1
|
Colachis M, Lilly JL, Trigg E, Kucharzyk KH. Analytical tools to assess polymer biodegradation: A critical review and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176920. [PMID: 39461538 DOI: 10.1016/j.scitotenv.2024.176920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Many petroleum-derived plastic materials are highly recalcitrant and persistent in the environment, posing significant threats to human and ecological receptors due to their accumulation in ecosystems. In recent years, research efforts have focused on advancing biological methods for polymer degradation. Enzymatic depolymerization has emerged as particularly relevant for biobased plastic recycling, potentially scalable for industrial use. Biodegradation involves adsorption to the plastic solid surface, followed by an interfacial reaction, resulting in cleavage of bonds of polymer chains exposed on the surface. Here, widely varying substrate-specific kinetics are observed, with the polymer's properties possessing a significant impact on the rate of this interfacial catalysis. Thus, there is a critical need for sensitive and accurate characterization of the material surface during and after interfacial depolymerization to fully understand the reaction mechanisms. Here, we provide a critical review of a range of techniques used in the analysis of material surfaces to characterize the chemical, topological, and morphological features relevant to the study of enzymatic biocatalysis, including microscopy techniques, spectroscopic techniques (e.g., X-ray diffraction analysis, Fourier transform infrared attenuated total reflectance spectroscopy, and mass spectrometry detection of analytes associated with degradation). Techniques for evaluation of surface energy and topology in their relevancy for sensitive detection of biological surface modifications are also discussed. In addition, this paper provides an overview of the strengths of these techniques and compares their performance in both sensitivity and throughput, including emerging techniques, which can be useful, particularly for the rapid analysis of the surface properties of polymeric materials in high-throughput screening of candidate biocatalysts. This research serves as a starting point in selecting and applying appropriate methodologies that provide direct evidence to the ongoing biotic degradation of polymeric materials.
Collapse
Affiliation(s)
- Matthew Colachis
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Jacob L Lilly
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Edward Trigg
- Cambium Biomaterials, 626 Bancroft Way, Suite A, Berkeley, California 94710, United States
| | | |
Collapse
|
2
|
Rangaswamy AMM, Roy FM, Keillor JW. Small molecule substrates for the rapid quantification of acyl transfer activity of nylon hydrolase NylC A. Anal Biochem 2024; 693:115598. [PMID: 38964700 DOI: 10.1016/j.ab.2024.115598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The widespread use of polyamides such as nylons has led to the accumulation of nylon waste, which is particularly resistant to decomposition due to the intrinsic stability of the amide bond. New methods are required for the true recycling of these waste materials by depolymerization. Enzymes that are capable of hydrolyzing polyamides have been proposed as biocatalysts that may be suitable for this application. NylC is an enzyme that can mediate the hydrolysis of aminohexanoic acid oligomers, and to some extent, bulk polymers. However, current assays to characterize the activity of this enzyme require long reaction times and/or rely on secondary reactions to quantify hydrolysis. Herein, we have designed structurally-optimized small molecule chromogenic esters that serve as substrate analogues for monitoring NylC acyltransferase activity in a continuous manner. This assay can be performed in minutes at room temperature, and the substrate N-acetyl-GABA-pNP ester (kcat = 0.37 s-1, KM = 256 μM) shows selectivity for NylC in complex biological media. We also demonstrate that activity towards this substrate analogue correlates with amide hydrolysis, which is the primary activity of this enzyme. Furthermore, our screening of substrate analogues provides insight into the substrate specificity of NylC, which is relevant to biocatalytic applications.
Collapse
Affiliation(s)
- Alana M M Rangaswamy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Francis M Roy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
3
|
Qiu Y, Wang P, Zhang L, Li C, Lu J, Ren L. Enhancing biodegradation efficiency of PLA/PBAT-ST20 bioplastic using thermophilic bacteria co-culture system: New insight from structural characterization, enzyme activity, and metabolic pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135426. [PMID: 39106720 DOI: 10.1016/j.jhazmat.2024.135426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
The rising utilization of PLA/PBAT-ST20 presents potential ecological risks stemming from its casual disposal and incomplete degradation. To solve this problem, this study investigated the degradation capabilities of PLA/PBAT-ST20 by a co-culture system comprising two thermophilic bacteria, Pseudomonas G1 and Kocuria G2, selected and identified from the thermophilic phase of compost. Structural characterization results revealed that the strains colonized the PLA/PBAT-ST20's surface, causing holes and cracks, with an increase in the carbonyl index (CI) and polydispersity index (PDI), indicating oxidative degradation. Enzyme activity results demonstrated that the co-culture system significantly enhanced the secretion and activity of proteases and lipases, promoting the breakdown of ester bonds. LC-QTOF-MS results showed that various intermediate products were obtained after degradation, ultimately participating in the TCA cycle (ko00020), further completely mineralized. Additionally, after 15-day compost, the co-culture system achieved a degradation rate of 72.14 ± 2.1 wt% for PBAT/PLA-ST20 films, with a decrease in the abundance of plastic fragments of all sizes, demonstrating efficient degradation of PLA/PBAT-ST20 films. This study highlights the potential of thermophilic bacteria to address plastic pollution through biodegradation and emphasizes that the co-culture system could serve as an ideal solution for the remediation of PLA/PBAT plastics.
Collapse
Affiliation(s)
- Yizhan Qiu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Pan Wang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Luxi Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chunmei Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Jiaxin Lu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
4
|
Gopal MR, Kunjapur AM. Harnessing biocatalysis to achieve selective functional group interconversion of monomers. Curr Opin Biotechnol 2024; 86:103093. [PMID: 38417202 DOI: 10.1016/j.copbio.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
Polymeric materials are ubiquitous to modern life. However, reliance of petroleum for polymeric building blocks is not sustainable. The synthesis of macromolecules from recalcitrant polymer waste feedstocks, such as plastic waste and lignocellulosic biomass, presents an opportunity to bypass the use of petroleum-based feedstocks. However, the deconstruction and transformation of these alternative feedstocks remained limited until recently. Herein, we highlight examples of monomers liberated from the deconstruction of recalcitrant polymers, and more extensively, we showcase the state-of-the-art in biocatalytic technologies that are enabling synthesis of diverse upcycled monomeric starting materials for a wide variety of macromolecules. Overall, this review emphasizes the importance of functional group interconversion as a promising strategy by which biocatalysis can aid the diversification and upcycling of monomers.
Collapse
Affiliation(s)
- Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Center for Plastics Innovation, University of Delaware, Newark, DE, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Center for Plastics Innovation, University of Delaware, Newark, DE, USA.
| |
Collapse
|
5
|
Bell EL, Rosetto G, Ingraham MA, Ramirez KJ, Lincoln C, Clarke RW, Gado JE, Lilly JL, Kucharzyk KH, Erickson E, Beckham GT. Natural diversity screening, assay development, and characterization of nylon-6 enzymatic depolymerization. Nat Commun 2024; 15:1217. [PMID: 38336849 PMCID: PMC10858056 DOI: 10.1038/s41467-024-45523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Successes in biocatalytic polyester recycling have raised the possibility of deconstructing alternative polymers enzymatically, with polyamide (PA) being a logical target due to the array of amide-cleaving enzymes present in nature. Here, we screen 40 potential natural and engineered nylon-hydrolyzing enzymes (nylonases), using mass spectrometry to quantify eight compounds resulting from enzymatic nylon-6 (PA6) hydrolysis. Comparative time-course reactions incubated at 40-70 °C showcase enzyme-dependent variations in product distributions and extent of PA6 film depolymerization, with significant nylon deconstruction activity appearing rare. The most active nylonase, a NylCK variant we rationally thermostabilized (an N-terminal nucleophile (Ntn) hydrolase, NylCK-TS, Tm = 87.4 °C, 16.4 °C higher than the wild-type), hydrolyzes 0.67 wt% of a PA6 film. Reactions fail to restart after fresh enzyme addition, indicating that substrate-based limitations, such as restricted enzyme access to hydrolysable bonds, prohibit more extensive deconstruction. Overall, this study expands our understanding of nylonase activity distribution, indicates that Ntn hydrolases may have the greatest potential for further development, and identifies key targets for progressing PA6 enzymatic depolymerization, including improving enzyme activity, product selectivity, and enhancing polymer accessibility.
Collapse
Affiliation(s)
- Elizabeth L Bell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Gloria Rosetto
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Clarissa Lincoln
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Ryan W Clarke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Japheth E Gado
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Jacob L Lilly
- Battelle Memorial Institute, Columbus, OH, 43201, USA
| | | | - Erika Erickson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- BOTTLE Consortium, Golden, CO, 80401, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
- BOTTLE Consortium, Golden, CO, 80401, USA.
| |
Collapse
|
6
|
Kothawale SS, Kumar L, Singh SP. Role of organisms and their enzymes in the biodegradation of microplastics and nanoplastics: A review. ENVIRONMENTAL RESEARCH 2023:116281. [PMID: 37276977 DOI: 10.1016/j.envres.2023.116281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/27/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Microplastic (MP) and Nanoplastic (NP) contamination have become a critical ecological concern due to their persistent presence in every aspect of the ecosystem and their potentially harmful effects. The current approaches to eradicate these wastes by burning up and dumping adversely impact the environment, while recycling has its own challenges. As a result, applying degradation techniques to eliminate these recalcitrant polymers has been a focus of scientific investigation in the recent past. Biological, photocatalytic, electrocatalytic, and, recently, nanotechnologies have been studied to degrade these polymers. Nevertheless, it is hard to degrade MPs and NPs in the environment, and these degradation techniques are comparatively inefficient and require further development. The recent research focuses on the potential use of microbes to degrade MPs and NPs as a sustainable solution. Therefore, considering the recent advancements in this important research field, this review highlights the utilization of organisms and enzymes for the biodegradation of the MPs and NPs with their probable degradation mechanisms. This review provides insight into various microbial entities and their enzymes for the biodegradation of MPs. In addition, owing to the lack of research on the biodegradation of NPs, the perspective of applying these processes to NPs degradation has also been looked at. Finally, a critical evaluation of the recent development and perspective for future research to improve the effective removal of MPs and NPs in the environment through biodegradation is also discussed.
Collapse
Affiliation(s)
- Sheetal S Kothawale
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Lalit Kumar
- Department of Energy Science and Engineering Department (DESE), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India; Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
7
|
Cahill JF, Kertesz V, Saint-Vincent P, Valentino H, Drufva E, Thiele N, Michener JK. High-Throughput Characterization and Optimization of Polyamide Hydrolase Activity Using Open Port Sampling Interface Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37262418 DOI: 10.1021/jasms.3c00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enzymatic biodegradation of polymers, such as polyamides (PA), has the potential to cost-effectively reduce plastic waste, but enhancements in degradation efficiency are needed. Engineering enzymes through directed evolution is one pathway toward identification of critical domains needed for improving activity. However, screening such enzymatic libraries (100s-to-1000s of samples) is time-consuming. Here we demonstrate the use of robotic autosampler (PAL) and immediate drop on demand technology (I.DOT) liquid handling systems coupled with open-port sampling interface-mass spectrometry (OPSI-MS) to screen for PA6 and PA66 hydrolysis by 6-aminohexanoate-oligomer endo-hydrolase (nylon hydrolase, NylC) in a high-throughput (8-20 s/sample) manner. The OPSI-MS technique required minimal sample preparation and was amenable to 96-well plate formats for automated processing. Enzymatic hydrolysis of PA characteristically produced soluble linear oligomer products that could be identified by OPSI-MS. Incubation temperatures and times were optimized for PA6 (65 °C, 24 h) and PA66 (75 °C, 24 h) over 108 experiments. In addition, the I.DOT/OPSI-MS quantified production of PA6 linear dimer (8.3 ± 1.6 μg/mL) and PA66 linear monomer (13.5 ± 1.5 μg/mL) by NylC with a lower limit of detection of 0.029 and 0.032 μg/mL, respectively. For PA6 and PA66, linear oligomer production corresponded to 0.096 ± 0.018% and 0.204 ± 0.028% conversion of dry pellet mass, respectively. The developed methodology is expected to be utilized to assess enzymatic hydrolysis of engineered enzyme libraries, comprising hundreds to thousands of individual samples.
Collapse
Affiliation(s)
- John F Cahill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Patricia Saint-Vincent
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Hannah Valentino
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Erin Drufva
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Nikki Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Joshua K Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| |
Collapse
|
8
|
Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I. Enzymes' Power for Plastics Degradation. Chem Rev 2023; 123:5612-5701. [PMID: 36916764 DOI: 10.1021/acs.chemrev.2c00644] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.
Collapse
Affiliation(s)
- Vincent Tournier
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Sophie Duquesne
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Frédérique Guillamot
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Henri Cramail
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Daniel Taton
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Alain Marty
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| |
Collapse
|
9
|
Negoro S, Shibata N, Kato DI, Tanaka Y, Yasuhira K, Nagai K, Oshima S, Furuno Y, Yokoyama R, Miyazaki K, Takeo M, Hengphasatporn K, Shigeta Y, Lee YH, Higuchi Y. X-ray crystallographic and mutational analysis of the NylC precursor: catalytic mechanism of autocleavage and substrate hydrolysis of nylon hydrolase. FEBS J 2023. [PMID: 36799721 DOI: 10.1111/febs.16755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 02/18/2023]
Abstract
Nylon hydrolase (NylC), a member of the N-terminal nucleophile (Ntn) hydrolase superfamily, is responsible for the degradation of various aliphatic nylons, including nylon-6 and nylon-66. NylC is initially expressed as an inactive precursor (36 kDa), but the precursor is autocatalytically cleaved at Asn266/Thr267 to generate an active enzyme composed of 27 and 9 kDa subunits. We isolated various mutants with amino acid changes at the catalytic centre. X-ray crystallographic analysis revealed that the NylC precursor forms a doughnut-shaped quaternary structure composed of four monomers (molecules A-D) with D2 symmetry. Catalytic residues in the precursor are covered by loop regions at the A/B interface (equivalent to the C/D interface). However, the catalytic residues are exposed to the solvent environment through autocleavage followed by movements of the loop regions. T267A, D306A and D308A mutations resulted in a complete loss of autocleavage. By contrast, in the T267S mutant, autocleavage proceeded slowly at a constant reaction rate (k = 2.8 × 10-5 s-1 ) until complete conversion, but the reaction was inhibited by K189A and N219A mutations. Based on the crystallographic and molecular dynamic simulation analyses, we concluded that the Asp308-Asp306-Thr267 triad, resembling the Glu-Ser-Ser triad conserved in Ntn-hydrolase family enzymes, is responsible for autocleavage and that hydrogen-bonding networks connecting Thr267 with Lys189 and Asn219 are required for increasing the nucleophilicity of Thr267-OH in both the water accessible and water inaccessible systems. Furthermore, we determined that NylC employs the Asp308-Asp306-Thr267 triad as catalytic residues for substrate hydrolysis, but the reaction requires Lys189 and Tyr146 as additional catalytic/substrate-binding residues specific for nylon hydrolysis.
Collapse
Affiliation(s)
- Seiji Negoro
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | - Naoki Shibata
- Department of Life Science, Graduate School of Science, University of Hyogo, Ako-gun, Japan
| | - Dai-Ichiro Kato
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Yusuke Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | - Kengo Yasuhira
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | - Keisuke Nagai
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | - Shohei Oshima
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | - Yoko Furuno
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Risa Yokoyama
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Kaito Miyazaki
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Masahiro Takeo
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | | | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University, Suita, Japan.,Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju-si, South Korea.,Bio-Analytical Science, University of Science and Technology, Daejeon, South Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Science, University of Hyogo, Ako-gun, Japan
| |
Collapse
|
10
|
Zhou Y, Kumar V, Harirchi S, Vigneswaran VS, Rajendran K, Sharma P, Wah Tong Y, Binod P, Sindhu R, Sarsaiya S, Balakrishnan D, Mofijur M, Zhang Z, Taherzadeh MJ, Kumar Awasthi M. Recovery of value-added products from biowaste: A review. BIORESOURCE TECHNOLOGY 2022; 360:127565. [PMID: 35788392 DOI: 10.1016/j.biortech.2022.127565] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
This review provides an update on the state-of-the art technologies for the valorization of solid waste and its mechanism to generate various bio-products. The organic content of these wastes can be easily utilized by the microbes and produce value-added compounds. Microbial fermentation techniques can be utilized for developing waste biorefinery processes. The utilization of lignocellulosic and plastics wastes for the generation of carbon sources for microbial utilization after pre-processing steps will make the process a multi-product biorefinery. The C1 and C2 gases generated from different industries could also be utilized by various microbes, and this will help to control global warming. The review seeks to expand expertise about the potential application through several perspectives, factors influencing remediation, issues, and prospects.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - V S Vigneswaran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technology Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technology Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Deepanraj Balakrishnan
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - M Mofijur
- Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
11
|
Blake MK, O'Connell P, Pepelyayeva Y, Godbehere S, Aldhamen YA, Amalfitano A. ERAP1 is a critical regulator of inflammasome-mediated proinflammatory and ER stress responses. BMC Immunol 2022; 23:9. [PMID: 35246034 PMCID: PMC8895631 DOI: 10.1186/s12865-022-00481-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
Background In addition to its role in antigen presentation, recent reports establish a new role for endoplasmic reticulum aminopeptidase 1 (ERAP1) in innate immunity; however, the mechanisms underlying these functions are not fully defined. We previously confirmed that loss of ERAP1 functions resulted in exaggerated innate immune responses in a murine in vivo model. Here, we investigated the role of ERAP1 in suppressing inflammasome pathways and their dependence on ER stress responses. Results Using bone marrow-derived macrophages (BMDMs), we found that loss of ERAP1 in macrophages resulted in exaggerated production of IL-1β and IL-18 and augmented caspase-1 activity, relative to wild type macrophages. Moreover, an in vivo colitis model utilizing dextran sodium sulfate (DSS) confirmed increased levels of proinflammatory cytokines and chemokines in the colon of DSS treated ERAP1−/− mice as compared to identically stimulated WT mice. Interestingly, stimulated ERAP1−/− BMDMs and CD4+ T cells simultaneously demonstrated exaggerated ER stress, assessed by increased expression of ER stress-associated genes, a state that could be reverted to WT levels with use of the ER stress inhibitor Tauroursodeoxycholic acid (TUDCA). Conclusions Together, these results not only suggest that ERAP1 is important for regulating inflammasome dependent innate immune response pathways in vivo, but also propose a mechanism that underlies these changes, that may be associated with increased ER stress due to lack of normal ERAP1 functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00481-9.
Collapse
Affiliation(s)
- Maja K Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Yuliya Pepelyayeva
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA. .,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
12
|
Du Y, Liu X, Dong X, Yin Z. A review on marine plastisphere: biodiversity, formation, and role in degradation. Comput Struct Biotechnol J 2022; 20:975-988. [PMID: 35242288 PMCID: PMC8861569 DOI: 10.1016/j.csbj.2022.02.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
The pollution of plastic waste has become an increasingly serious environmental crisis. Recently, plastic has been detected in various kinds of environments, even in human tissues, which is an increasing threat to the ecosystems and humans. In the ocean, the plastic waste is eventually fragmentized into microplastics (MPs) under the disruption of physical and chemical processes. MPs are colonized by microbial communities such as fungi, diatoms, and bacteria, which form biofilms on the surface of the plastic called “plastisphere”. In this review, we summarize the studies related to microorganisms in the plastisphere in recent years and describe the microbial species in the plastisphere, mainly including bacteria, fungi, and autotrophs. Secondly, we explore the interactions between MPs and the plastisphere. The depth of MPs in the ocean and the nutrients in the surrounding seawater can have a great impact on the community structure of microorganisms in the plastisphere. Finally, we discuss the types of MP-degrading bacteria in the ocean, and use the “seed bank” theory to speculate on the potential sources of MP-degrading microorganisms. Challenges and future research prospects are also discussed.
Collapse
Affiliation(s)
- Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Xinbei Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, PR China
| | - Xusheng Dong
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, PR China
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, PR China
- Corresponding author.
| |
Collapse
|
13
|
Zhou Y, Kumar M, Sarsaiya S, Sirohi R, Awasthi SK, Sindhu R, Binod P, Pandey A, Bolan NS, Zhang Z, Singh L, Kumar S, Awasthi MK. Challenges and opportunities in bioremediation of micro-nano plastics: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149823. [PMID: 34454140 DOI: 10.1016/j.scitotenv.2021.149823] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Rising level of micro-nano plastics (MNPs) in the natural ecosystem adversely impact the health of the environment and living organisms globally. MNPs enter in to the agro-ecosystem, flora and fauna, and human body via trophic transfer, ingestion and inhalation, resulting impediment in blood vessel, infertility, and abnormal behaviors. Therefore, it becomes indispensable to apply a novel approach to remediate MNPs from natural environment. Amongst the several prevailing technologies of MNPs remediation, microbial remediation is considered as greener technology. Microbial degradation of plastics is typically influenced by several biotic as well as abiotic factors, such as enzymatic mechanisms, substrates and co-substrates concentration, temperature, pH, oxidative stress, etc. Therefore, it is pivotal to recognize the key pathways adopted by microbes to utilize plastic fragments as a sole carbon source for the growth and development. In this context, this review critically discussed the role of various microbes and their enzymatic mechanisms involved in biodegradation of MNPs in wastewater (WW) stream, municipal sludge, municipal solid waste (MSW), and composting starting with biological and toxicological impacts of MNPs. Moreover, this review comprehensively discussed the deployment of various MNPs remediation technologies, such as enzymatic, advanced molecular, and bio-membrane technologies in fostering the bioremediation of MNPs from various environmental compartments along with their pros and cons and prospects for future research.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
14
|
Thiyagarajan S, Maaskant-Reilink E, Ewing TA, Julsing MK, van Haveren J. Back-to-monomer recycling of polycondensation polymers: opportunities for chemicals and enzymes. RSC Adv 2021; 12:947-970. [PMID: 35425100 PMCID: PMC8978869 DOI: 10.1039/d1ra08217e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
The use of plastics in a wide range of applications has grown substantially over recent decades, resulting in enormous growth in production volumes to meet demand. Though a wide range of biomass-derived chemicals and materials are available on the market, the production volumes of such renewable alternatives are currently not sufficient to replace their fossil-based analogues due to various factors, in particular cost-effectiveness. Hence, the majority of plastics are still industrially produced from fossil-based feedstocks. Moreover, various reports have clearly raised concern about the plastics that are not recycled at their end-of-life and instead end up in landfills or the oceans. To avoid further pollution of our planet, it is highly desirable to develop recycling processes that use plastic waste as feedstock. Chemical recycling processes could potentially offer a solution, since they afford monomers from which new polymers can be produced, with the same performance as virgin plastics. In this manuscript, the opportunities for using either chemical or biochemical (i.e., enzymatic) approaches in the depolymerization of polycondensation polymers for recycling purposes are reviewed. Our aim is to highlight the strategies that have been developed so far to break down plastic waste into monomers, providing the first step in the development of chemical recycling processes for plastic waste, and to create a renewed awareness of the need to valorize plastic waste by efficiently transforming it into virgin plastics.
Collapse
Affiliation(s)
| | | | - Tom A Ewing
- Wageningen Food & Biobased Research Wageningen P. O. Box 17 6700 AA The Netherlands
| | - Mattijs K Julsing
- Wageningen Food & Biobased Research Wageningen P. O. Box 17 6700 AA The Netherlands
| | - Jacco van Haveren
- Wageningen Food & Biobased Research Wageningen P. O. Box 17 6700 AA The Netherlands
| |
Collapse
|
15
|
Tiso T, Winter B, Wei R, Hee J, de Witt J, Wierckx N, Quicker P, Bornscheuer UT, Bardow A, Nogales J, Blank LM. The metabolic potential of plastics as biotechnological carbon sources - Review and targets for the future. Metab Eng 2021; 71:77-98. [PMID: 34952231 DOI: 10.1016/j.ymben.2021.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
The plastic crisis requires drastic measures, especially for the plastics' end-of-life. Mixed plastic fractions are currently difficult to recycle, but microbial metabolism might open new pathways. With new technologies for degradation of plastics to oligo- and monomers, these carbon sources can be used in biotechnology for the upcycling of plastic waste to valuable products, such as bioplastics and biosurfactants. We briefly summarize well-known monomer degradation pathways and computed their theoretical yields for industrially interesting products. With this information in hand, we calculated replacement scenarios of existing fossil-based synthesis routes for the same products. Thereby, we highlight fossil-based products for which plastic monomers might be attractive alternative carbon sources. Notably, not the highest yield of product on substrate of the biochemical route, but rather the (in-)efficiency of the petrochemical routes (i.e., carbon, energy use) determines the potential of biochemical plastic upcycling. Our results might serve as a guide for future metabolic engineering efforts towards a sustainable plastic economy.
Collapse
Affiliation(s)
- Till Tiso
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Benedikt Winter
- Energy & Process Systems Engineering, ETH Zurich, Zurich, Switzerland; Institute of Technical Thermodynamics, RWTH Aachen University, Germany
| | - Ren Wei
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Johann Hee
- Unit of Technology of Fuels, RWTH Aachen University, Aachen, Germany
| | - Jan de Witt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Peter Quicker
- Unit of Technology of Fuels, RWTH Aachen University, Aachen, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - André Bardow
- Energy & Process Systems Engineering, ETH Zurich, Zurich, Switzerland; Institute of Technical Thermodynamics, RWTH Aachen University, Germany; Institute of Energy and Climate Research (IEK 10), Research Center Jülich GmbH, Germany
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
16
|
Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. SUSTAINABILITY 2021. [DOI: 10.3390/su13179963] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plastic pollution is ubiquitous in terrestrial and aquatic ecosystems. Plastic waste exposed to the environment creates problems and is of significant concern for all life forms. Plastic production and accumulation in the natural environment are occurring at an unprecedented rate due to indiscriminate use, inadequate recycling, and deposits in landfills. In 2019, the global production of plastic was at 370 million tons, with only 9% of it being recycled, 12% being incinerated, and the remaining left in the environment or landfills. The leakage of plastic wastes into terrestrial and aquatic ecosystems is occurring at an unprecedented rate. The management of plastic waste is a challenging problem for researchers, policymakers, citizens, and other stakeholders. Therefore, here, we summarize the current understanding and concerns of plastics pollution (microplastics or nanoplastics) on natural ecosystems. The overall goal of this review is to provide background assessment on the adverse effects of plastic pollution on natural ecosystems; interlink the management of plastic pollution with sustainable development goals; address the policy initiatives under transdisciplinary approaches through life cycle assessment, circular economy, and sustainability; identify the knowledge gaps; and provide current policy recommendations. Plastic waste management through community involvement and socio-economic inputs in different countries are presented and discussed. Plastic ban policies and public awareness are likely the major mitigation interventions. The need for life cycle assessment and circularity to assess the potential environmental impacts and resources used throughout a plastic product’s life span is emphasized. Innovations are needed to reduce, reuse, recycle, and recover plastics and find eco-friendly replacements for plastics. Empowering and educating communities and citizens to act collectively to minimize plastic pollution and use alternative options for plastics must be promoted and enforced. Plastic pollution is a global concern that must be addressed collectively with the utmost priority.
Collapse
|
17
|
Bhatt P, Pathak VM, Bagheri AR, Bilal M. Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies. ENVIRONMENTAL RESEARCH 2021; 200:111762. [PMID: 34310963 DOI: 10.1016/j.envres.2021.111762] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Microplastic is a fragmented plastic part that emerges as a potential marine and terrestrial contaminant. The microplastic wastes in marine and soil environments cause severe problems in living systems. Microplastic wastes have been linked to various health problems, including reproductive harm and obesity, plus issues such as organ problems and developmental delays in children. Recycling plastic/microplastics from the environment is very low, so remediating these polymers after their utilization is of paramount concern. The microplastic causes severe toxic effects and contaminates the environment. Microplastic affects marine life, microorganism in soil, soil enzymes, plants system, and physicochemical properties. Ecotoxicology of the microplastic raised many questions about its use and development from the environment. Various physicochemical and microbial technologies have been developed for their remediation from the environment. The microplastic effects are linked with its concentration, size, and shape in contaminated environments. Microplastic is able to sorb the inorganic and organic contaminants and affect their fate into the contaminated sites. Microbial technology is considered safer for the remediation of the microplastics via its unique metabolic machinery. Bioplastic is regarded as safer and eco-friendly as compared to plastics. The review article explored an in-depth understanding of the microplastic, its fate, toxicity to the environment, and robust remediation strategies.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingman Modern Agriculture, Guangzhou, 510642, China.
| | - Vinay Mohan Pathak
- Department of Microbiology, University of Delhi, South Campus, New Delhi, 110021, India; Department of Botany and Microbiology, Gurukul Kangri (Deemed to University), Haridwar, Uttarakhand, 249404, India
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
18
|
Negoro S, Kato DI, Ohki T, Yasuhira K, Kawashima Y, Nagai K, Takeo M, Shibata N, Kamiya K, Shigeta Y. Structural and functional characterization of nylon hydrolases. Methods Enzymol 2020; 648:357-389. [PMID: 33579412 DOI: 10.1016/bs.mie.2020.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Biodegradation of synthetic polymers is recognized as a useful way to reduce their environmental load and pollution, loss of natural resources, extensive energy consumption, and generation of greenhouse gases. The potential use of enzymes responsible for the degradation of the targeted polymers is an effective approach which enables the conversion of the used polymers to original monomers and/or other useful compounds. In addition, the enzymes are expected to be applicable in industrial processes such as improving the surface structures of the polymers. Especially, conversion of the solid polymers to soluble oligomers/monomers is a key step for the biodegradation of the polymers. Regarding the hydrolysis of polyamides, three enzymes, 6-aminohexanoate-cyclic-dimer hydrolase (NylA), 6-aminohexanoate-dimer hydrolase (NylB), and 6-aminohexanoate-oligomer endo-hydrolase (nylon hydrolase, NylC), are found in several bacterial strains. In this chapter, we describe our approach for the screening of microorganisms which degrade nylons and related compounds; preparation of substrates; assay of hydrolytic activity for soluble and insoluble substrates; and X-ray crystallographic and computational approaches for analysis of structure and catalytic mechanisms of the nylon-degrading enzymes.
Collapse
Affiliation(s)
- Seiji Negoro
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan.
| | - Dai-Ichiro Kato
- Department of Science, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Taku Ohki
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | - Kengo Yasuhira
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | - Yasuyuki Kawashima
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | - Keisuke Nagai
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | - Masahiro Takeo
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan
| | - Naoki Shibata
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Katsumasa Kamiya
- Education Development Center, Kanagawa Institute of Technology, Atsugi, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
19
|
Purohit J, Chattopadhyay A, Teli B. Metagenomic Exploration of Plastic Degrading Microbes for Biotechnological Application. Curr Genomics 2020; 21:253-270. [PMID: 33071619 PMCID: PMC7521044 DOI: 10.2174/1389202921999200525155711] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023] Open
Abstract
Since the last few decades, the promiscuous and uncontrolled use of plastics led to the accumulation of millions of tons of plastic waste in the terrestrial and marine environment. It elevated the risk of environmental pollution and climate change. The concern arises more due to the reckless and unscientific disposal of plastics containing high molecular weight polymers, viz., polystyrene, polyamide, polyvinylchloride, polypropylene, polyurethane, and polyethylene, etc. which are very difficult to degrade. Thus, the focus is now paid to search for efficient, eco-friendly, low-cost waste management technology. Of them, degradation of non-degradable synthetic polymer using diverse microbial agents, viz., bacteria, fungi, and other extremophiles become an emerging option. So far, very few microbial agents and their secreted enzymes have been identified and characterized for plastic degradation, but with low efficiency. It might be due to the predominance of uncultured microbial species, which consequently remain unexplored from the respective plastic degrading milieu. To overcome this problem, metagenomic analysis of microbial population engaged in the plastic biodegradation is advisable to decipher the microbial community structure and to predict their biodegradation potential in situ. Advancements in sequencing technologies and bioinformatics analysis allow the rapid metagenome screening that helps in the identification of total microbial community and also opens up the scope for mining genes or enzymes (hydrolases, laccase, etc.) engaged in polymer degradation. Further, the extraction of the core microbial population and their adaptation, fitness, and survivability can also be deciphered through comparative metagenomic study. It will help to engineer the microbial community and their metabolic activity to speed up the degradation process.
Collapse
Affiliation(s)
- Jyotika Purohit
- 1Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, SK Nagar, (Guj.), India; 2Division of Plant Pathology, IARI, New Delhi, India; 3Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, (U.P.), India
| | - Anirudha Chattopadhyay
- 1Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, SK Nagar, (Guj.), India; 2Division of Plant Pathology, IARI, New Delhi, India; 3Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, (U.P.), India
| | - Basavaraj Teli
- 1Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, SK Nagar, (Guj.), India; 2Division of Plant Pathology, IARI, New Delhi, India; 3Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, (U.P.), India
| |
Collapse
|
20
|
Baxi NN, Patel S, Hansoti D. An Arthrobacter citreus strain suitable for degrading ε-caprolactam in polyamide waste and accumulation of glutamic acid. AMB Express 2019; 9:161. [PMID: 31605246 PMCID: PMC6789059 DOI: 10.1186/s13568-019-0887-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022] Open
Abstract
ε-Caprolactam-a toxic xenobiotic compound present in industrial polyamide waste was found to be degraded by caprolactam-degrading bacteria. Arthrobacter citreus was able to utilize up to 20 g ε-caprolactam/l as the sole source of carbon more efficiently as compared to the other Gram positive caprolactam-degrading bacteria Rhodococcus rhodochrous and Bacillus sphaericus. The cells of A. citreus remained viable in medium up to 40 g caprolactam/l. The degradation of 10 g caprolactam/l by A. citreus, when supplied as the sole source of carbon and nitrogen lead to the formation of 6-aminocaproic acid which was detected in broth and there was also an increase in the ammonium content. One of the other metabolites found to consistently accumulate in extracellular medium during the utilization of caprolactam by A. citreus was glutamic acid, though not reported in case of other caprolactam-degrading bacteria. A. citreus could metabolise caprolactam to form non toxic products such as 6-aminocaproic acid and glutamic acid which are amino acids of physiological and commercial importance. In the presence of 6-aminocaproic acid, the rate of caprolactam utilization by A. citreus was decreased but not inhibited and the viable count of cells was found to increase using both the substrates simultaneously. A. citreus was also suitable for degradation of caprolactam in presence of low phosphate as prevalent in soil, and in sterile soil without the supplementation of any other carbon or nitrogen, as well as in native non sterile soil where other microorganisms are present.
Collapse
|
21
|
Structural basis of the correct subunit assembly, aggregation, and intracellular degradation of nylon hydrolase. Sci Rep 2018; 8:9725. [PMID: 29950566 PMCID: PMC6021441 DOI: 10.1038/s41598-018-27860-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/12/2018] [Indexed: 11/09/2022] Open
Abstract
Nylon hydrolase (NylC) is initially expressed as an inactive precursor (36 kDa). The precursor is cleaved autocatalytically at Asn266/Thr267 to generate an active enzyme composed of an α subunit (27 kDa) and a β subunit (9 kDa). Four αβ heterodimers (molecules A-D) form a doughnut-shaped quaternary structure. In this study, the thermostability of the parental NylC was altered by amino acid substitutions located at the A/D interface (D122G/H130Y/D36A/L137A) or the A/B interface (E263Q) and spanned a range of 47 °C. Considering structural, biophysical, and biochemical analyses, we discuss the structural basis of the stability of nylon hydrolase. From the analytical centrifugation data obtained regarding the various mutant enzymes, we conclude that the assembly of the monomeric units is dynamically altered by the mutations. Finally, we propose a model that can predict whether the fate of the nascent polypeptide will be correct subunit assembly, inappropriate protein-protein interactions causing aggregation, or intracellular degradation of the polypeptide.
Collapse
|
22
|
Ogunola OS, Onada OA, Falaye AE. Mitigation measures to avert the impacts of plastics and microplastics in the marine environment (a review). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9293-9310. [PMID: 29470754 DOI: 10.1007/s11356-018-1499-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 02/06/2018] [Indexed: 05/12/2023]
Abstract
The increasing demand for and reliance on plastics as an everyday item, and rapid rise in their production and subsequent indiscriminate disposal, rise in human population and industrial growth, have made the material an important environmental concern and focus of interest of many research. Historically, plastic production has increased tremendously to over 250 million tonnes by 2009 with an annual increased rate of 9%. In 2015, the global consumption of plastic materials was reported to be > 300 million tonnes and is expected to surge exponentially. Because plastic polymers are ubiquitous, highly resistant to degradation, the influx of these persistent, complex materials is a risk to human and environmental health. Because microplastics are principally generated from the weathering or breakdown of larger plastics (macroplastics), it is noteworthy and expedient to discuss in detail, expatiate, and tackle this main source. Macro- and microplastic pollution has been reported on a global scale from the poles to the equator. The major problem of concern is that they strangulate and are ingested by a number of aquatic biota especially the filter feeders, such as molluscs, mussels, oysters, from where it enters the food chain and consequently could lead to physical and toxicological effects on aquatic organisms and human being as final consumers. To this end, in order to minimise the negative impacts posed by plastic pollution (macro- and microplastics), a plethora of strategies have been developed at various levels to reduce and manage the plastic wastes. The objective of this paper is to review some published literature on management measures of plastic wastes to curb occurrence and incidents of large- and microplastics pollution in the marine environments.
Collapse
Affiliation(s)
- Oluniyi Solomon Ogunola
- MSc International Studies in Aquatic Tropical Ecology, University of Bremen, Bremen, Germany.
| | | | | |
Collapse
|
23
|
Metabolic pathway of 6-aminohexanoate in the nylon oligomer-degrading bacterium Arthrobacter sp. KI72: identification of the enzymes responsible for the conversion of 6-aminohexanoate to adipate. Appl Microbiol Biotechnol 2017; 102:801-814. [DOI: 10.1007/s00253-017-8657-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|
24
|
Draft Genome Sequence of the Nylon Oligomer-Degrading Bacterium Arthrobacter sp. Strain KI72. GENOME ANNOUNCEMENTS 2017; 5:5/17/e00217-17. [PMID: 28450506 PMCID: PMC5408104 DOI: 10.1128/genomea.00217-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the 4.6-Mb genome sequence of a nylon oligomer-degrading bacterium, Arthrobacter sp. strain KI72. The draft genome sequence of strain KI72 consists of 4,568,574 bp, with a G+C content of 63.47%, 4,372 coding sequences (CDSs), 54 tRNAs, and six rRNAs.
Collapse
|
25
|
Negoro S, Kawashima Y, Shibata N, Kobayashi T, Baba T, Lee YH, Kamiya K, Shigeta Y, Nagai K, Takehara I, Kato DI, Takeo M, Higuchi Y. Mutations affecting the internal equilibrium of the reaction catalyzed by 6-aminohexanoate-dimer hydrolase. FEBS Lett 2016; 590:3133-43. [DOI: 10.1002/1873-3468.12354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Seiji Negoro
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; Himeji Hyogo Japan
| | - Yasuyuki Kawashima
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; Himeji Hyogo Japan
| | - Naoki Shibata
- Department of Life Science; Graduate School of Life Science; University of Hyogo; Himeji Hyogo Japan
| | - Tatsuya Kobayashi
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; Himeji Hyogo Japan
| | - Takeshi Baba
- Department of Material Engineering Science; Graduate School of Engineering Science; Osaka University; Suita Japan
| | - Young-Ho Lee
- Institute for Protein Research; Osaka University; Suita Japan
| | - Katsumasa Kamiya
- Center for Basic Education and Integrated Learning; Kanagawa Institute of Technology; Atsugi Kanagawa Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences; University of Tsukuba; Ibaraki Japan
| | - Keisuke Nagai
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; Himeji Hyogo Japan
| | - Ikki Takehara
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; Himeji Hyogo Japan
| | - Dai-ichiro Kato
- Graduate School of Science and Engineering; Kagoshima University; Japan
| | - Masahiro Takeo
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; Himeji Hyogo Japan
| | - Yoshiki Higuchi
- Department of Life Science; Graduate School of Life Science; University of Hyogo; Himeji Hyogo Japan
| |
Collapse
|
26
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
27
|
Krueger MC, Harms H, Schlosser D. Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 2015; 99:8857-74. [DOI: 10.1007/s00253-015-6879-4] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023]
|
28
|
Baba T, Boero M, Kamiya K, Ando H, Negoro S, Nakano M, Shigeta Y. Unraveling the degradation of artificial amide bonds in nylon oligomer hydrolase: from induced-fit to acylation processes. Phys Chem Chem Phys 2015; 17:4492-504. [DOI: 10.1039/c4cp04419c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To unravel the factor that provides the ability to degrade non-biological amide bond with nylon oligomer hydrolase, we investigated the process from induced-fit to acylation by a combination of different theoretical methods.
Collapse
Affiliation(s)
- Takeshi Baba
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Mauro Boero
- Institut de Physique et Chimie des Matériaux de Strasbourg
- UMR 7504 CNRS and University of Strasbourg
- 67034 Strasbourg
- France
| | - Katsumasa Kamiya
- Center for Basic Education and Integrated Learning
- Kanagawa Institute of Technology
- Atsugi
- Japan
| | - Hiroyuki Ando
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Seiji Negoro
- Department of Material Science and Chemistry
- Graduate School of Engineering
- University of Hyogo
- Himeji
- Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Yasuteru Shigeta
- Department of Physics
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| |
Collapse
|
29
|
Enzymatic hydrolysis of nylons: quantification of the reaction rate of nylon hydrolase for thin-layered nylons. Appl Microbiol Biotechnol 2014; 98:8751-61. [DOI: 10.1007/s00253-014-5885-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
|
30
|
Nagai K, Yasuhira K, Tanaka Y, Kato DI, Takeo M, Higuchi Y, Negoro S, Shibata N. Crystallization and X-ray diffraction analysis of nylon hydrolase (NylC) from Arthrobacter sp. KI72. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1151-4. [PMID: 24100570 PMCID: PMC3792678 DOI: 10.1107/s1744309113024263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/30/2013] [Indexed: 11/10/2022]
Abstract
Nylon hydrolase (NylC) encoded by Arthrobacter plasmid pOAD2 (NylCp2) was expressed in Escherichia coli JM109 and purified by ammonium sulfate fractionation, anion-exchange column chromatography and gel-filtration chromatography. NylCp2 was crystallized by the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant in 0.1 M HEPES buffer pH 7.5 containing 0.2 M NaCl and 25% glycerol. Diffraction data were collected from the native crystal to a resolution of 1.60 Å. The obtained crystal was spindle shaped and belonged to the C-centred orthorhombic space group C2221, with unit-cell parameters a=70.84, b=144.90, c=129.05 Å. A rotation and translation search gave one clear solution containing two molecules per asymmetric unit.
Collapse
Affiliation(s)
- Keisuke Nagai
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Kengo Yasuhira
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Yusuke Tanaka
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Dai-ichiro Kato
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Masahiro Takeo
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5248, Japan
| | - Seiji Negoro
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Naoki Shibata
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5248, Japan
| |
Collapse
|
31
|
Tannières M, Beury-Cirou A, Vigouroux A, Mondy S, Pellissier F, Dessaux Y, Faure D. A metagenomic study highlights phylogenetic proximity of quorum-quenching and xenobiotic-degrading amidases of the AS-family. PLoS One 2013; 8:e65473. [PMID: 23762380 PMCID: PMC3676327 DOI: 10.1371/journal.pone.0065473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/25/2013] [Indexed: 11/17/2022] Open
Abstract
Quorum-sensing (QS) signals of the N-acylhomoserine lactone (NAHL) class are cleaved by quorum-quenching enzymes, collectively named NAHLases. Here, functional metagenomics allowed the discovery of a novel bacterial NAHLase in a rhizosphere that was treated with γ-caprolactone. As revealed by rrs-DGGE and rrs-pyrosequencing, this treatment increased the percentage of the NAHL-degrading bacteria and strongly biased the structure of the bacterial community, among which Azospirillum dominated. Among the 29 760 fosmids of the metagenomic library, a single one was detected that expressed the qsdB gene conferring NAHL-degradation upon E. coli and decreased QS-regulated virulence in Pectobacterium. Phylogenetic analysis of the 34 orfs of the fosmid suggested that it would belong to an unknown Proteobacterium - probably a γ-proteobacterium. qPCR quantification of the NAHLase-encoding genes attM, qsdA, and qsdB revealed their higher abundance in the γ-caprolactone-treated rhizosphere as compared to an untreated control. The purified QsdB enzyme exhibited amidase activity. QsdB is the first amidase signature (AS) family member exhibiting NAHLase-activity. Point mutations in the AS-family catalytic triad K-S-S abolished the NAHLase activity of QsdB. This study extends the diversity of NAHLases and highlights a common phylogenic origin of AS-family enzymes involved in the degradation of natural compounds, such as NAHLs, and xenobiotics, such as nylon and linuron.
Collapse
Affiliation(s)
- Mélanie Tannières
- Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Kimata-Ariga Y, Kubota-Kawai H, Lee YH, Muraki N, Ikegami T, Kurisu G, Hase T. Concentration-dependent oligomerization of cross-linked complexes between ferredoxin and ferredoxin-NADP+ reductase. Biochem Biophys Res Commun 2013; 434:867-72. [PMID: 23618857 DOI: 10.1016/j.bbrc.2013.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 01/17/2023]
Abstract
Ferredoxin-NADP(+) reductase (FNR) forms a 1:1 complex with ferredoxin (Fd), and catalyzes the electron transfer between Fd and NADP(+). In our previous study, we prepared a series of site-specifically cross-linked complexes of Fd and FNR, which showed diverse electron transfer properties. Here, we show that X-ray crystal structures of the two different Fd-FNR cross-linked complexes form oligomers by swapping Fd and FNR moieties across the molecules; one complex is a dimer from, and the other is a successive multimeric form. In order to verify whether these oligomeric structures are formed only in crystal, we investigated the possibility of the oligomerization of these complexes in solution. The mean values of the particle size of these cross-linked complexes were shown to increase with the rise of protein concentration at sub-milimolar order, whereas the size of dissociable wild-type Fd:FNR complex was unchanged as analyzed by dynamic light scattering measurement. The oligomerization products were detected by SDS-PAGE after chemical cross-linking of these complexes at the sub-milimolar concentrations. The extent and concentration-dependent profile of the oligomerizaion were differentiated between the two cross-linked complexes. These results show that these Fd-FNR cross-linked complexes exhibit concentration-dependent oligomerization, possibly through swapping of Fd and FNR moieties also in solution. These findings lead to the possibility that some native multi-domain proteins may present similar phenomenon in vivo.
Collapse
Affiliation(s)
- Yoko Kimata-Ariga
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Heck T, Geueke B, Kohler HPE. Bacterialβ-Aminopeptidases: Structural Insights and Applications for Biocatalysis. Chem Biodivers 2012; 9:2388-409. [DOI: 10.1002/cbdv.201200305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Indexed: 12/12/2022]
|