1
|
Chao G, Zukin S, Fortuna PRJ, Boettner B, Church GM. Progress and limitations in engineering cellular adhesion for research and therapeutics. Trends Cell Biol 2024; 34:277-287. [PMID: 37580241 DOI: 10.1016/j.tcb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/16/2023]
Abstract
Intercellular interactions form the cornerstone of multicellular biology. Despite advances in protein engineering, researchers artificially directing physical cell interactions still rely on endogenous cell adhesion molecules (CAMs) alongside off-target interactions and unintended signaling. Recently, methods for directing cellular interactions have been developed utilizing programmable domains such as coiled coils (CCs), nanobody-antigen, and single-stranded DNA (ssDNA). We first discuss desirable molecular- and systems-level properties in engineered CAMs, using the helixCAM platform as a benchmark. Next, we propose applications for engineered CAMs in immunology, developmental biology, tissue engineering, and neuroscience. Biologists in various fields can readily adapt current engineered CAMs to establish control over cell interactions, and their utilization in basic and translational research will incentivize further expansion in engineered CAM capabilities.
Collapse
Affiliation(s)
- George Chao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Stefan Zukin
- Wyss Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Cummings SE, Delaney SP, St-Denis Bissonnette F, Stalker A, Muradia G, Mehic J, Graber TE, Alain T, Lavoie JR. SARS-CoV-2 antigen-carrying extracellular vesicles activate T cell responses in a human immunogenicity model. iScience 2024; 27:108708. [PMID: 38226155 PMCID: PMC10788222 DOI: 10.1016/j.isci.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Extracellular vesicles (EVs) are entering the clinical arena as novel biologics for infectious diseases, potentially serving as the immunogenic components of next generation vaccines. However, relevant human assays to evaluate the immunogenicity of EVs carrying viral antigens are lacking, contributing to challenges in translating rodent studies to human clinical trials. Here, we engineered EVs to carry SARS-CoV-2 Spike to evaluate the immunogenicity of antigen-carrying EVs using human peripheral blood mononuclear cells (PBMCs). Delivery of Spike EVs to PBMCs resulted in specific immune cell activation as assessed through T cell activation marker expression. Further, Spike EVs were taken up largely by antigen-presenting cells (monocytes, dendritic cells and B cells). Taken together, this human PBMC-based system models physiologically relevant pathways of antigen delivery, uptake and presentation. In summary, the current study highlights the suitability of using human PBMCs for evaluating the immunogenicity of EVs engineered to carry antigens for infectious disease therapeutics.
Collapse
Affiliation(s)
- Sarah E. Cummings
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sean P. Delaney
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Frederic St-Denis Bissonnette
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Andrew Stalker
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Gauri Muradia
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Jelica Mehic
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Tyson E. Graber
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1 Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1 Canada
| | - Jessie R. Lavoie
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
3
|
Stockwald ER, Steger LME, Vollmer S, Gottselig C, Grage SL, Bürck J, Afonin S, Fröbel J, Blümmel AS, Setzler J, Wenzel W, Walther TH, Ulrich AS. Length matters: Functional flip of the short TatA transmembrane helix. Biophys J 2023; 122:2125-2146. [PMID: 36523158 PMCID: PMC10257086 DOI: 10.1016/j.bpj.2022.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The twin arginine translocase (Tat) exports folded proteins across bacterial membranes. The putative pore-forming or membrane-weakening component (TatAd in B. subtilis) is anchored to the lipid bilayer via an unusually short transmembrane α-helix (TMH), with less than 16 residues. Its tilt angle in different membranes was analyzed under hydrophobic mismatch conditions, using synchrotron radiation circular dichroism and solid-state NMR. Positive mismatch (introduced either by reconstitution in short-chain lipids or by extending the hydrophobic TMH length) increased the helix tilt of the TMH as expected. Negative mismatch (introduced either by reconstitution in long-chain lipids or by shortening the TMH), on the other hand, led to protein aggregation. These data suggest that the TMH of TatA is just about long enough for stable membrane insertion. At the same time, its short length is a crucial factor for successful translocation, as demonstrated here in native membrane vesicles using an in vitro translocation assay. Furthermore, when reconstituted in model membranes with negative spontaneous curvature, the TMH was found to be aligned parallel to the membrane surface. This intrinsic ability of TatA to flip out of the membrane core thus seems to play a key role in its membrane-destabilizing effect during Tat-dependent translocation.
Collapse
Affiliation(s)
- Eva R Stockwald
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Lena M E Steger
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Stefanie Vollmer
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Christina Gottselig
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Stephan L Grage
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Julia Fröbel
- University of Freiburg, Institute of Biochemistry and Molecular Biology, Freiburg, Germany
| | - Anne-Sophie Blümmel
- University of Freiburg, Institute of Biochemistry and Molecular Biology, Freiburg, Germany
| | - Julia Setzler
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Karlsruhe, Germany
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Karlsruhe, Germany
| | - Torsten H Walther
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany.
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany; Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany.
| |
Collapse
|
4
|
Sahoo AR, Souza PCT, Meng Z, Buck M. Transmembrane dimers of type 1 receptors sample alternate configurations: MD simulations using coarse grain Martini 3 versus AlphaFold2 Multimer. Structure 2023; 31:735-745.e2. [PMID: 37075749 PMCID: PMC10833135 DOI: 10.1016/j.str.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/07/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
Structures and dynamics of transmembrane (TM) receptor regions are key to understanding their signaling mechanism across membranes. Here we examine configurations of TM region dimers, assembled using the recent Martini 3 force field for coarse-grain (CG) molecular dynamics simulations. At first glance, our results show only a reasonable agreement with ab initio predictions using PREDDIMER and AlphaFold2 Multimer and with nuclear magnetic resonance (NMR)-derived structures. 5 of 11 CG TM structures are similar to the NMR structures (within <3.5 Å root-mean-square deviation [RMSD]) compared with 10 and 9 using PREDDIMER and AlphaFold2, respectively (with 8 structures of the later within 1.5 Å). Surprisingly, AlphaFold2 predictions are closer to NMR structures when the 2001 instead of 2020 database is used for training. The CG simulations reveal that alternative configurations of TM dimers readily interconvert with a predominant population. The implications for transmembrane signaling are discussed, including for the development of peptide-based pharmaceuticals.
Collapse
Affiliation(s)
- Amita R Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS & University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Zhiyuan Meng
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
5
|
Polyansky AA, Efremov RG. On a mechanistic impact of transmembrane tetramerization in the pathological activation of RTKs. Comput Struct Biotechnol J 2023; 21:2837-2844. [PMID: 37216019 PMCID: PMC10192832 DOI: 10.1016/j.csbj.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Constitutive activation of receptor tyrosine kinases (RTKs) via different mutations has a strong impact on the development of severe human disorders, including cancer. Here we propose a putative activation scenario of RTKs, whereby transmembrane (TM) mutations can also promote higher-order oligomerization of the receptors that leads to the subsequent ligand-free activation. We illustrate this scenario using a computational modelling framework comprising sequence-based structure prediction and all-atom 1 µs molecular dynamics (MD) simulations in a lipid membrane for a previously characterised oncogenic TM mutation V536E in platelet-derived growth factor receptor alpha (PDGFRA). We show that in the course of MD simulations the mutant TM tetramer retains stable and compact configuration strengthened by tight protein-protein interactions, while the wild type TM tetramer demonstrates looser packing and a tendency to dissociate. Moreover, the mutation affects the characteristic motions of mutated TM helical segments by introducing additional non-covalent crosslinks in the middle of the TM tetramer, which operate as mechanical hinges. This leads to dynamic decoupling of the C-termini from the rigidified N-terminal parts and facilitates more pronounced possible displacement between the C-termini of the mutant TM helical regions that can provide more freedom for mutual rearrangement of the kinase domains located downstream. Our results for the V536E mutation in the context of PDGFRA TM tetramer allow for the possibility that the effect of oncogenic TM mutations can go beyond alternating the structure and dynamics of TM dimeric states and might also promote the formation of higher-order oligomers directly contributing to ligand-independent signalling effectuated by PDGFRA and other RTKs.
Collapse
Affiliation(s)
- Anton A. Polyansky
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna BioCenter 5, A-1030 Vienna, Austria
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region, 141701, Russia
| |
Collapse
|
6
|
Berry MH, Holt A, Broichhagen J, Donthamsetti P, Flannery JG, Isacoff EY. Photopharmacology for vision restoration. Curr Opin Pharmacol 2022; 65:102259. [PMID: 35749908 DOI: 10.1016/j.coph.2022.102259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/03/2022]
Abstract
Blinding diseases that are caused by degeneration of rod and cone photoreceptor cells often spare the rest of the retinal circuit, from bipolar cells, which are directly innervated by photoreceptor cells, to the output ganglion cells that project axons to the brain. A strategy for restoring vision is to introduce light sensitivity to the surviving cells of the retina. One approach is optogenetics, in which surviving cells are virally transfected with a gene encoding a signaling protein that becomes sensitive to light by binding to the biologically available chromophore retinal, the same chromophore that is used by the opsin photo-detectors of rods and cones. A second approach uses photopharmacology, in which a synthetic photoswitch associates with a native or engineered ion channel or receptor. We review these approaches and look ahead to the next generation of advances that could reconstitute core aspects of natural vision.
Collapse
Affiliation(s)
- Michael H Berry
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Amy Holt
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | | - Prashant Donthamsetti
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - John G Flannery
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA; Vision Science, Herbert Wertheim School of Optometry, University of California, Berkeley, CA, 94720, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
Structural Insight and Development of EGFR Tyrosine Kinase Inhibitors. Molecules 2022; 27:molecules27030819. [PMID: 35164092 PMCID: PMC8838133 DOI: 10.3390/molecules27030819] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer has a high prevalence, with a growing number of new cases and mortality every year. Furthermore, the survival rate of patients with non-small-cell lung carcinoma (NSCLC) is still quite low in the majority of cases. Despite the use of conventional therapy such as tyrosine kinase inhibitor for Epidermal Growth Factor Receptor (EGFR), which is highly expressed in most NSCLC cases, there was still no substantial improvement in patient survival. This is due to the drug’s ineffectiveness and high rate of resistance among individuals with mutant EGFR. Therefore, the development of new inhibitors is urgently needed. Understanding the EGFR structure, including its kinase domain and other parts of the protein, and its activation mechanism can accelerate the discovery of novel compounds targeting this protein. This study described the structure of the extracellular, transmembrane, and intracellular domains of EGFR. This was carried out along with identifying the binding pose of commercially available inhibitors in the ATP-binding and allosteric sites, thereby clarifying the research gaps that can be filled. The binding mechanism of inhibitors that have been used clinically was also explained, thereby aiding the structure-based development of new drugs.
Collapse
|
8
|
Fouad MA, Zaki MY, Lotfy RA, Mahmoud WR. Insight on a new indolinone derivative as an orally bioavailable lead compound against renal cell carcinoma. Bioorg Chem 2021; 112:104985. [PMID: 34020239 DOI: 10.1016/j.bioorg.2021.104985] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023]
Abstract
A series of novel 3-indolinone-thiazolidinones and oxazolidinones 4a-k was synthesized via molecular hybridization approach and sequentially evaluated to explore its cytotoxic activity. The cytotoxicity screening pointed toward the N-cyclohexyl thiazolidinone derivative 4f that revealed promising renal cytotoxicity against CAKI-1 and UO-31 renal cancer cell lines with IC50 values 4.74 and 3.99 µM, respectively, which were comparable to those of sunitinib along with good safety threshold against normal renal cells. Further emphasis on compound 4f renal cytotoxicity was achieved via different enzyme assays and CAKI-1 and UO-31 cell cycle analysis. The results were supported by in silico studies to explore its physicochemical, pharmacokinetic and drug-likeness properties. Finally, compound 4f was subjected to an in vivo pharmacokinetic study through two different routes of administration showing excellent oral bioavailability. This research represents compound 4f as a promising candidate against renal cell carcinoma.
Collapse
Affiliation(s)
- Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, P.O. Box 11562 Cairo, Egypt.
| | - Mayssoune Y Zaki
- Applied Organic Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Raghda A Lotfy
- Applied Organic Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, P.O. Box 11562 Cairo, Egypt
| |
Collapse
|
9
|
Nakano M, Hanashima S, Hara T, Kabayama K, Asahina Y, Hojo H, Komura N, Ando H, Nyholm TKM, Slotte JP, Murata M. FRET detects lateral interaction between transmembrane domain of EGF receptor and ganglioside GM3 in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183623. [PMID: 33933428 DOI: 10.1016/j.bbamem.2021.183623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022]
Abstract
Ganglioside GM3 in the plasma membranes suppresses cell growth by preventing the autophosphorylation of the epidermal growth factor receptor (EGFR). Biological studies have suggested that GM3 interacts with the transmembrane segment of EGFR. Further biophysical experiments are particularly important for quantitative evaluation of the peptide-glycolipid interplay in bilayer membranes using a simple reconstituted system. To examine these interactions in this way, we synthesized the transmembrane segment of EGFR bearing a nitrobenzoxadiazole fluorophore (NBD-TM) at the N-terminus. The affinity between EGFR and GM3 was evaluated based on Förster resonance energy transfer (FRET) between NBD-TM and ATTO594-labeled GM3 in bilayers where their non-specific interaction due to lateral proximity was subtracted by using NBD-labeled phospholipid. This method for selectively detecting the specific lipid-peptide interactions in model lipid bilayers disclosed that the lateral interaction between GM3 and the transmembrane segment of EGFR plays a certain role in disturbing the formation of active EGFR dimers.
Collapse
Affiliation(s)
- Mikito Nakano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Toshiaki Hara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Asahina
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita 565-0871, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita 565-0871, Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka 560-0043, Japan.
| |
Collapse
|
10
|
The emerging complexity of PDGFRs: activation, internalization and signal attenuation. Biochem Soc Trans 2021; 48:1167-1176. [PMID: 32369556 DOI: 10.1042/bst20200004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
The platelet-derived growth factor receptor (PDGFR) family of receptor tyrosine kinases allows cells to communicate with the environment to regulate diverse cellular activities. Here, we highlight recent data investigating the structural makeup of individual PDGFRs upon activation, revealing the importance of the whole receptor in the propagation of extracellular ligand binding and dimerization. Furthermore, we review ongoing research demonstrating the significance of receptor internalization and signal attenuation in the regulation of PDGFR activity. Interactions with internalization machinery, signaling from endosomes, receptor degradation and receptor recycling are physiological means by which cells fine-tune PDGFR responses to growth factor stimulation. In this review, we discuss the biophysical, structural, in silico and biochemical data that have provided evidence for these mechanisms. We further highlight the commonalities and differences between PDGFRα and PDGFRβ signaling, revealing critical gaps in knowledge. In total, this review provides a conclusive summary on the state of the PDGFR field and underscores the need for novel techniques to fully elucidate the mechanisms of PDGFR activation, internalization and signal attenuation.
Collapse
|
11
|
Structural studies of full-length receptor tyrosine kinases and their implications for drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:311-336. [PMID: 33632469 DOI: 10.1016/bs.apcsb.2020.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Receptor tyrosine kinases (RTKs) are important drug targets for cancer and immunological disorders. Crystal structures of individual RTK domains have contributed greatly to the structure-based drug design of clinically used drugs. Low-resolution structures from electron microscopy are now available for the RTKs, EGFR, PDGFR, and Kit. However, there are still no high-resolution structures of full-length RTKs due to the technical challenges of working with these complex, membrane proteins. Here, we review what has been learned from structural studies of these three RTKs regarding their mechanisms of ligand binding, activation, oligomerization, and inhibition. We discuss the implications for drug design. More structural data on full-length RTKs may facilitate the discovery of druggable sites and drugs with improved specificity and effectiveness against resistant mutants.
Collapse
|
12
|
Steger LME, Kohlmeyer A, Wadhwani P, Bürck J, Strandberg E, Reichert J, Grage SL, Afonin S, Kempfer M, Görner AC, Koch J, Walther TH, Ulrich AS. Structural and functional characterization of the pore-forming domain of pinholin S 2168. Proc Natl Acad Sci U S A 2020; 117:29637-29646. [PMID: 33154156 PMCID: PMC7703622 DOI: 10.1073/pnas.2007979117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pinholin S2168 triggers the lytic cycle of bacteriophage φ21 in infected Escherichia coli Activated transmembrane dimers oligomerize into small holes and uncouple the proton gradient. Transmembrane domain 1 (TMD1) regulates this activity, while TMD2 is postulated to form the actual "pinholes." Focusing on the TMD2 fragment, we used synchrotron radiation-based circular dichroism to confirm its α-helical conformation and transmembrane alignment. Solid-state 15N-NMR in oriented DMPC bilayers yielded a helix tilt angle of τ = 14°, a high order parameter (Smol = 0.9), and revealed the azimuthal angle. The resulting rotational orientation places an extended glycine zipper motif (G40xxxS44xxxG48) together with a patch of H-bonding residues (T51, T54, N55) sideways along TMD2, available for helix-helix interactions. Using fluorescence vesicle leakage assays, we demonstrate that TMD2 forms stable holes with an estimated diameter of 2 nm, as long as the glycine zipper motif remains intact. Based on our experimental data, we suggest structural models for the oligomeric pinhole (right-handed heptameric TMD2 bundle), for the active dimer (right-handed Gly-zipped TMD2/TMD2 dimer), and for the full-length pinholin protein before being triggered (Gly-zipped TMD2/TMD1-TMD1/TMD2 dimer in a line).
Collapse
Affiliation(s)
- Lena M E Steger
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Annika Kohlmeyer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Johannes Reichert
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Marin Kempfer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Anne C Görner
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Julia Koch
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Torsten H Walther
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany;
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany;
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
13
|
Drew DL, Butcher B, Sahu ID, Ahammad T, Dixit G, Lorigan GA. Active S 2168 and inactive S 21IRS pinholin interact differently with the lipid bilayer: A 31P and 2H solid state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183257. [PMID: 32147355 DOI: 10.1016/j.bbamem.2020.183257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
Pinholins are a family of lytic membrane proteins responsible for the lysis of the cytosolic membrane in host cells of double stranded DNA bacteriophages. Protein-lipid interactions have been shown to influence membrane protein topology as well as its function. This work investigated the interactions of pinholin with the phospholipid bilayer while in active and inactive confirmations to elucidate the different interactions the two forms have with the bilayer. Pinholin incorporated into deuterated DMPC-d54 lipid bilayers, along with 31P and 2H solid state NMR (SS-NMR) spectroscopy were used to probe the protein-lipid interactions with the phosphorus head group at the surface of the bilayer while interactions with the 2H nuclei were used to study the hydrophobic core. A comparison of the 31P chemical shift anisotropy (CSA) values of the active S2168 pinholin and inactive S21IRS pinholin indicated stronger head group interactions for the pinholin in its active form when compared to that of the inactive form supporting the model of a partially externalized peripheral transmembrane domain (TMD) of the active S2168 instead of complete externalized TMD1 as suggested by Ahammad et al. JPC B 2019. The 2H quadrupolar splitting analysis showed a decrease in spectral width for both forms of the pinholin when compared to the empty bilayers at all temperatures. In this case the decrease in the spectral width of the inactive S21IRS form of the pinholin showed stronger interactions with the acyl chains of the bilayer. The presence of the inactive form's additional TMD within the membrane was supported by the loss of peak resolution observed in the 2H NMR spectra.
Collapse
Affiliation(s)
- Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Brandon Butcher
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA.
| | - Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Gunjan Dixit
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
14
|
Hydrophobic matching of HIV-1 Vpu transmembrane helix-helix interactions is optimized for subcellular location. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183022. [PMID: 31302078 DOI: 10.1016/j.bbamem.2019.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022]
Abstract
The HIV-1 accessory protein Vpu mediates the downregulation of several host cell proteins, an activity that is critical for viral replication in vivo. As the first step in directing cell-surface proteins to internal cellular compartments, and in many cases degradation, Vpu binds a subset of its target proteins through their transmembrane domains. Each of the known targets of Vpu are synthesized in the ER, and must traverse the different membrane environments found along the secretory pathway, thus it is important to consider how membrane composition might influence the interactions between Vpu and its targets. We have used Förster resonance energy transfer (FRET) to measure the oligomerization of Vpu with the transmembrane domains of target proteins in model membranes of varying lipid composition. Our data show that both lipid bilayer thickness and acyl chain order can significantly influence monomer-oligomer equilibria within the Vpu-target system. Changes in oligomerization levels were found to be non-specific with no single Vpu-target interaction being favored under any condition. Our analysis of the influence of the membrane environment on the strength of helix-helix interactions between Vpu and its targets in vitro suggests that the strength of Vpu-target interactions in vivo will be partially dependent on the membrane environment found in specific membrane compartments.
Collapse
|
15
|
Diwanji D, Thaker T, Jura N. More than the sum of the parts: Toward full-length receptor tyrosine kinase structures. IUBMB Life 2019; 71:706-720. [PMID: 31046201 PMCID: PMC6531341 DOI: 10.1002/iub.2060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
Intercellular communication governs complex physiological processes ranging from growth and development to the maintenance of cellular and organ homeostasis. In nearly all metazoans, receptor tyrosine kinases (RTKs) are central players in these diverse and fundamental signaling processes. Aberrant RTK signaling is at the root of many developmental diseases and cancers and it remains a key focus of targeted therapies, several of which have achieved considerable success in patients. These therapeutic advances in targeting RTKs have been propelled by numerous genetic, biochemical, and structural studies detailing the functions and molecular mechanisms of regulation and activation of RTKs. The latter in particular have proven to be instrumental for the development of new drugs, selective targeting of mutant forms of RTKs found in disease, and counteracting ensuing drug resistance. However, to this day, such studies have not yet yielded high-resolution structures of intact RTKs that encompass the extracellular and intracellular domains and the connecting membrane-spanning transmembrane domain. Technically challenging to obtain, these structures are instrumental to complete our understanding of the mechanisms by which RTKs are activated by extracellular ligands and of the effect of pathological mutations that do not directly reside in the catalytic sites of tyrosine kinase domains. In this review, we focus on the recent progress toward obtaining such structures and the insights already gained by structural studies of the subdomains of the receptors that belong to the epidermal growth factor receptor, insulin receptor, and platelet-derived growth factor receptor RTK families. © 2019 IUBMB Life, 71(6):706-720, 2019.
Collapse
Affiliation(s)
- Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tarjani Thaker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Polyansky AA, Bocharov EV, Velghe AI, Kuznetsov AS, Bocharova OV, Urban AS, Arseniev AS, Zagrovic B, Demoulin JB, Efremov RG. Atomistic mechanism of the constitutive activation of PDGFRA via its transmembrane domain. Biochim Biophys Acta Gen Subj 2018; 1863:82-95. [PMID: 30253204 DOI: 10.1016/j.bbagen.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 12/14/2022]
Abstract
Single-point mutations in the transmembrane (TM) region of receptor tyrosine kinases (RTKs) can lead to abnormal ligand-independent activation. We use a combination of computational modeling, NMR spectroscopy and cell experiments to analyze in detail the mechanism of how TM domains contribute to the activation of wild-type (WT) PDGFRA and its oncogenic V536E mutant. Using a computational framework, we scan all positions in PDGFRA TM helix for identification of potential functional mutations for the WT and the mutant and reveal the relationship between the receptor activity and TM dimerization via different interfaces. This strategy also allows us design a novel activating mutation in the WT (I537D) and a compensatory mutation in the V536E background eliminating its constitutive activity (S541G). We show both computationally and experimentally that single-point mutations in the TM region reshape the TM dimer ensemble and delineate the structural and dynamic determinants of spontaneous activation of PDGFRA via its TM domain. Our atomistic picture of the coupling between TM dimerization and PDGFRA activation corroborates the data obtained for other RTKs and provides a foundation for developing novel modulators of the pathological activity of PDGFRA.
Collapse
Affiliation(s)
- Anton A Polyansky
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria.
| | - Eduard V Bocharov
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow region 141700, Russia; National Research Centre "Kurchatov Institute", Akad. Kurchatova pl. 1, Moscow 123182, Russia
| | - Amélie I Velghe
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Andrey S Kuznetsov
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow region 141700, Russia; Higher School of Economics, Myasnitskaya 20, 101000 Moscow, Russia
| | - Olga V Bocharova
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow region 141700, Russia
| | - Anatoly S Urban
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow region 141700, Russia
| | - Alexander S Arseniev
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow region 141700, Russia
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Jean-Baptiste Demoulin
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Roman G Efremov
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow region 141700, Russia; Higher School of Economics, Myasnitskaya 20, 101000 Moscow, Russia
| |
Collapse
|
17
|
Jang B, Jung H, Hong H, Oh ES. Syndecan transmembrane domain modulates intracellular signaling by regulating the oligomeric status of the cytoplasmic domain. Cell Signal 2018; 52:121-126. [PMID: 30195038 DOI: 10.1016/j.cellsig.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 11/19/2022]
Abstract
Cell surface receptors must specifically recognize an extracellular ligand and then trigger an appropriate response within the cell. Their general structure enables this, as it comprises an extracellular domain that can bind an extracellular ligand, a cytoplasmic domain that can transduce a signal inside the cell to produce an appropriate response, and a transmembrane domain that links the two and is responsible for accurately delivering specific information on a binding event from the extracellular domain to the cytoplasmic domain, to trigger the proper response. A vast body of research has focused on elucidating the specific mechanisms responsible for regulating extracellular binding events and the subsequent interactions of the cytoplasmic domain with intracellular signaling. In contrast, far less work has focused on examining how the transmembrane domain links these domains and delivers the necessary information. In this review, we propose the importance of the transmembrane domain as a signal regulator. We highlight the cell adhesion receptor, syndecan, as a special case, and propose that the transmembrane domain-mediated oligomerization of the syndecan cytoplasmic domain is a unique regulatory mechanism in syndecan signaling.
Collapse
Affiliation(s)
- Bohee Jang
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hyejung Jung
- Skin QC Institute of Dermatological Sciences, Seoul, 03759, Republic of Korea
| | - Heejeong Hong
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea; Skin QC Institute of Dermatological Sciences, Seoul, 03759, Republic of Korea.
| |
Collapse
|
18
|
Sinclair JKL, Walker AS, Doerner AE, Schepartz A. Mechanism of Allosteric Coupling into and through the Plasma Membrane by EGFR. Cell Chem Biol 2018; 25:857-870.e7. [PMID: 29731426 DOI: 10.1016/j.chembiol.2018.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor receptor (EGFR) interacts through its extracellular domain with seven different growth factors. These factors induce different structures within the cytoplasmic juxtamembrane (JM) segment of the dimeric receptor and propagate different growth factor-dependent signals to the cell interior. How this process occurs is unknown. Here we apply diverse experimental and computational tools to show that growth factor identity is encoded by the EGFR transmembrane (TM) helix into discrete helix dimer populations that differ in both cross-location and cross-angle. Helix dimers with smaller cross-angles at multiple cross locations are decoded to induce an EGF-type coiled coil in the adjacent JM, whereas helix dimers with larger cross-angles at fewer cross locations induce the TGF-α-type coiled coil. We propose an updated model for how conformational coupling across multiple EGFR domains results in growth factor-specific information transfer, and demonstrate that this model applies to both EGFR and the related receptor ErbB2.
Collapse
Affiliation(s)
| | - Allison S Walker
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Amy E Doerner
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
19
|
Grage SL, Kara S, Bordessa A, Doan V, Rizzolo F, Putzu M, Kubař T, Papini AM, Chaume G, Brigaud T, Afonin S, Ulrich AS. Orthogonal 19 F-Labeling for Solid-State NMR Spectroscopy Reveals the Conformation and Orientation of Short Peptaibols in Membranes. Chemistry 2018; 24:4328-4335. [PMID: 29323432 DOI: 10.1002/chem.201704307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 11/10/2022]
Abstract
Peptaibols are promising drug candidates in view of their interference with cellular membranes. Knowledge of their lipid interactions and membrane-bound structure is needed to understand their activity and should be, in principle, accessible by solid-state NMR spectroscopy. However, their unusual amino acid composition and noncanonical conformations make it very challenging to find suitable labels for NMR spectroscopy. Particularly in the case of short sequences, new strategies are required to maximize the structural information that can be obtained from each label. Herein, l-3-(trifluoromethyl)bicyclopent[1.1.1]-1-ylglycine, (R)- and (S)-trifluoromethylalanine, and 15 N-backbone labels, each probing a different direction in the molecule, have been combined to elucidate the conformation and membrane alignment of harzianin HK-VI. For the short sequence of 11 amino acids, 12 orientational constraints have been obtained by using 19 F and 15 N NMR spectroscopy. This strategy revealed a β-bend ribbon structure, which becomes realigned in the membrane from a surface-parallel state towards a membrane-spanning state, with increasing positive spontaneous curvature of the lipids.
Collapse
Affiliation(s)
- Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany
| | - Sezgin Kara
- Institute of Organic Chemistry (IOC), KIT, Fritz-Haber Weg 6, 76131, Karlsruhe, Germany
| | - Andrea Bordessa
- Laboratoire de Chimie Biologique (LCB), EA4505, Platform PeptLab@UCP, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95000, Cergy-Pontoise cedex, France
| | - Véronique Doan
- Laboratoire de Chimie Biologique (LCB), EA4505, Platform PeptLab@UCP, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95000, Cergy-Pontoise cedex, France
| | - Fabio Rizzolo
- Laboratoire de Chimie Biologique (LCB), EA4505, Platform PeptLab@UCP, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95000, Cergy-Pontoise cedex, France.,French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology (PeptLab), Department of Chemistry "Ugo Schiff", CNR-IBB, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Marina Putzu
- Institute of Physical Chemistry (IPC), Center for Functional Nanostructures (CFN), KIT, 76131, Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry (IPC), Center for Functional Nanostructures (CFN), KIT, 76131, Karlsruhe, Germany
| | - Anna Maria Papini
- Laboratoire de Chimie Biologique (LCB), EA4505, Platform PeptLab@UCP, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95000, Cergy-Pontoise cedex, France.,French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology (PeptLab), Department of Chemistry "Ugo Schiff", CNR-IBB, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Grégory Chaume
- Laboratoire de Chimie Biologique (LCB), EA4505, Platform PeptLab@UCP, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95000, Cergy-Pontoise cedex, France
| | - Thierry Brigaud
- Laboratoire de Chimie Biologique (LCB), EA4505, Platform PeptLab@UCP, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95000, Cergy-Pontoise cedex, France
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), KIT, Fritz-Haber Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
20
|
Gaburjakova J, Gaburjakova M. Reconstitution of Ion Channels in Planar Lipid Bilayers: New Approaches. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2018. [DOI: 10.1016/bs.abl.2017.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Grau B, Javanainen M, García-Murria MJ, Kulig W, Vattulainen I, Mingarro I, Martínez-Gil L. The role of hydrophobic matching on transmembrane helix packing in cells. Cell Stress 2017; 1:90-106. [PMID: 31225439 PMCID: PMC6551820 DOI: 10.15698/cst2017.11.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Folding and packing of membrane proteins are highly influenced by the lipidic component of the membrane. Here, we explore how the hydrophobic mismatch (the difference between the hydrophobic span of a transmembrane protein region and the hydrophobic thickness of the lipid membrane around the protein) influences transmembrane helix packing in a cellular environment. Using a ToxRED assay in Escherichia coli and a Bimolecular Fluorescent Complementation approach in human-derived cells complemented by atomistic molecular dynamics simulations we analyzed the dimerization of Glycophorin A derived transmembrane segments. We concluded that, biological membranes can accommodate transmembrane homo-dimers with a wide range of hydrophobic lengths. Hydrophobic mismatch and its effects on dimerization are found to be considerably weaker than those previously observed in model membranes, or under in vitro conditions, indicating that biological membranes (particularly eukaryotic membranes) can adapt to structural deformations through compensatory mechanisms that emerge from their complex structure and composition to alleviate membrane stress. Results based on atomistic simulations support this view, as they revealed that Glycophorin A dimers remain stable, despite of poor hydrophobic match, using mechanisms based on dimer tilting or local membrane thickness perturbations. Furthermore, hetero-dimers with large length disparity between their monomers are also tolerated in cells, and the conclusions that one can draw are essentially similar to those found with homo-dimers. However, large differences between transmembrane helices length hinder the monomer/dimer equilibrium, confirming that, the hydrophobic mismatch has, nonetheless, biologically relevant effects on helix packing in vivo.
Collapse
Affiliation(s)
- Brayan Grau
- Departamento de Bioquímica y Biología Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| | - Matti Javanainen
- Laboratory of Physics, Tampere University of Technology, FI-33101 Tampere, Finland.,Department of Physics, University of Helsinki, POB 64, FI-00014 Helsinki, Finland
| | - Maria Jesús García-Murria
- Departamento de Bioquímica y Biología Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| | - Waldemar Kulig
- Laboratory of Physics, Tampere University of Technology, FI-33101 Tampere, Finland.,Department of Physics, University of Helsinki, POB 64, FI-00014 Helsinki, Finland
| | - Ilpo Vattulainen
- Laboratory of Physics, Tampere University of Technology, FI-33101 Tampere, Finland.,Department of Physics, University of Helsinki, POB 64, FI-00014 Helsinki, Finland.,MEMPHYS - Centre for Biomembrane Physics
| | - Ismael Mingarro
- Departamento de Bioquímica y Biología Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| | - Luis Martínez-Gil
- Departamento de Bioquímica y Biología Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
22
|
Cao H, Ng MCK, Jusoh SA, Tai HK, Siu SWI. TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers. J Comput Aided Mol Des 2017; 31:855-865. [DOI: 10.1007/s10822-017-0047-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/17/2017] [Indexed: 12/01/2022]
|
23
|
Two transmembrane dimers of the bovine papillomavirus E5 oncoprotein clamp the PDGF β receptor in an active dimeric conformation. Proc Natl Acad Sci U S A 2017; 114:E7262-E7271. [PMID: 28808001 DOI: 10.1073/pnas.1705622114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dimeric 44-residue E5 protein of bovine papillomavirus is the smallest known naturally occurring oncoprotein. This transmembrane protein binds to the transmembrane domain (TMD) of the platelet-derived growth factor β receptor (PDGFβR), causing dimerization and activation of the receptor. Here, we use Rosetta membrane modeling and all-atom molecular dynamics simulations in a membrane environment to develop a chemically detailed model of the E5 protein/PDGFβR complex. In this model, an active dimer of the PDGFβR TMD is sandwiched between two dimers of the E5 protein. Biochemical experiments showed that the major PDGFβR TMD complex in mouse cells contains two E5 dimers and that binding the PDGFβR TMD to the E5 protein is necessary and sufficient to recruit both E5 dimers into the complex. These results demonstrate how E5 binding induces receptor dimerization and define a molecular mechanism of receptor activation based on specific interactions between TMDs.
Collapse
|
24
|
Jurowski K, Kochan K, Walczak J, Barańska M, Piekoszewski W, Buszewski B. Analytical Techniques in Lipidomics: State of the Art. Crit Rev Anal Chem 2017; 47:418-437. [PMID: 28340309 DOI: 10.1080/10408347.2017.1310613] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current studies related to lipid identification and determination, or lipidomics in biological samples, are one of the most important issues in modern bioanalytical chemistry. There are many articles dedicated to specific analytical strategies used in lipidomics in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to a comprehensive review of the actual analytical methodologies used in lipidomics. The aim of this article is to characterize the lipidomics methods used in modern bioanalysis according to the methodological point of view: (1) chromatography/separation methods, (2) spectroscopic methods and (3) mass spectrometry and also hyphenated methods. In the first part, we discussed thin layer chromatography (TLC), high-pressure liquid chromatography (HPLC), gas chromatography (GC) and capillary electrophoresis (CE). The second part includes spectroscopic techniques such as Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). The third part is a synthetic review of mass spectrometry, matrix-assisted laser desorption/ionization (MALDI), hyphenated methods, which include liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and also multidimensional techniques. Other aspects are the possibilities of the application of the described methods in lipidomics studies. Due to the fact that the exploration of new methods of lipidomics analysis and their applications in clinical and medical studies are still challenging for researchers working in life science, we hope that this review article will be very useful for readers.
Collapse
Affiliation(s)
- Kamil Jurowski
- a Kraków Higher School of Health Promotion , Krakow , Poland
| | - Kamila Kochan
- b Jagiellonian Centre for Experimental Therapeutics (JCET) , Jagiellonian University in Cracow , Cracow , Poland.,c Centre for Biospectroscopy and School of Chemistry , Monash University , Clayton , Victoria , Australia
| | - Justyna Walczak
- d Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland
| | - Małgorzata Barańska
- b Jagiellonian Centre for Experimental Therapeutics (JCET) , Jagiellonian University in Cracow , Cracow , Poland.,e Department of Chemical Physics, Faculty of Chemistry , Jagiellonian University in Cracow , Cracow , Poland
| | - Wojciech Piekoszewski
- f Department of Analytical Chemistry, Faculty of Chemistry , Jagiellonian University in Cracow , Cracow , Poland.,g School of Biomedicine , Far Eastern Federal University , Vladivostok , Russia
| | - Bogusław Buszewski
- d Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland
| |
Collapse
|
25
|
Koh E, Lee EJ, Nam GH, Hong Y, Cho E, Yang Y, Kim IS. Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials 2017; 121:121-129. [PMID: 28086180 DOI: 10.1016/j.biomaterials.2017.01.004] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 12/31/2022]
Abstract
CD47, a "don't eat me" signal, is over-expressed on the surface of most tumors that interacts with signal regulatory protein α (SIRPα) on phagocytic cells. By engaging SIRPα, CD47 limits the ability of macrophages to engulf tumor cells, which acts as a major phagocytic barrier. In this study, we developed an exosome-based immune checkpoint blockade that antagonizes the interaction between CD47 and SIRPα. These exosomes harboring SIRPα variants (SIRPα-exosomes) were sufficient to induce remarkably augmented tumor phagocytosis, lead to prime effective anti-tumor T cell response. Given that clustering of native CD47 provides a high binding avidity to ligate dimerized SIRPα on macrophage, nature-derived exosomes could be appreciable platform to antagonize CD47. Disruption of CD47-SIRPα interaction by SIRPα-exosomes leads to an increase in cells being engulfed by macrophages and a concomitant inhibition of tumor growth in tumor-bearing mice. Moreover, SIRPα-exosomes therapy promotes an intensive T cell infiltration in syngeneic mouse models of cancer, raising the possibility of CD47-targeted therapies to unleash both an innate and adaptive anti-tumor response. Note that very small amount of exosomal SIRPα proteins could effectively lead to phagocytic elimination of tumor cells both in vitro and in vivo. Our results suggest that superlative exosome-based platform has broad potential to maximize the therapeutic efficacy of membrane-associated protein therapeutics.
Collapse
Affiliation(s)
- Eunee Koh
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Eun Jung Lee
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gi-Hoon Nam
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yeonsun Hong
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Eunji Cho
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
26
|
Bocharov EV, Mineev KS, Pavlov KV, Akimov SA, Kuznetsov AS, Efremov RG, Arseniev AS. Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:561-576. [PMID: 27884807 DOI: 10.1016/j.bbamem.2016.10.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/18/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022]
Abstract
Interaction between transmembrane helices often determines biological activity of membrane proteins. Bitopic proteins, a broad subclass of membrane proteins, form dimers containing two membrane-spanning helices. Some aspects of their structure-function relationship cannot be fully understood without considering the protein-lipid interaction, which can determine the protein conformational ensemble. Experimental and computer modeling data concerning transmembrane parts of bitopic proteins are reviewed in the present paper. They highlight the importance of lipid-protein interactions and resolve certain paradoxes in the behavior of such proteins. Besides, some properties of membrane organization provided a clue to understanding of allosteric interactions between distant parts of proteins. Interactions of these kinds appear to underlie a signaling mechanism, which could be widely employed in the functioning of many membrane proteins. Treatment of membrane proteins as parts of integrated fine-tuned proteolipid system promises new insights into biological function mechanisms and approaches to drug design. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation; National Research Centre "Kurchatov Institute", Akad. Kurchatova pl. 1, Moscow, 123182, Russian Federation.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation
| | - Konstantin V Pavlov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskiy prospect 31/5, Moscow, 119071, Russian Federation
| | - Sergey A Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskiy prospect 31/5, Moscow, 119071, Russian Federation; National University of Science and Technology "MISiS", Leninskiy prospect 4, Moscow, 119049, Russian Federation
| | - Andrey S Kuznetsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation; Higher School of Economics, Myasnitskaya ul. 20, Moscow, 101000, Russian Federation
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation.
| |
Collapse
|
27
|
Lelimousin M, Limongelli V, Sansom MSP. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations. J Am Chem Soc 2016; 138:10611-22. [PMID: 27459426 PMCID: PMC5010359 DOI: 10.1021/jacs.6b05602] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The epidermal growth
factor receptor (EGFR) is a dimeric membrane
protein that regulates key aspects of cellular function. Activation
of the EGFR is linked to changes in the conformation of the transmembrane
(TM) domain, brought about by changes in interactions of the TM helices
of the membrane lipid bilayer. Using an advanced computational approach
that combines Coarse-Grained molecular dynamics and well-tempered
MetaDynamics (CG-MetaD), we characterize the large-scale motions
of the TM helices, simulating multiple association and dissociation
events between the helices in membrane, thus leading to a free energy
landscape of the dimerization process. The lowest energy state of
the TM domain is a right-handed dimer structure in which the TM helices
interact through the N-terminal small-X3-small sequence
motif. In addition to this state, which is thought to correspond to
the active form of the receptor, we have identified further low-energy
states that allow us to integrate with a high level of detail a range
of previous experimental observations. These conformations may lead
to the active state via two possible activation pathways, which involve
pivoting and rotational motions of the helices, respectively. Molecular
dynamics also reveals correlation between the conformational changes
of the TM domains and of the intracellular juxtamembrane domains,
paving the way for a comprehensive understanding of EGFR signaling
at the cell membrane.
Collapse
Affiliation(s)
- Mickaël Lelimousin
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.,CERMAV, Université Grenoble Alpes and CNRS , BP 53, F-38041 Grenoble Cedex 9, France
| | - Vittorio Limongelli
- Università della Svizzera Italiana (USI), Faculty of Informatics, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13, CH-6900 Lugano, Switzerland.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, I-80131 Naples, Italy
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
28
|
Bugge K, Lindorff-Larsen K, Kragelund BB. Understanding single-pass transmembrane receptor signaling from a structural viewpoint-what are we missing? FEBS J 2016; 283:4424-4451. [PMID: 27350538 DOI: 10.1111/febs.13793] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022]
Abstract
Single-pass transmembrane receptors are involved in essential processes of both physiological and pathological nature and represent more than 1300 proteins in the human genome. Despite the high biological relevance of these receptors, the mechanisms of the signal transductions they facilitate are incompletely understood. One major obstacle is the lack of structures of the transmembrane domains that connect the extracellular ligand-binding domains to the intracellular signaling platforms. Over a period of almost 20 years since the first structure was reported, only 21 of these receptors have become represented by a transmembrane domain structure. This scarceness stands in strong contrast to the significance of these transmembrane α-helices for receptor functionality. In this review, we explore the properties and qualities of the current set of structures, as well as the methodological difficulties associated with their characterization and the challenges left to be overcome. Without an increased and focused effort to bring this class of proteins on par with the remaining membrane protein field, a serious lag in their biological understanding looms. Design of pharmaceutical agents, prediction of mutational affects in relation to disease, and deciphering of functional mechanisms require high-resolution structural information, especially when dealing with a domain carrying so much functionality in so few residues.
Collapse
Affiliation(s)
- Katrine Bugge
- Department of Biology, Structural Biology and NMR Laboratory, University of Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Structural Biology and NMR Laboratory, University of Copenhagen, Denmark
| | - Birthe B Kragelund
- Department of Biology, Structural Biology and NMR Laboratory, University of Copenhagen, Denmark
| |
Collapse
|
29
|
Windisch D, Ziegler C, Grage SL, Bürck J, Zeitler M, Gor'kov PL, Ulrich AS. Hydrophobic Mismatch Drives the Interaction of E5 with the Transmembrane Segment of PDGF Receptor. Biophys J 2016; 109:737-49. [PMID: 26287626 PMCID: PMC4547410 DOI: 10.1016/j.bpj.2015.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
The oncogenic E5 protein from bovine papillomavirus is a short (44 amino acids long) integral membrane protein that forms homodimers. It activates platelet-derived growth factor receptor (PDGFR) β in a ligand-independent manner by transmembrane helix-helix interactions. The nature of this recognition event remains elusive, as numerous mutations are tolerated in the E5 transmembrane segment, with the exception of one hydrogen-bonding residue. Here, we examined the conformation, stability, and alignment of the E5 protein in fluid lipid membranes of substantially varying bilayer thickness, in both the absence and presence of the PDGFR transmembrane segment. Quantitative synchrotron radiation circular dichroism analysis revealed a very long transmembrane helix for E5 of ∼26 amino acids. Oriented circular dichroism and solid-state 15N-NMR showed that the alignment and stability of this unusually long segment depend critically on the membrane thickness. When reconstituted alone in exceptionally thick DNPC lipid bilayers, the E5 helix was found to be inserted almost upright. In moderately thick bilayers (DErPC and DEiPC), it started to tilt and became slightly deformed, and finally it became aggregated in conventional DOPC, POPC, and DMPC membranes due to hydrophobic mismatch. On the other hand, when E5 was co-reconstituted with the transmembrane segment of PDGFR, it was able to tolerate even the most pronounced mismatch and was stabilized by binding to the receptor, which has the same hydrophobic length. As E5 is known to activate PDGFR within the thin membranes of the Golgi compartment, we suggest that the intrinsic hydrophobic mismatch of these two interaction partners drives them together. They seem to recognize each other by forming a closely packed bundle of mutually aligned transmembrane helices, which is further stabilized by a specific pair of hydrogen-bonding residues.
Collapse
Affiliation(s)
- Dirk Windisch
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Colin Ziegler
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marcel Zeitler
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Peter L Gor'kov
- National High Magnetic Field Laboratory, Tallahassee, Florida
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany; Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
30
|
Bürck J, Wadhwani P, Fanghänel S, Ulrich AS. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers. Acc Chem Res 2016; 49:184-92. [PMID: 26756718 DOI: 10.1021/acs.accounts.5b00346] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structures of membrane-bound polypeptides are intimately related to their functions and may change dramatically with the lipid environment. Circular dichroism (CD) is a rapid analytical method that requires relatively low amounts of material and no labeling. Conventional CD is routinely used to monitor the secondary structure of peptides and proteins in solution, for example, in the presence of ligands and other binding partners. In the case of membrane-active peptides and transmembrane proteins, these measurements can be applied to, and remain limited to, samples containing detergent micelles or small sonicated lipid vesicles. Such traditional CD analysis reveals only secondary structures. With the help of an oriented circular dichroism (OCD) setup, however, based on the preparation of macroscopically oriented lipid bilayers, it is possible to address the membrane alignment of a peptide in addition to its conformation. This approach has been mostly used for α-helical peptides so far, but other structural elements are conceivable as well. OCD analysis relies on Moffitt's theory, which predicts that the electronic transition dipole moments of the backbone amide bonds in helical polypeptides are polarized either parallel or perpendicular to the helix axis. The interaction of the electric field vector of the circularly polarized light with these transitions results in an OCD spectrum of a membrane-bound α-helical peptide, which exhibits a characteristic line shape and reflects the angle between the helix axis and the bilayer normal. For parallel alignment of a peptide helix with respect to the membrane surface (S-state), the corresponding "fingerprint" CD band around 208 nm will exhibit maximum negative amplitude. If the helix changes its alignment via an obliquely tilted (T-state) to a fully inserted transmembrane orientation (I-state), the ellipticity at 208 nm decreases and the value approaches zero due to the decreased interactions between the field and the transition dipole. Compared to conventional CD, OCD data are not only collected in the biologically relevant environment of a highly hydrated planar lipid bilayer (whose composition can be varied at will), but in addition it provides information about the tilt angle of the polypeptide in the membrane. It is the method of choice for screening numerous different conditions, such as peptide concentration, lipid composition, membrane additives, pH, temperature, and sample hydration. All these factors have been found to affect the peptide alignment in membrane, while having little or no influence on conformation. In many cases, the observed realignment could be related to biological action, such as pore formation by antimicrobial and cell-penetrating peptides, or to binding events of transmembrane segments of integral membrane proteins. Likewise, any lipid-induced conversion from α-helix to β-sheeted conformation is readily picked up by OCD and has been interpreted in terms of protein instability or amyloid-formation.
Collapse
Affiliation(s)
- Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe, Germany
| | - Susanne Fanghänel
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe, Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe, Germany
- Institute of Organic Chemistry, KIT, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| |
Collapse
|
31
|
Bragin PE, Mineev KS, Bocharova OV, Volynsky PE, Bocharov EV, Arseniev AS. HER2 Transmembrane Domain Dimerization Coupled with Self-Association of Membrane-Embedded Cytoplasmic Juxtamembrane Regions. J Mol Biol 2015; 428:52-61. [PMID: 26585403 DOI: 10.1016/j.jmb.2015.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/23/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023]
Abstract
Receptor tyrosine kinases of the human epidermal growth factor receptor (HER or ErbB) family transduce biochemical signals across plasma membrane, playing a significant role in vital cellular processes and in various cancers. Inactive HER/ErbB receptors exist in equilibrium between the monomeric and unspecified pre-dimerized states. After ligand binding, the receptors are involved in strong lateral dimerization with proper assembly of their extracellular ligand-binding, single-span transmembrane, and cytoplasmic kinase domains. The dimeric conformation of the HER2 transmembrane domain that is believed to support the cytoplasmic kinase domain configuration corresponding to the receptor active state was previously described in lipid bicelles. Here we used high-resolution NMR spectroscopy in another membrane-mimicking micellar environment and identified an alternative HER2 transmembrane domain dimerization coupled with self-association of membrane-embedded cytoplasmic juxtamembrane region. Such a dimerization mode appears to be capable of effectively inhibiting the receptor kinase activity. This finding refines the molecular mechanism regarding the signal propagation steps from the extracellular to cytoplasmic domains of HER/ErbB receptors.
Collapse
Affiliation(s)
- Pavel E Bragin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation; Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russian Federation
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Olga V Bocharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Pavel E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky Per., 9, Dolgoprudnyi 141700, Russian Federation
| |
Collapse
|
32
|
Chen PH, Unger V, He X. Structure of Full-Length Human PDGFRβ Bound to Its Activating Ligand PDGF-B as Determined by Negative-Stain Electron Microscopy. J Mol Biol 2015; 427:3921-34. [PMID: 26463591 DOI: 10.1016/j.jmb.2015.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Abstract
Members of the receptor tyrosine kinases (RTKs) regulate important cellular functions such as cell growth and migration, which are key steps in angiogenesis, in organ morphogenesis and in the unregulated states, cancer formation. One long-standing puzzle regarding RTKs centers on how the extracellular domain (ECD), which detects and binds to growth factors, is coupled with the intracellular domain kinase activation. While extensive structural works on the soluble portions of RTKs have provided critical insights into RTK structures and functions, lack of a full-length receptor structure has hindered a comprehensive overview of RTK activation. In this study, we successfully purified and determined a 27-Å-resolution structure of PDGFRβ [a full-length human platelet-derived growth factor receptor], in complex with its ligand PDGF-B. In the ligand-stimulated complex, two PDGFRβs assemble into a dimer via an extensive interface essentially running along the full-length of the receptor, suggesting that the membrane-proximal region, the transmembrane helix and the kinase domain of PDGFRβ are involved in dimerization. Major structural differences are seen between the full-length and soluble ECD structures, rationalizing previous experimental data on how membrane-proximal domains modulate receptor ligand-binding affinity and dimerization efficiency. Also, in contrast to the 2-fold symmetry of the ECD, the intracellular kinase domains adopt an asymmetric dimer arrangement, in agreement with prior observations for the closely related KIT receptor. In essence, the structure provides a first glimpse into how platelet-derived growth factor receptor ECD, upon ligand stimulation, is coupled to its intracellular domain kinase activation.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vinzenz Unger
- Interdepartmental Biological Science Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Science Institute, Northwestern University, Evanston, IL 60208, USA
| | - Xiaolin He
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Saita E, Abriata LA, Tsai YT, Trajtenberg F, Lemmin T, Buschiazzo A, Dal Peraro M, de Mendoza D, Albanesi D. A coiled coil switch mediates cold sensing by the thermosensory protein DesK. Mol Microbiol 2015; 98:258-71. [PMID: 26172072 DOI: 10.1111/mmi.13118] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 12/13/2022]
Abstract
The thermosensor histidine kinase DesK from Bacillus subtilis senses changes in membrane fluidity initiating an adaptive response. Structural changes in DesK have been implicated in transmembrane signaling, but direct evidence is still lacking. On the basis of structure-guided mutagenesis, we now propose a mechanism of DesK-mediated signal sensing and transduction. The data indicate that stabilization/destabilization of a 2-helix coiled coil, which connects the transmembrane sensory domain of DesK to its cytosolic catalytic region, is crucial to control its signaling state. Computational modeling and simulations reveal couplings between protein, water and membrane mechanics. We propose that membrane thickening is the main driving force for signal sensing and that it acts by inducing helix stretching and rotation prompting an asymmetric kinase-competent state. Overall, the known structural changes of the sensor kinase, as well as further dynamic rearrangements that we now predict, consistently link structure determinants to activity modulation.
Collapse
Affiliation(s)
- Emilio Saita
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, 2000, Rosario, Argentina
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute of Bioinformatics (SIB), AAB011 Station 19, 1015, Lausanne, Switzerland
| | - Yi Ting Tsai
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, 2000, Rosario, Argentina
| | - Felipe Trajtenberg
- Institut Pasteur de Montevideo, Unit of Protein Crystallography, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Thomas Lemmin
- Laboratory for Biomolecular Modeling, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute of Bioinformatics (SIB), AAB011 Station 19, 1015, Lausanne, Switzerland
| | - Alejandro Buschiazzo
- Institut Pasteur de Montevideo, Unit of Protein Crystallography, Mataojo 2020, Montevideo, 11400, Uruguay.,Département de Biologie Structurale et Chimie, Institut Pasteur, 25 rue du Dr. Roux, Paris, 75015, France
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute of Bioinformatics (SIB), AAB011 Station 19, 1015, Lausanne, Switzerland
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, 2000, Rosario, Argentina
| | - Daniela Albanesi
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, 2000, Rosario, Argentina
| |
Collapse
|
34
|
Li GH. Geometric rules of channel gating inferred from computational models of the P2X receptor transmembrane domain. J Mol Graph Model 2015. [PMID: 26209765 DOI: 10.1016/j.jmgm.2015.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The P2X receptors are trimeric ATP-gated ion channels and mediate chemical communication between eukaryotic cells. Each P2X subunit contains two transmembrane helices, M1 and M2, and the M2 helix packs around an ion conduction pore. Here, I have reconstructed the three-dimensional models of the zebrafish P2X4 transmembrane domain using spatial restraints on helical packing. The models are stable in lipid bilayers during molecular dynamics simulation and adopt different conformations depending on bilayer hydrophobic thickness. Comparison of these conformations shows that the pore-lining residues L340, A344 and A347 each have multiple packing sites that define the pore configurations. Shift of L340 packing between different sites alters the side-chain orientation that occludes the pore or removes this occlusion. L340, A344 and A347 also gate the pore by expansion-contraction mechanism based on their packing patterns. Finally, pore expansions at the L340 and A344 levels are mutually exclusive, so the P2X gating may involve sequential pore opening at L340 and A344 levels to allow ion conduction. In summary, the current study shows that the computational assembly of the helical membrane protein is not only possible, but also necessary to provide insights into the mechanisms of channel gating.
Collapse
Affiliation(s)
- Guo-Hua Li
- School of Life Sciences, Changchun Normal University, Changchun 130032, China.
| |
Collapse
|
35
|
Wang Y, Barth P. Evolutionary-guided de novo structure prediction of self-associated transmembrane helical proteins with near-atomic accuracy. Nat Commun 2015; 6:7196. [PMID: 25995083 DOI: 10.1038/ncomms8196] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/15/2015] [Indexed: 11/09/2022] Open
Abstract
How specific protein associations regulate the function of membrane receptors remains poorly understood. Conformational flexibility currently hinders the structure determination of several classes of membrane receptors and associated oligomers. Here we develop EFDOCK-TM, a general method to predict self-associated transmembrane protein helical (TMH) structures from sequence guided by co-evolutionary information. We show that accurate intermolecular contacts can be identified using a combination of protein sequence covariation and TMH binding surfaces predicted from sequence. When applied to diverse TMH oligomers, including receptors characterized in multiple conformational and functional states, the method reaches unprecedented near-atomic accuracy for most targets. Blind predictions of structurally uncharacterized receptor tyrosine kinase TMH oligomers provide a plausible hypothesis on the molecular mechanisms of disease-associated point mutations and binding surfaces for the rational design of selective inhibitors. The method sets the stage for uncovering novel determinants of molecular recognition and signalling in single-spanning eukaryotic membrane receptors.
Collapse
Affiliation(s)
- Y Wang
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - P Barth
- 1] Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [2] Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [3] Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
36
|
Bürck J, Roth S, Windisch D, Wadhwani P, Moss D, Ulrich AS. UV-CD12: synchrotron radiation circular dichroism beamline at ANKA. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:844-52. [PMID: 25931105 PMCID: PMC4416691 DOI: 10.1107/s1600577515004476] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/03/2015] [Indexed: 05/25/2023]
Abstract
Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality <200 nm compared with an OCD setup adapted to a bench-top instrument, and accelerated data collection by a factor of ∼3. In addition, it permits investigations of low hydrated protein films down to 130 nm using a rotatable sample cell that avoids linear dichroism artifacts.
Collapse
Affiliation(s)
- Jochen Bürck
- Institute for Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe, Germany
| | - Siegmar Roth
- Institute for Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe, Germany
| | - Dirk Windisch
- Institute for Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute for Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe, Germany
| | - David Moss
- ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe, Germany
| | - Anne S. Ulrich
- Institute for Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| |
Collapse
|
37
|
Misiewicz J, Afonin S, Grage SL, van den Berg J, Strandberg E, Wadhwani P, Ulrich AS. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2015; 61:287-98. [PMID: 25616492 DOI: 10.1007/s10858-015-9897-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/10/2015] [Indexed: 05/22/2023]
Abstract
Membrane composition is a key factor that regulates the destructive activity of antimicrobial peptides and the non-leaky permeation of cell penetrating peptides in vivo. Hence, the choice of model membrane is a crucial aspect in NMR studies and should reflect the biological situation as closely as possible. Here, we explore the structure and dynamics of the short multifunctional peptide BP100 using a multinuclear solid-state NMR approach. The membrane alignment and mobility of this 11 amino acid peptide was studied in various synthetic lipid bilayers with different net charge, fluidity, and thickness, as well as in native biomembranes harvested from prokaryotic and eukaryotic cells. (19)F-NMR provided the high sensitivity and lack of natural abundance background that are necessary to observe a labelled peptide even in protoplast membranes from Micrococcus luteus and in erythrocyte ghosts. Six selectively (19)F-labeled BP100 analogues gave remarkably similar spectra in all of the macroscopically oriented membrane systems, which were studied under quasi-native conditions of ambient temperature and full hydration. This similarity suggests that BP100 has the same surface-bound helical structure and high mobility in the different biomembranes and model membranes alike, independent of charge, thickness or cholesterol content of the system. (31)P-NMR spectra of the phospholipid components did not indicate any bilayer perturbation, so the formation of toroidal wormholes or micellarization can be excluded as a mechanism of its antimicrobial or cell penetrating action. However, (2)H-NMR analysis of the acyl chain order parameter profiles showed that BP100 leads to considerable membrane thinning and thereby local destabilization.
Collapse
Affiliation(s)
- Julia Misiewicz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Control and role of pH in peptide–lipid interactions in oriented membrane samples. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:833-41. [DOI: 10.1016/j.bbamem.2014.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022]
|
39
|
Strandberg E, Ulrich AS. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1944-54. [PMID: 25726906 DOI: 10.1016/j.bbamem.2015.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 11/24/2022]
Abstract
The folding and function of membrane proteins is controlled not only by specific but also by unspecific interactions with the constituent lipids. In this review, we focus on the influence of the spontaneous lipid curvature on the folding and insertion of peptides and proteins in membranes. Amphiphilic α-helical peptides, as represented by various antimicrobial sequences, are compared with β-barrel proteins, which are found in the outer membrane of Gram-negative bacteria. It has been shown that cationic amphiphilic peptides are always surface-bound in lipids with a negative spontaneous curvature like POPC, i.e. they are oriented parallel to the membrane plane. On the other hand, in lipids like DMPC with a positive curvature, these peptides can get tilted or completely inserted in a transmembrane state. Remarkably, the folding and spontaneous membrane insertion of β-barrel outer membrane proteins also proceeds more easily in lipids with a positive intrinsic curvature, while it is hampered by negative curvature. We therefore propose that a positive spontaneous curvature of the lipids promotes the ability of a surface-bound molecule to insert more deeply into the bilayer core, irrespective of the conformation, size, or shape of the peptide, protein, or folding intermediate. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
40
|
3D hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides. Biophys J 2015; 106:2385-94. [PMID: 24896117 DOI: 10.1016/j.bpj.2014.04.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 11/22/2022] Open
Abstract
The interaction of membranes with peptides and proteins is largely determined by their amphiphilic character. Hydrophobic moments of helical segments are commonly derived from their two-dimensional helical wheel projections, and the same is true for β-sheets. However, to the best of our knowledge, there exists no method to describe structures in three dimensions or molecules with irregular shape. Here, we define the hydrophobic moment of a molecule as a vector in three dimensions by evaluating the surface distribution of all hydrophilic and lipophilic regions over any given shape. The electrostatic potential on the molecular surface is calculated based on the atomic point charges. The resulting hydrophobic moment vector is specific for the instantaneous conformation, and it takes into account all structural characteristics of the molecule, e.g., partial unfolding, bending, and side-chain torsion angles. Extended all-atom molecular dynamics simulations are then used to calculate the equilibrium hydrophobic moments for two antimicrobial peptides, gramicidin S and PGLa, under different conditions. We show that their effective hydrophobic moment vectors reflect the distribution of polar and nonpolar patches on the molecular surface and the calculated electrostatic surface potential. A comparison of simulations in solution and in lipid membranes shows how the peptides undergo internal conformational rearrangement upon binding to the bilayer surface. A good correlation with solid-state NMR data indicates that the hydrophobic moment vector can be used to predict the membrane binding geometry of peptides. This method is available as a web application on http://www.ibg.kit.edu/HM/.
Collapse
|
41
|
Chavent M, Chetwynd AP, Stansfeld PJ, Sansom MSP. Dimerization of the EphA1 receptor tyrosine kinase transmembrane domain: Insights into the mechanism of receptor activation. Biochemistry 2014; 53:6641-52. [PMID: 25286141 PMCID: PMC4298228 DOI: 10.1021/bi500800x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
EphA1
is a receptor tyrosine kinase (RTK) that plays a key role
in developmental processes, including guidance of the migration of
axons and cells in the nervous system. EphA1, in common with other
RTKs, contains an N-terminal extracellular domain, a single transmembrane
(TM) α-helix, and a C-terminal intracellular kinase domain.
The TM helix forms a dimer, as seen in recent NMR studies. We have
modeled the EphA1 TM dimer using a multiscale approach combining coarse-grain
(CG) and atomistic molecular dynamics (MD) simulations. The one-dimensional
potential of mean force (PMF) for this system, based on interhelix
separation, has been calculated using CG MD simulations. This provides
a view of the free energy landscape for helix–helix interactions
of the TM dimer in a lipid bilayer. The resulting PMF profiles suggest
two states, consistent with a rotation-coupled activation mechanism.
The more stable state corresponds to a right-handed helix dimer interacting
via an N-terminal glycine zipper motif, consistent with a recent NMR
structure (2K1K). A second metastable state corresponds to a structure in which
the glycine zipper motif is not involved. Analysis of unrestrained
CG MD simulations based on representative models from the PMF calculations
or on the NMR structure reveals possible pathways of interconversion
between these two states, involving helix rotations about their long
axes. This suggests that the interaction of TM helices in EphA1 dimers
may be intrinsically dynamic. This provides a potential mechanism
for signaling whereby extracellular events drive a shift in the repopulation
of the underlying TM helix dimer energy landscape.
Collapse
Affiliation(s)
- Matthieu Chavent
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
42
|
Walther TH, Ulrich AS. Transmembrane helix assembly and the role of salt bridges. Curr Opin Struct Biol 2014; 27:63-8. [DOI: 10.1016/j.sbi.2014.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
|
43
|
Tamagaki H, Furukawa Y, Yamaguchi R, Hojo H, Aimoto S, Smith SO, Sato T. Coupling of transmembrane helix orientation to membrane release of the juxtamembrane region in FGFR3. Biochemistry 2014; 53:5000-7. [PMID: 25010350 PMCID: PMC4144707 DOI: 10.1021/bi500327q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Activation of the protein tyrosine kinase receptors requires the coupling of ligand binding to a change in both the proximity and orientation of the single transmembrane (TM) helices of receptor monomers to allow transphosphorylation of the receptor kinase domain. We make use of peptides corresponding to the TM and juxtamembrane (JM) regions of the fibroblast growth factor receptor 3 to assess how mutations in the TM region (G380R and A391E), which lead to receptor activation, influence the orientation of the TM domain and interactions of the intracellular JM sequence with the membrane surface. On the basis of fluorescence and Fourier transform infrared spectroscopy, we find that both activating mutations change the TM helix tilt angle relative to the membrane normal and release the JM region from the membrane. These results suggest a general mechanism regarding how the TM-JM region functionally bridges the extracellular and intracellular regions for these receptors.
Collapse
Affiliation(s)
- Hiroko Tamagaki
- Institute for Protein Research, Osaka University , 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Grosse W, Psakis G, Mertins B, Reiss P, Windisch D, Brademann F, Bürck J, Ulrich A, Koert U, Essen LO. Structure-based engineering of a minimal porin reveals loop-independent channel closure. Biochemistry 2014; 53:4826-38. [PMID: 24988371 DOI: 10.1021/bi500660q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Porins, like outer membrane protein G (OmpG) of Escherichia coli, are ideal templates among ion channels for protein and chemical engineering because of their robustness and simple architecture. OmpG shows fast transitions between open and closed states, which were attributed to loop 6 (L6). As flickering limits single-channel-based applications, we pruned L6 by either 8 or 12 amino acids. While the open probabilities of both L6 variants resemble that of native OmpG, their gating frequencies were reduced by 63 and 81%, respectively. Using the 3.2 Å structure of the shorter L6 variant in the open state, we engineered a minimal porin (220 amino acids), where all remaining extramembranous loops were truncated. Unexpectedly, this minimized porin still exhibited gating, but it was 5-fold less frequent than in OmpG. The residual gating of the minimal pore is hence independent of L6 rearrangements and involves narrowing of the ion conductance pathway most probably driven by global stretching-flexing deformations of the membrane-embedded β-barrel.
Collapse
Affiliation(s)
- Wolfgang Grosse
- Department of Chemistry, Philipps-University Marburg , Hans-Meerwein-Straße, 35032 Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Montoro-García S, Shantsila E, Hernández-Romero D, Jover E, Valdés M, Marín F, Lip GYH. Small-size platelet microparticles trigger platelet and monocyte functionality and modulate thrombogenesis via P-selectin. Br J Haematol 2014; 166:571-80. [PMID: 24766273 DOI: 10.1111/bjh.12913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/17/2014] [Indexed: 02/01/2023]
Abstract
This study aimed to examine the mechanisms of cellular activation by small-size platelet microparticles (sPMP) and to present the performance of high-resolution flow cytometry for the analysis of subcellular entities from different origins. Plasma counts of sPMP were analysed in coronary artery disease patients (n = 40) and healthy controls (n = 40). The effect of sPMP and platelet debris (PD) in pathophysiologically relevant doses on platelet and monocyte activation parameters and thrombogenesis was investigated via flow cytometry and thromboelastometry. New generation flow cytometry identifies differences in size, levels and surface molecules of sPMP derived in the absence of stimulus, thrombin activation and platelet disruption. Addition of sPMP resulted in platelet degranulation and P-selectin redistribution to the membrane (P = 0·019) in a dose and time-dependent manner. Blood clotting time decreased after addition of sPMP (P = 0·005), but was not affected by PD. Blocking P-selectin (CD62P) in sPMP markedly reverted the effect on thrombus kinetics (P = 0·035). Exposure to sPMP stimulated monocyte expression of intercellular adhesion molecule-1 (P < 0·03) and decreased monocyte interleukin-6 receptor density (P < 0·01). These results implicate sPMP as a direct source of downstream platelet and monocyte activation. In pathological coronary artery disease conditions, higher levels of sPMP favour a prothrombotic state, partly through P-selectin expression.
Collapse
Affiliation(s)
- Silvia Montoro-García
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK; Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Wadhwani P, Strandberg E, van den Berg J, Mink C, Bürck J, Ciriello RA, Ulrich AS. Dynamical structure of the short multifunctional peptide BP100 in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:940-9. [DOI: 10.1016/j.bbamem.2013.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/25/2013] [Accepted: 11/01/2013] [Indexed: 11/26/2022]
|
47
|
Ruskamo S, Yadav RP, Sharma S, Lehtimäki M, Laulumaa S, Aggarwal S, Simons M, Bürck J, Ulrich AS, Juffer AH, Kursula I, Kursula P. Atomic resolution view into the structure-function relationships of the human myelin peripheral membrane protein P2. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:165-76. [PMID: 24419389 PMCID: PMC3919267 DOI: 10.1107/s1399004713027910] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/11/2013] [Indexed: 01/03/2023]
Abstract
P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.
Collapse
Affiliation(s)
- Salla Ruskamo
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ravi P. Yadav
- Molecular Biology Unit, Institute of Medical Sciences (IMS), Banaras Hindu University, Varanasi, India
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Satyan Sharma
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mari Lehtimäki
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Saara Laulumaa
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Shweta Aggarwal
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Mikael Simons
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany
| | - André H. Juffer
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Inari Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
48
|
Huster D. Solid-state NMR spectroscopy to study protein-lipid interactions. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:1146-60. [PMID: 24333800 DOI: 10.1016/j.bbalip.2013.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/04/2013] [Indexed: 12/22/2022]
Abstract
The appropriate lipid environment is crucial for the proper function of membrane proteins. There is a tremendous variety of lipid molecules in the membrane and so far it is often unclear which component of the lipid matrix is essential for the function of a respective protein. Lipid molecules and proteins mutually influence each other; parameters such as acyl chain order, membrane thickness, membrane elasticity, permeability, lipid-domain and annulus formation are strongly modulated by proteins. More recent data also indicates that the influence of proteins goes beyond a single annulus of next-neighbor boundary lipids. Therefore, a mesoscopic approach to membrane lipid-protein interactions in terms of elastic membrane deformations has been developed. Solid-state NMR has greatly contributed to the understanding of lipid-protein interactions and the modern view of biological membranes. Methods that detect the influence of proteins on the membrane as well as direct lipid-protein interactions have been developed and are reviewed here. Examples for solid-state NMR studies on the interaction of Ras proteins, the antimicrobial peptide protegrin-1, the G protein-coupled receptor rhodopsin, and the K(+) channel KcsA are discussed. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| |
Collapse
|
49
|
Muruganandam G, Bürck J, Ulrich AS, Kursula I, Kursula P. Lipid membrane association of myelin proteins and peptide segments studied by oriented and synchrotron radiation circular dichroism spectroscopy. J Phys Chem B 2013; 117:14983-93. [PMID: 24236572 DOI: 10.1021/jp4098588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Myelin-specific proteins are either integral or peripheral membrane proteins that, in complex with lipids, constitute a multilayered proteolipid membrane system, the myelin sheath. The myelin sheath surrounds the axons of nerves and enables rapid conduction of axonal impulses. Myelin proteins interact intimately with the lipid bilayer and play crucial roles in the assembly, function, and stability of the myelin sheath. Although myelin proteins have been investigated for decades, their structural properties upon membrane surface binding are still largely unknown. In this study, we have used simplified model systems consisting of synthetic peptides and membrane mimics, such as detergent micelles and/or lipid vesicles, to probe the conformation of peptides using synchrotron radiation circular dichroism spectroscopy (SRCD). Additionally, oriented circular dichroism spectroscopy (OCD) was employed to examine the orientation of myelin peptides in macroscopically aligned lipid bilayers. Various representative peptides from the myelin basic protein (MBP), P0, myelin/oligodencrocyte glycoprotein, and connexin32 (cx32) were studied. A helical peptide from the central immunodominant epitope of MBP showed a highly tilted orientation with respect to the membrane surface, whereas the N-terminal cytoplasmic segment of cx32 folded into a helical structure that was only slightly tilted. The folding of full-length myelin basic protein was, furthermore, studied in a bicelle environment. Our results provide information on the conformation and membrane alignment of important membrane-binding peptides in a membrane-mimicking environment, giving novel insights into the mechanisms of membrane binding and stacking by myelin proteins.
Collapse
Affiliation(s)
- Gopinath Muruganandam
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI) , German Electron Synchrotron (DESY), Hamburg 22607, Germany
| | | | | | | | | |
Collapse
|
50
|
PDGFRA alterations in cancer: characterization of a gain-of-function V536E transmembrane mutant as well as loss-of-function and passenger mutations. Oncogene 2013; 33:2568-76. [PMID: 23752188 DOI: 10.1038/onc.2013.218] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/21/2013] [Accepted: 04/04/2013] [Indexed: 12/23/2022]
Abstract
Activating mutations in the platelet-derived growth factor (PDGF) receptor alpha (PDGFRA) have been described in patients with gastrointestinal stromal tumors or myeloid malignancies associated with hypereosinophilia. These patients respond well to imatinib mesylate, raising the question as to whether patients with a PDGF receptor mutation in other tumor types should receive a tyrosine kinase inhibitor treatment. We characterized 10 novel somatic point mutations in PDGFRA that have been reported in isolated cases of glioblastoma, melanoma, acute myeloid leukemia, peripheral nerve sheath tumors and neuroendocrine carcinoma. The PDGFRA transmembrane domain mutation V536E stimulated Ba/F3 cell growth and signaling via ERK and STAT5 in the absence of ligand. This mutant, identified in glioblastoma, was strongly inhibited by imatinib. Modeling suggested that the mutation modulates the packing of the transmembrane domain helices in the receptor dimer. By contrast, two mutations in highly conserved residues affected the receptor traffic to the cell surface or kinase activity, thereby preventing the response to PDGF. The other mutations had no significant impact on the receptor activity. This functional analysis matched the predictions of SIFT and PolyPhen for only five mutations and these algorithms do not discriminate gain from loss of function. Finally, an E996K variant that had been identified in a melanoma cell line was not expressed in these cells. Altogether, several newly identified PDGFRA mutations do not activate the receptor and may therefore represent passenger mutations. Our results also underline the importance of characterizing novel kinase alterations in cancer patients.
Collapse
|