1
|
Azhdari M, Zur Hausen A. Wnt/β-catenin and notch signaling pathways in cardiovascular disease: Mechanisms and therapeutics approaches. Pharmacol Res 2025; 211:107565. [PMID: 39725339 DOI: 10.1016/j.phrs.2024.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Wnt and Notch signaling pathways play crucial roles in the development and homeostasis of the cardiovascular system. These pathways regulate important cellular processes in cardiomyocytes, endothelial cells, and smooth muscle cells, which are the key cell types involved in the structure and function of the heart and vasculature. During embryonic development, Wnt and Notch signaling coordinate cell fate specification, proliferation, differentiation, and morphogenesis of the heart and blood vessels. In the adult cardiovascular system, these pathways continue to maintain tissue homeostasis and arrange adaptive responses to various physiological and pathological stimuli. Dysregulation of Wnt and Notch signaling has been involved in the pathogenesis of numerous cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and heart failure. Abnormal activation or suppression of these pathways in specific cell types can contribute to endothelial dysfunction, vascular remodeling, cardiomyocyte hypertrophy, impaired cardiac contractility and dead. Understanding the complex interplay between Wnt and Notch signaling in the cardiovascular system has led to the investigation of these pathways as potential therapeutic targets in clinical trials. In conclusion, this review summarizes the current knowledge on the roles of Wnt and Notch signaling in the development and homeostasis of cardiomyocytes, endothelial cells, and smooth muscle cells. It further discusses the dysregulation of these pathways in the context of major cardiovascular diseases and the ongoing clinical investigations targeting Wnt and Notch signaling for therapeutic intervention.
Collapse
Affiliation(s)
- Manizheh Azhdari
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| | - Axel Zur Hausen
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| |
Collapse
|
2
|
Patel M, Post Y, Hill N, Sura A, Ye J, Fisher T, Suen N, Zhang M, Cheng L, Pribluda A, Chen H, Yeh WC, Li Y, Baribault H, Fletcher RB. A WNT mimetic with broad spectrum FZD-specificity decreases fibrosis and improves function in a pulmonary damage model. Respir Res 2024; 25:153. [PMID: 38566174 PMCID: PMC10985870 DOI: 10.1186/s12931-024-02786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Wnt/β-catenin signaling is critical for lung development and AT2 stem cell maintenance in adults, but excessive pathway activation has been associated with pulmonary fibrosis, both in animal models and human diseases such as idiopathic pulmonary fibrosis (IPF). IPF is a detrimental interstitial lung disease, and although two approved drugs limit functional decline, transplantation is the only treatment that extends survival, highlighting the need for regenerative therapies. METHODS Using our antibody-based platform of Wnt/β-catenin modulators, we investigated the ability of a pathway antagonist and pathway activators to reduce pulmonary fibrosis in the acute bleomycin model, and we tested the ability of a WNT mimetic to affect alveolar organoid cultures. RESULTS A WNT mimetic agonist with broad FZD-binding specificity (FZD1,2,5,7,8) potently expanded alveolar organoids. Upon therapeutic dosing, a broad FZD-binding specific Wnt mimetic decreased pulmonary inflammation and fibrosis and increased lung function in the bleomycin model, and it impacted multiple lung cell types in vivo. CONCLUSIONS Our results highlight the unexpected capacity of a WNT mimetic to effect tissue repair after lung damage and support the continued development of Wnt/β-catenin pathway modulation for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Mehaben Patel
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Yorick Post
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Natalie Hill
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Asmiti Sura
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Jay Ye
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Trevor Fisher
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Nicholas Suen
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Mengrui Zhang
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Leona Cheng
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Ariel Pribluda
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Hui Chen
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Wen-Chen Yeh
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Yang Li
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Hélène Baribault
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Russell B Fletcher
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA.
| |
Collapse
|
3
|
Ma N, Wibowo YC, Wirtz P, Baltus D, Wieland T, Jansen S. Tankyrase inhibition interferes with junction remodeling, induces leakiness, and disturbs YAP1/TAZ signaling in the endothelium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1763-1789. [PMID: 37741944 PMCID: PMC10858845 DOI: 10.1007/s00210-023-02720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Tankyrase inhibitors are increasingly considered for therapeutic use in malignancies that are characterized by high intrinsic β-catenin activity. However, how tankyrase inhibition affects the endothelium after systemic application remains poorly understood. In this study, we aimed to investigate how the tankyrase inhibitor XAV939 affects endothelial cell function and the underlying mechanism involved. Endothelial cell function was analyzed using sprouting angiogenesis, endothelial cell migration, junctional dynamics, and permeability using human umbilical vein endothelial cells (HUVEC) and explanted mouse retina. Underlying signaling was studied using western blot, immunofluorescence, and qPCR in HUVEC in addition to luciferase reporter gene assays in human embryonic kidney cells. XAV939 treatment leads to altered junctional dynamics and permeability as well as impaired endothelial migration. Mechanistically, XAV939 increased stability of the angiomotin-like proteins 1 and 2, which impedes the nuclear translocation of YAP1/TAZ and consequently suppresses TEAD-mediated transcription. Intriguingly, XAV939 disrupts adherens junctions by inducing RhoA-Rho dependent kinase (ROCK)-mediated F-actin bundling, whereas disruption of F-actin bundling through the ROCK inhibitor H1152 restores endothelial cell function. Unexpectedly, this was accompanied by an increase in nuclear TAZ and TEAD-mediated transcription, suggesting differential regulation of YAP1 and TAZ by the actin cytoskeleton in endothelial cells. In conclusion, our findings elucidate the complex relationship between the actin cytoskeleton, YAP1/TAZ signaling, and endothelial cell function and how tankyrase inhibition disturbs this well-balanced signaling.
Collapse
Affiliation(s)
- Nan Ma
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Yohanes Cakrapradipta Wibowo
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Phillip Wirtz
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Doris Baltus
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany.
- DZHK, German Center for Cardiovascular Research, partner site Heidelberg/Mannheim, Mannheim, Germany.
| | - Sepp Jansen
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Ligresti G, Raslan AA, Hong J, Caporarello N, Confalonieri M, Huang SK. Mesenchymal cells in the Lung: Evolving concepts and their role in fibrosis. Gene 2023; 859:147142. [PMID: 36603696 PMCID: PMC10068350 DOI: 10.1016/j.gene.2022.147142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Mesenchymal cells in the lung are crucial during development, but also contribute to the pathogenesis of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), the most common and deadly form of fibrotic interstitial lung diseases. Originally thought to behave as supporting cells for the lung epithelium and endothelium with a singular function of producing basement membrane, mesenchymal cells encompass a variety of cell types, including resident fibroblasts, lipofibroblasts, myofibroblasts, smooth muscle cells, and pericytes, which all occupy different anatomic locations and exhibit diverse homeostatic functions in the lung. During injury, each of these subtypes demonstrate remarkable plasticity and undergo varying capacity to proliferate and differentiate into activated myofibroblasts. Therefore, these cells secrete high levels of extracellular matrix (ECM) proteins and inflammatory cytokines, which contribute to tissue repair, or in pathologic situations, scarring and fibrosis. Whereas epithelial damage is considered the initial trigger that leads to lung injury, lung mesenchymal cells are recognized as the ultimate effector of fibrosis and attempts to better understand the different functions and actions of each mesenchymal cell subtype will lead to a better understanding of why fibrosis develops and how to better target it for future therapy. This review summarizes current findings related to various lung mesenchymal cells as well as signaling pathways, and their contribution to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Giovanni Ligresti
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US.
| | - Ahmed A Raslan
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Jeongmin Hong
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, US
| | - Marco Confalonieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, US
| |
Collapse
|
5
|
The Molecular Mechanisms of Systemic Sclerosis-Associated Lung Fibrosis. Int J Mol Sci 2023; 24:ijms24032963. [PMID: 36769282 PMCID: PMC9917655 DOI: 10.3390/ijms24032963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disorder that affects the connective tissues and has the highest mortality rate among the rheumatic diseases. One of the hallmarks of SSc is fibrosis, which may develop systemically, affecting the skin and virtually any visceral organ in the body. Fibrosis of the lungs leads to interstitial lung disease (ILD), which is currently the leading cause of death in SSc. The identification of effective treatments to stop or reverse lung fibrosis has been the main challenge in reducing SSc mortality and improving patient outcomes and quality of life. Thus, understanding the molecular mechanisms, altered pathways, and their potential interactions in SSc lung fibrosis is key to developing potential therapies. In this review, we discuss the diverse molecular mechanisms involved in SSc-related lung fibrosis to provide insights into the altered homeostasis state inherent to this fatal disease complication.
Collapse
|
6
|
Ahangari F, Becker C, Foster DG, Chioccioli M, Nelson M, Beke K, Wang X, Justet A, Adams T, Readhead B, Meador C, Correll K, Lili LN, Roybal HM, Rose KA, Ding S, Barnthaler T, Briones N, DeIuliis G, Schupp JC, Li Q, Omote N, Aschner Y, Sharma L, Kopf KW, Magnusson B, Hicks R, Backmark A, Dela Cruz CS, Rosas I, Cousens LP, Dudley JT, Kaminski N, Downey GP. Saracatinib, a Selective Src Kinase Inhibitor, Blocks Fibrotic Responses in Preclinical Models of Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:1463-1479. [PMID: 35998281 PMCID: PMC9757097 DOI: 10.1164/rccm.202010-3832oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two U.S. Food and Drug Administration-approved antifibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Objectives: Using an in silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. Methods: We investigated the antifibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: 1) in vitro in normal human lung fibroblasts; 2) in vivo in bleomycin and recombinant Ad-TGF-β (adenovirus transforming growth factor-β) murine models of pulmonary fibrosis; and 3) ex vivo in mice and human precision-cut lung slices from these two murine models as well as patients with IPF and healthy donors. Measurements and Main Results: In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone. Transcriptomic analyses of TGF-β-stimulated normal human lung fibroblasts identified specific gene sets associated with fibrosis, including epithelial-mesenchymal transition, TGF-β, and WNT signaling that was uniquely altered by saracatinib. Transcriptomic analysis of whole-lung extracts from the two animal models of pulmonary fibrosis revealed that saracatinib reverted many fibrogenic pathways, including epithelial-mesenchymal transition, immune responses, and extracellular matrix organization. Amelioration of fibrosis and inflammatory cascades in human precision-cut lung slices confirmed the potential therapeutic efficacy of saracatinib in human lung fibrosis. Conclusions: These studies identify novel Src-dependent fibrogenic pathways and support the study of the therapeutic effectiveness of saracatinib in IPF treatment.
Collapse
Affiliation(s)
- Farida Ahangari
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christine Becker
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel G. Foster
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Maurizio Chioccioli
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Meghan Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Keriann Beke
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Xing Wang
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aurelien Justet
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Service de Pneumologie, UNICAEN, Normandie University, Caen, France
| | - Taylor Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Benjamin Readhead
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona
| | - Carly Meador
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Kelly Correll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Loukia N. Lili
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
| | - Helen M. Roybal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Kadi-Ann Rose
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuizi Ding
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Thomas Barnthaler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
- Section of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Natalie Briones
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jonas C. Schupp
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Qin Li
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Norihito Omote
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yael Aschner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Katrina W. Kopf
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Björn Magnusson
- Discovery Biology, Discovery Sciences, Research & Development, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- BioPharmaceuticals Research & Development Cell Therapy, Research, and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), AstraZeneca, Gothenburg, Sweden
| | - Anna Backmark
- Discovery Biology, Discovery Sciences, Research & Development, AstraZeneca, Gothenburg, Sweden
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ivan Rosas
- Department of Medicine, Baylor College of Medicine, Houston, Texas; and
| | - Leslie P. Cousens
- Emerging Innovations, Discovery Sciences, Research & Development, AstraZeneca, Boston, Massachusetts
| | - Joel T. Dudley
- Institute for Next Generation Healthcare, Department of Genetics and Genomic Sciences, and
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gregory P. Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Department of Pediatrics, and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| |
Collapse
|
7
|
Guo Y, Bamunuarachchi G, Vaddadi K, Zhu Z, Gandikota C, Ahmed K, Pushparaj S, More S, Xiao X, Yang X, Liang Y, Mukherjee S, Baviskar P, Huang C, Li S, Oomens AGP, Metcalf JP, Liu L. Axin1: A novel scaffold protein joins the antiviral network of interferon. Mol Microbiol 2022; 118:731-743. [PMID: 36308071 PMCID: PMC9789182 DOI: 10.1111/mmi.14995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 01/18/2023]
Abstract
Acute respiratory infection by influenza virus is a persistent and pervasive public health problem. Antiviral innate immunity initiated by type I interferon (IFN) is the first responder to pathogen invasion and provides the first line of defense. We discovered that Axin1, a scaffold protein, was reduced during influenza virus infection. We also found that overexpression of Axin1 and the chemical stabilizer of Axin1, XAV939, reduced influenza virus replication in lung epithelial cells. This effect was also observed with respiratory syncytial virus and vesicular stomatitis virus. Axin1 boosted type I IFN response to influenza virus infection and activated JNK/c-Jun and Smad3 signaling. XAV939 protected mice from influenza virus infection. Thus, our studies provide new mechanistic insights into the regulation of the type I IFN response and present a new potential therapeutic of targeting Axin1 against influenza virus infection.
Collapse
Affiliation(s)
- Yujie Guo
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Kishore Vaddadi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Chaitanya Gandikota
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Kainat Ahmed
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Sunil More
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma
| | - Xiao Xiao
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Sanjay Mukherjee
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Pradyumna Baviskar
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| | - Antonius G. P. Oomens
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma
| | - Jordan Patrick Metcalf
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
8
|
Fyn-kinase and caveolin-1 in the alveolar epithelial junctional adherence complex contribute to the early stages of pulmonary fibrosis. Eur J Pharm Sci 2022; 175:106236. [PMID: 35710078 DOI: 10.1016/j.ejps.2022.106236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
Abstract
Current pathophysiological findings indicate that damage to the alveolar epithelium plays a decisive role in the development of idiopathic pulmonary fibrosis (IPF). The available pharmacological interventions (i.e., oral pirfenidone and nintedanib) only slow down progression of the disease, but do not offer a cure. In order to develop new drug candidates, the pathophysiology of IPF needs to be better understood on a molecular level. It has previously been reported that a loss of caveolin-1 (Cav-1) contributes to profibrotic processes by causing reduced alveolar barrier function and fibrosis-like alterations of the lung-parenchyma. Conversely, overexpression of caveolin-1 appears to counteract the development of fibrosis by inhibiting the inflammasome NLRP3 and the associated expression of interleukin-1β. In this study, the interaction between Fyn-kinase and caveolin-1 in the alveolar epithelium of various bleomycin (BLM)/TGF-β damage models using precision-cut lung slices (PCLS), wildtype (WT) and caveolin-1 knockout (KO) mice as well as the human NCI-H441 cell line, were investigated. In WT mouse lung tissues, strong signals for Fyn-kinase were detected in alveolar epithelial type I cells, whereas in caveolin-1 KO animals, expression shifted to alveolar epithelial type II cells. Caveolin-1 and Fyn-kinase were found to be co-localized in isolated lipid rafts of NCI-H441 cell membrane fractions. These findings were corroborated by co-immunoprecipitation studies in which a co-localization of Cav-1 and Fyn-kinase was detected in the cell membrane of the alveolar epithelium. After TGF-β and BLM-induced damage to the alveolar epithelium both in PCLS and cell culture experiments, a decrease in caveolin-1 and Fyn-kinase was found. Furthermore, TEER (transepithelial electrical resistance) measurements indicated that TGF-β and BLM have a damaging effect on cell-cell contacts and thus impair the barrier function in NCI-H441 cell monolayers. This effect was attenuated after co-incubation with the Fyn-kinase inhibitor, PP-2. Our data suggest an involvement of Fyn-kinase and caveolin-1 in TGF-β/bleomycin-induced impairment of alveolar barrier function and thus a possible role in the early stages of pulmonary fibrosis. Fyn-kinase and/or its complex with caveolin-1 might, therefore, be novel therapeutic targets in IPF.
Collapse
|
9
|
Ma H, Liu S, Li S, Xia Y. Targeting Growth Factor and Cytokine Pathways to Treat Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:918771. [PMID: 35721111 PMCID: PMC9204157 DOI: 10.3389/fphar.2022.918771] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown origin that usually results in death from secondary respiratory failure within 2–5 years of diagnosis. Recent studies have identified key roles of cytokine and growth factor pathways in the pathogenesis of IPF. Although there have been numerous clinical trials of drugs investigating their efficacy in the treatment of IPF, only Pirfenidone and Nintedanib have been approved by the FDA. However, they have some major limitations, such as insufficient efficacy, undesired side effects and poor pharmacokinetic properties. To give more insights into the discovery of potential targets for the treatment of IPF, this review provides an overview of cytokines, growth factors and their signaling pathways in IPF, which have important implications for fully exploiting the therapeutic potential of targeting cytokine and growth factor pathways. Advances in the field of cytokine and growth factor pathways will help slow disease progression, prolong life, and improve the quality of life for IPF patients in the future.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shengming Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shanrui Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| |
Collapse
|
10
|
Yu M, Yang Y, Sykes M, Wang S. Small-Molecule Inhibitors of Tankyrases as Prospective Therapeutics for Cancer. J Med Chem 2022; 65:5244-5273. [PMID: 35306814 DOI: 10.1021/acs.jmedchem.1c02139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tankyrases are multifunctional poly(adenosine diphosphate-ribose) polymerases that regulate diverse biological processes including telomere maintenance and cellular signaling. These processes are often implicated in a number of human diseases, with cancer being the most prevalent example. Accordingly, tankyrase inhibitors have gained increasing attention as potential therapeutics. Since the discovery of XAV939 and IWR-1 as the first tankyrase inhibitors over two decades ago, tankyrase-targeted drug discovery has made significant progress. This review starts with an introduction of tankyrases, with emphasis placed on their cancer-related functions. Small-molecule inhibitors of tankyrases are subsequently delineated based on their distinct modes of binding to the enzymes. In addition to inhibitors that compete with oxidized nicotinamide adenine dinucleotide (NAD+) for binding to the catalytic domain of tankyrases, non-NAD+-competitive inhibitors are detailed. This is followed by a description of three clinically trialled tankyrase inhibitors. To conclude, some of challenges and prospects in developing tankyrase-targeted cancer therapies are discussed.
Collapse
Affiliation(s)
- Mingfeng Yu
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Yuchao Yang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew Sykes
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
11
|
Shah K, Kazi JU. Phosphorylation-Dependent Regulation of WNT/Beta-Catenin Signaling. Front Oncol 2022; 12:858782. [PMID: 35359365 PMCID: PMC8964056 DOI: 10.3389/fonc.2022.858782] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023] Open
Abstract
WNT/β-catenin signaling is a highly complex pathway that plays diverse roles in various cellular processes. While WNT ligands usually signal through their dedicated Frizzled receptors, the decision to signal in a β-catenin-dependent or -independent manner rests upon the type of co-receptors used. Canonical WNT signaling is β-catenin-dependent, whereas non-canonical WNT signaling is β-catenin-independent according to the classical definition. This still holds true, albeit with some added complexity, as both the pathways seem to cross-talk with intertwined networks that involve the use of different ligands, receptors, and co-receptors. β-catenin can be directly phosphorylated by various kinases governing its participation in either canonical or non-canonical pathways. Moreover, the co-activators that associate with β-catenin determine the output of the pathway in terms of induction of genes promoting proliferation or differentiation. In this review, we provide an overview of how protein phosphorylation controls WNT/β-catenin signaling, particularly in human cancer.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- *Correspondence: Julhash U. Kazi,
| |
Collapse
|
12
|
Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S, Paul MK. Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today 2022; 27:82-101. [PMID: 34252612 DOI: 10.1016/j.drudis.2021.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
WNT/β-catenin signaling orchestrates various physiological processes, including embryonic development, growth, tissue homeostasis, and regeneration. Abnormal WNT/β-catenin signaling is associated with various cancers and its inhibition has shown effective antitumor responses. In this review, we discuss the pathway, potential targets for the development of WNT/β-catenin inhibitors, available inhibitors, and their specific molecular interactions with the target proteins. We also discuss inhibitors that are in clinical trials and describe potential new avenues for therapeutically targeting the WNT/β-catenin pathway. Furthermore, we introduce emerging strategies, including artificial intelligence (AI)-assisted tools and technology-based actionable approaches, to translate WNT/β-catenin inhibitors to the clinic for cancer therapy.
Collapse
Affiliation(s)
- Avradip Chatterjee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India; Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India
| | - Bharti Bisht
- Department of Thoracic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Shelley Bhattacharya
- Environmental Toxicology Laboratory, Department of Zoology (Centre for Advanced Studies), Visva Bharati (A Central University), Santiniketan 731235, India
| | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Hu Y, Ciminieri C, Hu Q, Lehmann M, Königshoff M, Gosens R. WNT Signalling in Lung Physiology and Pathology. Handb Exp Pharmacol 2021; 269:305-336. [PMID: 34463851 DOI: 10.1007/164_2021_521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The main physiological function of the lung is gas exchange, mediated at the interface between the alveoli and the pulmonary microcapillary network and facilitated by conducting airway structures that regulate the transport of these gases from and to the alveoli. Exposure to microbial and environmental factors such as allergens, viruses, air pollution, and smoke contributes to the development of chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. Respiratory diseases as a cluster are the commonest cause of chronic disease and of hospitalization in children and are among the three most common causes of morbidity and mortality in the adult population worldwide. Many of these chronic respiratory diseases are associated with inflammation and structural remodelling of the airways and/or alveolar tissues. They can often only be treated symptomatically with no disease-modifying therapies that normalize the pathological tissue destruction driven by inflammation and remodelling. In search for novel therapeutic strategies for these diseases, several lines of evidence revealed the WNT pathway as an emerging target for regenerative strategies in the lung. WNT proteins, their receptors, and signalling effectors have central regulatory roles under (patho)physiological conditions underpinning lung function and (chronic) lung diseases and we summarize these roles and discuss how pharmacological targeting of the WNT pathway may be utilized for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Qianjiang Hu
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Melanie Königshoff
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany. .,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
14
|
Heydarpour F, Sajadimajd S, Mirzarazi E, Haratipour P, Joshi T, Farzaei MH, Khan H, Echeverría J. Involvement of TGF-β and Autophagy Pathways in Pathogenesis of Diabetes: A Comprehensive Review on Biological and Pharmacological Insights. Front Pharmacol 2020; 11:498758. [PMID: 33041786 PMCID: PMC7522371 DOI: 10.3389/fphar.2020.498758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Despite recent advancements in clinical drugs, diabetes treatment still needs further progress. As such, ongoing research has attempted to determine the precise molecular mechanisms of the disorder. Specifically, evidence supports that several signaling pathways play pivotal roles in the development of diabetes. However, the exact molecular mechanisms of diabetes still need to be explored. This study examines exciting new hallmarks for the strict involvement of autophagy and TGF-β signaling pathways in the pathogenesis of diabetes and the design of novel therapeutic strategies. Dysregulated autophagy in pancreatic β cells due to hyperglycemia, oxidative stress, and inflammation is associated with diabetes and accompanied by dysregulated autophagy in insulin target tissues and the progression of diabetic complications. Consequently, several therapeutic agents such as adiponectin, ezetimibe, GABA tea, geniposide, liraglutide, guava extract, and vitamin D were shown to inhibit diabetes and its complications through modulation of the autophagy pathway. Another pathway, TGF-β signaling pathway, appears to play a part in the progression of diabetes, insulin resistance, and autoimmunity in both type 1 and 2 diabetes and complications in diabetes. Subsequently, drugs that target TGF-β signaling, especially naturally derived ones such as resveratrol, puerarin, curcumin, hesperidin, and silymarin, as well as Propolis, Lycopus lucidus, and Momordica charantia extracts, may become promising alternatives to current drugs in diabetes treatment. This review provides keen insights into novel therapeutic strategies for the medical care of diabetes.
Collapse
Affiliation(s)
- Fatemeh Heydarpour
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Departament of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Elahe Mirzarazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Pouya Haratipour
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.,PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Los Angeles, CA, United States
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
15
|
Src family kinases and pulmonary fibrosis: A review. Biomed Pharmacother 2020; 127:110183. [PMID: 32388241 DOI: 10.1016/j.biopha.2020.110183] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 01/15/2023] Open
Abstract
Src family kinases (SFKs) is a non-receptor protein tyrosine kinases family. They are crucial in signal transduction and regulation of various cell biological processes, such as proliferation, differentiation and apoptosis. The role and mechanism of SFKs in tumorigenesis have been widely studied. However, more and more studies have also shown that SFKs are involved in the pathogenesis of pulmonary fibrosis (PF). Myofibroblasts activation, epithelial-mesenchymal transition and inflammation response are three pivotal pathomechanisms in the development of pulmonary fibrotic disease. In this article, we summarize the roles of SFKs in these biological processes. SFKs play a crucial role in the pathogenesis of PF, making it a promising molecular target for the treatment of these diseases. We will pay special attention to the role of SFKs in idiopathic pulmonary fibrosis (IPF), and also emphasize the important findings in other pulmonary fibrotic diseases because their pathological mechanisms are similar. We will then describe the translation results obtained with SFKs inhibitors in basic and clinical studies.
Collapse
|
16
|
Lu Q, Scott PA, Vukmanic EV, Kaplan HJ, Dean DC, Li Q. Yap1 is required for maintenance of adult RPE differentiation. FASEB J 2020; 34:6757-6768. [PMID: 32223016 DOI: 10.1096/fj.201903234r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/22/2022]
Abstract
Nuclear YAP1 plays a critical role in regulation of stem cell proliferation, tissue regeneration, and organ size in many types of epithelia. Due to rapid turnover of most epithelial cell types, the cytoplasmic function of YAP1 in epithelial cells has not been well studied. The retinal pigment epithelium (RPE) is a highly polarized epithelial cell type maintained at a senescence state, and offers an ideal cell model to study the active role of YAP1 in maintenance of the adult epithelial phenotype. Here, we show that the cytoplasmic function of YAP1 is essential to maintain adult RPE differentiation. Knockout of Yap1 in the adult mouse RPE caused cell depolarization and tight junction breakdown, and led to inhibition of RPE65 expression, diminishment of RPE pigments, and retraction of microvilli and basal infoldings. These changes in RPE further prompted the loss of adjacent photoreceptor outer segments and photoreceptor death, which eventually led to decline of visual function in older mice between 6 and 12 months of age. Furthermore, nuclear β-catenin and its activity were significantly increased in mutant RPE. These results suggest that YAP1 plays an important role in active inhibition of Wnt/β-catenin signaling, and is essential for downregulation of β-catenin nuclear activity and prevention of dedifferentiation of adult RPE.
Collapse
Affiliation(s)
- Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Patrick A Scott
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Eric V Vukmanic
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
17
|
Parimon T, Yao C, Stripp BR, Noble PW, Chen P. Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:E2269. [PMID: 32218238 PMCID: PMC7177323 DOI: 10.3390/ijms21072269] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
: Alveolar epithelial type II cells (AT2) are a heterogeneous population that have critical secretory and regenerative roles in the alveolus to maintain lung homeostasis. However, impairment to their normal functional capacity and development of a pro-fibrotic phenotype has been demonstrated to contribute to the development of idiopathic pulmonary fibrosis (IPF). A number of factors contribute to AT2 death and dysfunction. As a mucosal surface, AT2 cells are exposed to environmental stresses that can have lasting effects that contribute to fibrogenesis. Genetical risks have also been identified that can cause AT2 impairment and the development of lung fibrosis. Furthermore, aging is a final factor that adds to the pathogenic changes in AT2 cells. Here, we will discuss the homeostatic role of AT2 cells and the studies that have recently defined the heterogeneity of this population of cells. Furthermore, we will review the mechanisms of AT2 death and dysfunction in the context of lung fibrosis.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
18
|
Li X, Liu X, Deng R, Gao S, Yu H, Huang K, Jiang Q, Liu R, Li X, Zhang L, Zhou H, Yang C. Nintedanib Inhibits Wnt3a-Induced Myofibroblast Activation by Suppressing the Src/β-Catenin Pathway. Front Pharmacol 2020; 11:310. [PMID: 32231574 PMCID: PMC7087487 DOI: 10.3389/fphar.2020.00310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by epithelial cell damage, myofibroblast activation, and collagen deposition. Multiple studies have documented that the Wnt/β-catenin pathway is aberrantly activated in IPF and plays a vital role in myofibroblast differentiation and activation. Kinases such as Src initiate Wnt/β-catenin signaling by phosphorylating β-catenin at tyrosine residues, which facilitates β-catenin accumulation in the nucleus and promotion of fibrosis progression. Nintedanib has been approved for the treatment of IPF as a multitargeted tyrosine kinase inhibitor. Nintedanib has been demonstrated to directly block Src, and whether it attenuates pulmonary fibrosis through regulating the Wnt/β-catenin pathway remains unclear. In this study, we found that nintedanib attenuated myofibroblast activation through inhibiting the expression of genes downstream of Wnt signaling such as Cyclin D1, Wisp1, and S100a4. Further experiments showed that nintedanib inhibited Wnt3a-induced β-catenin nuclear translocation through suppressing Src kinase activation and β-catenin Y654 phosphorylation. Additionally, Src knockdown fibroblasts exhibited a phenotype similar to that of the nintedanib treatment group, and the inhibitory effects of nintedanib were consistent with those of the Src kinase inhibitor KX2-391. In summary, our study shows that nintedanib exhibits an anti-fibrosis effect, partly by inhibiting the Src/β-catenin pathway.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaowei Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ruxia Deng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Haiyan Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Kai Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qiuyan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Rui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tian Jin First Central Hospital, Tianjin, China
| | - Liang Zhang
- Department of Thoracic Surgery, Tian Jin First Central Hospital, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
19
|
Zhang Y, Distler JHW. Therapeutic molecular targets of SSc-ILD. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:17-30. [DOI: 10.1177/2397198319899013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis is a fibrosing chronic connective tissue disease of unknown etiology. A major hallmark of systemic sclerosis is the uncontrolled and persistent activation of fibroblasts, which release excessive amounts of extracellular matrix, lead to organ dysfunction, and cause high mobility and motility of patients. Systemic sclerosis–associated interstitial lung disease is one of the most common fibrotic organ manifestations in systemic sclerosis and a major cause of death. Treatment options for systemic sclerosis–associated interstitial lung disease and other fibrotic manifestations, however, remain very limited. Thus, there is a huge medical need for effective therapies that target tissue fibrosis, vascular alterations, inflammation, and autoimmune disease in systemic sclerosis–associated interstitial lung disease. In this review, we discuss data suggesting therapeutic ways to target different genes in distinct tissues/organs that contribute to the development of SSc.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Internal Medicine 3—Rheumatology and Immunology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg HW Distler
- Department of Internal Medicine 3—Rheumatology and Immunology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
20
|
Fernandez RJ, Johnson FB. A regulatory loop connecting WNT signaling and telomere capping: possible therapeutic implications for dyskeratosis congenita. Ann N Y Acad Sci 2019; 1418:56-68. [PMID: 29722029 DOI: 10.1111/nyas.13692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/15/2022]
Abstract
The consequences of telomere dysfunction are most apparent in rare inherited syndromes caused by genetic deficiencies in factors that normally maintain telomeres. The principal disease is known as dyskeratosis congenita (DC), but other syndromes with similar underlying genetic defects share some clinical aspects with this disease. Currently, there are no curative therapies for these diseases of telomere dysfunction. Here, we review recent findings demonstrating that dysfunctional (i.e., uncapped) telomeres can downregulate the WNT pathway, and that restoration of WNT signaling helps to recap telomeres by increasing expression of shelterins, proteins that naturally bind and protect telomeres. We discuss how these findings are different from previous observations connecting WNT and telomere biology, and discuss potential links between WNT and clinical manifestations of the DC spectrum of diseases. Finally, we argue for exploring the use of WNT agonists, specifically lithium, as a possible therapeutic approach for patients with DC.
Collapse
Affiliation(s)
- Rafael Jesus Fernandez
- Cell and Molecular Biology Program, Biomedical Graduate Studies, Medical Scientist Training Program, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Tankyrase (PARP5) Inhibition Induces Bone Loss through Accumulation of Its Substrate SH3BP2. Cells 2019; 8:cells8020195. [PMID: 30813388 PMCID: PMC6406327 DOI: 10.3390/cells8020195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
There is considerable interest in tankyrase because of its potential use in cancer therapy. Tankyrase catalyzes the ADP-ribosylation of a variety of target proteins and regulates various cellular processes. The anti-cancer effects of tankyrase inhibitors are mainly due to their suppression of Wnt signaling and inhibition of telomerase activity, which are mediated by AXIN and TRF1 stabilization, respectively. In this review, we describe the underappreciated effects of another substrate, SH3 domain-binding protein 2 (SH3BP2). Specifically, SH3BP2 is an adaptor protein that regulates intracellular signaling pathways. Additionally, in the human genetic disorder cherubism, the gain-of-function mutations in SH3BP2 enhance osteoclastogenesis. The pharmacological inhibition of tankyrase in mice induces bone loss through the accumulation of SH3BP2 and the subsequent increase in osteoclast formation. These findings reveal the novel functions of tankyrase influencing bone homeostasis, and imply that tankyrase inhibitor treatments in a clinical setting may be associated with adverse effects on bone mass.
Collapse
|
22
|
Lee SR, Kim KH, You HS, Fu J, Hsieh TCM, Bhargava V, Raj Rajasekaran M. Characterization of age-related penile microvascular hemodynamic impairment using laser speckle contrast imaging: possible role of increased fibrogenesis. Physiol Rep 2018; 5:5/21/e13481. [PMID: 29122956 PMCID: PMC5688777 DOI: 10.14814/phy2.13481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023] Open
Abstract
Current technology for penile hemodynamic evaluations in small animals is invasive and has limitations. We evaluated a novel laser speckle contrast imaging (LSCI) technique to determine age‐related changes in penile microvascular perfusion (PMP) and tested the role of cavernosal muscle (CC) fibrosis mediated by Wnt‐TGF β1 signaling pathways in a mouse model. Ten young (2–3 months) and old (24–28 months) wild‐type C57BL6 male mice were subjected to PMP measured using a LSCI system. Penile blood flow (PBF, peak systolic velocity, PSV) was also measured using a color Doppler ultrasound for comparison. Measurements were made before and after injection of vasoactive drugs: prostaglandin E1 (PGE1) and acetylcholine (ACh). CC was processed for immunohistochemical studies for markers of endothelium and fibrosis. Protein levels were quantified by Western blot.PMP and PBF increased significantly from baseline after injection of vasoactive drugs. Peak PMP after PGE1 and ACh was higher in young mice (225.0 ± 12.0 and 211.3 ± 12.1 AU) compared to old (155.9 ± 7.1 and 162.6 ± 5.1 AU, respectively). PSV after PGE1 was higher in young than old mice (112.7 ± 8.5 vs. 78.2 ± 4.6 mm/sec). PSV after ACh was also higher in young (112.7 ± 5.6 mm/sec) than older mice (69.2 ± 7.1 mm/sec). PMP positively correlated with PSV (r = 0.867, P = 0.001). Immunostaining and Western blot showed increased protein expression of all fibrosis markers with aging. LSCI is a viable technique for evaluating penile hemodynamics. Increased cavernosal fibrosis may cause impaired penile hemodynamics and increased incidence of erectile dysfunction in older men.
Collapse
Affiliation(s)
- Seung-Ryeol Lee
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California.,Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Ki-Ho Kim
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California.,Department of Urology, Dongguk University College of Medicine, Gyeongju, Korea
| | - Ho-Song You
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California.,Department of Urology, Chonnam National University Hospital, Gwangju, Korea
| | - Johnny Fu
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California
| | - Tung-Chin Mike Hsieh
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California
| | - Valmik Bhargava
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California
| | - M Raj Rajasekaran
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California
| |
Collapse
|
23
|
Zhang Y, Pötter S, Chen CW, Liang R, Gelse K, Ludolph I, Horch RE, Distler O, Schett G, Distler JHW, Dees C. Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in systemic sclerosis. Ann Rheum Dis 2018; 77:744-751. [PMID: 29431122 DOI: 10.1136/annrheumdis-2017-212265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/04/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The enzyme poly(ADP-ribose) polymerase-1 (PARP-1) transfers negatively charged ADP-ribose units to target proteins. This modification can have pronounced regulatory effects on target proteins. Recent studies showed that PARP-1 can poly(ADP-ribosyl)ate (PARylate) Smad proteins. However, the role of PARP-1 in the pathogenesis of systemic sclerosis (SSc) has not been investigated. METHODS The expression of PARP-1 was determined by quantitative PCR and immunohistochemistry. DNA methylation was analysed by methylated DNA immunoprecipitation assays. Transforming growth factor-β (TGFβ) signalling was assessed using reporter assays, chromatin immunoprecipitation assays and target gene analysis. The effect of PARP-1 inactivation was investigated in bleomycin-induced and topoisomerase-induced fibrosis as well as in tight-skin-1 (Tsk-1) mice. RESULTS The expression of PARP-1 was decreased in patients with SSc, particularly in fibroblasts. The promoter of PARP-1 was hypermethylated in SSc fibroblasts and in TGFβ-stimulated normal fibroblasts. Inhibition of DNA methyltransferases (DNMTs) reduced the promoter methylation and reactivated the expression of PARP-1. Inactivation of PARP-1 promoted accumulation of phosphorylated Smad3, enhanced Smad-dependent transcription and upregulated the expression of TGFβ/Smad target genes. Inhibition of PARP-1 enhanced the effect of TGFβ on collagen release and myofibroblast differentiation in vitro and exacerbated experimental fibrosis in vivo. PARP-1 deficiency induced a more severe fibrotic response to bleomycin with increased dermal thickening, hydroxyproline content and myofibroblast counts. Inhibition of PARylation also exacerbated fibrosis in Tsk-1 mice and in mice with topoisomerase-induced fibrosis. CONCLUSION PARP-1 negatively regulates canonical TGFβ signalling in experimental skin fibrosis. The downregulation of PARP-1 in SSc fibroblasts may thus directly contribute to hyperactive TGFβ signalling and to persistent fibroblast activation in SSc.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Sebastian Pötter
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Ruifang Liang
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Kolja Gelse
- Department of Trauma Surgery, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Ingo Ludolph
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Oliver Distler
- Research of Systemic Autoimmune Diseases, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
24
|
Burgy O, Königshoff M. The WNT signaling pathways in wound healing and fibrosis. Matrix Biol 2018; 68-69:67-80. [PMID: 29572156 DOI: 10.1016/j.matbio.2018.03.017] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
The WNT signaling pathways are major regulators of organ development. Ample research over the past few decades revealed that these pathways are critically involved in adult tissue homeostasis and stem cell function as well as the development of chronic diseases, such as cancer and fibrosis. In this review, we will describe the different WNT signal pathways, summarize the current evidence of WNT signal involvement in wound healing and fibrosis, and highlight potential novel therapeutic options for fibrotic disorders targeting WNT signaling pathways.
Collapse
Affiliation(s)
- Olivier Burgy
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
25
|
Skronska-Wasek W, Gosens R, Königshoff M, Baarsma HA. WNT receptor signalling in lung physiology and pathology. Pharmacol Ther 2018; 187:150-166. [PMID: 29458107 DOI: 10.1016/j.pharmthera.2018.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The WNT signalling cascades have emerged as critical regulators of a wide variety of biological aspects involved in lung development as well as in physiological and pathophysiological processes in the adult lung. WNTs (secreted glycoproteins) interact with various transmembrane receptors and co-receptors to activate signalling pathways that regulate transcriptional as well as non-transcriptional responses within cells. In physiological conditions, the majority of WNT receptors and co-receptors can be detected in the adult lung. However, dysregulation of WNT signalling pathways contributes to the development and progression of chronic lung pathologies, including idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. The interaction between a WNT and the (co-)receptor(s) present at the cell surface is the initial step in transducing an extracellular signal into an intracellular response. This proximal event in WNT signal transduction with (cell-specific) ligand-receptor interactions is of great interest as a potential target for pharmacological intervention. In this review we highlight the diverse expression of various WNT receptors and co-receptors in the aforementioned chronic lung diseases and discuss the currently available biologicals and pharmacological tools to modify proximal WNT signalling.
Collapse
Affiliation(s)
- Wioletta Skronska-Wasek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Hoeke Abele Baarsma
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
26
|
Abstract
Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), represent a significant and increasing health burden. Current therapies are largely symptomatic, and novel therapeutic approaches are needed. Aging has emerged as a contributing factor for the development of both IPF and COPD because their prevalence increases with age, and several pathological features of these diseases resemble classical hallmarks of aging. Aging is thought to be driven in part by aberrant activity of developmental signaling pathways that thus might drive pathological changes, a process termed antagonistic pleiotropy or developmental drift. The developmental WNT pathway is fundamental for lung development, and altered WNT activity has been reported to contribute to the pathogenesis of CLD, in particular to COPD and IPF. Although to date only limited data on WNT signaling during lung aging exist, WNT signal regulation during aging and its effects on age-related pathologies in other organs have recently been investigated. In this review, we discuss evidence of dysregulated WNT signaling in CLD in the context of WNT signal alteration in organ aging and its potential impact on age-related cellular mechanisms, such as senescence or stem cell exhaustion.
Collapse
|
27
|
Fujita S, Mukai T, Mito T, Kodama S, Nagasu A, Kittaka M, Sone T, Ueki Y, Morita Y. Pharmacological inhibition of tankyrase induces bone loss in mice by increasing osteoclastogenesis. Bone 2018; 106:156-166. [PMID: 29055830 PMCID: PMC6912859 DOI: 10.1016/j.bone.2017.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/05/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
Abstract
Tankyrase is a poly (ADP-ribose) polymerase that leads to ubiquitination and degradation of target proteins. Since tankyrase inhibitors suppress the degradation of AXIN protein, a negative regulator of the canonical Wnt pathway, they effectively act as Wnt inhibitors. Small molecule tankyrase inhibitors are being investigated as drug candidates for cancer and fibrotic diseases, in which the Wnt pathways are aberrantly activated. Tankyrase is also reported to degrade the adaptor protein SH3BP2 (SH3 domain-binding protein 2). We have previously shown that SH3BP2 gain-of-function mutation enhances receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in murine bone marrow-derived macrophages (BMMs). Although the interaction between tankyrase and SH3BP2 has been reported, it is not clear whether and how the inhibition of tankyrase affects bone cells and bone mass. Here, we have demonstrated that tankyrase inhibitors (IWR-1, XAV939, and G007-LK) enhanced RANKL-induced osteoclast formation and function in murine BMMs and human peripheral blood mononuclear cells through the accumulation of SH3BP2, subsequent phosphorylation of SYK, and nuclear translocation of NFATc1. Tankyrase inhibitors also enhanced osteoblast differentiation and maturation, represented by increased expression of osteoblast-associated genes accompanied by the accumulation of SH3BP2 protein and enhanced nuclear translocation of ABL, TAZ, and Runx2 in primary osteoblasts. Most importantly, pharmacological inhibition of tankyrase in mice significantly decreased tibia and lumbar vertebrae bone volumes in association with increased numbers of osteoclasts. Our findings uncover the role of tankyrase inhibition in bone cells and highlight the potential adverse effects of the inhibitor on bone.
Collapse
Affiliation(s)
- Shunichi Fujita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Tomoyuki Mukai
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan.
| | - Takafumi Mito
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Shoko Kodama
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Akiko Nagasu
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Mizuho Kittaka
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
| | - Teruki Sone
- Department of Nuclear Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Yasuyoshi Ueki
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
| | - Yoshitaka Morita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
28
|
Hussain M, Xu C, Lu M, Wu X, Tang L, Wu X. Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3226-3242. [PMID: 28866134 DOI: 10.1016/j.bbadis.2017.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/10/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
Embryonic lung development requires reciprocal endodermal-mesodermal interactions; mediated by various signaling proteins. Wnt/β-catenin is a signaling protein that exhibits the pivotal role in lung development, injury and repair while aberrant expression of Wnt/β-catenin signaling leads to asthmatic airway remodeling: characterized by hyperplasia and hypertrophy of airway smooth muscle cells, alveolar and vascular damage goblet cells metaplasia, and deposition of extracellular matrix; resulting in decreased lung compliance and increased airway resistance. The substantial evidence suggests that Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Here, we summarized the recent advances related to the mechanistic role of Wnt/β-catenin signaling in lung development, consequences of aberrant expression or deletion of Wnt/β-catenin signaling in expansion and progression of asthmatic airway remodeling, and linking early-impaired pulmonary development and airway remodeling later in life. Finally, we emphasized all possible recent potential therapeutic significance and future prospectives, that are adaptable for therapeutic intervention to treat asthmatic airway remodeling.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China.
| | - Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China
| | - Meiping Lu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China
| | - Xiling Wu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China.
| | - Lanfang Tang
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China.
| |
Collapse
|
29
|
Oh E, Kim JY, Sung D, Cho Y, Lee N, An H, Kim YJ, Cho TM, Seo JH. Inhibition of ubiquitin-specific protease 34 (USP34) induces epithelial-mesenchymal transition and promotes stemness in mammary epithelial cells. Cell Signal 2017; 36:230-239. [DOI: 10.1016/j.cellsig.2017.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022]
|
30
|
Sennello JA, Misharin AV, Flozak AS, Berdnikovs S, Cheresh P, Varga J, Kamp DW, Budinger GRS, Gottardi CJ, Lam AP. Lrp5/β-Catenin Signaling Controls Lung Macrophage Differentiation and Inhibits Resolution of Fibrosis. Am J Respir Cell Mol Biol 2017; 56:191-201. [PMID: 27668462 DOI: 10.1165/rcmb.2016-0147oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous studies established that attenuating Wnt/β-catenin signaling limits lung fibrosis in the bleomycin mouse model of this disease, but the contribution of this pathway to distinct lung cell phenotypes relevant to tissue repair and fibrosis remains incompletely understood. Using microarray analysis, we found that bleomycin-injured lungs from mice that lack the Wnt coreceptor low density lipoprotein receptor-related protein 5 (Lrp5) and exhibit reduced fibrosis showed enrichment for pathways related to extracellular matrix processing, immunity, and lymphocyte proliferation, suggesting the contribution of an immune-matrix remodeling axis relevant to fibrosis. Activation of β-catenin signaling was seen in lung macrophages using the β-catenin reporter mouse, Axin2+/LacZ. Analysis of lung immune cells by flow cytometry after bleomycin administration revealed that Lrp5-/- lungs contained significantly fewer Siglec Flow alveolar macrophages, a cell type previously implicated as positive effectors of fibrosis. Macrophage-specific deletion of β-catenin in CD11ccre;β-cateninflox mice did not prevent development of bleomycin-induced fibrosis but facilitated its resolution by 8 weeks. In a nonresolving model of fibrosis, intratracheal administration of asbestos in Lrp5-/- mice also did not prevent the development of fibrosis but hindered the progression of fibrosis in asbestos-treated Lrp5-/- lungs, phenocopying the findings in bleomycin-treated CD11ccre;β-cateninflox mice. Activation of β-catenin signaling using lithium chloride resulted in worsened fibrosis in wild-type mice, further supporting that the effects of loss of Lrp5 are directly mediated by Wnt/β-catenin signaling. Together, these data suggest that lung myeloid cells are responsive to Lrp5/β-catenin signaling, leading to differentiation of an alveolar macrophage subtype that antagonizes the resolution of lung fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Paul Cheresh
- 1 Division of Pulmonary and Critical Care Medicine
| | - John Varga
- 3 Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David W Kamp
- 1 Division of Pulmonary and Critical Care Medicine
| | | | | | - Anna P Lam
- 1 Division of Pulmonary and Critical Care Medicine
| |
Collapse
|
31
|
Li LF, Kao KC, Liu YY, Lin CW, Chen NH, Lee CS, Wang CW, Yang CT. Nintedanib reduces ventilation-augmented bleomycin-induced epithelial-mesenchymal transition and lung fibrosis through suppression of the Src pathway. J Cell Mol Med 2017; 21:2937-2949. [PMID: 28598023 PMCID: PMC5661114 DOI: 10.1111/jcmm.13206] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/26/2017] [Indexed: 12/19/2022] Open
Abstract
Mechanical ventilation (MV) used in patients with acute respiratory distress syndrome (ARDS) can increase lung inflammation and pulmonary fibrogenesis. Src is crucial in mediating the transforming growth factor (TGF)‐β1‐induced epithelial–mesenchymal transition (EMT) during the fibroproliferative phase of ARDS. Nintedanib, a multitargeted tyrosine kinase inhibitor that directly blocks Src, has been approved for the treatment of idiopathic pulmonary fibrosis. The mechanisms regulating interactions among MV, EMT and Src remain unclear. In this study, we suggested hypothesized that nintedanib can suppress MV‐augmented bleomycin‐induced EMT and pulmonary fibrosis by inhibiting the Src pathway. Five days after administrating bleomycin to mimic acute lung injury (ALI), C57BL/6 mice, either wild‐type or Src‐deficient were exposed to low tidal volume (VT) (6 ml/kg) or high VT (30 ml/kg) MV with room air for 5 hrs. Oral nintedanib was administered once daily in doses of 30, 60 and 100 mg/kg for 5 days before MV. Non‐ventilated mice were used as control groups. Following bleomycin exposure in wild‐type mice, high VT MV induced substantial increases in microvascular permeability, TGF‐β1, malondialdehyde, Masson's trichrome staining, collagen 1a1 gene expression, EMT (identified by colocalization of increased staining of α‐smooth muscle actin and decreased staining of E‐cadherin) and alveolar epithelial apoptosis (P < 0.05). Oral nintedanib, which simulated genetic downregulation of Src signalling using Src‐deficient mice, dampened the MV‐augmented profibrotic mediators, EMT profile, epithelial apoptotic cell death and pathologic fibrotic scores (P < 0.05). Our data indicate that nintedanib reduces high VT MV‐augmented EMT and pulmonary fibrosis after bleomycin‐induced ALI, partly by inhibiting the Src pathway.
Collapse
Affiliation(s)
- Li-Fu Li
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chin Kao
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan.,Institutes of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chang-Wei Lin
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ning-Hung Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Shu Lee
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Wang
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
32
|
|
33
|
Baarsma HA, Königshoff M. 'WNT-er is coming': WNT signalling in chronic lung diseases. Thorax 2017; 72:746-759. [PMID: 28416592 PMCID: PMC5537530 DOI: 10.1136/thoraxjnl-2016-209753] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/01/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023]
Abstract
Chronic lung diseases represent a major public health problem with only limited therapeutic options. An important unmet need is to identify compounds and drugs that target key molecular pathways involved in the pathogenesis of chronic lung diseases. Over the last decade, there has been extensive interest in investigating Wingless/integrase-1 (WNT) signalling pathways; and WNT signal alterations have been linked to pulmonary disease pathogenesis and progression. Here, we comprehensively review the cumulative evidence for WNT pathway alterations in chronic lung pathologies, including idiopathic pulmonary fibrosis, pulmonary arterial hypertension, asthma and COPD. While many studies have focused on the canonical WNT/β-catenin signalling pathway, recent reports highlight that non-canonical WNT signalling may also significantly contribute to chronic lung pathologies; these studies will be particularly featured in this review. We further discuss recent advances uncovering the role of WNT signalling early in life, the potential of pharmaceutically modulating WNT signalling pathways and highlight (pre)clinical studies describing promising new therapies for chronic lung diseases.
Collapse
Affiliation(s)
- H A Baarsma
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - M Königshoff
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
34
|
Koopmans T, Crutzen S, Menzen MH, Halayko AJ, Hackett T, Knight DA, Gosens R. Selective targeting of CREB-binding protein/β-catenin inhibits growth of and extracellular matrix remodelling by airway smooth muscle. Br J Pharmacol 2016; 173:3327-3341. [PMID: 27629364 PMCID: PMC5738668 DOI: 10.1111/bph.13620] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/17/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is a heterogeneous chronic inflammatory disease, characterized by the development of structural changes (airway remodelling). β-catenin, a transcriptional co-activator, is fundamentally involved in airway smooth muscle growth and may be a potential target in the treatment of airway smooth muscle remodelling. EXPERIMENTAL APPROACH We assessed the ability of small-molecule compounds that selectively target β-catenin breakdown or its interactions with transcriptional co-activators to inhibit airway smooth muscle remodelling in vitro and in vivo. KEY RESULTS ICG-001, a small-molecule compound that inhibits the β-catenin/CREB-binding protein (CBP) interaction, strongly and dose-dependently inhibited serum-induced smooth muscle growth and TGFβ1-induced production of extracellular matrix components in vitro. Inhibition of β-catenin/p300 interactions using IQ-1 or inhibition of tankyrase 1/2 using XAV-939 had considerably less effect. In a mouse model of allergic asthma, β-catenin expression in the smooth muscle layer was found to be unaltered in control versus ovalbumin-treated animals, a pattern that was found to be similar in smooth muscle within biopsies taken from asthmatic and non-asthmatic donors. However, β-catenin target gene expression was highly increased in response to ovalbumin; this effect was prevented by topical treatment with ICG-001. Interestingly, ICG-001 dose-dependently reduced airway smooth thickness after repeated ovalbumin challenge, but had no effect on the deposition of collagen around the airways, mucus secretion or eosinophil infiltration. CONCLUSIONS AND IMPLICATIONS Together, our findings highlight the importance of β-catenin/CBP signalling in the airways and suggest ICG-001 may be a new therapeutic approach to treat airway smooth muscle remodelling in asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular PharmacologyUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC)University of GroningenGroningenThe Netherlands
| | - Stijn Crutzen
- Department of Molecular PharmacologyUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC)University of GroningenGroningenThe Netherlands
| | - Mark H Menzen
- Department of Molecular PharmacologyUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC)University of GroningenGroningenThe Netherlands
| | - Andrew J Halayko
- Department of Physiology and PathophysiologyUniversity of ManitobaWinnipegMBCanada
| | - Tillie‐Louise Hackett
- Department of Anesthesiology, Pharmacology & TherapeuticsUniversity of British ColumbiaVancouverBCCanada
| | - Darryl A Knight
- Department of Anesthesiology, Pharmacology & TherapeuticsUniversity of British ColumbiaVancouverBCCanada
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNSWAustralia
- Asthma, Allergy and Infection Research ClusterHunter Medical Research InstituteNew Lambton HeightsNSWAustralia
| | - Reinoud Gosens
- Department of Molecular PharmacologyUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC)University of GroningenGroningenThe Netherlands
| |
Collapse
|
35
|
Eisemann T, McCauley M, Langelier MF, Gupta K, Roy S, Van Duyne GD, Pascal JM. Tankyrase-1 Ankyrin Repeats Form an Adaptable Binding Platform for Targets of ADP-Ribose Modification. Structure 2016; 24:1679-1692. [PMID: 27594684 DOI: 10.1016/j.str.2016.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 01/12/2023]
Abstract
The poly(ADP-ribose) polymerase enzyme Tankyrase-1 (TNKS) regulates multiple cellular processes and interacts with diverse proteins using five ankyrin repeat clusters (ARCs). There are limited structural insights into functional roles of the multiple ARCs of TNKS. Here we present the ARC1-3 crystal structure and employ small-angle X-ray scattering (SAXS) to investigate solution conformations of the complete ankyrin repeat domain. Mutagenesis and binding studies using the bivalent TNKS binding domain of Axin1 demonstrate that only certain ARC combinations function together. The physical basis for these restrictions is explained by both rigid and flexible ankyrin repeat elements determined in our structural analysis. SAXS analysis is consistent with a dynamic ensemble of TNKS ankyrin repeat conformations modulated by Axin1 interaction. TNKS ankyrin repeat domain is thus an adaptable binding platform with structural features that can explain selectivity toward diverse proteins, and has implications for TNKS positioning of bound targets for poly(ADP-ribose) modification.
Collapse
Affiliation(s)
- Travis Eisemann
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael McCauley
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Marie-France Langelier
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T1J4, Canada
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Swati Roy
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gregory D Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T1J4, Canada.
| |
Collapse
|
36
|
Kuusela S, Wang H, Wasik AA, Suleiman H, Lehtonen S. Tankyrase inhibition aggravates kidney injury in the absence of CD2AP. Cell Death Dis 2016; 7:e2302. [PMID: 27441654 PMCID: PMC4973355 DOI: 10.1038/cddis.2016.217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/10/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
Inappropriate activation of the Wnt/β-catenin pathway has been indicated in podocyte dysfunction and injury, and shown to contribute to the development and progression of nephropathy. Tankyrases, multifunctional poly(ADP-ribose) polymerase (PARP) superfamily members with features of both signaling and cytoskeletal proteins, antagonize Wnt/β-catenin signaling. We found that tankyrases interact with CD2-associated protein (CD2AP), a protein essential for kidney ultrafiltration as CD2AP-knockout (CD2AP−/−) mice die of kidney failure at the age of 6–7 weeks. We further observed that tankyrase-mediated total poly-(ADP-ribosyl)ation (PARylation), a post-translational modification implicated in kidney injury, was increased in mouse kidneys and cultured podocytes in the absence of CD2AP. The data revealed increased activity of β-catenin, and upregulation of lymphoid enhancer factor 1 (LEF1) (mediator of Wnt/β-catenin pathway) and fibronectin (downstream target of Wnt/β-catenin) in CD2AP−/− podocytes. Total PARylation and active β-catenin were reduced in CD2AP−/− podocytes by tankyrase inhibitor XAV939 treatment. However, instead of ameliorating podocyte injury, XAV939 further upregulated LEF1, failed to downregulate fibronectin and induced plasminogen activator inhibitor-1 (PAI-1) that associates with podocyte injury. In zebrafish, administration of XAV939 to CD2AP-depleted larvae aggravated kidney injury and increased mortality. Collectively, the data reveal sustained activation of the Wnt/β-catenin pathway in CD2AP−/− podocytes, contributing to podocyte injury. However, we observed that inhibition of the PARylation activity of tankyrases in the absence of CD2AP was deleterious to kidney function. This indicates that balance of the PARylation activity of tankyrases, maintained by CD2AP, is essential for normal kidney function. Furthermore, the data reveal that careful contemplation is required when targeting Wnt/β-catenin pathway to treat proteinuric kidney diseases associated with impaired CD2AP.
Collapse
Affiliation(s)
- S Kuusela
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - H Wang
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - A A Wasik
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - H Suleiman
- HHMI/Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - S Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Pang M, Wang H, Rao P, Zhao Y, Xie J, Cao Q, Wang Y, Wang YM, Lee VW, Alexander SI, Harris DCH, Zheng G. Autophagy links β-catenin and Smad signaling to promote epithelial-mesenchymal transition via upregulation of integrin linked kinase. Int J Biochem Cell Biol 2016; 76:123-134. [PMID: 27177845 DOI: 10.1016/j.biocel.2016.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/26/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
Abstract
TGF-β1 induces epithelial-mesenchymal transition (EMT) and autophagy in a variety of cells. However, the role of autophagy in TGF-β1-induced EMT has not been clearly elucidated and the underlying mechanisms are unclear. In the present study, we found that TGF-β1 induced both autophagy and EMT in mouse tubular epithelial C1.1 cells. Inhibition of autophagy by 3-methyladenine or siRNA knockdown of Beclin 1 reduced TGF-β1-induced increase of vimentin and decreased E-cadherin expression. In contrast, rapamycin-associated enhancement of TGF-β1-induced autophagy increased EMT of C1.1 cells. Serum rescue inhibited autophagy followed by reversal of EMT. Blocking of autophagosome-lysosomal but not proteosomal degradation reduced the decrease of E-cadherin, demonstrating a role for autophagy in degradation of E-cadherin during EMT. Autophagy promoted the activation of Src and Src-associated phosphorylation of β-catenin at Y-654 leading to pY654-β-catenin/p-Smad2 complex formation. Chromatin immunoprecipitation assay demonstrated binding by the pY654-β-catenin/p-Smad2 complex to ILK promoter thus increasing ILK expression. Taken together, our results demonstrate that TGF-β1-induced autophagy links β-catenin and Smad signaling to promote EMT in C1.1 cells through a novel pY654-β-catenin/p-Smad2/ILK pathway. The pathway delineated links disruption of E-cadherin/β-catenin-mediated cell-cell contact to induction of EMT via upregulation of ILK.
Collapse
Affiliation(s)
- Min Pang
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia; Dept. of Respiratory Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Hailong Wang
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia; Dept. of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China
| | - Padmashree Rao
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia
| | - Ye Zhao
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia
| | - Jun Xie
- Dept. of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China
| | - Qi Cao
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia
| | - Yiping Wang
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney NSW 2145, Australia
| | - Vincent W Lee
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney NSW 2145, Australia
| | - David C H Harris
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia; Dept. of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
38
|
WISP1 mediates IL-6-dependent proliferation in primary human lung fibroblasts. Sci Rep 2016; 6:20547. [PMID: 26867691 PMCID: PMC4751539 DOI: 10.1038/srep20547] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/20/2015] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. IPF is characterized by epithelial cell injury and reprogramming, increases in (myo)fibroblasts, and altered deposition of extracellular matrix. The Wnt1-inducible signaling protein 1 (WISP1) is involved in impaired epithelial-mesenchymal crosstalk in pulmonary fibrosis. Here, we aimed to further investigate WISP1 regulation and function in primary human lung fibroblasts (phLFs). We demonstrate that WISP1 is directly upregulated by Transforming growth factor β1 (TGFβ1) and Tumor necrosis factor α (TNFα) in phLFs, using a luciferase-based reporter system. WISP1 mRNA and protein secretion increased in a time- and concentration-dependent manner by TGFβ1 and TNFα in phLFs, as analysed by qPCR and ELISA, respectively. Notably, WISP1 is required for TGFβ1- and TNFα-dependent induction of interleukin 6 (IL-6), a mechanism that is conserved in IPF phLFs. The siRNA-mediated WISP1 knockdown led to a significant IL-6 reduction after TGFβ1 or TNFα stimulation. Furthermore, siRNA-mediated downregulation or antibody-mediated neutralization of WISP1 reduced phLFs proliferation, a process that was in part rescued by IL-6. Taken together, these results strongly indicate that WISP1-induced IL-6 expression contributes to the pro-proliferative effect on fibroblasts, which is likely orchestrated by a variety of profibrotic mediators, including Wnts, TGFβ1 and TNFα.
Collapse
|
39
|
Bergmann C, Distler JHW. Canonical Wnt signaling in systemic sclerosis. J Transl Med 2016; 96:151-5. [PMID: 26752744 DOI: 10.1038/labinvest.2015.154] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
Fibrosing disorders are characterized by abundant accumulation of extracellular matrix proteins such as collagen in a variety of organs, which results in structural changes and dysfunction of the affected organ. Thus fibrotic diseases are characterized by a high morbidity and mortality and also lead to major socioeconomic costs. Systemic sclerosis (SSc) is a prototypic multi-systemic fibrosing disease, which affects the skin and a variety of internal organs, including the lungs, heart and gastrointestinal tract. Targeted antifibrotic therapies are not yet available for clinical use in SSc. In recent years, canonical Wnt signaling has been profoundly characterized as an important mediator of sustained fibroblast activation in fibrotic diseases. In the present review, we will summarize current research on the canonical Wnt signaling pathway in SSc and discuss translational implications and potential limitations of prolonged Wnt inhibition.
Collapse
Affiliation(s)
- Christina Bergmann
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
40
|
Reinke L, Lam AP, Flozak AS, Varga J, Gottardi CJ. Adiponectin inhibits Wnt co-receptor, Lrp6, phosphorylation and β-catenin signaling. Biochem Biophys Res Commun 2016; 470:606-612. [PMID: 26797284 DOI: 10.1016/j.bbrc.2016.01.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 12/15/2022]
Abstract
Adiponectin is a pleiotropic adipokine implicated in obesity, metabolic syndrome and cardiovascular disease. Recent studies have identified adiponectin as a negative regulator of tissue fibrosis. Wnt/β-catenin signaling has also been implicated in metabolic syndrome and can promote tissue fibrosis, but the extent to which adiponectin cross-regulates Wnt/β-catenin signaling is unknown. Using primary human dermal fibroblasts and recombinant purified proteins, we show that adiponectin can limit β-catenin accumulation and downstream gene activation by inhibiting Lrp6 phosphorylation, a key activation step in canonical Wnt signaling. Inhibition of Wnt3a-mediated Lrp6 phospho-activation is relatively rapid (e.g., by 30 min), and is not dependent on established adiponectin G-protein coupled receptors, AdipoR1 and R2, suggesting a more direct relationship to Lrp6 signaling. In contrast, the ability of adiponectin to limit Wnt-induced and baseline collagen production in fibroblasts requires AdipoR1/R2. These results suggest the possibility that the pleiotropic effects of adiponectin may be mediated through distinct cell surface receptor complexes. Accordingly, we propose that the anti-fibrotic activity of adiponectin may be mediated through AdipoR1/R2 receptors, while the ability of adiponectin to inhibit Lrp6 phospho-activation may be relevant to other recently established roles for Lrp6 signaling in glucose metabolism and metabolic syndrome.
Collapse
Affiliation(s)
- Lauren Reinke
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA; Department of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Anna P Lam
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA; Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Annette S Flozak
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA; Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA
| | - John Varga
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA; Department of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA.
| | - Cara J Gottardi
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA; Department of Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA; Department of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago 60611, IL, USA.
| |
Collapse
|
41
|
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015. [PMID: 26389119 DOI: 10.3389/fmed.2015.00059.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Collapse
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Miriam Boersema
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
42
|
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015; 2:59. [PMID: 26389119 PMCID: PMC4558529 DOI: 10.3389/fmed.2015.00059] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Collapse
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Miriam Boersema
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
43
|
Ramming A, Dees C, Distler JHW. From pathogenesis to therapy--Perspective on treatment strategies in fibrotic diseases. Pharmacol Res 2015; 100:93-100. [PMID: 26188266 DOI: 10.1016/j.phrs.2015.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023]
Abstract
Although fibrosis is becoming increasingly recognized as a major cause of morbidity and mortality in modern societies, there are very few treatment strategies available that specifically target the pathogenesis of fibrosis. Early in disease, inflammation and vascular changes and an increase in reactive oxygen species play pivotal roles. After inflammation has subsided, fibrosis and scarring are predominant in later phases. Fibrosis is driven by a complex, not-yet fully understood interplay between inflammatory cells on one hand and endothelium and fibroblasts on the other hand. The latter are regarded as the key players due to their extensive synthesis of extracellular matrix components which results in skin and organ fibrosis. Various cytokines orchestrate altered functions of the mentioned cell types. There are promising targets with therapeutic potential that have been extensively characterized in recent years connected with the hope to translate these preclinical results into clinical practice.
Collapse
Affiliation(s)
- Andreas Ramming
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Clara Dees
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
44
|
Mutze K, Vierkotten S, Milosevic J, Eickelberg O, Königshoff M. Enolase 1 (ENO1) and protein disulfide-isomerase associated 3 (PDIA3) regulate Wnt/β-catenin-driven trans-differentiation of murine alveolar epithelial cells. Dis Model Mech 2015; 8:877-90. [PMID: 26035385 PMCID: PMC4527283 DOI: 10.1242/dmm.019117] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 05/12/2015] [Indexed: 12/30/2022] Open
Abstract
The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI) and type II (ATII) cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury. Cell differentiation pathways enabling this plasticity and allowing for proper repair, however, are poorly understood. Here, we applied proteomics, expression analysis and functional studies in primary murine ATII cells to identify proteins and molecular mechanisms involved in alveolar epithelial plasticity. Mass spectrometry of cultured ATII cells revealed a reduction of carbonyl reductase 2 (CBR2) and an increase in enolase 1 (ENO1) and protein disulfide-isomerase associated 3 (PDIA3) protein expression during ATII-to-ATI cell trans-differentiation. This was accompanied by increased Wnt/β-catenin signaling, as analyzed by qRT-PCR and immunoblotting. Notably, ENO1 and PDIA3, along with T1α (podoplanin; an ATI cell marker), exhibited decreased protein expression upon pharmacological and molecular Wnt/β-catenin inhibition in cultured ATII cells, whereas CBR2 levels were stabilized. Moreover, we analyzed primary ATII cells from mice with bleomycin-induced lung injury, a model exhibiting activated Wnt/β-catenin signaling in vivo. We observed reduced CBR2 significantly correlating with surfactant protein C (SFTPC), whereas ENO1 and PDIA3 along with T1α were increased in injured ATII cells. Finally, siRNA-mediated knockdown of ENO1, as well as PDIA3, in primary ATII cells led to reduced T1α expression, indicating diminished cell trans-differentiation. Our data thus identified proteins involved in ATII-to-ATI cell trans-differentiation and suggest a Wnt/β-catenin-driven functional role of ENO1 and PDIA3 in alveolar epithelial cell plasticity in lung injury and repair. Summary: The authors identified proteins involved in Wnt/β-catenin-driven alveolar epithelial plasticity in lung injury and repair.
Collapse
Affiliation(s)
- Kathrin Mutze
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, University Hospital, Ludwig-Maximilians University, 81377 Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Sarah Vierkotten
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, University Hospital, Ludwig-Maximilians University, 81377 Munich, Member of the German Center for Lung Research (DZL), Germany
| | | | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, University Hospital, Ludwig-Maximilians University, 81377 Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, University Hospital, Ludwig-Maximilians University, 81377 Munich, Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
45
|
Grimminger F, Günther A, Vancheri C. The role of tyrosine kinases in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J 2015; 45:1426-33. [PMID: 25745048 DOI: 10.1183/09031936.00149614] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/06/2014] [Indexed: 12/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a median survival time from diagnosis of 2-3 years. Although the pathogenic pathways have not been fully elucidated, IPF is believed to be caused by persistent epithelial injury in genetically susceptible individuals. Tyrosine kinases are involved in a range of signalling pathways that are essential for cellular homeostasis. However, there is substantial evidence from in vitro studies and animal models that receptor tyrosine kinases, such as the platelet-derived growth factor receptor, vascular endothelial growth factor receptor and fibroblast growth factor receptor, and non-receptor tyrosine kinases, such as the Src family, play critical roles in the pathogenesis of pulmonary fibrosis. For example, the expression and release of tyrosine kinases are altered in patients with IPF, while specific tyrosine kinases stimulate the proliferation of lung fibroblasts in vitro. Agents that inhibit tyrosine kinases have shown anti-fibrotic and anti-inflammatory effects in animal models of pulmonary fibrosis. Recently, the tyrosine kinase inhibitor nintedanib has shown positive results in two phase III trials in patients with IPF. Here, we summarise the evidence for involvement of specific tyrosine kinases in the pathogenesis of IPF and the development of tyrosine kinase inhibitors as treatments for IPF.
Collapse
Affiliation(s)
- Friedrich Grimminger
- Dept of Hematology/Oncology, University Hospital of Giessen and Marburg, Marburg, Germany
| | - Andreas Günther
- Dept of Pulmonary and Critical Care Medicine, ILD Program, University Hospital of Giessen and Marburg, Marburg, Germany
| | - Carlo Vancheri
- "Regional Centre for Rare Lung Diseases", Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
46
|
Ono M, Bulun SE, Maruyama T. Tissue-specific stem cells in the myometrium and tumor-initiating cells in leiomyoma. Biol Reprod 2014; 91:149. [PMID: 25376230 DOI: 10.1095/biolreprod.114.123794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tissue-specific (or somatic) stem cells constitute a subset of cells residing in normal adult tissues. By undergoing asymmetric division, they retain their ability to self-renew while producing daughter cells that go on to differentiate and play a role in tissue regeneration and repair. The human uterus consists primarily of endometrium and myometrium (the smooth muscle layer) that rapidly enlarges through its tremendous regenerative and remodeling capacity to accommodate the developing fetus. Such uterine enlargement and remodeling can take place repeatedly and cyclically over the course of a woman's reproductive life. These unique properties of the uterus suggest the existence of endometrial and myometrial stem cell systems. In addition, like somatic cells, tumor stem cells or tumor-initiating cells, a subset of cells within a tumor, retain the ability to reconstitute tumors. Uterine smooth muscle cells are thought to be the origin of leiomyomas that are the most common type of gynecologic tumor. Recent work has identified, isolated, and characterized putative stem/progenitor cells in the myometrium and in leiomyomas. Here, we review current studies of myometrial and leiomyoma stem/progenitor cells and provide a new paradigm for understanding myometrial physiology and pathology and how these cells might contribute to uterine remodeling during pregnancy and the formation of leiomyomas. The role of the WNT/CTNNB1 pathway in the pathogenesis of leiomyoma is also discussed.
Collapse
Affiliation(s)
- Masanori Ono
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Role of the urokinase-fibrinolytic system in epithelial-mesenchymal transition during lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:55-68. [PMID: 25447049 DOI: 10.1016/j.ajpath.2014.08.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 01/10/2023]
Abstract
Alveolar type II epithelial (ATII) cell injury precedes development of pulmonary fibrosis. Mice lacking urokinase-type plasminogen activator (uPA) are highly susceptible, whereas those deficient in plasminogen activator inhibitor (PAI-1) are resistant to lung injury and pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) has been considered, at least in part, as a source of myofibroblast formation during fibrogenesis. However, the contribution of altered expression of major components of the uPA system on ATII cell EMT during lung injury is not well understood. To investigate whether changes in uPA and PAI-1 by ATII cells contribute to EMT, ATII cells from patients with idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease, and mice with bleomycin-, transforming growth factor β-, or passive cigarette smoke-induced lung injury were analyzed for uPA, PAI-1, and EMT markers. We found reduced expression of E-cadherin and zona occludens-1, whereas collagen-I and α-smooth muscle actin were increased in ATII cells isolated from injured lungs. These changes were associated with a parallel increase in PAI-1 and reduced uPA expression. Further, inhibition of Src kinase activity using caveolin-1 scaffolding domain peptide suppressed bleomycin-, transforming growth factor β-, or passive cigarette smoke-induced EMT and restored uPA expression while suppressing PAI-1. These studies show that induction of PAI-1 and inhibition of uPA during fibrosing lung injury lead to EMT in ATII cells.
Collapse
|
48
|
Finigan JH, Vasu VT, Thaikoottathil JV, Mishra R, Shatat MA, Mason RJ, Kern JA. HER2 activation results in β-catenin-dependent changes in pulmonary epithelial permeability. Am J Physiol Lung Cell Mol Physiol 2014; 308:L199-207. [PMID: 25326580 DOI: 10.1152/ajplung.00237.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The receptor tyrosine kinase human epidermal growth factor receptor-2 (HER2) is known to regulate pulmonary epithelial barrier function; however, the mechanisms behind this effect remain unidentified. We hypothesized that HER2 signaling alters the epithelial barrier through an interaction with the adherens junction (AJ) protein β-catenin, leading to dissolution of the AJ. In quiescent pulmonary epithelial cells, HER2 and β-catenin colocalized along the lateral intercellular junction. HER2 activation by the ligand neuregulin-1 was associated with tyrosine phosphorylation of β-catenin, dissociation of β-catenin from E-cadherin, and decreased E-cadherin-mediated cell adhesion. All effects were blocked with the HER2 inhibitor lapatinib. β-Catenin knockdown using shRNA significantly attenuated neuregulin-1-induced decreases in pulmonary epithelial resistance in vitro. Our data indicate that HER2 interacts with β-catenin, leading to dissolution of the AJ, decreased cell-cell adhesion, and disruption of the pulmonary epithelial barrier.
Collapse
Affiliation(s)
- James H Finigan
- Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado; Division of Oncology, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| | - Vihas T Vasu
- Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado
| | - Jyoti V Thaikoottathil
- Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado
| | - Rangnath Mishra
- Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado
| | - Mohammad A Shatat
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University and the Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; and
| | - Robert J Mason
- Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| | - Jeffrey A Kern
- Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado; Division of Oncology, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| |
Collapse
|
49
|
Dees C, Distler JHW. Canonical Wnt signalling as a key regulator of fibrogenesis - implications for targeted therapies? Exp Dermatol 2014; 22:710-3. [PMID: 24118232 DOI: 10.1111/exd.12255] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
Canonical Wnt signalling belongs to the so-called morphogen pathways and plays essential roles in development and tissue homeostasis. Being such a crucial regulatory pathway, Wnt signalling is tightly controlled at different levels. However, uncontrolled activation of canonical Wnt signalling has been implicated into the pathogenesis of various human disorders. In the last years, aberrant Wnt signalling has been demonstrated in fibrotic diseases including systemic sclerosis (SSc). In this review, we will discuss the current state of research on canonical Wnt signalling in SSc. Activation of canonical Wnt signalling induces fibroblast activation with subsequent myofibroblast differentiation and excessive collagen release resulting in tissue fibrosis. Genetic or pharmacological blockade of Wnt activation ameliorates experimental fibrosis in different preclinical models. These findings have direct translational implications because several small molecule inhibitors of Wnt signalling are currently evaluated in clinical trials and some already showed first promising results.
Collapse
Affiliation(s)
- Clara Dees
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
50
|
Chanrion M, Kuperstein I, Barrière C, El Marjou F, Cohen D, Vignjevic D, Stimmer L, Paul-Gilloteaux P, Bièche I, Tavares SDR, Boccia GF, Cacheux W, Meseure D, Fre S, Martignetti L, Legoix-Né P, Girard E, Fetler L, Barillot E, Louvard D, Zinovyev A, Robine S. Concomitant Notch activation and p53 deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut. Nat Commun 2014; 5:5005. [PMID: 25295490 PMCID: PMC4214431 DOI: 10.1038/ncomms6005] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/15/2014] [Indexed: 12/31/2022] Open
Abstract
Epithelial-to-mesenchymal transition-like (EMT-like) is a critical process allowing initiation of metastases during tumour progression. Here, to investigate its role in intestinal cancer, we combine computational network-based and experimental approaches to create a mouse model with high metastatic potential. Construction and analysis of this network map depicting molecular mechanisms of EMT regulation based on the literature suggests that Notch activation and p53 deletion have a synergistic effect in activating EMT-like processes. To confirm this prediction, we generate transgenic mice by conditionally activating the Notch1 receptor and deleting p53 in the digestive epithelium (NICD/p53(-/-)). These mice develop metastatic tumours with high penetrance. Using GFP lineage tracing, we identify single malignant cells with mesenchymal features in primary and metastatic tumours in vivo. The development of such a model that recapitulates the cellular features observed in invasive human colorectal tumours is appealing for innovative drug discovery.
Collapse
Affiliation(s)
- Maia Chanrion
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - Inna Kuperstein
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Inserm, U900, Paris 75248, France
| | - Cédric Barrière
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - Fatima El Marjou
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - David Cohen
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Inserm, U900, Paris 75248, France
| | - Danijela Vignjevic
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - Lev Stimmer
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - Perrine Paul-Gilloteaux
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Cell and Tissue Imaging Facility, PICT-IBiSA, CNRS, UMR 144, Paris 75248, France
| | - Ivan Bièche
- 1] Inserm U735, Hôpital René Huguenin, 92210 Saint-Cloud, France [2] Institut Curie, Hôpital René Huguenin, 35 rue Dailly, 92210 Saint-Cloud, France
| | - Silvina Dos Reis Tavares
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - Giuseppe-Fulvio Boccia
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | | | | | - Silvia Fre
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR3215, Paris 75248, France [3] Inserm U934, Paris 75248, France
| | - Loredana Martignetti
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Inserm, U900, Paris 75248, France
| | - Patricia Legoix-Né
- Next-Generation Sequencing Platform, Institut Curie, Paris 75248, France
| | - Elodie Girard
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Inserm, U900, Paris 75248, France
| | - Luc Fetler
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR168, Paris 75248, France
| | - Emmanuel Barillot
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Inserm, U900, Paris 75248, France
| | - Daniel Louvard
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| | - Andreï Zinovyev
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] Inserm, U900, Paris 75248, France
| | - Sylvie Robine
- 1] Institut Curie, Centre de Recherche, Paris 75248, France [2] CNRS UMR 144, Paris 75248, France
| |
Collapse
|