1
|
Balduit A, Agostinis C, Bulla R. Beyond the Norm: The emerging interplay of complement system and extracellular matrix in the tumor microenvironment. Semin Immunol 2025; 77:101929. [PMID: 39793258 DOI: 10.1016/j.smim.2025.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Ground-breaking awareness has been reached about the intricate and dynamic connection between developing tumors and the host immune system. Being a powerful arm of innate immunity and a functional bridge with adaptive immunity, the complement system (C) has also emerged as a pivotal player in the tumor microenvironment (TME). Its "double-edged sword" role in cancer can find an explanation in the controversial relationship between C capability to mediate tumor cell cytolysis or, conversely, to sustain chronic inflammation and tumor progression by enhancing cell invasion, angiogenesis, and metastasis to distant organs. However, comprehensive knowledge about the actual role of C in cancer progression is impaired by several limitations of the currently available studies. In the current review, we aim to bring a fresh eye to the controversial role of C in cancer by analyzing the interplay between C and extracellular matrix (ECM) components as potential orchestrators of the TME. The interaction of C components with specific ECM components can determine C activation or inhibition and promote specific non-canonical functions, which can, in the tumor context, favor or limit progression based on the cancer setting. An in-depth and tumor-specific characterization of TME composition in terms of C components and ECM proteins could be essential to determine their potential interactions and become a key element for improving drug development, prognosis, and therapy response prediction in solid tumors.
Collapse
Affiliation(s)
- Andrea Balduit
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
2
|
Davaapil H, Hopkins J, Bonnin N, Papadaki V, Leung A, Kosuge H, Tashima T, Nakakido M, Sekido R, Tsumoto K, Sagoo MS, Ohnuma SI. PRELP secreted from mural cells protects the function of blood brain barrier through regulation of endothelial cell-cell integrity. Front Cell Dev Biol 2023; 11:1147625. [PMID: 37936982 PMCID: PMC10626469 DOI: 10.3389/fcell.2023.1147625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction: Proline/arginine-rich end leucine-rich repeat protein (PRELP), is a small secreted proteoglycan expressed by pericytes and vascular smooth muscle cells surrounding the brain vasculature of adult mouse. Methods: We utilised a Prelp knockout (Prelp -/-) mouse model to interrogate vasculature integrity in the brain alongside performing in vitro assays to characterise PRELP application to endothelial cells lines. Our findings were supplemented with RNA expression profiling to elucidate the mechanism of how PRELP maintains neurovasculature function. Results: Prelp -/- mice presented with neuroinflammation and reducedneurovasculature integrity, resulting in IgG and dextran leakage in the cerebellum and cortex. Histological analysis of Prelp -/- mice revealed reducedcell-cell integrity of the blood brain barrier, capillary attachment of pericytes andastrocyte end-feet. RNA-sequencing analysis found that cell-cell adhesion andinflammation are affected in Prelp -/- mice and gene ontology analysis as well as gene set enrichment analysis demonstrated that inflammation related processes and adhesion related processes such as epithelial-mesenchymal transition and apical junctions were significantly affected, suggesting PRELP is a regulator of cell-cell adhesion. Immunofluorescence analysis showed that adhesion junction protein expression levels of cadherin, claudin-5, and ZO-1, was suppressed in Prelp -/- mice neurovasculature. Additionally, in vitro studies revealed that PRELP application to endothelial cells enhances cell-cell integrity, induces mesenchymal-endothelial transition and inhibits TGF-β mediated damage to cell-cell adhesion. Discussion: Our study indicates that PRELP is a novel endogenous secreted regulator of neurovasculature integrity and that PRELP application may be a potential treatment for diseases associated with neurovascular damage.
Collapse
Affiliation(s)
| | - Jack Hopkins
- UCL Institute of Ophthalmology, UCL, London, Untited Kingdom
| | - Nadia Bonnin
- UCL Institute of Ophthalmology, UCL, London, Untited Kingdom
| | | | - Alex Leung
- UCL Institute of Ophthalmology, UCL, London, Untited Kingdom
| | - Hirofumi Kosuge
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takumi Tashima
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryohei Sekido
- UCL Institute of Ophthalmology, UCL, London, Untited Kingdom
| | - Kouhei Tsumoto
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mandeep S. Sagoo
- UCL Institute of Ophthalmology, UCL, London, Untited Kingdom
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, London, Untited Kingdom
- Retinoblastoma Genetic Screening Unit, Barts Health NHS Trust, Royal London Hospital, London, Untited Kingdom
| | | |
Collapse
|
3
|
Schäfer H, Subbarayan K, Massa C, Vaxevanis C, Mueller A, Seliger B. Correlation of the tumor escape phenotype with loss of PRELP expression in melanoma. J Transl Med 2023; 21:643. [PMID: 37730606 PMCID: PMC10512569 DOI: 10.1186/s12967-023-04476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/27/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Despite immunotherapies having revolutionized the treatment of advanced cutaneous melanoma, effective and durable responses were only reported in a few patients. A better understanding of the interaction of melanoma cells with the microenvironment, including extracellular matrix (ECM) components, might provide novel therapeutic options. Although the ECM has been linked to several hallmarks of cancer, little information is available regarding the expression and function of the ECM protein purine-arginine-rich and leucine-rich protein (PRELP) in cancer, including melanoma. METHODS The structural integrity, expression and function of PRELP, its correlation with the expression of immune modulatory molecules, immune cell infiltration and clinical parameters were determined using standard methods and/or bioinformatics. RESULTS Bioinformatics analysis revealed a heterogeneous, but statistically significant reduced PRELP expression in available datasets of skin cutaneous melanoma when compared to adjacent normal tissues, which was associated with reduced patients' survival, low expression levels of components of the MHC class I antigen processing machinery (APM) and interferon (IFN)-γ signal transduction pathway, but increased expression of the transforming growth factor (TGF)-β isoform 1 (TFGB1) and TGF-β receptor 1 (TGFBR1). In addition, a high frequency of intra-tumoral T cells directly correlated with the expression of MHC class I and PRELP as well as the T cell attractant CCL5 in melanoma lesions. Marginal to low PRELP expression levels were found in the 47/49 human melanoma cell lines analysis. Transfection of PRELP into melanoma cell lines restored MHC class I surface expression due to transcriptional upregulation of major MHC class I APM and IFN-γ pathway components. In addition, PRELP overexpression is accompanied by high CCL5 secretion levels in cell supernatant, an impaired TGF-β signaling as well as a reduced cell proliferation, migration and invasion of melanoma cells. CONCLUSIONS Our findings suggest that PRELP induces the expression of MHC class I and CCL5 in melanoma, which might be involved in an enhanced T cell recruitment and immunogenicity associated with an improved patients' outcome. Therefore, PRELP might serve as a marker for predicting disease progression and its recovery could revert the tumorigenic phenotype, which represents a novel therapeutic option for melanoma.
Collapse
Affiliation(s)
- Helene Schäfer
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Karthikeyan Subbarayan
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Christoforos Vaxevanis
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Anja Mueller
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103, Leipzig, Germany.
- Institute of Translational Medicine, Medical School Brandenburg, Hochstr. 29, 14770, Brandenburg an der Havel, Germany.
| |
Collapse
|
4
|
Peng P, Yu Y, Ma W, Lyu S, Ma L, Liu T, Dong Y, Wei C. Proteomic characterization of aqueous humor in corneal endothelial decompensation after penetrating keratoplasty. Exp Eye Res 2023; 230:109457. [PMID: 36948439 DOI: 10.1016/j.exer.2023.109457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
Corneal endothelial decompensation (CED) is the major cause of the long-term graft failure, but the underlying mechanisms remain unclear. The purpose of this study was to characterize the proteomic profile in CED aqueous humor (AH) after penetrating keratoplasty (PKP). We collected AH samples (n = 6/group) from CED patients underwent PKP and cataract patients, respectively. The label-free quantitative proteomic analysis was performed to identify the differentially-expressed proteins (DEPs). The biological functions of DEPs were evaluated using Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis. The protein-protein interaction (PPI) network construction was employed to distinguish the hub proteins of DEPs, and the selected proteins were validated by parallel reaction monitoring (PRM). The human peripheral blood mononuclear cells (PBMCs) were adopted to investigate the effect of biglycan (BGN) on inflammatory response, and the subsequent outcomes of inflammation on human corneal endothelial cells (HCECs). A total of 174 DEPs were identified in CED AH of patients underwent PKP, including 102 up-regulated proteins and 72 down-regulated proteins. Bioinformatics analysis revealed the significant enrichment of cytokine-mediated signaling pathway and extracellular matrix (ECM) organization in the up-regulated proteins, as well as the alterations of cellular components, including the increase of collagen and complement component C1 complex, and reduction in extracellular exosomes. A hub protein cluster of 15 proteins was determined by Molecular Complex Detection (MCODE), including FN1, BGN, COMP, COL11A1, COLA3A1, and COL1A1. Moreover, BGN promoted pro-inflammatory cytokine (such as TNF-α, IL-1β and IL-6) production in PBMCs through NF-κB signaling pathway, which subsequently resulted in HCECs death. These findings provided a systemic protein profile of AH in CED patients after corneal transplantation, with the alterations implicated in cytokine-mediated signaling, ECM, complement system, and exsomes. The identified proteins and signaling pathways probably paved the novel insight into understanding the pathogenesis of the disease.
Collapse
Affiliation(s)
- Peng Peng
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yaoyao Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Wenhui Ma
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shanmei Lyu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yanling Dong
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
5
|
Dreismann AK, Hallam TM, Tam LC, Nguyen CV, Hughes JP, Ellis S, Harris CL. Gene targeting as a therapeutic avenue in diseases mediated by the complement alternative pathway. Immunol Rev 2023; 313:402-419. [PMID: 36369963 PMCID: PMC10099504 DOI: 10.1111/imr.13149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complement alternative pathway (AP) is implicated in numerous diseases affecting many organs, ranging from the rare hematological disease paroxysmal nocturnal hemoglobinuria (PNH), to the common blinding disease age-related macular degeneration (AMD). Critically, the AP amplifies any activating trigger driving a downstream inflammatory response; thus, components of the pathway have become targets for drugs of varying modality. Recent validation from clinical trials using drug modalities such as inhibitory antibodies has paved the path for gene targeting of the AP or downstream effectors. Gene targeting in the complement field currently focuses on supplementation or suppression of complement regulators in AMD and PNH, largely because the eye and liver are highly amenable to drug delivery through local (eye) or systemic (liver) routes. Targeting the liver could facilitate treatment of numerous diseases as this organ generates most of the systemic complement pool. This review explains key concepts of RNA and DNA targeting and discusses assets in clinical development for the treatment of diseases driven by the alternative pathway, including the RNA-targeting therapeutics ALN-CC5, ARO-C3, and IONIS-FB-LRX, and the gene therapies GT005 and HMR59. These therapies are but the spearhead of potential drug candidates that might revolutionize the field in coming years.
Collapse
|
6
|
Galangin ameliorates osteoarthritis progression by attenuating extracellular matrix degradation in chondrocytes via the activation of PRELP expression. Eur J Pharmacol 2022; 936:175347. [DOI: 10.1016/j.ejphar.2022.175347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/21/2022]
|
7
|
Zhang D, Du J, Yu M, Suo L. Ginsenoside Rb1 prevents osteoporosis via the AHR/PRELP/NF-κB signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154205. [PMID: 35716470 DOI: 10.1016/j.phymed.2022.154205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Accumulating clinical and experimental evidence shows multiple biological effects of ginsenoside Rb1 (GRb1) in the treatment of aging related diseases such as osteoporosis (OP). Recently, GRb1 has attracted extensive attention as an anti-osteoporosis agent. Here, we sought to identify the mechanism by which GRb1 improves OP. METHODS A dexamethasone (DEX)-induced rat model of OP was constructed and the rats were treated with GRb1 to examine its role in OP. We screened the action targets of GRb1 online and validated by performing functional experiments. The correlation between aryl hydrocarbon receptor (AHR) and proline/arginine-rich end leucine-rich repeat protein (PRELP) was identified through luciferase and chromatin immunoprecipitation assays. In the isolated osteoblasts from DEX-induced OP rats, the expression of osteogenic differentiation-associated genes, and nuclear factor-kappa B (NF-κB) pathway-related genes, mineralization, and number of calcium nodules were assessed. RESULTS GRb1 enhanced the differentiation of osteoblasts, the mechanism of which was related to upregulation of AHR. AHR could promote the transcription of PRELP by binding to the PRELP promoter region and consequently caused its upregulation. Meanwhile, PRELP inhibited the activation of the NF-κB pathway, which underlay the promoting impact of AHR in the osteogenic differentiation. Additionally, GRb1 could ameliorate OP in DEX-induced rats via the AHR/PRELP/NF-κB axis. CONCLUSIONS Our findings demonstrate that GRb1 might function as an effective candidate to prevent the progression of OP via regulation of the AHR/PRELP/NF-κB axis, revealing a new molecular mechanism underpinning the impact of GRb1 in the progression of OP and offering a theoretical contribution to the treatment of OP.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Endocrinology, The Forth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning 110032, China
| | - Jian Du
- Department of Endocrinology, The Forth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning 110032, China
| | - Min Yu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Linna Suo
- Department of Endocrinology, The Forth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning 110032, China.
| |
Collapse
|
8
|
Papp A, Papp K, Uzonyi B, Cserhalmi M, Csincsi ÁI, Szabó Z, Bánlaki Z, Ermert D, Prohászka Z, Erdei A, Ferreira VP, Blom AM, Józsi M. Complement Factor H-Related Proteins FHR1 and FHR5 Interact With Extracellular Matrix Ligands, Reduce Factor H Regulatory Activity and Enhance Complement Activation. Front Immunol 2022; 13:845953. [PMID: 35392081 PMCID: PMC8980529 DOI: 10.3389/fimmu.2022.845953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Components of the extracellular matrix (ECM), when exposed to body fluids may promote local complement activation and inflammation. Pathologic complement activation at the glomerular basement membrane and at the Bruch's membrane is implicated in renal and eye diseases, respectively. Binding of soluble complement inhibitors to the ECM, including factor H (FH), is important to prevent excessive complement activation. Since the FH-related (FHR) proteins FHR1 and FHR5 are also implicated in these diseases, our aim was to study whether these FHRs can also bind to ECM components and affect local FH activity and complement activation. Both FH and the FHRs showed variable binding to ECM components. We identified laminin, fibromodulin, osteoadherin and PRELP as ligands of FHR1 and FHR5, and found that FHR1 bound to these ECM components through its C-terminal complement control protein (CCP) domains 4-5, whereas FHR5 bound via its middle region, CCPs 3-7. Aggrecan, biglycan and decorin did not bind FH, FHR1 and FHR5. FHR5 also bound to immobilized C3b, a model of surface-deposited C3b, via CCPs 3-7. By contrast, soluble C3, C3(H2O), and the C3 fragments C3b, iC3b and C3d bound to CCPs 8-9 of FHR5. Properdin, which was previously described to bind via CCPs 1-2 to FHR5, did not bind in its physiologically occurring serum forms in our assays. FHR1 and FHR5 inhibited the binding of FH to the identified ECM proteins in a dose-dependent manner, which resulted in reduced FH cofactor activity. Moreover, both FHR1 and FHR5 enhanced alternative complement pathway activation on immobilized ECM proteins when exposed to human serum, resulting in the increased deposition of C3-fragments, factor B and C5b-9. Thus, our results identify novel ECM ligands of FH family proteins and indicate that FHR1 and FHR5 are competitive inhibitors of FH on ECM and, when bound to these ligands, they may enhance local complement activation and promote inflammation under pathological conditions.
Collapse
Affiliation(s)
- Alexandra Papp
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Krisztián Papp
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Uzonyi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Marcell Cserhalmi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám I Csincsi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsóka Szabó
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsófia Bánlaki
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - David Ermert
- Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Anna Erdei
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Mihály Józsi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
9
|
Syed NH, Shahidan WNS, Shatriah I, Zunaina E. MicroRNA Profiling of the Tears of Children With Vernal Keratoconjunctivitis. Front Genet 2022; 13:847168. [PMID: 35495169 PMCID: PMC9039132 DOI: 10.3389/fgene.2022.847168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Vernal Keratoconjunctivitis (VKC) is a chronic conjunctival inflammatory condition that typically affects children. Extracellular microRNAs (miRNAs) are small noncoding RNA molecules, the expression of which is reported to regulate cellular processes implicated in several eye diseases. The aim of this preliminary study is to identify the miRNA expression profile in the tears of children with VKC vis-à-vis controls, and to statistically evaluate these miRNAs as potential diagnostic biomarkers of VKC. The study involved a VKC group and a control group. Tear specimens were collected using Schirmer’s strips. RNA was isolated using miRNeasy Micro kit and quantification was performed using an Agilent Bioanalyzer RNA 6000 Nano kit and Small RNA kit. miRNA profiling was performed using the Agilent microarray technique. A total of 51 miRNAs (48 upregulated and three downregulated) were differentially expressed in the tears of children with VKC and controls. The three most significantly upregulated miRNAs were hsa-miR-1229-5p, hsa-miR-6821-5p, and hsa-miR-6800-5p, and the three most significantly downregulated miRNAs were hsa-miR-7975, hsa-miR-7977, and hsa-miR-1260a. All the upregulated miRNAs are potential diagnostic biomarkers of VKC pending validation due to their larger discriminatory area under the curve (AUC) values. miRNA target prediction analysis revealed multiple overlapping genes that are known to play a role in conjunctival inflammation. We identified a set of differentially expressed miRNAs in the tears of children with VKC that may play a role in VKC pathogenesis. This study serves as the platform study for future miRNA studies that will provide a deeper understanding of the pathophysiology of VKC.
Collapse
Affiliation(s)
- Nazmul Huda Syed
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Nazatul Shima Shahidan
- Basic Science and Oral Biology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ismail Shatriah
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Ophthalmology Clinic, Hospital USM, Kubang Kerian, Malaysia
- *Correspondence: Ismail Shatriah,
| | - Embong Zunaina
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Ophthalmology Clinic, Hospital USM, Kubang Kerian, Malaysia
| |
Collapse
|
10
|
Single-Cell RNA-Seq Analysis of Cells from Degenerating and Non-Degenerating Intervertebral Discs from the Same Individual Reveals New Biomarkers for Intervertebral Disc Degeneration. Int J Mol Sci 2022; 23:ijms23073993. [PMID: 35409356 PMCID: PMC8999935 DOI: 10.3390/ijms23073993] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we used single-cell transcriptomic analysis to identify new specific biomarkers for nucleus pulposus (NP) and inner annulus fibrosis (iAF) cells, and to define cell populations within non-degenerating (nD) and degenerating (D) human intervertebral discs (IVD) of the same individual. Cluster analysis based on differential gene expression delineated 14 cell clusters. Gene expression profiles at single-cell resolution revealed the potential functional differences linked to degeneration, and among NP and iAF subpopulations. GO and KEGG analyses discovered molecular functions, biological processes, and transcription factors linked to cell type and degeneration state. We propose two lists of biomarkers, one as specific cell type, including C2orf40, MGP, MSMP, CD44, EIF1, LGALS1, RGCC, EPYC, HILPDA, ACAN, MT1F, CHI3L1, ID1, ID3 and TMED2. The second list proposes predictive IVD degeneration genes, including MT1G, SPP1, HMGA1, FN1, FBXO2, SPARC, VIM, CTGF, MGST1, TAF1D, CAPS, SPTSSB, S100A1, CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MGP, SLPI, DCN, MT-ND2, MTCYB, ADIRF, FRZB, CLEC3A, UPP1, S100A2, PRG4, COL2A1, SOD2 and MT2A. Protein and mRNA expression of MGST1, vimentin, SOD2 and SYF2 (p29) genes validated our scRNA-seq findings. Our data provide new insights into disc cells phenotypes and biomarkers of IVD degeneration that could improve diagnostic and therapeutic options.
Collapse
|
11
|
Small Leucine-Rich Proteoglycans (SLRPs) in the Retina. Int J Mol Sci 2021; 22:ijms22147293. [PMID: 34298915 PMCID: PMC8305803 DOI: 10.3390/ijms22147293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
Retinal diseases such as age-related macular degeneration (AMD), retinopathy of prematurity (ROP), and diabetic retinopathy (DR) are the leading causes of visual impairment worldwide. There is a critical need to understand the structural and cellular components that play a vital role in the pathophysiology of retinal diseases. One potential component is the family of structural proteins called small leucine-rich proteoglycans (SLRPs). SLRPs are crucial in many fundamental biological processes involved in the maintenance of retinal homeostasis. They are present within the extracellular matrix (ECM) of connective and vascular tissues and contribute to tissue organization and modulation of cell growth. They play a vital role in cell–matrix interactions in many upstream signaling pathways involved in fibrillogenesis and angiogenesis. In this comprehensive review, we describe the expression patterns and function of SLRPs in the retina, including Biglycan and Decorin from class I; Fibromodulin, Lumican, and a Proline/arginine-rich end leucine-rich repeat protein (PRELP) from class II; Opticin and Osteoglycin/Mimecan from class III; and Chondroadherin (CHAD), Tsukushi and Nyctalopin from class IV.
Collapse
|
12
|
Arvidsson M, Ahmed A, Bouzina H, Rådegran G. Plasma proteoglycan prolargin in diagnosis and differentiation of pulmonary arterial hypertension. ESC Heart Fail 2021; 8:1230-1243. [PMID: 33403810 PMCID: PMC8006732 DOI: 10.1002/ehf2.13184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Aims Right ventricular dysfunction may arise because of pulmonary arterial hypertension (PAH). Development of new diagnostic methods able to identify PAH and allow for earlier treatment initiation, before the development of vascular remodelling and manifest right heart failure (HF), could potentially improve prognosis. Proteoglycans and inflammatory proteins are involved in vascular remodelling. We aimed to investigate their potential as biomarkers to differentiate PAH in a dyspnoeic population. Methods and results Plasma from 152 patients with PAH (n = 48), chronic thrombo‐embolic pulmonary hypertension (n = 20), pulmonary hypertension due to HF with reduced (n = 36) or preserved (n = 33) ejection fraction, and HF without pulmonary hypertension (n = 15) and 20 healthy controls were analysed with proximity extension assays. Haemodynamics were assessed in the patients with right heart catheterization. Plasma prolargin levels in PAH were lower compared with all the other studied disease groups (P < 0.001) but higher than the controls' levels (P = 0.003). Receiver operating characteristic curve of prolargin as a PAH‐differentiating marker in a pooled population, encompassing all the other studied disease groups, had a sensitivity of 74% and a specificity of 83.3% (area under the curve = 0.84, P < 0.001). Prolargin correlated with the mean right atrial pressure (rs = 0.65, P < 0.001), N‐terminal pro‐brain natriuretic peptide (rs = 0.64, P < 0.001), cardiac index (rs = −0.31, P = 0.029), stroke volume index (rs = −0.41, P = 0.004), right ventricular stroke work index (rs = −0.31, P = 0.032), six‐minute walking distance (rs = −0.41, P = 0.005), and mixed venous blood oxygen saturation (rs = −0.42, P = 0.003). Conclusions Plasma prolargin levels differentiate PAH patients from controls and the other investigated dyspnoea groups including HF. Its potential in PAH differentiation may be enhanced by inclusion in a multi‐marker panel. Larger studies are needed to evaluate its discriminative ability of PAH in relation to other dyspnoea aetiologies and its potential role in PAH risk stratification and pathobiology.
Collapse
Affiliation(s)
- Mattias Arvidsson
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Habib Bouzina
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
13
|
Kosuge H, Nakakido M, Nagatoishi S, Fukuda T, Bando Y, Ohnuma SI, Tsumoto K. Proteomic identification and validation of novel interactions of the putative tumor suppressor PRELP with membrane proteins including IGFI-R and p75NTR. J Biol Chem 2021; 296:100278. [PMID: 33428936 PMCID: PMC7948961 DOI: 10.1016/j.jbc.2021.100278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/19/2023] Open
Abstract
Proline and arginine-rich end leucine-rich repeat protein (PRELP) is a member of the small leucine-rich repeat proteoglycans (SLRPs) family. Levels of PRELP mRNA are downregulated in many types of cancer, and PRELP has been reported to have suppressive effects on tumor cell growth, although the molecular mechanism has yet to be fully elucidated. Given that other SLRPs regulate signaling pathways through interactions with various membrane proteins, we reasoned that PRELP likely interacts with membrane proteins to maintain cellular homeostasis. To identify membrane proteins that interact with PRELP, we carried out coimmunoprecipitation coupled with mass spectrometry (CoIP-MS). We prepared membrane fractions from Expi293 cells transfected to overexpress FLAG-tagged PRELP or control cells and analyzed samples precipitated with anti-FLAG antibody by mass spectrometry. Comparison of membrane proteins in each sample identified several that seem to interact with PRELP; among them, we noted two growth factor receptors, insulin-like growth factor I receptor (IGFI-R) and low-affinity nerve growth factor receptor (p75NTR), interactions with which might help to explain PRELP's links to cancer. We demonstrated that PRELP directly binds to extracellular domains of these two growth factor receptors with low micromolar affinities by surface plasmon resonance analysis using recombinant proteins. Furthermore, cell-based analysis using recombinant PRELP protein showed that PRELP suppressed cell growth and affected cell morphology of A549 lung carcinoma cells, also at micromolar concentration. These results suggest that PRELP regulates cellular functions through interactions with IGFI-R and p75NTR and provide a broader set of candidate partners for further exploration.
Collapse
Affiliation(s)
- Hirofumi Kosuge
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Shin-Ichi Ohnuma
- The Institute of Ophthalmology, University College London, London, United Kingdom
| | - Kouhei Tsumoto
- School of Engineering, The University of Tokyo, Tokyo, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Kourelis TV, Dasari SS, Dispenzieri A, Maleszewski JJ, Redfield MM, Fayyaz AU, Grogan M, Ramirez-Alvarado M, Abou Ezzeddine OF, McPhail ED. A Proteomic Atlas of Cardiac Amyloid Plaques. JACC: CARDIOONCOLOGY 2020; 2:632-643. [PMID: 33511353 PMCID: PMC7839979 DOI: 10.1016/j.jaccao.2020.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background In vivo mechanisms of amyloid clearance and cardiac tissue damage in cardiac amyloidosis are not well understood. Objectives We aimed to define and quantify the amyloid plaque proteome in cardiac transthyretin amyloidosis (ATTR) and light chain amyloidosis (AL) and identify associations with patient characteristics and outcomes. Methods A proteomics approach was used to identify all proteins in cardiac amyloid plaques, and to compare both normal and diseased controls. All proteins identified within amyloid plaques were defined as the expanded proteome; only proteins that were enriched in comparison to normal and disease controls were defined as the amyloid-specific proteome. Results Proteomic data from 292 patients with ATTR and 139 patients with AL cardiac amyloidosis were included; 160 and 161 unique proteins were identified in the expanded proteomes, respectively. In the amyloid-specific proteomes, we identified 28 proteins in ATTR, 19 in AL amyloidosis, with 13 proteins overlapping between ATTR and AL. ATTR was characterized by a higher abundance of complement and contractile proteins and AL by a higher abundance of keratins. We found that the proteome of kappa AL had higher levels of clusterin, a protective chaperone, and lower levels of light chains than lambda despite higher levels of circulating light chains. Hierarchical clustering identified a group of patients with worse survival in ATTR, characterized by high levels of PIK3C3, a protein with a central role in autophagy. Conclusions Cardiac AL and ATTR have both common and distinct pathogenetic mechanisms of tissue damage. Our findings suggest that autophagy represents a pathway that may be impaired in ATTR and should be further studied.
Collapse
Affiliation(s)
- Taxiarchis V Kourelis
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Surendra S Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Angela Dispenzieri
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Margaret M Redfield
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ahmed U Fayyaz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Martha Grogan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Marina Ramirez-Alvarado
- Departments of Biochemistry and Molecular Biology and Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ellen D McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
A novel biomarker of MMP-cleaved prolargin is elevated in patients with psoriatic arthritis. Sci Rep 2020; 10:13541. [PMID: 32782251 PMCID: PMC7419545 DOI: 10.1038/s41598-020-70327-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Psoriatic arthritis (PsA) is a chronic musculoskeletal inflammatory disease found in up to 30% of psoriasis patients. Prolargin—an extracellular matrix (ECM) protein present in cartilage and tendon—has been previously shown elevated in serum of patients with psoriasis. ECM protein fragments can reflect tissue turnover and pathological changes; thus, this study aimed to develop, validate and characterize a novel biomarker PROM targeting a matrix metalloproteinase (MMP)-cleaved prolargin neo-epitope, and to evaluate it as a biomarker for PsA. A competitive ELISA was developed with a monoclonal mouse antibody; dilution- and spiking-recovery, inter- and intra-variation, and accuracy were evaluated. Serum levels were evaluated in 55 healthy individuals and 111 patients diagnosed with PsA by the CASPAR criteria. Results indicated that the PROM assay was specific for the neo-epitope. Inter- and intra- assay variations were 11% and 4%, respectively. PROM was elevated (p = 0.0003) in patients with PsA (median: 0.24, IQR: 0.19–0.31) compared to healthy controls (0.18; 0.14–0.23) at baseline. AUROC for separation of healthy controls from PsA patients was 0.674 (95% CI 0.597–0.744, P < 0.001). In conclusion, MMP-cleaved prolargin can be quantified in serum by the PROM assay and has the potential to separate patients with PsA from healthy controls.
Collapse
|
16
|
Ahmed A, Ahmed S, Arvidsson M, Bouzina H, Lundgren J, Rådegran G. Prolargin and matrix metalloproteinase-2 in heart failure after heart transplantation and their association with haemodynamics. ESC Heart Fail 2019; 7:223-234. [PMID: 31858729 PMCID: PMC7083509 DOI: 10.1002/ehf2.12560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/28/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Aims Remodelling of the extracellular matrix (ECM) is a key mechanism involved in the development and progression of heart failure (HF) but also functional in associated pulmonary hypertension (PH). Our aim was to identify plasma ECM proteins associated to end‐stage HF and secondary PH in relation to haemodynamics, before and after heart transplantation (HT). Methods and results Twenty ECM plasma proteins were analysed with proximity extension assay in 20 controls and 26 HF patients pre‐HT and 1 year post‐HT. Right heart catherization haemodynamics were assessed in the patients during the preoperative evaluation and at the 1 year follow‐up post‐HT. Plasma levels of prolargin and matrix metalloproteinase‐2 (MMP‐2) were elevated (P < 0.0001) in HF patients compared with controls and decreased (P < 0.0001) post‐HT towards controls' levels. The decrease in prolargin post‐HT correlated with improved mean right atrial pressure (rs = 0.63; P = 0.00091), stroke volume index (rs = −0.73; P < 0.0001), cardiac index (rs = −0.64; P = 0.00057), left ventricular stroke work index (rs = −0.49; P = 0.015), and N‐terminal pro brain natriuretic peptide (rs = 0.7; P < 0.0001). The decrease in MMP‐2 post‐HT correlated with improved mean pulmonary artery pressure (rs = 0.58; P = 0.0025), mean right atrial pressure (rs = 0.56; P = 0.0046), pulmonary artery wedge pressure (rs = 0.48; P = 0.016), and N‐terminal pro brain natriuretic peptide (rs = 0.56; P = 0.0029). Conclusions The normalization pattern in HF patients of plasma prolargin and MMP‐2 post‐HT towards controls' levels and their associations with improved haemodynamics indicate that prolargin and MMP‐2 may reflect, in part, the aberrant ECM remodelling involved in the pathophysiology of HF and associated PH. Their potential clinical use as biomarkers or targets for future therapy in HF and related PH remains to be investigated.
Collapse
Affiliation(s)
- Abdulla Ahmed
- Department of Clinical Sciences Lund, CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Salaheldin Ahmed
- Department of Clinical Sciences Lund, CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Mattias Arvidsson
- Department of Clinical Sciences Lund, CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Habib Bouzina
- Department of Clinical Sciences Lund, CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Jakob Lundgren
- Department of Clinical Sciences Lund, CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, CardiologyLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| |
Collapse
|
17
|
Listik E, Azevedo Marques Gaschler J, Matias M, Neuppmann Feres MF, Toma L, Raphaelli Nahás-Scocate AC. Proteoglycans and dental biology: the first review. Carbohydr Polym 2019; 225:115199. [DOI: 10.1016/j.carbpol.2019.115199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
|
18
|
Kumar-Singh R. The role of complement membrane attack complex in dry and wet AMD - From hypothesis to clinical trials. Exp Eye Res 2019; 184:266-277. [PMID: 31082363 DOI: 10.1016/j.exer.2019.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
Data from human dry and wet age-related macular degeneration (AMD) eyes support the hypothesis that constant 'tickover' of the alternative complement pathway results in chronic deposition of the complement membrane attack complex (MAC) on the choriocapillaris and the retinal pigment epithelium (RPE). Sub-lytic levels of MAC lead to cell signaling associated with tissue remodeling and the production of cytokines and inflammatory molecules. Lytic levels of MAC lead to cell death. CD59 is a naturally occurring inhibitor of the assembly of MAC. CD59 may thus be therapeutically efficacious against the pathophysiology of dry and wet AMD. The first gene therapy clinical trial for geographic atrophy - the advanced form of dry AMD has recently completed recruitment. This trial is studying the safety and tolerability of expressing CD59 from an adeno-associated virus (AAV) vector injected once into the vitreous. A second clinical trial assessing the efficacy of CD59 in wet AMD patients is also under way. Herein, the evidence for the role of MAC in the pathophysiology of dry as well as wet AMD and the scientific rationale underlying the use of AAV- delivered CD59 for the treatment of dry and wet AMD is discussed.
Collapse
Affiliation(s)
- Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
19
|
On the origin of proteins in human drusen: The meet, greet and stick hypothesis. Prog Retin Eye Res 2018; 70:55-84. [PMID: 30572124 DOI: 10.1016/j.preteyeres.2018.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
Abstract
Retinal drusen formation is not only a clinical hallmark for the development of age-related macular degeneration (AMD) but also for other disorders, such as Alzheimer's disease and renal diseases. The initiation and growth of drusen is poorly understood. Attention has focused on lipids and minerals, but relatively little is known about the origin of drusen-associated proteins and how they are retained in the space between the basal lamina of the retinal pigment epithelium and the inner collagenous layer space (sub-RPE-BL space). While some authors suggested that drusen proteins are mainly derived from cellular debris from processed photoreceptor outer segments and the RPE, others suggest a choroidal cell or blood origin. Here, we reviewed and supplemented the existing literature on the molecular composition of the retina/choroid complex, to gain a more complete understanding of the sources of proteins in drusen. These "drusenomics" studies showed that a considerable proportion of currently identified drusen proteins is uniquely originating from the blood. A smaller, but still large fraction of drusen proteins comes from both blood and/or RPE. Only a small proportion of drusen proteins is uniquely derived from the photoreceptors or choroid. We next evaluated how drusen components may "meet, greet and stick" to each other and/or to structures like hydroxyapatite spherules to form macroscopic deposits in the sub-RPE-BL space. Finally, we discuss implications of our findings with respect to the previously proposed homology between drusenogenesis in AMD and plaque formation in atherosclerosis.
Collapse
|
20
|
Novel potential inhibitors of complement system and their roles in complement regulation and beyond. Mol Immunol 2018; 102:73-83. [PMID: 30217334 DOI: 10.1016/j.molimm.2018.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
The complement system resembles a double-edged sword since its activation can either benefit or harm the host. Thus, regulation of this system is of utmost importance and performed by several circulating and membrane-bound complement inhibitors. The pool of well-established regulators has recently been enriched with proteins that either share structural homology to known complement inhibitors such as Sushi domain-containing (SUSD) protein family and Human CUB and Sushi multiple domains (CSMD) families or extracellular matrix (ECM) macromolecules that interact with and modulate complement activity. In this review, we summarize the current knowledge about newly discovered complement inhibitors and discuss their implications in complement regulation, as well as in processes beyond complement regulation such cancer development. Understanding the behavior of these proteins will introduce new mechanisms of complement regulation and may provide new avenues in the development of novel therapies.
Collapse
|
21
|
Liu G, Ermert D, Johansson ME, Singh B, Su YC, Paulsson M, Riesbeck K, Blom AM. PRELP Enhances Host Innate Immunity against the Respiratory Tract Pathogen Moraxella catarrhalis. THE JOURNAL OF IMMUNOLOGY 2017; 198:2330-2340. [PMID: 28148731 DOI: 10.4049/jimmunol.1601319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/09/2017] [Indexed: 01/25/2023]
Abstract
Respiratory tract infections are one of the leading causes of mortality worldwide urging better understanding of interactions between pathogens causing these infections and the host. Here we report that an extracellular matrix component proline/arginine-rich end leucine-rich repeat protein (PRELP) is a novel antibacterial component of innate immunity. We detected the presence of PRELP in human bronchoalveolar lavage fluid and showed that PRELP can be found in alveolar fluid, resident macrophages/monocytes, myofibroblasts, and the adventitia of blood vessels in lung tissue. PRELP specifically binds respiratory tract pathogens Moraxella catarrhalis, Haemophilus influenzae, and Streptococcus pneumoniae, but not other bacterial pathogens tested. We focused our study on M. catarrhalis and found that PRELP binds the majority of clinical isolates of M. catarrhalis (n = 49) through interaction with the ubiquitous surface protein A2/A2H. M. catarrhalis usually resists complement-mediated serum killing by recruiting to its surface a complement inhibitor C4b-binding protein, which is also a ligand for PRELP. We found that PRELP competitively inhibits binding of C4b-binding protein to bacteria, which enhances membrane attack complex formation on M. catarrhalis and thus leads to increased serum sensitivity. Furthermore, PRELP enhances phagocytic killing of serum-opsonized M. catarrhalis by human neutrophils in vitro. Moreover, PRELP reduces Moraxella adherence to and invasion of human lung epithelial A549 cells. Taken together, PRELP enhances host innate immunity against M. catarrhalis through increasing complement-mediated attack, improving phagocytic killing activity of neutrophils, and preventing bacterial adherence to lung epithelial cells.
Collapse
Affiliation(s)
- Guanghui Liu
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - David Ermert
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Martin E Johansson
- Division of Pathology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden; and
| | - Birendra Singh
- Division of Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Yu-Ching Su
- Division of Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Magnus Paulsson
- Division of Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Kristian Riesbeck
- Division of Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden;
| |
Collapse
|
22
|
Struglics A, Okroj M, Swärd P, Frobell R, Saxne T, Lohmander LS, Blom AM. The complement system is activated in synovial fluid from subjects with knee injury and from patients with osteoarthritis. Arthritis Res Ther 2016; 18:223. [PMID: 27716448 PMCID: PMC5052889 DOI: 10.1186/s13075-016-1123-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/16/2016] [Indexed: 01/13/2023] Open
Abstract
Background The complement system is suggested to be involved in the pathogenesis of osteoarthritis (OA), and proinflammatory cytokines may play a role in OA development by inducing proteases. The association between complement factors, cytokines and OA has not been investigated. The aim of the present study was to explore the involvement of the complement system after knee trauma and in OA. Methods C4d, C3bBbP and soluble terminal complement complex (sTCC) resulting from complement activation were immunoassayed in synovial fluid from subjects with healthy knees (reference), OA, rheumatoid arthritis (RA; positive control), pyrophosphate arthritis (PPA; positive control) and knee injury; other biomarkers were previously assessed. Magnetic resonance imaging was used to assess joint injuries. Results Compared with levels in the reference group, the median concentrations of C4d, C3bBbP and sTCC in the OA, RA, PPA and knee injury groups were 2- to 34-fold increased (p < 0.001 to p = 0.044). For the knee injury group, the median concentrations of C4d, C3bBbP and sTCC were 5- to 12-fold increased (p < 0.001) at the day of injury; after 3–12 weeks, C3bBbP and sTCC concentrations were similar to reference levels; and C4d was still increased several years after injury. In the 0–12 weeks period after injury, the concentrations of C4d, C3bBbP and sTCC correlated positively with levels of interleukin (IL)-1β, IL-6 and tumour necrosis factor α (rs range 0.232–0.547); none of the measured complement factors correlated with proteolytic fragments of aggrecan or cartilage oligomeric matrix protein. Knees with osteochondral fracture, with or without disrupted cortical bone, had higher concentrations of C4d (p = 0.014, p = 0.004) and sTCC (p = 0.004, p < 0.001) compared with knees without fractures. Conclusions The complement system is activated in OA and after knee injury. Following knee injury, this activation is instant and associated with inflammation as well as with the presence of osteochondral fractures. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1123-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- André Struglics
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, Faculty of Medicine, BMC C12, SE-221 84, Lund, Sweden.
| | - Marcin Okroj
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Faculty of Medicine, Lund, Sweden.,Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
| | - Per Swärd
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, Faculty of Medicine, BMC C12, SE-221 84, Lund, Sweden
| | - Richard Frobell
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, Faculty of Medicine, BMC C12, SE-221 84, Lund, Sweden
| | - Tore Saxne
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Faculty of Medicine, Lund, Sweden
| | - L Stefan Lohmander
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, Faculty of Medicine, BMC C12, SE-221 84, Lund, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Faculty of Medicine, Lund, Sweden
| |
Collapse
|
23
|
Melin Fürst C, Åhrman E, Bratteby K, Waldemarson S, Malmström J, Blom AM. Quantitative Mass Spectrometry To Study Inflammatory Cartilage Degradation and Resulting Interactions with the Complement System. THE JOURNAL OF IMMUNOLOGY 2016; 197:3415-3424. [PMID: 27630166 DOI: 10.4049/jimmunol.1601006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/14/2016] [Indexed: 12/25/2022]
Abstract
Joint diseases are often characterized by inflammatory processes that result in pathological changes in joint tissues, including cartilage degradation and release of components into the synovial fluid. The complement system plays a central role in promoting the inflammation. Because several cartilage proteins are known to interact with complement, causing either activation or inhibition of the system, we aimed to investigate these interactions comprehensively. Bovine cartilage explants were cultured with IL-1α to induce cartilage degradation, followed by incubation with human serum. Label-free selected reaction monitoring mass spectrometry was used to specifically quantify complement proteins interacting with the cartilage explant. In parallel, the time-dependent degradation of cartilage was detected using mass spectrometry analysis (liquid chromatography-tandem mass spectrometry). Complement proteins resulting from activation of the classical, alternative, and terminal pathways were detected on IL-1α-stimulated cartilage at time points when clear alterations in extracellular matrix composition had occurred. Increased levels of the complement activation product C4d, as detected by ELISA in serum after incubation with IL-1α-stimulated cartilage, confirmed the selected reaction monitoring results indicating complement activation. Further, typical activated (cleaved) C3 fragments were detected by Western blotting in extracts of IL-1α-stimulated cartilage. No complement activation was triggered by cartilage cultured in the absence of IL-1α. Components released from IL-1α-stimulated cartilage during culture had an inhibitory effect on complement activation. These were released after a longer incubation period with IL-1α and may represent a feedback reaction to cartilage-triggered complement activation observed after a shorter incubation period.
Collapse
Affiliation(s)
- Camilla Melin Fürst
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-205 02 Malmö, Sweden
| | - Emma Åhrman
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, S-221 84 Lund, Sweden; and
| | - Klas Bratteby
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-205 02 Malmö, Sweden
| | - Sofia Waldemarson
- Department of Immunotechnology, Lund University, S-223 81 Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, S-221 84 Lund, Sweden; and
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-205 02 Malmö, Sweden;
| |
Collapse
|
24
|
Leaderer D, Cashman SM, Kumar-Singh R. Adeno-associated virus mediated delivery of an engineered protein that combines the complement inhibitory properties of CD46, CD55 and CD59. J Gene Med 2016; 17:101-15. [PMID: 25917932 DOI: 10.1002/jgm.2829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/10/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A variety of disorders are associated with the activation of complement. CD46, CD55 and CD59 are the major membrane associated regulators of complement on human cells. Previously, we have found that independent expression of CD55, CD46 or CD59 through gene transfer protects murine tissues against human complement mediated attack. In the present study, we investigated the potential of combining the complement regulatory properties of CD46, CD55 and CD59 into single gene products expressed from an adeno-associated virus (AAV) vector in a soluble non-membrane anchored form. METHODS Minigenes encoding the complement regulatory domains from CD46, CD55 and CD59 (SACT) or CD55 and CD59 (DTAC) were cloned into an AAV vector. The specific regulatory activity of each component of SACT and DTAC was measured in vitro. The recombinant AAV vectors were injected into the peritoneum of mice and the efficacy of the transgene products for being able to protect murine liver vasculature against human complement, specifically the membrane attack complex (MAC), was measured. RESULTS SACT and DTAC exhibited properties similar to CD46, CD55 and CD59 or CD55 and CD59, respectively, in vitro. AAV mediated delivery of SACT or DTAC protected murine liver vasculature from human MAC deposition by 63.2% and 56.7%, respectively. CONCLUSIONS When delivered to mice in vivo via an AAV vector, SACT and DTAC are capable of limiting human complement mediated damage. SACT and DTAC merit further study as potential therapies for complement mediated disorders when delivered via a gene therapy approach.
Collapse
Affiliation(s)
- Derek Leaderer
- Department of Developmental, Molecular and Chemical Biology, Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Siobhan M Cashman
- Department of Developmental, Molecular and Chemical Biology, Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
25
|
The leucine-rich repeat protein PRELP binds fibroblast cell-surface proteoglycans and enhances focal adhesion formation. Biochem J 2016; 473:1153-64. [PMID: 26920026 DOI: 10.1042/bcj20160095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/19/2016] [Indexed: 11/17/2022]
Abstract
PRELP (proline/arginine-rich end leucine-rich repeat protein) is a member of the leucine-rich repeat (LRR) family of extracellular matrix proteins in connective tissue. In contrast with other members of the family, the N-terminal domain of PRELP has a high content of proline and positively charged amino acids. This domain has previously been shown to bind chondrocytes and to inhibit osteoclast differentiation. In the present study, we show that PRELP mediates cell adhesion by binding to cell-surface glycosaminoglycans (GAGs). Thus, rat skin fibroblasts (RSFs) bound to full-length PRELP and to the N-terminal part of PRELP alone, but not to truncated PRELP lacking the positively charged N-terminal region. Cell attachment to PRELP was inhibited by addition of soluble heparin or heparan sulfate (HS), by blocking sulfation of the fibroblasts or by treating the cells with a combination of chondroitinase and heparinase. Using affinity chromatography, we identified syndecan-1, syndecan-4 and glypican-1 as cell-surface proteoglycans (PGs) binding to the N-terminal part of PRELP. Finally, we show that the N-terminal domain of PRELP in combination with the integrin-binding domain of fibronectin, but neither of the fragments alone, induced fibroblast focal adhesion formation. These findings provide support for a role of the N-terminal region of PRELP as an important regulator of cell adhesion and behaviour, which may be of importance in pathological conditions.
Collapse
|
26
|
Muhamed J, Rajan A, Surendran A, Jaleel A, Anilkumar TV. Comparative profiling of extractable proteins in extracellular matrices of porcine cholecyst and jejunum intended for preparation of tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater 2015; 105:489-496. [DOI: 10.1002/jbm.b.33567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Jaseer Muhamed
- Division of Experimental Pathology; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| | - Akhila Rajan
- Division of Experimental Pathology; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| | - Arun Surendran
- Department of Cardiovascular & Diabetes Disease Biology; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram Kerala India
| | - Abdul Jaleel
- Department of Cardiovascular & Diabetes Disease Biology; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram Kerala India
| | - Thapasimuthu V. Anilkumar
- Division of Experimental Pathology; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| |
Collapse
|
27
|
Hultgårdh-Nilsson A, Borén J, Chakravarti S. The small leucine-rich repeat proteoglycans in tissue repair and atherosclerosis. J Intern Med 2015; 278:447-61. [PMID: 26477596 PMCID: PMC4616156 DOI: 10.1111/joim.12400] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteoglycans consist of a protein core with one or more covalently attached glycosaminoglycan (GAG) side chains and have multiple roles in the initiation and progression of atherosclerosis. Here we discuss the potential and known functions of a group of small leucine-rich repeat proteoglycans (SLRPs) in atherosclerosis. We focus on five SLRPs, decorin, biglycan, lumican, fibromodulin and PRELP, because these have been detected in atherosclerotic plaques or demonstrated to have a role in animal models of atherosclerosis. Decorin and biglycan are modified post-translationally by substitution with chondroitin/dermatan sulphate GAGs, whereas lumican, fibromodulin and PRELP have keratan sulphate side chains, and the core proteins have leucine-rich repeat (LRR) motifs that are characteristic of the LRR superfamily. The chondroitin/dermatan sulphate GAG side chains have been implicated in lipid retention in atherosclerosis. The core proteins are discussed here in the context of (i) interactions with collagens and their implications in tissue integrity, fibrosis and wound repair and (ii) interactions with growth factors, cytokines, pathogen-associated molecular patterns and cell surface receptors that impact normal physiology and disease processes such as inflammation, innate immune responses and wound healing (i.e. processes that are all important in plaque development and progression). Thus, studies of these SLRPs in the context of wound healing are providing clues about their functions in early stages of atherosclerosis to plaque vulnerability and cardiovascular disease at later stages. Understanding of signal transduction pathways regulated by the core protein interactions is leading to novel roles and therapeutic potential for these proteins in wound repair and atherosclerosis.
Collapse
Affiliation(s)
| | - J Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - S Chakravarti
- Departments of Medicine, Ophthalmology and Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 824] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
29
|
Garvican ER, Dudhia J, Alves AL, Clements LE, Plessis FD, Smith RKW. Mesenchymal stem cells modulate release of matrix proteins from tendon surfaces in vitro: a potential beneficial therapeutic effect. Regen Med 2015; 9:295-308. [PMID: 24935042 DOI: 10.2217/rme.14.7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM Injury of tendons contained within a synovial environment, such as joint, bursa or tendon sheath, frequently fails to heal and releases matrix proteins into the synovial fluid, driving inflammation. This study investigated the effectiveness of cells to seal tendon surfaces and provoke matrix synthesis as a possible effective injectable therapy. MATERIALS & METHODS Equine flexor tendon explants were cultured overnight in suspensions of bone marrow and synovium-derived mesenchymal stems cells and, as controls, two sources of fibroblasts, derived from tendon and skin, which adhered to the explants. Release of the most abundant tendon extracellular matrix proteins into the media was assayed, along with specific matrix proteins synthesis by real-time PCR. RESULTS Release of extracellular matrix proteins was influenced by the coating cell type. Fibroblasts from skin and tendon appeared less capable of preventing the release of matrix proteins than mesenchymal stems cells. CONCLUSION The source of cell is an important consideration for cell therapy.
Collapse
Affiliation(s)
- Elaine R Garvican
- The Royal Veterinary College, Department of Clinical Sciences & Services, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | | | | | | | | | | |
Collapse
|
30
|
Heppner JM, Zaucke F, Clarke LA. Extracellular matrix disruption is an early event in the pathogenesis of skeletal disease in mucopolysaccharidosis I. Mol Genet Metab 2015; 114:146-55. [PMID: 25410057 DOI: 10.1016/j.ymgme.2014.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022]
Abstract
Progressive skeletal and connective tissue disease represents a significant clinical burden in all of the mucopolysaccharidoses. Despite the introduction of enzyme replacement strategies for many of the mucopolysaccharidoses, symptomatology related to bone and joint disease appears to be recalcitrant to current therapies. In order to address these unmet medical needs a clearer understanding of skeletal and connective tissue disease pathogenesis is required. Historically the pathogenesis of the mucopolysaccharidoses has been assumed to directly relate to progressive storage of glycosaminoglycans. It is now apparent for many lysosomal storage disorders that more complex pathogenic mechanisms underlie patients' clinical symptoms. We have used proteomic and genome wide expression studies in the murine mucopolysaccharidosis I model to identify early pathogenic events occurring in micro-dissected growth plate tissue. Studies were conducted using 3 and 5-week-old mice thus representing a time at which no obvious morphological changes of bone or joints have taken place. An unbiased iTRAQ differential proteomic approach was used to identify candidates followed by validation with multiple reaction monitoring mass spectrometry and immunohistochemistry. These studies reveal significant decreases in six key structural and signaling extracellular matrix proteins; biglycan, fibromodulin, PRELP, type I collagen, lactotransferrin, and SERPINF1. Genome-wide expression studies in embryonic day 13.5 limb cartilage and 5 week growth plate cartilage followed by specific gene candidate qPCR studies in the 5week growth plate identified fourteen significantly deregulated mRNAs (Adamts12, Aspn, Chad, Col2a1, Col9a1, Hapln4, Lum, Matn1, Mmp3, Ogn, Omd, P4ha2, Prelp, and Rab32). The involvement of biglycan, PRELP and fibromodulin; all members of the small leucine repeat proteoglycan family is intriguing, as this protein family is implicated in the pathogenesis of late onset osteoarthritis. Taken as a whole, our data indicates that alteration of the extracellular matrix represents a very early event in the pathogenesis of the mucopolysaccharidoses and implies that biomechanical failure of chondro-osseous tissue may underlie progressive bone and joint disease symptoms. These findings have important therapeutic implications.
Collapse
Affiliation(s)
- Jonathan M Heppner
- Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada; The Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lorne A Clarke
- Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada; The Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada.
| |
Collapse
|
31
|
Role of Complement on Broken Surfaces After Trauma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:43-55. [PMID: 26306442 DOI: 10.1007/978-3-319-18603-0_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activation of both the complement and coagulation cascade after trauma and subsequent local and systemic inflammatory response represent a major scientific and clinical problem. After severe tissue injury and bone fracture, exposure of innate immunity to damaged cells and molecular debris is considered a main trigger of the posttraumatic danger response. However, the effects of cellular fragments (e.g., histones) on complement activation remain enigmatic. Furthermore, direct effects of "broken" bone and cartilage surfaces on the fluid phase response of complement and its interaction with key cells of connective tissues are still unknown. Here, we summarize data suggesting direct and indirect complement activation by extracellular and cellular danger associated molecular patterns. In addition, key complement components and the corresponding receptors (such as C3aR, C5aR) have been detected on "exposed surfaces" of the damaged regions. On a cellular level, multiple effects of complement activation products on osteoblasts, osteoclasts, chondrocytes and mesenchymal stem cells have been found.In conclusion, the complement system may be activated by trauma-altered surfaces and is crucially involved in connective tissue healing and posttraumatic systemic inflammatory response.
Collapse
|
32
|
Derer A, Böhm C, Grötsch B, Grün JR, Grützkau A, Stock M, Böhm S, Sehnert B, Gaipl U, Schett G, Hueber AJ, David JP. Rsk2 controls synovial fibroblast hyperplasia and the course of arthritis. Ann Rheum Dis 2014; 75:413-21. [DOI: 10.1136/annrheumdis-2014-205618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/01/2014] [Indexed: 11/03/2022]
|
33
|
Little D, Thompson JW, Dubois LG, Ruch DS, Moseley MA, Guilak F. Proteomic differences between male and female anterior cruciate ligament and patellar tendon. PLoS One 2014; 9:e96526. [PMID: 24818782 PMCID: PMC4018326 DOI: 10.1371/journal.pone.0096526] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/08/2014] [Indexed: 12/30/2022] Open
Abstract
The risk of anterior cruciate ligament (ACL) injury and re-injury is greater for women than men. Among other factors, compositional differences may play a role in this differential risk. Patellar tendon (PT) autografts are commonly used during reconstruction. The aim of the study was to compare protein expression in male and female ACL and PT. We hypothesized that there would be differences in key structural components between PT and ACL, and that components of the proteome critical for response to mechanical loading and response to injury would demonstrate significant differences between male and female. Two-dimensional liquid chromatography-tandem mass spectrometry and a label-free quantitative approach was used to identify proteomic differences between male and female PT and ACL. ACL contained less type I and more type III collagen than PT. There were tissue-specific differences in expression of proteoglycans, and ACL was enriched in elastin, tenascin C and X, cartilage oligomeric matrix protein, thrombospondin 4 and periostin. Between male and female donors, alcohol dehydrogenase 1B and complement component 9 were enriched in female compared to male. Myocilin was the major protein enriched in males compared to females. Important compositional differences between PT and ACL were identified, and we identified differences in pathways related to extracellular matrix regulation, complement, apoptosis, metabolism of advanced glycation end-products and response to mechanical loading between males and females. Identification of proteomic differences between male and female PT and ACL has identified novel pathways which may lead to improved understanding of differential ACL injury and re-injury risk between males and females.
Collapse
Affiliation(s)
- Dianne Little
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| | - J. Will Thompson
- Proteomics Core Facility, Institute for Genome Science & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura G. Dubois
- Proteomics Core Facility, Institute for Genome Science & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David S. Ruch
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - M. Arthur Moseley
- Proteomics Core Facility, Institute for Genome Science & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
34
|
Birke MT, Lipo E, Adhi M, Birke K, Kumar-Singh R. AAV-mediated expression of human PRELP inhibits complement activation, choroidal neovascularization and deposition of membrane attack complex in mice. Gene Ther 2014; 21:507-13. [PMID: 24670995 DOI: 10.1038/gt.2014.24] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 01/17/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Approximately 50% of AMD patients have a polymorphism in the negative regulator of complement known as Factor H. Individuals homozygous for a Y402H polymorphism in Factor H have elevated levels of membrane attack complex (MAC) in their choroid and retinal pigment epithelium relative to individuals homozygous for the wild-type allele. An inability to form MAC due to a polymorphism in C9 is protective against the formation of choroidal neovascularization (CNV) in AMD patients. Hence, blocking MAC in AMD patients may be protective against CNV. Here we investigate the potential of human proline/arginine-rich end leucine-rich repeat protein (PRELP) as an inhibitor of complement-mediated damage when delivered via the subretinal route using an AAV2/8 vector. In a fluorescence-activated cell sorting (FACS) lysis assay, PRELP inhibited normal human serum-mediated lysis of Hepa-1c1c7 cells by 18.7%. Unexpectedly, PRELP enhanced the formation of tubes by human umbilical vein endothelial cells (HUVECs) by approximately 240%, but, when delivered via an AAV vector to the retina of mice, PRELP inhibited laser-induced CNV by 60%. PRELP reduced deposition of MAC in vivo by 25.5%. Our results have implications for the development of complement inhibitors as a therapy for AMD.
Collapse
Affiliation(s)
- M T Birke
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - E Lipo
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - M Adhi
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - K Birke
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - R Kumar-Singh
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
35
|
Sommaggio R, Pérez-Cruz M, Brokaw JL, Máñez R, Costa C. Inhibition of complement component C5 protects porcine chondrocytes from xenogeneic rejection. Osteoarthritis Cartilage 2013; 21:1958-67. [PMID: 24041966 DOI: 10.1016/j.joca.2013.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Tissue-based xenografts such as cartilage are rejected within weeks by humoral and cellular mechanisms that preclude its clinical application in regenerative medicine. The problem could be overcome by identifying key molecules triggering rejection and the development of genetic-engineering strategies to counteract them. Accordingly, high expression of α1,2-fucosyltransferase (HT) in xenogeneic cartilage reduces the galactose α1,3-galactose (Gal) antigen and delays rejection. Yet, the role of complement activation in this setting is unknown. DESIGN To determine its contribution, we assessed the effect of inhibiting C5 complement component in α1,3-galactosyltransferase-knockout (Gal KO) mice transplanted with porcine cartilage and studied the effect of human complement on porcine articular chondrocytes (PAC). RESULTS Treatment with an anti-mouse C5 blocking antibody for 5 weeks enhanced graft survival by reducing cellular rejection. Moreover, PAC were highly resistant to complement-mediated lysis and primarily responded to human complement by releasing IL-6 and IL-8. This occurred even in the absence of anti-Gal antibody and was mediated by both C5a and C5b-9. Indeed, C5a directly triggered IL-6 and IL-8 secretion and up-regulated expression of swine leukocyte antigen I (SLA-I) and adhesion molecules on chondrocytes, all processes that enhance cellular rejection. Finally, the use of anti-human C5/C5a antibodies and/or recombinant expression of human complement regulatory molecule CD59 (hCD59) conferred protection in correspondence with their specific functions. CONCLUSIONS Our study demonstrates that complement activation contributes to rejection of xenogeneic cartilage and provides valuable information for selecting approaches for complement inhibition.
Collapse
Affiliation(s)
- R Sommaggio
- New Therapies of Genes and Transplants Group, Bellvitge Biomedical Research Institute (IDIBELL) and Bellvitge University Hospital-ICS, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
36
|
Rucci N, Capulli M, Ventura L, Angelucci A, Peruzzi B, Tillgren V, Muraca M, Heinegård D, Teti A. Proline/arginine-rich end leucine-rich repeat protein N-terminus is a novel osteoclast antagonist that counteracts bone loss. J Bone Miner Res 2013; 28:1912-24. [PMID: 23559035 DOI: 10.1002/jbmr.1951] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/25/2013] [Accepted: 03/15/2013] [Indexed: 11/10/2022]
Abstract
(hbd) PRELP is a peptide corresponding to the N-terminal heparin binding domain of the matrix protein proline/arginine-rich end leucine-rich repeat protein (PRELP). (hbd) PRELP inhibits osteoclastogenesis entering pre-fusion osteoclasts through a chondroitin sulfate- and annexin 2-dependent mechanism and reducing the nuclear factor-κB transcription factor activity. In this work, we hypothesized that (hbd) PRELP could have a pharmacological relevance, counteracting bone loss in a variety of in vivo models of bone diseases induced by exacerbated osteoclast activity. In healthy mice, we demonstrated that the peptide targeted the bone and increased trabecular bone mass over basal level. In mice treated with retinoic acid to induce an acute increase of osteoclast formation, the peptide consistently antagonized osteoclastogenesis and prevented the increase of the serum levels of the osteoclast-specific marker tartrate-resistant acid phosphatase. In ovariectomized mice, in which osteoclast activity was chronically enhanced by estrogen deficiency, (hbd) PRELP counteracted exacerbated osteoclast activity and bone loss. In mice carrying osteolytic bone metastases, in which osteoclastogenesis and bone resorption were enhanced by tumor cell-derived factors, (hbd) PRELP reduced the incidence of osteolytic lesions, both preventively and curatively, with mechanisms involving impaired tumor cell homing to bone and tumor growth in the bone microenvironment. Interestingly, in tumor-bearing mice, (hbd) PRELP also inhibited breast tumor growth in orthotopic sites and development of metastatic disease in visceral organs, reducing cachexia and improving survival especially when administered preventively. (hbd) PRELP was retained in the tumor tissue and appeared to affect tumor growth by interacting with the microenvironment rather than by directly affecting the tumor cells. Because safety studies and high-dose treatments revealed no adverse effects, (hbd) PRELP could be employed as a novel biological agent to combat experimentally induced bone loss and breast cancer metastases, with a potential translational impact.
Collapse
Affiliation(s)
- Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Teitz T, Inoue M, Valentine MB, Zhu K, Rehg JE, Zhao W, Finkelstein D, Wang YD, Johnson MD, Calabrese C, Rubinstein M, Hakem R, Weiss WA, Lahti JM. Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Res 2013; 73:4086-97. [PMID: 23536557 PMCID: PMC3702642 DOI: 10.1158/0008-5472.can-12-2681] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuroblastoma, the most common extracranial pediatric solid tumor, is responsible for 15% of all childhood cancer deaths. Patients frequently present at diagnosis with metastatic disease, particularly to the bone marrow. Advances in therapy and understanding of the metastatic process have been limited due, in part, to the lack of animal models harboring bone marrow disease. The widely used transgenic model, the Th-MYCN mouse, exhibits limited metastasis to this site. Here, we establish the first genetic immunocompetent mouse model for metastatic neuroblastoma with enhanced secondary tumors in the bone marrow. This model recapitulates 2 frequent alterations in metastatic neuroblastoma, overexpression of MYCN and loss of caspase-8 expression. Mouse caspase-8 gene was deleted in neural crest lineage cells by crossing a Th-Cre transgenic mouse with a caspase-8 conditional knockout mouse. This mouse was then crossed with the neuroblastoma prone Th-MYCN mouse. Although overexpression of MYCN by itself rarely caused bone marrow metastasis, combining MYCN overexpression and caspase-8 deletion significantly enhanced bone marrow metastasis (37% incidence). Microarray expression studies of the primary tumors mRNAs and microRNAs revealed extracellular matrix structural changes, increased expression of genes involved in epithelial to mesenchymal transition, inflammation, and downregulation of miR-7a and miR-29b. These molecular changes have been shown to be associated with tumor progression and activation of the cytokine TGF-β pathway in various tumor models. Cytokine TGF-β can preferentially promote single cell motility and blood-borne metastasis and therefore activation of this pathway may explain the enhanced bone marrow metastasis observed in this animal model.
Collapse
Affiliation(s)
- Tal Teitz
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA
| | - Madoka Inoue
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA
| | - Marcus B. Valentine
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA
| | - Kejin Zhu
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA
| | - Jerold E. Rehg
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
38105, USA
| | - Wei Zhao
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis,
TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s
Research Hospital, Memphis, TN 38105, USA
| | - Melissa D. Johnson
- Animal Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN
38105, USA
| | - Christopher Calabrese
- Animal Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN
38105, USA
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología
Molecular, Consejo Nacional de Investigaciones Científicas y Tecnológicas and
Universidad de Buenos Aires C1428ADN, Argentina
| | - Razqallah Hakem
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto,
Toronto, Ontario M5G 2M9, Canada
| | - William A. Weiss
- Departments of Neurology, Pediatrics and Neurological Surgery, University of
California, San Francisco, CA 94158, USA
| | - Jill M. Lahti
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA
| |
Collapse
|
38
|
Happonen KE, Heinegård D, Saxne T, Blom AM. Interactions of the complement system with molecules of extracellular matrix: relevance for joint diseases. Immunobiology 2013; 217:1088-96. [PMID: 22964234 DOI: 10.1016/j.imbio.2012.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a highly disabling disease affecting all structures of the joint. Understanding the pathology behind the development of RA is essential for developing targeted therapeutic strategies as well as for developing novel markers to predict disease onset. Several molecules normally hidden within the cartilage tissue are exposed to complement components in the synovial fluid upon cartilage breakdown. Some of these have been shown to activate complement and toll-like receptors, which may enhance an already existing inflammatory response, thereby worsening the course of disease. Other cartilage-resident molecules have in contrast shown to possess complement-inhibitory properties. Knowledge about mechanisms behind pathological complement activation in the joints will hopefully lead to methods which allow us to distinguish patients with pathological complement activation from those where other inflammatory pathways are predominant. This will help to elucidate which patients will benefit from complement inhibitory therapies, which are thought to aid a specific subset of patients or patients at a certain stage of disease. Future challenges are to target the complement inhibition specifically to the joints to minimize systemic complement blockade.
Collapse
Affiliation(s)
- Kaisa E Happonen
- Department of Laboratory Medicine, Division of Medical Protein Chemistry, Wallenberg Laboratory, Skåne University Hospital, Lund University, Sweden
| | | | | | | |
Collapse
|
39
|
Loeser RF, Olex AL, McNulty MA, Carlson CS, Callahan M, Ferguson C, Fetrow JS. Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS One 2013; 8:e54633. [PMID: 23382930 PMCID: PMC3557277 DOI: 10.1371/journal.pone.0054633] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/13/2012] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis and has multiple risk factors including joint injury. The purpose of this study was to characterize the histologic development of OA in a mouse model where OA is induced by destabilization of the medial meniscus (DMM model) and to identify genes regulated during different stages of the disease, using RNA isolated from the joint “organ” and analyzed using microarrays. Histologic changes seen in OA, including articular cartilage lesions and osteophytes, were present in the medial tibial plateaus of the DMM knees beginning at the earliest (2 week) time point and became progressively more severe by 16 weeks. 427 probe sets (371 genes) from the microarrays passed consistency and significance filters. There was an initial up-regulation at 2 and 4 weeks of genes involved in morphogenesis, differentiation, and development, including growth factor and matrix genes, as well as transcription factors including Atf2, Creb3l1, and Erg. Most genes were off or down-regulated at 8 weeks with the most highly down-regulated genes involved in cell division and the cytoskeleton. Gene expression increased at 16 weeks, in particular extracellular matrix genes including Prelp, Col3a1 and fibromodulin. Immunostaining revealed the presence of these three proteins in cartilage and soft tissues including ligaments as well as in the fibrocartilage covering osteophytes. The results support a phasic development of OA with early matrix remodeling and transcriptional activity followed by a more quiescent period that is not maintained. This implies that the response to an OA intervention will depend on the timing of the intervention. The quiescent period at 8 weeks may be due to the maturation of the osteophytes which are thought to temporarily stabilize the joint.
Collapse
Affiliation(s)
- Richard F Loeser
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The aggregating proteoglycans of the lectican family are important components of extracellular matrices. Aggrecan is the most well studied of these and is central to cartilage biomechanical properties and skeletal development. Key to its biological function is the fixed charge of the many glycosaminoglycan chains, that provide the basis for the viscoelastic properties necessary for load distribution over the articular surface. This review is focused on the globular domains of aggrecan and their role in anchoring the proteoglycans to other extracellular matrix components. The N-terminal G1 domain is vital in that it binds the proteoglycan to hyaluronan in ternary complex with link protein, retaining the proteoglycan in the tissue. The importance of the C-terminal G3 domain interactions has recently been emphasized by two different human hereditary disorders: autosomal recessive aggrecan-type spondyloepimetaphyseal dysplasia and autosomal dominant familial osteochondritis dissecans. In these two conditions, different missense mutations in the aggrecan C-type lectin repeat have been described. The resulting amino acid replacements affect the ligand interactions of the G3 domain, albeit with widely different phenotypic outcomes.
Collapse
Affiliation(s)
- Anders Aspberg
- Department of Biology, Copenhagen University, Copenhagen N, Denmark.
| |
Collapse
|