1
|
Menon AV, Liu J, Tsai HP, Zeng L, Yang S, Asnani A, Kim J. Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease. Blood 2022; 139:936-941. [PMID: 34388243 PMCID: PMC8832481 DOI: 10.1182/blood.2020008455] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/08/2021] [Indexed: 11/20/2022] Open
Abstract
Sickle cell disease (SCD) is characterized by increased hemolysis, which results in plasma heme overload and ultimately cardiovascular complications. Here, we hypothesized that increased heme in SCD causes upregulation of heme oxygenase 1 (Hmox1), which consequently drives cardiomyopathy through ferroptosis, an iron-dependent non-apoptotic form of cell death. First, we demonstrated that the Townes SCD mice had higher levels of hemopexin-free heme in the serum and increased cardiomyopathy, which was corrected by hemopexin supplementation. Cardiomyopathy in SCD mice was associated with upregulation of cardiac Hmox1, and inhibition or induction of Hmox1 improved or worsened cardiac damage, respectively. Because free iron, a product of heme degradation through Hmox1, has been implicated in toxicities including ferroptosis, we evaluated the downstream effects of elevated heme in SCD. Consistent with Hmox1 upregulation and iron overload, levels of lipid peroxidation and ferroptotic markers increased in SCD mice, which were corrected by hemopexin administration. Moreover, ferroptosis inhibitors decreased cardiomyopathy, whereas a ferroptosis inducer erastin exacerbated cardiac damage in SCD and induced cardiac ferroptosis in nonsickling mice. Finally, inhibition or induction of Hmox1 decreased or increased cardiac ferroptosis in SCD mice, respectively. Together, our results identify ferroptosis as a key mechanism of cardiomyopathy in SCD.
Collapse
Affiliation(s)
| | - Jing Liu
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA; and
| | | | - Lingxue Zeng
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA
| | - Seungjeong Yang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA
| | - Aarti Asnani
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA; and
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA
| |
Collapse
|
2
|
Sun Y, Liu Z, Cao X, Lu Y, Mi Z, He C, Liu J, Zheng Z, Li MJ, Li T, Xu D, Wu M, Cao Y, Li Y, Yang B, Mei C, Zhang L, Chen Y. Activation of P-TEFb by cAMP-PKA signaling in autosomal dominant polycystic kidney disease. SCIENCE ADVANCES 2019; 5:eaaw3593. [PMID: 31183407 PMCID: PMC6551191 DOI: 10.1126/sciadv.aaw3593] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/02/2019] [Indexed: 05/06/2023]
Abstract
Positive transcription elongation factor b (P-TEFb) functions as a central regulator of transcription elongation. Activation of P-TEFb occurs through its dissociation from the transcriptionally inactive P-TEFb/HEXIM1/7SK snRNP complex. However, the mechanisms of signal-regulated P-TEFb activation and its roles in human diseases remain largely unknown. Here, we demonstrate that cAMP-PKA signaling disrupts the inactive P-TEFb/HEXIM1/7SK snRNP complex by PKA-mediated phosphorylation of HEXIM1 at serine-158. The cAMP pathway plays central roles in the development of autosomal dominant polycystic kidney disease (ADPKD), and we show that P-TEFb is hyperactivated in mouse and human ADPKD kidneys. Genetic activation of P-TEFb promotes cyst formation in a zebrafish ADPKD model, while pharmacological inhibition of P-TEFb attenuates cyst development by suppressing the pathological gene expression program in ADPKD mice. Our study therefore elucidates a mechanism by which P-TEFb activation by cAMP-PKA signaling promotes cystogenesis in ADPKD.
Collapse
Affiliation(s)
- Yongzhan Sun
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhiheng Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xinyi Cao
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yi Lu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zeyun Mi
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chaoran He
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jing Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhanye Zheng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Tiegang Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dechao Xu
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Ming Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Ying Cao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuhao Li
- Department of Pathology, Nankai University School of Medicine, 94 Weijin Road, Tianjin 300071, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100038, China
| | - Changlin Mei
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
- Corresponding author. (C.M.); (L.Z.); (Y.C.)
| | - Lirong Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Corresponding author. (C.M.); (L.Z.); (Y.C.)
| | - Yupeng Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, China
- Corresponding author. (C.M.); (L.Z.); (Y.C.)
| |
Collapse
|
3
|
Effects of endometrial stem cell transplantation combined with estrogen in the repair of endometrial injury. Oncol Lett 2018; 16:1115-1122. [PMID: 29963188 DOI: 10.3892/ol.2018.8702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
The present study investigated the effects of endometrial stem cell (EnSCs) transplantation combined with estrogen in the repair of endometrial injury. A total of 30 patients with intrauterine adhesions (IUA) and 30 healthy individuals were selected. Expression of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)-BB in endometrial tissue was assessed. Additionally, expression levels of epithelial membrane antigen (EMA), cytokeratin (CK), integrin α-6 (CD49f), Thy-1 membrane glycoprotein (THY-1), collagen type 1 (Col I), fibroblast (5B5) and vimentin in EnSCs were detected using western blot analysis and reverse transcription-quantitative polymerase chain reaction. A rat model of IUA was established and female rats were divided into the control, model, EnSCs, estrogen and estrogen plus EnSCs (E+EnSCs) groups. Blood was extracted at 1 and 5 weeks post-treatment, and serum levels of transforming growth factor (TGF)-β1, EGF, 17 β-estradiol (E2) and PDGF-BB were measured using ELISA. Hematoxylin and eosin staining was performed to observe the pathological changes of endometrial tissue in rats. Western blot analysis was used to detect the expression of estrogen receptor (ESR1) and matrix metalloproteinase (MMP)-9 in the endometrium. The results revealed that patients with IUA exhibited increased expression levels of EGF and PDGF-BB compared with those in control group. Additionally, EnSCs exhibited significantly increased expression levels of EMA, CD49f, CK, Col I, THY-1, 5B5 and vimentin compared with the remaining groups. An increased number of newly formed glands was observed in the E+EnSCs group compared with that in the EnSCs group. Increased levels of E2, but decreased levels of TGF-β1, EGF, PDGF-BB, ESR1 and MMP-9 were detected in EnSCs and estrogen groups compared with those in E+EnSCs group. These results suggest that EnSCs transplantation combined with estrogen could improve endometrial abnormalities.
Collapse
|
4
|
MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro. Cell Signal 2018; 46:145-153. [DOI: 10.1016/j.cellsig.2018.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
|
5
|
Mascareno E, Gupta R, Martello LA, Dhar-Mascareno M, Salciccioli L, Beckles D, Walsh MG, Machado FS, Tanowitz HB, Haseeb M. Rapidly progressive course of Trypanosoma cruzi infection in mice heterozygous for hexamethylene bis-acetamide inducible 1 (Hexim1) gene. Microbes Infect 2018; 20:25-36. [DOI: 10.1016/j.micinf.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023]
|
6
|
β-Aminoisobutyric acid ameliorates the renal fibrosis in mouse obstructed kidneys via inhibition of renal fibroblast activation and fibrosis. J Pharmacol Sci 2017; 133:203-213. [DOI: 10.1016/j.jphs.2016.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 02/06/2023] Open
|
7
|
Dhar-Mascareno M, Rozenberg I, Iqbal J, Hussain MM, Beckles D, Mascareno E. Hexim1 heterozygosity stabilizes atherosclerotic plaque and decreased steatosis in ApoE null mice fed atherogenic diet. Int J Biochem Cell Biol 2017; 83:56-64. [PMID: 28013147 DOI: 10.1016/j.biocel.2016.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/13/2023]
Abstract
Hexim-1 is an inhibitor of RNA polymerase II transcription elongation. Decreased Hexim-1 expression in animal models of chronic diseases such as left ventricular hypertrophy, obesity and cancer triggered significant changes in adaptation and remodeling. The main aim of this study was to evaluate the role of Hexim1 in lipid metabolism focused in the progression of atherosclerosis and steatosis. We used the C57BL6 apolipoprotein E (ApoE null) crossed bred to C57BL6Hexim1 heterozygous mice to obtain ApoE null - Hexim1 heterozygous mice (ApoE-HT). Both ApoE null backgrounds were fed high fat diet for twelve weeks. Then, we evaluated lipid metabolism, atherosclerotic plaque formation and liver steatosis. In order to understand changes in the transcriptome of both backgrounds during the progression of steatosis, we performed Affymetrix mouse 430 2.0 microarray. After 12 weeks of HFD, ApoE null and ApoE-HT showed similar increase of cholesterol and triglycerides in plasma. Plaque composition was altered in ApoE-HT. Additionally, liver triglycerides and steatosis were decreased in ApoE-HT mice. Affymetrix analysis revealed that decreased steatosis might be due to impaired inducible SOCS3 expression in ApoE-HT mice. In conclusion, decreased Hexim-1 expression does not alter cholesterol metabolism in ApoE null background after HFD. However, it promotes stable atherosclerotic plaque and decreased steatosis by promoting the anti-inflammatory TGFβ pathway and blocking the expression of the inducible and pro-inflammatory expression of SOCS3 respectively.
Collapse
Affiliation(s)
- Manya Dhar-Mascareno
- Department of Biological Sciences, State University of New York, College at Old Westbury, Old Westbury, New York 11568, USA
| | - Inna Rozenberg
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - Jahangir Iqbal
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - M Mahmood Hussain
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - Daniel Beckles
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203 USA; Departments of Surgery, Medicine and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - Eduardo Mascareno
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203 USA.
| |
Collapse
|
8
|
Nakase K, Kollmar R, Lazar J, Arjomandi H, Sundaram K, Silverman J, Orman R, Weedon J, Stefanov D, Savoca E, Tordjman L, Stiles K, Ihsan M, Nunez A, Guzman L, Stewart M. Laryngospasm, central and obstructive apnea during seizures: Defining pathophysiology for sudden death in a rat model. Epilepsy Res 2016; 128:126-139. [PMID: 27835782 DOI: 10.1016/j.eplepsyres.2016.08.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 12/21/2022]
Abstract
Seizure spread into the autonomic nervous system can result in life-threatening cardiovascular and respiratory dysfunction. Here we report on a less-studied consequence of such autonomic derangements-the possibility of laryngospasm and upper-airway occlusion. We used parenteral kainic acid to induce recurring seizures in urethane-anesthetized Sprague Dawley rats. EEG recordings and combinations of cardiopulmonary monitoring, including video laryngoscopy, were performed during multi-unit recordings of recurrent laryngeal nerve (RLN) activity or head-out plethysmography with or without endotracheal intubation. Controlled occlusions of a tracheal tube were used to study the kinetics of cardiac and respiratory changes after sudden obstruction. Seizure activity caused significant firing increases in the RLN that were associated with abnormal, high-frequency movements of the vocal folds. Partial airway obstruction from laryngospasm was evident in plethysmograms and was prevented by intubation. Complete glottic closure (confirmed by laryngoscopy) occurred in a subset of non-intubated animals in association with the largest increases in RLN activity, and cessation of airflow was followed in all obstructed animals within tens of seconds by ST-segment elevation, bradycardia, and death. Periods of central apnea occurred in both intubated and non-intubated rats during seizures for periods up to 33s and were associated with modestly increased RLN activity, minimal cardiac derangements, and an open airway on laryngoscopy. In controlled complete airway occlusions, respiratory effort to inspire progressively increased, then ceased, usually in less than 1min. Respiratory arrest was associated with left ventricular dilatation and eventual asystole, an elevation of systemic blood pressure, and complete glottic closure. Severe laryngospasm contributed to the seizure- and hypoxemia-induced conditions that resulted in sudden death in our rat model, and we suggest that this mechanism could contribute to sudden death in epilepsy.
Collapse
Affiliation(s)
- K Nakase
- Department of Physiology & Pharmacology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - R Kollmar
- Department of Cell Biology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States; Department of Otolaryngology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - J Lazar
- Department of Medicine (Division of Cardiology), State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - H Arjomandi
- Department of Otolaryngology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - K Sundaram
- Department of Otolaryngology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - J Silverman
- Department of Otolaryngology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - R Orman
- Department of Physiology & Pharmacology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - J Weedon
- Department of Statistical Design & Analysis, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - D Stefanov
- Department of Statistical Design & Analysis, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - E Savoca
- Department of Cell Biology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States; Department of Otolaryngology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - L Tordjman
- Department of Physiology & Pharmacology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - K Stiles
- Department of Cell Biology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - M Ihsan
- Department of Medicine (Division of Cardiology), State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - A Nunez
- Department of Medicine (Division of Cardiology), State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States
| | - L Guzman
- Research Initiative for Scientific Enhancement (RISE) Program, City University of New York, Medgar Evers College, 1638 Bedford Avenue, Brooklyn, New York, 11225, United States
| | - M Stewart
- Department of Physiology & Pharmacology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States; Department of Neurology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York, 11203, United States.
| |
Collapse
|
9
|
Nguyen D, Fayol O, Buisine N, Lecorre P, Uguen P. Functional Interaction between HEXIM and Hedgehog Signaling during Drosophila Wing Development. PLoS One 2016; 11:e0155438. [PMID: 27176767 PMCID: PMC4866710 DOI: 10.1371/journal.pone.0155438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
Studying the dynamic of gene regulatory networks is essential in order to understand the specific signals and factors that govern cell proliferation and differentiation during development. This also has direct implication in human health and cancer biology. The general transcriptional elongation regulator P-TEFb regulates the transcriptional status of many developmental genes. Its biological activity is controlled by an inhibitory complex composed of HEXIM and the 7SK snRNA. Here, we examine the function of HEXIM during Drosophila development. Our key finding is that HEXIM affects the Hedgehog signaling pathway. HEXIM knockdown flies display strong phenotypes and organ failures. In the wing imaginal disc, HEXIM knockdown initially induces ectopic expression of Hedgehog (Hh) and its transcriptional effector Cubitus interuptus (Ci). In turn, deregulated Hedgehog signaling provokes apoptosis, which is continuously compensated by apoptosis-induced cell proliferation. Thus, the HEXIM knockdown mutant phenotype does not result from the apoptotic ablation of imaginal disc; but rather from the failure of dividing cells to commit to a proper developmental program due to Hedgehog signaling defects. Furthermore, we show that ci is a genetic suppressor of hexim. Thus, HEXIM ensures the integrity of Hedgehog signaling in wing imaginal disc, by a yet unknown mechanism. To our knowledge, this is the first time that the physiological function of HEXIM has been addressed in such details in vivo.
Collapse
Affiliation(s)
- Duy Nguyen
- UMR-S1174, Univ. Paris-Sud, Inserm, Université Paris-Saclay, Bât. 440, 91405 Orsay, France
| | - Olivier Fayol
- UMR-S1174, Univ. Paris-Sud, Inserm, Université Paris-Saclay, Bât. 440, 91405 Orsay, France
| | | | - Pierrette Lecorre
- UMR-S1174, Univ. Paris-Sud, Inserm, Université Paris-Saclay, Bât. 440, 91405 Orsay, France
| | - Patricia Uguen
- UMR-S1174, Univ. Paris-Sud, Inserm, Université Paris-Saclay, Bât. 440, 91405 Orsay, France
- * E-mail:
| |
Collapse
|
10
|
Zou M, Wang F, Gao R, Wu J, Ou Y, Chen X, Wang T, Zhou X, Zhu W, Li P, Qi LW, Jiang T, Wang W, Li C, Chen J, He Q, Chen Y. Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-β R II during TGF-β1-induced fibrogenesis in human cardiac fibroblasts. Sci Rep 2016; 6:24747. [PMID: 27098600 PMCID: PMC4838850 DOI: 10.1038/srep24747] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/31/2016] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) plays an important role on fibrogenesis in heart disease. MicroRNAs have exhibited as crucial regulators of cardiac homeostasis and remodeling in various heart diseases. MiR-19a-3p/19b-3p expresses with low levels in the plasma of heart failure patients. The purpose of our study is to determine the role of MiR-19a-3p/19b-3p in regulating autophagy-mediated fibrosis of human cardiac fibroblasts. We elucidate our hypothesis in clinical samples and human cardiac fibroblasts (HCF) to provide valuable basic information. TGF-β1 promotes collagen I α2 and fibronectin synthesis in HCF and that is paralleled by autophagic activation in these cells. Pharmacological inhibition of autophagy by 3-methyladenine decreases the fibrotic response, while autophagy induction of rapamycin increases the response. BECN1 knockdown and Atg5 over-expression either inhibits or enhances the fibrotic effect of TGF-β1 in experimental HCF. Furthermore, miR-19a-3p/19b-3p mimics inhibit epithelial mesenchymal transition (EMT) and extracellular matrix (ECM) prodution and invasion of HCF. Functional studies suggest that miR-19a-3p/19b-3p inhibits autophagy of HCF through targeting TGF-β R II mRNA. Moreover, enhancement of autophagy rescues inhibition effect of miR-19a-3p/19b-3p on Smad 2 and Akt phosphorylation through TGF-β R II signaling. Our study uncovers a novel mechanism that miR-19a-3p/19b-3p inhibits autophagy-mediated fibrogenesis by targeting TGF-β R II.
Collapse
Affiliation(s)
- Meijuan Zou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, P.R. China
| | - Fang Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Rui Gao
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, P.R. China
| | - Jingjing Wu
- Department Of Nephrology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Yingwei Ou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, P.R. China
| | - Xuguan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, P.R. China
| | - Tongshan Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Jiang
- Emergency Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Weiwei Wang
- Emergency Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Chunyu Li
- Emergency Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Jun Chen
- Emergency Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Qifang He
- Emergency Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Yan Chen
- Emergency Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| |
Collapse
|
11
|
Dhar-Mascareno M, Ramirez SN, Rozenberg I, Rouille Y, Kral JG, Mascareno EJ. Hexim1, a Novel Regulator of Leptin Function, Modulates Obesity and Glucose Disposal. Mol Endocrinol 2016; 30:314-24. [PMID: 26859361 DOI: 10.1210/me.2015-1211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Leptin triggers signaling events with significant transcriptional responses that are essential to metabolic processes affecting obesity and glucose disposal. We asked whether hexamethylene bis-acetamide inducible-1 (Hexim1), an inhibitor of RNA II polymerase-dependent transcription elongation, regulates leptin-Janus kinase 2 signaling axis in the hypothalamus. We subjected C57BL6 Hexim1 heterozygous (HT) mice to high-fat diet and when compared with wild type, HT mice were resistant to high-fat diet-induced weight gain and remain insulin sensitive. HT mice exhibited increased leptin-pY(705)Stat3 signaling in the hypothalamus, with normal adipocyte size, increased type I oxidative muscle fiber density, and enhanced glucose transporter 4 expression. We also observed that normal Hexim1 protein level is required to facilitate the expression of CCAAT/enhancer-binding proteins (C/EBPs) required for adipogenesis and inducible suppressor of cytokine signaling 3 (SOCS) expression. Further support on the role of Hexim1 regulating C/EBPs during adipocyte differentiation was shown when HT 3T3L1 fibroblasts failed to undergo adipogenesis. Hexim1 selectively modulates leptin-mediated signal transduction pathways in the hypothalamus, the expression of C/EBPs and peroxisome proliferator-activated receptor-γ (PPAR γ) in skeletal muscle and adipose tissue during the adaptation to metabolic stress. We postulate that Hexim1 might be a novel factor involved in maintaining whole-body energy balance.
Collapse
Affiliation(s)
- Manya Dhar-Mascareno
- Department of Biological Sciences (M.D.-M., S.N.R.), State University of New York, College at Old Westbury, Old Westbury, New York 11568; Departments of Cell Biology (I.R., E.J.M.) and Surgery, Medicine, and Cell Biology (J.G.K.), State University of New York Downstate Medical Center, Brooklyn, New York 11203; and Institute Pasteur Inserm (Y.R.), Cenre National de la Recherche Scientifique, Center for Infection and Immunity of Lille, UMR8204, U1019, F-59021 Lille, France
| | - Susan N Ramirez
- Department of Biological Sciences (M.D.-M., S.N.R.), State University of New York, College at Old Westbury, Old Westbury, New York 11568; Departments of Cell Biology (I.R., E.J.M.) and Surgery, Medicine, and Cell Biology (J.G.K.), State University of New York Downstate Medical Center, Brooklyn, New York 11203; and Institute Pasteur Inserm (Y.R.), Cenre National de la Recherche Scientifique, Center for Infection and Immunity of Lille, UMR8204, U1019, F-59021 Lille, France
| | - Inna Rozenberg
- Department of Biological Sciences (M.D.-M., S.N.R.), State University of New York, College at Old Westbury, Old Westbury, New York 11568; Departments of Cell Biology (I.R., E.J.M.) and Surgery, Medicine, and Cell Biology (J.G.K.), State University of New York Downstate Medical Center, Brooklyn, New York 11203; and Institute Pasteur Inserm (Y.R.), Cenre National de la Recherche Scientifique, Center for Infection and Immunity of Lille, UMR8204, U1019, F-59021 Lille, France
| | - Yves Rouille
- Department of Biological Sciences (M.D.-M., S.N.R.), State University of New York, College at Old Westbury, Old Westbury, New York 11568; Departments of Cell Biology (I.R., E.J.M.) and Surgery, Medicine, and Cell Biology (J.G.K.), State University of New York Downstate Medical Center, Brooklyn, New York 11203; and Institute Pasteur Inserm (Y.R.), Cenre National de la Recherche Scientifique, Center for Infection and Immunity of Lille, UMR8204, U1019, F-59021 Lille, France
| | - John G Kral
- Department of Biological Sciences (M.D.-M., S.N.R.), State University of New York, College at Old Westbury, Old Westbury, New York 11568; Departments of Cell Biology (I.R., E.J.M.) and Surgery, Medicine, and Cell Biology (J.G.K.), State University of New York Downstate Medical Center, Brooklyn, New York 11203; and Institute Pasteur Inserm (Y.R.), Cenre National de la Recherche Scientifique, Center for Infection and Immunity of Lille, UMR8204, U1019, F-59021 Lille, France
| | - Eduardo J Mascareno
- Department of Biological Sciences (M.D.-M., S.N.R.), State University of New York, College at Old Westbury, Old Westbury, New York 11568; Departments of Cell Biology (I.R., E.J.M.) and Surgery, Medicine, and Cell Biology (J.G.K.), State University of New York Downstate Medical Center, Brooklyn, New York 11203; and Institute Pasteur Inserm (Y.R.), Cenre National de la Recherche Scientifique, Center for Infection and Immunity of Lille, UMR8204, U1019, F-59021 Lille, France
| |
Collapse
|
12
|
Hu J, Zeng B, Jiang X, Hu L, Meng Y, Zhu Y, Mao M. The expression of marker for endometrial stem cell and fibrosis was increased in intrauterine adhesious. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1525-1534. [PMID: 25973037 PMCID: PMC4396235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVES The objective of the present study was to evaluate whether fibrotic markers and endometrial stem cell markers were abnormal expressed in endometrium of intrauterine adhesions and a female mouse model for intrauterine adhesions. METHODS We revaluated endometrial fibrosis using Masson's stain. We detected the expression of endometrium stem cell markers (CD146 and CD140b) and fibrosis markers (TGF-Beta, CTGF, collagen protein I and collagen protein III) in endometrial tissue with intrauterine adhesions using real-time PCR and S-P (Streptavidin-Peroxidase) immunohistochemistry. We create a female mouse model for intrauterine adhesions using mechanical injury, and then revalue the expression of endometrial stem cell markers and fibrosis markers in endometrial tissue of mouse model for intrauterine adhesions. RESULTS The ratio of the area with endometrial fibrosis to total endometrial area in intrauterine adhesious significantly increased compared with the normal endometrial tissue (P < 0.05); The expression levels of fibrotic markers and endometrial stem cell markers were higher in the endometrial tissue with intrauterine adhesious compared to normal endometrial tissue (P < 0.05). The animal experiments showed that the ratio of the area with endometrial fibrosis to total endometrial area significantly increased compared with the control group (P < 0.05); The expression levels of fibrotic markers and endometrial stem cell markers were higher in the endometrial tissue compared to the control group (P < 0.05). CONCLUSION Aberrant activation of fibrosis may be involved in the pathology of intrauterine adhesious.
Collapse
Affiliation(s)
- Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University Chongqing 400010, China
| | - Biao Zeng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University Chongqing 400010, China
| | - Xingwei Jiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University Chongqing 400010, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University Chongqing 400010, China
| | - Ying Meng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University Chongqing 400010, China
| | - Yi Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University Chongqing 400010, China
| | - Min Mao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University Chongqing 400010, China
| |
Collapse
|
13
|
Abstract
Studies of transcriptional mechanisms in heart failure have focused heavily on roles of sequence-specific DNA-binding factors such as NFAT, MEF2 and GATA4. Recent findings have illuminated crucial functions for epigenetic regulators in the control of cardiac structural remodeling and mechanical dysfunction in response to pathological stress. Here, we review the current understanding of chromatin-dependent signal transduction in cardiac gene control, and highlight the potential for pharmacologic regulation of BET acetyl-lysine binding proteins as a means of treating heart failure.
Collapse
|
14
|
Zhong B, Lama R, Ketchart W, Montano MM, Su B. Lead optimization of HMBA to develop potent HEXIM1 inducers. Bioorg Med Chem Lett 2014; 24:1410-3. [PMID: 24503105 DOI: 10.1016/j.bmcl.2014.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 12/20/2022]
Abstract
The potency of a series of Hexamethylene bis-acetamide (HMBA) derivatives inducing Hexamethylene bis-acetamide inducible protein 1 (HEXIM1) was determined in LNCaP prostate cancer cells. Several compounds with unsymmetrical structures showed significantly improved activity. Distinct from HMBA, these analogs have increased hydrophobicity and can improve the short half-life of HMBA, which is one of the factors that have limited the application of HMBA in clinics. The unsymmetrical scaffolds of the new analogs provide the basis for further lead optimization of the compounds using combinatorial chemistry strategy.
Collapse
Affiliation(s)
- Bo Zhong
- Department of Chemistry, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Rati Lama
- Department of Chemistry, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Wannarasmi Ketchart
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Monica M Montano
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | - Bin Su
- Department of Chemistry, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA; Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA.
| |
Collapse
|
15
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
16
|
Naggar I, Lazar J, Kamran H, Orman R, Stewart M. Relation of autonomic and cardiac abnormalities to ventricular fibrillation in a rat model of epilepsy. Epilepsy Res 2013; 108:44-56. [PMID: 24286892 DOI: 10.1016/j.eplepsyres.2013.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/02/2013] [Accepted: 10/31/2013] [Indexed: 12/25/2022]
Abstract
Cardiac autonomic, conduction, and structural changes may occur in epilepsy and may contribute to sudden unexpected death in epilepsy (SUDEP), e.g. by increasing the risk for ventricular fibrillation (VF). In a model of chronic seizures in rats, we sought to study (1) cardiac and autonomic derangements that accompany the epileptic state, (2) whether chronically seizing rats experienced more significant cardiac effects after severe acute seizures, and (3) the susceptibility of chronically seizing rats to VF arising from autonomic and hypoxemic changes, which commonly occur during seizures. Sprague-Dawely rats were injected with saline or kainic acid to induce chronic seizures. At 2-3 months or 7-11 months after injection, these rats were studied with both 12-lead electrocardiography (to assess heart rate variability and QT dispersion) and echocardiography under ketamine/xylazine or urethane anesthesia. Hearts were subsequently excised, weighed, and examined histologically. Epileptic rats exhibited decreased vagal tone, increased QT dispersion, and eccentric cardiac hypertrophy without significant cardiac fibrosis, especially at 7-11 months post-injection. Of these three findings, vagal tone was inversely correlated with heart weights. Epileptic rats exhibited diminished systolic function compared to controls after severe acute seizures. However, animals with long-standing chronic seizures were less susceptible to autonomic/hypoxemia-driven VF, and their susceptibility inversely correlated with mean left ventricular wall thickness on histology. On the basis of this model, we conclude that cardiac changes accompany epilepsy and these can lead to significant seizure-associated cardiac performance decreases, but these cardiac changes actually lower the probability of VF.
Collapse
Affiliation(s)
- Isaac Naggar
- Department of Physiology & Pharmacology State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States; Program in Neural and Behavioral Sciences State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
| | - Jason Lazar
- Division of Cardiovascular Medicine, Department of Medicine State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
| | - Haroon Kamran
- Division of Cardiovascular Medicine, Department of Medicine State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
| | - Rena Orman
- Department of Physiology & Pharmacology State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
| | - Mark Stewart
- Department of Physiology & Pharmacology State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States; Program in Neural and Behavioral Sciences State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States; Department of Neurology State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States.
| |
Collapse
|
17
|
SUN GANG, HU HAI, TIAN XUYANG, YUE JIANWEI, YU HUI, YANG XIAOMIN, WANG ZHANLI. Identification and analysis of microRNAs in the left ventricular myocardium of two-kidney one-clip hypertensive rats. Mol Med Rep 2013; 8:339-44. [DOI: 10.3892/mmr.2013.1549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/11/2013] [Indexed: 11/06/2022] Open
|
18
|
Zouein FA, Zgheib C, Hamza S, Fuseler JW, Hall JE, Soljancic A, Lopez-Ruiz A, Kurdi M, Booz GW. Role of STAT3 in angiotensin II-induced hypertension and cardiac remodeling revealed by mice lacking STAT3 serine 727 phosphorylation. Hypertens Res 2013; 36:496-503. [PMID: 23364341 DOI: 10.1038/hr.2012.223] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
STAT3 is involved in protection of the heart provided by ischemic preconditioning. However, the role of this transcription factor in the heart in chronic stresses such as hypertension has not been defined. We assessed whether STAT3 is important in hypertension-induced cardiac remodeling using mice with reduced STAT3 activity due to a S727A mutation (SA/SA). Wild type (WT) and SA/SA mice received angiotensin (ANG) II or saline for 17 days. ANG II increased mean arterial and systolic pressure in SA/SA and WT mice, but cardiac levels of cytokines associated with heart failure were increased less in SA/SA mice. Unlike WT mice, hearts of SA/SA mice showed signs of developing systolic dysfunction as evidenced by reduction in ejection fraction and fractional shortening. In the left ventricle of both WT and SA/SA mice, ANG II induced fibrosis. However, fibrosis in SA/SA mice appeared more extensive and was associated with loss of myocytes. Cardiac hypertrophy as indexed by heart to body weight ratio and left ventricular anterior wall dimension during diastole was greater in WT mice. In WT+ANG II mice there was an increase in the mass of individual myofibrils. In contrast, cardiac myocytes of SA/SA+ANG II mice showed a loss in myofibrils and myofibrillar mass density was decreased during ANG II infusion. Our findings reveal that STAT3 transcriptional activity is important for normal cardiac myocyte myofibril morphology. Loss of STAT3 may impair cardiac function in the hypertensive heart due to defective myofibrillar structure and remodeling that may lead to heart failure.
Collapse
Affiliation(s)
- Fouad A Zouein
- Department of Pharmacology and Toxicology, and Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yoshikawa N, Shimizu N, Maruyama T, Sano M, Matsuhashi T, Fukuda K, Kataoka M, Satoh T, Ojima H, Sawai T, Morimoto C, Kuribara A, Hosono O, Tanaka H. Cardiomyocyte-specific overexpression of HEXIM1 prevents right ventricular hypertrophy in hypoxia-induced pulmonary hypertension in mice. PLoS One 2012; 7:e52522. [PMID: 23300697 PMCID: PMC3534105 DOI: 10.1371/journal.pone.0052522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/14/2012] [Indexed: 01/19/2023] Open
Abstract
Right ventricular hypertrophy (RVH) and right ventricular (RV) contractile dysfunction are major determinants of prognosis in pulmonary arterial hypertension (PAH) and PAH remains a severe disease. Recently, direct interruption of left ventricular hypertrophy has been suggested to decrease the risk of left-sided heart failure. Hexamethylene bis-acetamide inducible protein 1 (HEXIM1) is a negative regulator of positive transcription elongation factor b (P-TEFb), which activates RNA polymerase II (RNAPII)-dependent transcription and whose activation is strongly associated with left ventricular hypertrophy. We hypothesized that during the progression of PAH, increased P-TEFb activity might also play a role in RVH, and that HEXIM1 might have a preventive role against such process. We revealed that, in the mouse heart, HEXIM1 is highly expressed in the early postnatal period and its expression is gradually decreased, and that prostaglandin I(2), a therapeutic drug for PAH, increases HEXIM1 levels in cardiomyocytes. These results suggest that HEXIM1 might possess negative effect on cardiomyocyte growth and take part in cardiomyocyte regulation in RV. Using adenovirus-mediated gene delivery to cultured rat cardiomyocytes, we revealed that overexpression of HEXIM1 prevents endothelin-1-induced phosphorylation of RNAPII, cardiomyocyte hypertrophy, and mRNA expression of hypertrophic genes, whereas a HEXIM1 mutant lacking central basic region, which diminishes P-TEFb-suppressing activity, could not. Moreover, we created cardiomyocyte-specific HEXIM1 transgenic mice and revealed that HEXIM1 ameliorates RVH and prevents RV dilatation in hypoxia-induced PAH model. Taken together, these findings indicate that cardiomyocyte-specific overexpression of HEXIM1 inhibits progression to RVH under chronic hypoxia, most possibly via inhibition of P-TEFb-mediated enlargement of cardiomyocytes. We conclude that P-TEFb/HEXIM1-dependent transcriptional regulation may play a pathophysiological role in RVH and be a novel therapeutic target for mitigating RVH in PAH.
Collapse
Affiliation(s)
- Noritada Yoshikawa
- Department of Rheumatology and Allergy, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Noriaki Shimizu
- Department of Rheumatology and Allergy, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takako Maruyama
- Department of Rheumatology and Allergy, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Cardiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Toru Satoh
- Department of Cardiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Hidenori Ojima
- Pathology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Sawai
- Department of Pathology, Iwate Medical University School of Medicine, Shiwa-gun, Iwate, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders, Juntendo University, Tokyo, Japan, Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akiko Kuribara
- Department of Rheumatology and Allergy, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Osamu Hosono
- Department of Rheumatology and Allergy, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hirotoshi Tanaka
- Department of Rheumatology and Allergy, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
20
|
Naggar I, Uchida S, Kamran H, Lazar J, Stewart M. Autonomic boundary conditions for ventricular fibrillation and their implications for a novel defibrillation technique. J Physiol Sci 2012; 62:479-92. [PMID: 22893479 PMCID: PMC10717413 DOI: 10.1007/s12576-012-0225-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
Abstract
The sympathetic and parasympathetic divisions of the autonomic nervous system modulate cardiac rhythm and the probability of arrhythmia occurrence. Both increased sympathetic drive and hypoxia increase the likelihood for ventricular fibrillation (VF). Vagus nerve stimulation (VNS) can protect from fatal arrhythmias via cholinergic and nitrergic action. We sought to determine boundary conditions for VF and defibrillation by autonomic manipulations accompanied or not by hypoxic changes in urethane-anesthetized rats. VF was induced with (1) vagotomy, (2) systemic high-dose (>15 mg/kg) isoproterenol, and (3) hypoxemia. When VNS (50 Hz) produced cardiac standstill, it converted every VF episode (59/59). A nitric oxide synthase inhibitor did not reduce VNS efficacy (13/14 episodes converted), but addition of atropine reduced VNS efficacy (11/27 episodes converted). VF can be induced by autonomic derangements only under constrained conditions, including sympathetic over-activation, reduced parasympathetic input, and hypoxemia. VNS can provide an alternative method to defibrillate via its cholinergic action.
Collapse
Affiliation(s)
- Isaac Naggar
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Box 31, Brooklyn, NY 11203 USA
- Program in Neural and Behavioral Sciences, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| | - Sae Uchida
- Department of the Autonomic Nervous System, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Haroon Kamran
- Division of Cardiovascular Medicine, Department of Medicine, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| | - Jason Lazar
- Division of Cardiovascular Medicine, Department of Medicine, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| | - Mark Stewart
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Box 31, Brooklyn, NY 11203 USA
- Program in Neural and Behavioral Sciences, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
- Department of Neurology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| |
Collapse
|
21
|
Restini C, Reis R, Costa-Neto C, Garcia-Cairasco N, Cortes-de-Oliveira J, Bendhack L. Role of endothelium on the abnormal Angiotensin-mediated vascular functions in epileptic rats. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbpc.2012.32019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|