1
|
Marabelli C, Santiago DJ, Priori SG. The Structural-Functional Crosstalk of the Calsequestrin System: Insights and Pathological Implications. Biomolecules 2023; 13:1693. [PMID: 38136565 PMCID: PMC10741413 DOI: 10.3390/biom13121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Calsequestrin (CASQ) is a key intra-sarcoplasmic reticulum Ca2+-handling protein that plays a pivotal role in the contraction of cardiac and skeletal muscles. Its Ca2+-dependent polymerization dynamics shape the translation of electric excitation signals to the Ca2+-induced contraction of the actin-myosin architecture. Mutations in CASQ are linked to life-threatening pathological conditions, including tubular aggregate myopathy, malignant hyperthermia, and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The variability in the penetrance of these phenotypes and the lack of a clear understanding of the disease mechanisms associated with CASQ mutations pose a major challenge to the development of effective therapeutic strategies. In vitro studies have mainly focused on the polymerization and Ca2+-buffering properties of CASQ but have provided little insight into the complex interplay of structural and functional changes that underlie disease. In this review, the biochemical and structural natures of CASQ are explored in-depth, while emphasizing their direct and indirect consequences for muscle Ca2+ physiology. We propose a novel functional classification of CASQ pathological missense mutations based on the structural stability of the monomer, dimer, or linear polymer conformation. We also highlight emerging similarities between polymeric CASQ and polyelectrolyte systems, emphasizing the potential for the use of this paradigm to guide further research.
Collapse
Affiliation(s)
- Chiara Marabelli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Cardiology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| | - Demetrio J. Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| | - Silvia G. Priori
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Cardiology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| |
Collapse
|
2
|
Impact of Hypermannosylation on the Structure and Functionality of the ER and the Golgi Complex. Biomedicines 2023; 11:biomedicines11010146. [PMID: 36672654 PMCID: PMC9856158 DOI: 10.3390/biomedicines11010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023] Open
Abstract
Proteins of the secretory pathway undergo glycosylation in the endoplasmic reticulum (ER) and the Golgi apparatus. Altered protein glycosylation can manifest in serious, sometimes fatal malfunctions. We recently showed that mutations in GDP-mannose pyrophosphorylase A (GMPPA) can cause a syndrome characterized by alacrima, achalasia, mental retardation, and myopathic alterations (AAMR syndrome). GMPPA acts as a feedback inhibitor of GDP-mannose pyrophosphorylase B (GMPPB), which provides GDP-mannose as a substrate for protein glycosylation. Loss of GMPPA thus enhances the incorporation of mannose into glycochains of various proteins, including α-dystroglycan (α-DG), a protein that links the extracellular matrix with the cytoskeleton. Here, we further characterized the consequences of loss of GMPPA for the secretory pathway. This includes a fragmentation of the Golgi apparatus, which comes along with a regulation of the abundance of several ER- and Golgi-resident proteins. We further show that the activity of the Golgi-associated endoprotease furin is reduced. Moreover, the fraction of α-DG, which is retained in the ER, is increased. Notably, WT cells cultured at a high mannose concentration display similar changes with increased retention of α-DG, altered structure of the Golgi apparatus, and a decrease in furin activity. In summary, our data underline the importance of a balanced mannose homeostasis for the secretory pathway.
Collapse
|
3
|
The function and regulation of calsequestrin-2: implications in calcium-mediated arrhythmias. Biophys Rev 2022; 14:329-352. [PMID: 35340602 PMCID: PMC8921388 DOI: 10.1007/s12551-021-00914-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2021] [Accepted: 11/14/2021] [Indexed: 01/09/2023] Open
Abstract
Cardiac arrhythmias are life-threatening events in which the heart develops an irregular rhythm. Mishandling of Ca2+ within the myocytes of the heart has been widely demonstrated to be an underlying mechanism of arrhythmogenesis. This includes altered function of the ryanodine receptor (RyR2)-the primary Ca2+ release channel located to the sarcoplasmic reticulum (SR). The spontaneous leak of SR Ca2+ via RyR2 is a well-established contributor in the development of arrhythmic contractions. This leak is associated with increased channel activity in response to changes in SR Ca2+ load. RyR2 activity can be regulated through several avenues, including interactions with numerous accessory proteins. One such protein is calsequestrin-2 (CSQ2), which is the primary Ca2+-buffering protein within the SR. The capacity of CSQ2 to buffer Ca2+ is tightly associated with the ability of the protein to polymerise in response to changing Ca2+ levels. CSQ2 can itself be regulated through phosphorylation and glycosylation modifications, which impact protein polymerisation and trafficking. Changes in CSQ2 modifications are implicated in cardiac pathologies, while mutations in CSQ2 have been identified in arrhythmic patients. Here, we review the role of CSQ2 in arrhythmogenesis including evidence for the indirect and direct regulation of RyR2 by CSQ2, and the consequences of a loss of functional CSQ2 in Ca2+ homeostasis and Ca2+-mediated arrhythmias. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00914-6.
Collapse
|
4
|
Sarcoplasmic Reticulum from Horse Gluteal Muscle Is Poised for Enhanced Calcium Transport. Vet Sci 2021; 8:vetsci8120289. [PMID: 34941816 PMCID: PMC8705379 DOI: 10.3390/vetsci8120289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
We have analyzed the enzymatic activity of the sarcoplasmic reticulum (SR) Ca2+-transporting ATPase (SERCA) from the horse gluteal muscle. Horses are bred for peak athletic performance yet exhibit a high incidence of exertional rhabdomyolysis, with elevated levels of cytosolic Ca2+ proposed as a correlative linkage. We recently reported an improved protocol for isolating SR vesicles from horse muscle; these horse SR vesicles contain an abundant level of SERCA and only trace-levels of sarcolipin (SLN), the inhibitory peptide subunit of SERCA in mammalian fast-twitch skeletal muscle. Here, we report that the in vitro Ca2+ transport rate of horse SR vesicles is 2.3 ± 0.7-fold greater than rabbit SR vesicles, which express close to equimolar levels of SERCA and SLN. This suggests that horse myofibers exhibit an enhanced SR Ca2+ transport rate and increased luminal Ca2+ stores in vivo. Using the densitometry of Coomassie-stained SDS-PAGE gels, we determined that horse SR vesicles express an abundant level of the luminal SR Ca2+ storage protein calsequestrin (CASQ), with a CASQ-to-SERCA ratio about double that in rabbit SR vesicles. Thus, we propose that SR Ca2+ cycling in horse myofibers is enhanced by a reduced SLN inhibition of SERCA and by an abundant expression of CASQ. Together, these results suggest that horse muscle contractility and susceptibility to exertional rhabdomyolysis are promoted by enhanced SR Ca2+ uptake and luminal Ca2+ storage.
Collapse
|
5
|
Hanna AD, Lee CS, Babcock L, Wang H, Recio J, Hamilton SL. Pathological mechanisms of vacuolar aggregate myopathy arising from a Casq1 mutation. FASEB J 2021; 35:e21349. [PMID: 33786938 DOI: 10.1096/fj.202001653rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/11/2022]
Abstract
Mice with a mutation (D244G, DG) in calsequestrin 1 (CASQ1), analogous to a human mutation in CASQ1 associated with a delayed onset human myopathy (vacuolar aggregate myopathy), display a progressive myopathy characterized by decreased activity, decreased ability of fast twitch muscles to generate force and low body weight after one year of age. The DG mutation causes CASQ1 to partially dissociate from the junctional sarcoplasmic reticulum (SR) and accumulate in the endoplasmic reticulum (ER). Decreased junctional CASQ1 reduces SR Ca2+ release. Muscles from older DG mice display ER stress, ER expansion, increased mTOR signaling, inadequate clearance of aggregated proteins by the proteasomes, and elevation of protein aggregates and lysosomes. This study suggests that the myopathy associated with the D244G mutation in CASQ1 is driven by CASQ1 mislocalization, reduced SR Ca2+ release, CASQ1 misfolding/aggregation and ER stress. The subsequent maladaptive increase in protein synthesis and decreased protein aggregate clearance are likely to contribute to disease progression.
Collapse
Affiliation(s)
- Amy D Hanna
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Chang Seok Lee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Lyle Babcock
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Hui Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Recio
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Susan L Hamilton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Franzka P, Krüger L, Schurig MK, Olecka M, Hoffmann S, Blanchard V, Hübner CA. Altered Glycosylation in the Aging Heart. Front Mol Biosci 2021; 8:673044. [PMID: 34124155 PMCID: PMC8194361 DOI: 10.3389/fmolb.2021.673044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of death in developed countries. Because the incidence increases exponentially in the aging population, aging is a major risk factor for cardiovascular disease. Cardiac hypertrophy, fibrosis and inflammation are typical hallmarks of the aged heart. The molecular mechanisms, however, are poorly understood. Because glycosylation is one of the most common post-translational protein modifications and can affect biological properties and functions of proteins, we here provide the first analysis of the cardiac glycoproteome of mice at different ages. Western blot as well as MALDI-TOF based glycome analysis suggest that high-mannose N-glycans increase with age. In agreement, we found an age-related regulation of GMPPB, the enzyme, which facilitates the supply of the sugar-donor GDP-mannose. Glycoprotein pull-downs from heart lysates of young, middle-aged and old mice in combination with quantitative mass spectrometry bolster widespread alterations of the cardiac glycoproteome. Major hits are glycoproteins related to the extracellular matrix and Ca2+-binding proteins of the endoplasmic reticulum. We propose that changes in the heart glycoproteome likely contribute to the age-related functional decline of the cardiovascular system.
Collapse
Affiliation(s)
- Patricia Franzka
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Lynn Krüger
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Mona K Schurig
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Maja Olecka
- Hoffmann Research Group, Leibniz-Institute on Aging-Fritz-Lipmann-Institute, Jena, Germany
| | - Steve Hoffmann
- Hoffmann Research Group, Leibniz-Institute on Aging-Fritz-Lipmann-Institute, Jena, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
7
|
The structure of a calsequestrin filament reveals mechanisms of familial arrhythmia. Nat Struct Mol Biol 2020; 27:1142-1151. [PMID: 33046906 PMCID: PMC7718342 DOI: 10.1038/s41594-020-0510-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2019] [Accepted: 08/19/2020] [Indexed: 02/04/2023]
Abstract
Mutations in the calcium-binding protein calsequestrin cause the highly lethal familial arrhythmia catecholaminergic polymorphic ventricular tachycardia (CPVT). In vivo, calsequestrin multimerizes into filaments, but an atomic-resolution structure of a calsequestrin filament is lacking. We report a crystal structure of a human cardiac calsequestrin filament with supporting mutational analysis and in vitro filamentation assays. We identify and characterize a novel disease-associated calsequestrin mutation, S173I, that is located at the filament-forming interface, and further show that a previously reported dominant disease mutation, K180R, maps to the same surface. Both mutations disrupt filamentation, suggesting that disease pathology is due to defects in multimer formation. An ytterbium-derivatized structure pinpoints multiple credible calcium sites at filament-forming interfaces, explaining the atomic basis of calsequestrin filamentation in the presence of calcium. Our study thus provides a unifying molecular mechanism by which dominant-acting calsequestrin mutations provoke lethal arrhythmias.
Collapse
|
8
|
Wang Q, Michalak M. Calsequestrin. Structure, function, and evolution. Cell Calcium 2020; 90:102242. [PMID: 32574906 DOI: 10.1016/j.ceca.2020.102242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/25/2022]
Abstract
Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada.
| |
Collapse
|
9
|
Rossi D, Gamberucci A, Pierantozzi E, Amato C, Migliore L, Sorrentino V. Calsequestrin, a key protein in striated muscle health and disease. J Muscle Res Cell Motil 2020; 42:267-279. [PMID: 32488451 DOI: 10.1007/s10974-020-09583-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Calsequestrin (CASQ) is the most abundant Ca2+ binding protein localized in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. The genome of vertebrates contains two genes, CASQ1 and CASQ2. CASQ1 and CASQ2 have a high level of homology, but show specific patterns of expression. Fast-twitch skeletal muscle fibers express only CASQ1, both CASQ1 and CASQ2 are present in slow-twitch skeletal muscle fibers, while CASQ2 is the only protein present in cardiomyocytes. Depending on the intraluminal SR Ca2+ levels, CASQ monomers assemble to form large polymers, which increase their Ca2+ binding ability. CASQ interacts with triadin and junctin, two additional SR proteins which contribute to localize CASQ to the junctional region of the SR (j-SR) and also modulate CASQ ability to polymerize into large macromolecular complexes. In addition to its ability to bind Ca2+ in the SR, CASQ appears also to be able to contribute to regulation of Ca2+ homeostasis in muscle cells. Both CASQ1 and CASQ2 are able to either activate and inhibit the ryanodine receptors (RyRs) calcium release channels, likely through their interactions with junctin and triadin. Additional evidence indicates that CASQ1 contributes to regulate the mechanism of store operated calcium entry in skeletal muscle via a direct interaction with the Stromal Interaction Molecule 1 (STIM1). Mutations in CASQ2 and CASQ1 have been identified, respectively, in patients with catecholamine-induced polymorphic ventricular tachycardia and in patients with some forms of myopathy. This review will highlight recent developments in understanding CASQ1 and CASQ2 in health and diseases.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Alessandra Gamberucci
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Caterina Amato
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Loredana Migliore
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| |
Collapse
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
11
|
Characterization of Post-Translational Modifications to Calsequestrins of Cardiac and Skeletal Muscle. Int J Mol Sci 2016; 17:ijms17091539. [PMID: 27649144 PMCID: PMC5037814 DOI: 10.3390/ijms17091539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 11/26/2022] Open
Abstract
Calsequestrin is glycosylated and phosphorylated during its transit to its final destination in the junctional sarcoplasmic reticulum. To determine the significance and universal profile of these post-translational modifications to mammalian calsequestrin, we characterized, via mass spectrometry, the glycosylation and phosphorylation of skeletal muscle calsequestrin from cattle (B. taurus), lab mice (M. musculus) and lab rats (R. norvegicus) and cardiac muscle calsequestrin from cattle, lab rats and humans. On average, glycosylation of skeletal calsequestrin consisted of two N-acetylglucosamines and one mannose (GlcNAc2Man1), while cardiac calsequestrin had five additional mannoses (GlcNAc2Man6). Skeletal calsequestrin was not phosphorylated, while the C-terminal tails of cardiac calsequestrin contained between zero to two phosphoryls, indicating that phosphorylation of cardiac calsequestrin may be heterogeneous in vivo. Static light scattering experiments showed that the Ca2+-dependent polymerization capabilities of native bovine skeletal calsequestrin are enhanced, relative to the non-glycosylated, recombinant isoform, which our crystallographic studies suggest may be due to glycosylation providing a dynamic “guiderail”-like scaffold for calsequestrin polymerization. Glycosylation likely increases a polymerization/depolymerization response to changing Ca2+ concentrations, and proper glycosylation, in turn, guarantees both effective Ca2+ storage/buffering of the sarcoplasmic reticulum and localization of calsequestrin (Casq) at its target site.
Collapse
|
12
|
Song X, Tang Y, Lei C, Cao M, Shen Y, Yang Y. In situ visualizing T-Tubule/SR junction reveals the ultra-structures of calcium storage and release machinery. Int J Biol Macromol 2015; 82:7-12. [PMID: 26454109 DOI: 10.1016/j.ijbiomac.2015.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
In skeletal muscle, Ca(2+) release from sarcoplasmic reticulum (SR) following the action potential relies on the delicate architecture of the T-Tubule/SR junction. The T-Tubule/SR junction comprises two membrane systems: the integral proteins DHPR and RyR1 and the Ca(2+)-buffering apparatus within the SR lumen. The arrangement and interactions of the components have remained elusive due to technological limitations. Here, we determined whether electron tomography is effective fort the in situ determination of the relationships between RyR1 and DHPR, the SR membrane and other involved structures. First, we visually confirmed that RyR1 and DHPR are close neighbors that are mutually staggered with each other and directly interact with one of RyR1 subunits. Second, the Ca(2+) storage network within the SR lumen is directly correlated with RyR1. These results suggest that the excitation of the T-Tubule may induce Ca(2+) release through a direct interaction among DHPR, RyR1 and the Ca(2+) buffering apparatus. These results indicate that electron tomography has potential as an efficient method for the in situ characterization of the complex architecture and arrangement of two integral-integral-membrane proteins in the context of the surrounding phospholipid-bilayer and proteins.
Collapse
Affiliation(s)
- XiaoWei Song
- Department of Biophysics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Ying Tang
- Department of Biophysics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - ChangHai Lei
- Department of Biophysics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Mi Cao
- Department of Biophysics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - YaFeng Shen
- Department of Biophysics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - YongJi Yang
- Department of Biophysics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
13
|
Zheng Y, Wang L, Zhu Z, Yan X, Zhang L, Xu P, Luo D. Altered platelet calsequestrin abundance, Na⁺/Ca²⁺ exchange and Ca²⁺ signaling responses with the progression of diabetes mellitus. Thromb Res 2014; 134:674-81. [PMID: 25084748 DOI: 10.1016/j.thromres.2014.03.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2013] [Revised: 03/11/2014] [Accepted: 03/24/2014] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Downregulation of calsequestrin (CSQ), a major Ca(2+) storage protein, may contribute significantly to the hyperactivity of internal Ca(2+) ([Ca(2+)]i) in diabetic platelets. Here, we investigated changes in CSQ-1 abundance, Ca(2+) signaling and aggregation responses to stimulation with the progression of diabetes, especially the mechanism(s) underlying the exaggerated Ca(2+) influx in diabetic platelets. MATERIALS AND METHODS Type 1 diabetes was induced by streptozotocin in rats. Platelet [Ca(2+)]i and aggregation responses upon ADP stimulation were assessed by fluorescence spectrophotometry and aggregometry, respectively. CSQ-1 expression was evaluated using western blotting. RESULTS During the 12-week course of diabetes, the abundance of CSQ-1, basal [Ca(2+)]i and ADP-induced Ca(2+) release were progressively altered in diabetic platelets, while the elevated Ca(2+) influx and platelet aggregation were not correlated with diabetes development. 2-Aminoethoxydiphenyl borate, the store-operated Ca(2+) channel blocker, almost completely abolished ADP-induced Ca(2+) influx in normal and diabetic platelets, whereas nifedipine, an inhibitor of the nicotinic acid adenine dinucleotide phosphate receptor, showed no effect. Additionally, inhibition of Na(+)/Ca(2+) exchange induced much slower Ca(2+) extrusion and more Ca(2+) influx in normal platelets than in diabetic platelets. Furthermore, under the condition of Ca(2+)-ATPase inhibition, ionomycin caused greater Ca(2+) mobilization and Ca(2+) influx in diabetic platelets than in normal platelets. CONCLUSIONS These data demonstrate that platelet hyperactivity in diabetes is caused by several integrated factors. Besides the downregulation of CSQ-1 that mainly disrupts basal Ca(2+) homeostasis, insufficient Na(+)/Ca(2+) exchange also contributes, at least in part, to the hyperactive Ca(2+) response to stimulation in diabetic platelets.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing 100069, P.R. China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, P.R. China
| | - Limin Wang
- Department of Pharmacology, Capital Medical University, Beijing 100069, P.R. China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, P.R. China
| | - Zhixiang Zhu
- Department of Pharmacology, Capital Medical University, Beijing 100069, P.R. China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, P.R. China
| | - Xinxin Yan
- Department of Pharmacology, Capital Medical University, Beijing 100069, P.R. China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, P.R. China
| | - Lane Zhang
- Department of Pharmacology, Capital Medical University, Beijing 100069, P.R. China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, P.R. China
| | - Pingxiang Xu
- Department of Pharmacology, Capital Medical University, Beijing 100069, P.R. China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, P.R. China
| | - Dali Luo
- Department of Pharmacology, Capital Medical University, Beijing 100069, P.R. China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, P.R. China.
| |
Collapse
|
14
|
CASQ1 gene is an unlikely candidate for malignant hyperthermia susceptibility in the North American population. Anesthesiology 2013; 118:344-9. [PMID: 23460944 DOI: 10.1097/01.anes.0000530185.78660.da] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Malignant hyperthermia (MH, MIM# 145600) is a complex pharmacogenetic disorder that is manifested in predisposed individuals as a potentially lethal reaction to volatile anesthetics and depolarizing muscle relaxants. Studies of CASQ1-null mice have shown that CASQ1, encoding calsequestrin 1, the major Ca2+ binding protein in the lumen of the sarcoplasmic reticulum, is a candidate gene for MH in mice. The aim of this study was to establish whether the CASQ1 gene is associated with MH in the North American population. METHODS The entire coding region of CASQ1 in 75 unrelated patients diagnosed by caffeine-halothane contracture test as MH susceptible (MHS) was analyzed by DNA sequencing. Subsequently, three groups of unrelated individuals (130 MHS, 100 MH negative, and 192 normal controls) were genotyped for a variant that was identified by sequencing. Levels of CASQ1 expression in the muscle from unrelated MHS and MH negative individuals were estimated by Western blotting. RESULTS Screening of the entire coding sequence of the CASQ1 gene in 75 MHS patients revealed a single variant c.260T > C (p.Met87Thr) in exon 1. This variant is unlikely to be pathogenic, because its allele frequency in the MHS group was not significantly different from that of controls. There was also no difference in calsequestrin 1 protein levels between muscle samples from MHS and controls, including those carrying the p.Met87Thr variant. CONCLUSIONS This study revealed a low level of protein coding sequence variability within the human CASQ1 gene, indicating that CASQ1 is not a major MHS locus in the North American population.
Collapse
|
15
|
Abstract
Calsequestrin (CASQ) is a major Ca2+-storage/buffer protein present in the sarcoplasmic reticulum of both skeletal (CASQ1) and cardiac (CASQ2) muscles. CASQ has significant affinity for a number of pharmaceutical drugs with known muscular toxicities. Our approach, with in silico molecular docking, single crystal X-ray diffraction, and isothermal titration calorimetry (ITC), identified three distinct binding pockets on the surface of CASQ2, which overlap with 2-methyl-2,4-pentanediol (MPD) binding sites observed in the crystal structure. Those three receptor sites based on canine CASQ1 crystal structure gave a high correlation (R2 = 0.80) to our ITC data. Daunomycin, doxorubicin, thioridazine, and trifluoperazine showed strong affinity to the S1 site, which is a central cavity formed between three domains of CASQ2. Some of the moderate-affinity drugs and some high-affinity drugs like amlodipine and verapamil displayed their binding into S2 sites, which are the thioredoxin-like fold present in each CASQ domain. Docking predictions combined with dissociation constants imply that presence of large aromatic cores and less flexible functional groups determines the strength of binding affinity to CASQ. In addition, the predicted binding pockets for both caffeine and epigallocatechin overlapped with the S1 and S2 sites, suggesting competitive inhibition by these natural compounds as a plausible explanation for their antagonistic effects on cardiotoxic side effects.
Collapse
|
16
|
Nagae M, Yamaguchi Y. Function and 3D structure of the N-glycans on glycoproteins. Int J Mol Sci 2012; 13:8398-8429. [PMID: 22942711 PMCID: PMC3430242 DOI: 10.3390/ijms13078398] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2012] [Revised: 06/28/2012] [Accepted: 06/18/2012] [Indexed: 12/17/2022] Open
Abstract
Glycosylation is one of the most common post-translational modifications in eukaryotic cells and plays important roles in many biological processes, such as the immune response and protein quality control systems. It has been notoriously difficult to study glycoproteins by X-ray crystallography since the glycan moieties usually have a heterogeneous chemical structure and conformation, and are often mobile. Nonetheless, recent technical advances in glycoprotein crystallography have accelerated the accumulation of 3D structural information. Statistical analysis of “snapshots” of glycoproteins can provide clues to understanding their structural and dynamic aspects. In this review, we provide an overview of crystallographic analyses of glycoproteins, in which electron density of the glycan moiety is clearly observed. These well-defined N-glycan structures are in most cases attributed to carbohydrate-protein and/or carbohydrate-carbohydrate interactions and may function as “molecular glue” to help stabilize inter- and intra-molecular interactions. However, the more mobile N-glycans on cell surface receptors, the electron density of which is usually missing on X-ray crystallography, seem to guide the partner ligand to its binding site and prevent irregular protein aggregation by covering oligomerization sites away from the ligand-binding site.
Collapse
Affiliation(s)
| | - Yoshiki Yamaguchi
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-48-467-9619; Fax: +81-48-467-9620
| |
Collapse
|
17
|
Sanchez EJ, Lewis KM, Danna BR, Kang C. High-capacity Ca2+ binding of human skeletal calsequestrin. J Biol Chem 2012; 287:11592-601. [PMID: 22337878 DOI: 10.1074/jbc.m111.335075] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Calsequestrin, the major calcium storage protein in both cardiac and skeletal muscle, binds large amounts of Ca(2+) in the sarcoplasmic reticulum and releases them during muscle contraction. For the first time, the crystal structures of Ca(2+) complexes for both human (hCASQ1) and rabbit (rCASQ1) skeletal calsequestrin were determined, clearly defining their Ca(2+) sequestration capabilities through resolution of high- and low-affinity Ca(2+)-binding sites. rCASQ1 crystallized in low CaCl(2) buffer reveals three high-affinity Ca(2+) sites with trigonal bipyramidal, octahedral, and pentagonal bipyramidal coordination geometries, along with three low-affinity Ca(2+) sites. hCASQ1 crystallized in high CaCl(2) shows 15 Ca(2+) ions, including the six Ca(2+) ions in rCASQ1. Most of the low-affinity sites, some of which are μ-carboxylate-bridged, are established by the rotation of dimer interfaces, indicating cooperative Ca(2+) binding that is consistent with our atomic absorption spectroscopic data. On the basis of these findings, we propose a mechanism for the observed in vitro and in vivo dynamic high-capacity and low-affinity Ca(2+)-binding activity of calsequestrin.
Collapse
Affiliation(s)
- Emiliano J Sanchez
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|