, which regulates expression of inflammatory cytokines. Indeed, FHL2(-/-) macrophages showed significantly reduced production of TNF and interleukin 6 (IL-6) following LPS stimulation. TNF and IL-6 are the key cytokines that prime liver regeneration after hepatic injury. Following partial hepatectomy, FHL2(-/-) mice exhibited diminished induction of TNF and IL-6 and delayed hepatocyte regeneration. In the liver, NF-κB signaling orchestrates inflammatory cross talk between hepatocytes and hepatic immune cells that promote chemical hepatocarcinogenesis. We found that deficiency of FHL2 reduced susceptibility to diethylnitrosamine-induced hepatocarcinogenesis, correlating with the activator function of FHL2 in NF-κB signaling. Our findings demonstrate FHL2 as a positive regulator of NF-κB activity in liver regeneration and carcinogenesis and highlight the importance of FHL2 in both hepatocytes and hepatic immune cells.
Collapse
|
39
|
Verset L, Tommelein J, Moles Lopez X, Decaestecker C, Mareel M, Bracke M, Salmon I, De Wever O, Demetter P. Epithelial expression of FHL2 is negatively associated with metastasis-free and overall survival in colorectal cancer. Br J Cancer 2013; 109:114-20. [PMID: 23756870 PMCID: PMC3708555 DOI: 10.1038/bjc.2013.290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/24/2013] [Accepted: 05/16/2013] [Indexed: 11/20/2022] Open
Abstract
Background: Four-and-a-half LIM domains protein 2 (FHL2) is a component of the focal adhesion structures and has been suggested to have a role in cancer progression. It has been shown to be overexpressed in the colorectal cancer (CRC). Methods: Here, we examined a possible prognostic value of FHL2 in CRC. Immunohistochemistry for FHL2 was performed on 296 CRCs without distant metastases at the time of surgery. Staining in the epithelial compartment was quantitatively evaluated using image analysis, and results were related to clinical variables. Antibody specificity was tested using small-interfering RNA transfection in hTERT-immortalised myofibroblasts. Results: Varying degrees of cytoplasmic FHL2 expression by neoplastic epithelial cells were detectable in all cases. Higher FHL2 expression in the epithelial compartment was an independent adverse prognostic factor. Multivariate Cox analysis shows that expression in the tumour invasion front (P<0.001) as well as in the centre of the tumour (P<0.001) was associated with metachronous metastases independently of the clinicopathological variables; expression in the tumour invasion front was also associated with overall survival independently of the clinicopathological variables (P<0.01). Conclusion: Higher FHL2 expression is involved in CRC progression and correlates with the development of metachronous metastases and overall survival, suggesting that FHL2 is an independent adverse prognostic indicator for CRC.
Collapse
Affiliation(s)
- L Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Drake JI, Gomez-Arroyo J, Dumur CI, Kraskauskas D, Natarajan R, Bogaard HJ, Fawcett P, Voelkel NF. Chronic carvedilol treatment partially reverses the right ventricular failure transcriptional profile in experimental pulmonary hypertension. Physiol Genomics 2013; 45:449-61. [PMID: 23632417 DOI: 10.1152/physiolgenomics.00166.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Right ventricular failure (RVF) is the most frequent cause of death in patients with pulmonary arterial hypertension (PAH); however, specific therapies targeted to treat RVF have not been developed. Chronic treatment with carvedilol has been shown to reduce established maladaptive right ventricle (RV) hypertrophy and to improve RV function in experimental PAH. However, the mechanisms by which carvedilol improves RVF are unknown. We have previously demonstrated by microarray analysis that RVF is characterized by a distinct gene expression profile when compared with functional, compensatory hypertrophy. We next sought to identify the effects of carvedilol on gene expression on a genome-wide basis. PAH and RVF were induced in male Sprague-Dawley rats by the combination of VEGF-receptor blockade and chronic hypoxia. After RVF was established, rats were treated with carvedilol or vehicle for 4 wk. RNA was isolated from RV tissue and hybridized for microarray analysis. An initial prediction analysis of carvedilol-treated RVs showed that the gene expression profile resembled the RVF prediction set. However, a more extensive analysis revealed a small group of genes differentially expressed after carvedilol treatment. Further analysis categorized these genes in pathways involved in cardiac hypertrophy, mitochondrial dysfunction, and protein ubiquitination. Genes encoding proteins in the cardiac hypertrophy and protein ubiquitination pathways were downregulated in the RV by carvedilol, while genes encoding proteins in the mitochondrial dysfunction pathway were upregulated by carvedilol. These gene expression changes may explain some of the mechanisms that underlie the functional improvement of the RV after carvedilol treatment.
Collapse
Affiliation(s)
- Jennifer I Drake
- Victoria Johnson Center for Lung Obstructive Disease Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Han W, Xin Z, Zhao Z, Bao W, Lin X, Yin B, Zhao J, Yuan J, Qiang B, Peng X. RNA-binding protein PCBP2 modulates glioma growth by regulating FHL3. J Clin Invest 2013; 123:2103-18. [PMID: 23585479 DOI: 10.1172/jci61820] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/07/2013] [Indexed: 02/01/2023] Open
Abstract
PCBP2 is a member of the poly(C)-binding protein (PCBP) family, which plays an important role in posttranscriptional and translational regulation by interacting with single-stranded poly(C) motifs in target mRNAs. Several PCBP family members have been reported to be involved in human malignancies. Here, we show that PCBP2 is upregulated in human glioma tissues and cell lines. Knockdown of PCBP2 inhibited glioma growth in vitro and in vivo through inhibition of cell-cycle progression and induction of caspase-3-mediated apoptosis. Thirty-five mRNAs were identified as putative PCBP2 targets/interactors using RIP-ChIP protein-RNA interaction arrays in a human glioma cell line, T98G. Four-and-a-half LIM domain 3 (FHL3) mRNA was downregulated in human gliomas and was identified as a PCBP2 target. Knockdown of PCBP2 enhanced the expression of FHL3 by stabilizing its mRNA. Overexpression of FHL3 attenuated cell growth and induced apoptosis. This study establishes a link between PCBP2 and FHL3 proteins and identifies a new pathway for regulating glioma progression.
Collapse
Affiliation(s)
- Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hubbi ME, Hu H, Kshitiz, Ahmed I, Levchenko A, Semenza GL. Chaperone-mediated autophagy targets hypoxia-inducible factor-1α (HIF-1α) for lysosomal degradation. J Biol Chem 2013; 288:10703-14. [PMID: 23457305 PMCID: PMC3624450 DOI: 10.1074/jbc.m112.414771] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/18/2013] [Indexed: 01/11/2023] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that mediates adaptive responses to hypoxia. We demonstrate that lysosomal degradation of the HIF-1α subunit by chaperone-mediated autophagy (CMA) is a major regulator of HIF-1 activity. Pharmacological inhibitors of lysosomal degradation, such as bafilomycin and chloroquine, increased HIF-1α levels and HIF-1 activity, whereas activators of chaperone-mediated autophagy, including 6-aminonicotinamide and nutrient starvation, decreased HIF-1α levels and HIF-1 activity. In contrast, macroautophagy inhibitors did not increase HIF-1 activity. Transcription factor EB, a master regulator of lysosomal biogenesis, also negatively regulated HIF-1 activity. HIF-1α interacts with HSC70 and LAMP2A, which are core components of the CMA machinery. Overexpression of HSC70 or LAMP2A decreased HIF-1α protein levels, whereas knockdown had the opposite effect. Finally, hypoxia increased the transcription of genes involved in CMA and lysosomal biogenesis in cancer cells. Thus, pharmacological and genetic approaches identify CMA as a major regulator of HIF-1 activity and identify interplay between autophagy and the response to hypoxia.
Collapse
Affiliation(s)
- Maimon E. Hubbi
- From the Vascular Program, Institute for Cell Engineering
- McKusick-Nathans Institute of Genetic Medicine
| | - Hongxia Hu
- From the Vascular Program, Institute for Cell Engineering
- McKusick-Nathans Institute of Genetic Medicine
- Predoctoral Training Program in Human Genetics
| | - Kshitiz
- From the Vascular Program, Institute for Cell Engineering
- Department of Biomedical Engineering
| | | | - Andre Levchenko
- From the Vascular Program, Institute for Cell Engineering
- Department of Biomedical Engineering
| | - Gregg L. Semenza
- From the Vascular Program, Institute for Cell Engineering
- McKusick-Nathans Institute of Genetic Medicine
- Departments of Medicine, Oncology, Pediatrics, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
43
|
ZHOU ZHICHAO, LU JUMING, DOU JINGTAO, LV ZHAOHUI, QIN XI, LIN JING. FHL1 and Smad4 synergistically inhibit vascular endothelial growth factor expression. Mol Med Rep 2012. [DOI: 10.3892/mmr.2012.1202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
44
|
Lin J, Qin X, Zhu Z, Mu J, Zhu L, Wu K, Jiao H, Xu X, Ye Q. FHL family members suppress vascular endothelial growth factor expression through blockade of dimerization of HIF1α and HIF1β. IUBMB Life 2012; 64:921-930. [PMID: 23086815 DOI: 10.1002/iub.1089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Four and a half LIM domain (FHL) proteins belong to a family of LIM-only proteins that have been implicated in the development and progression of various types of cancers. However, the role of FHL proteins in tumor angiogenesis remains to be elucidated. Herein, we demonstrate that FHL1-3 decrease the promoter activity and expression of vascular endothelial growth factor (VEGF), the key regulator of angiogenesis in cancer growth and progression as well as an important target gene of the transcription factor hypoxia-inducible factor 1 (HIF1α/HIF1β). FHL1-3 interacted with HIF1α both in vitro and in vivo. A single LIM domain of FHL1 was sufficient for its interaction with HIF1α. FHL1 interacted with the HIF1α region containing basic helix-loop-helix (bHLH) motif and PER-ARNT-SIM domain, both of which aid in dimerization with HIF1β and DNA binding. FHL1-3 inhibited HIF1 transcriptional activity and HIF1-mediated VEGF expression in a hypoxia-independent manner. Moreover, FHL1 blocked HIF1α-HIF1β heterodimerization and HIF1α recruitment to the VEGF promoter. These data suggest that FHL proteins are involved in negative regulation of VEGF possibly by interfering with the dimerization and DNA binding of HIF1 subunits and may play an important role in tumor angiogenesis.
Collapse
Affiliation(s)
- Jing Lin
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|